Science.gov

Sample records for micelle environments investigated

  1. Local environment inside a novel aromatic micelle investigated by steady-state and femtosecond fluorescence spectroscopy of an encapsulated solvatochromic probe.

    PubMed

    Sartin, Matthew M; Kondo, Kei; Yoshizawa, Michito; Takeuchi, Satoshi; Tahara, Tahei

    2016-12-21

    The local environment within a recently developed anthracene-shelled micelle (ASM), which is a micelle-like nanocapsule composed of anthracene-embedded amphiphiles, was investigated by steady-state and time-resolved spectroscopy of an encapsulated solvatochromic fluorescent probe molecule, coumarin 153 (C153). The absorption maximum of encapsulated C153 (452 nm) is more red-shifted than that of free C153 in water, indicating a highly polar environment inside the micelle. Despite this, the fluorescence Stokes shift of encapsulated C153 (∼3700 cm(-1)) is substantially smaller than that of free C153 in water. Femtosecond time-resolved broadband fluorescence measurements further showed that the dynamic Stokes shift is completed within 1 ps, revealing that the reorganization of the micelle interior following photoexcitation of the C153 probe is characterized by a sub-picosecond, limited-amplitude response. The femtosecond fluorescence anisotropy data showed that the orientational diffusion of the host-guest complex is slower (860 ps) than that of the empty micelle (510 ps), suggesting that the micelle structure is flexible enough to expand when the guest molecule is accommodated and that the micelle rotates with the encapsulated guest molecule. This softness of the micelles further allows some of them to simultaneously encapsulate two C153 molecules, as evidenced by the appearance of blue-shifted, H-dimer-like absorption and fluorescence bands. Based on these steady-state and femtosecond time-resolved spectroscopic data, we discuss the electronic state of C153 and micelle structure as well as the host-guest interaction in this novel flexible synthetic nanocapsule.

  2. Predicting proton titration in cationic micelle and bilayer environments

    NASA Astrophysics Data System (ADS)

    Morrow, Brian H.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-08-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa's in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  3. Predicting proton titration in cationic micelle and bilayer environments

    SciTech Connect

    Morrow, Brian H.; Shen, Jana K.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  4. Radiochromic leuco dye micelle hydrogels: I. Initial investigation.

    PubMed

    Jordan, Kevin; Avvakumov, Nikita

    2009-11-21

    This investigation reports the use of surfactants and colorless leuco triarylmethane dyes to form a new class of radiochromic micelle hydrogels for three-dimensional (3D) water-equivalent dosimetry. Gelatin gel samples with several surfactants and leuco dyes were prepared and evaluated for optical transparency, dose sensitivity and diffusion rates. The addition of Triton X-100, a non-ionic surfactant, at levels exceeding the critical micelle concentration provides a transparent hydrogel in which the water insoluble leuco Malachite Green (LMG) can dissolve. During irradiation, the LMG dye precursor converts to Malachite Green (MG(+)). The most sensitive reported LMG gel formulation contains 0.3 mM LMG leuco dye, 16 mM trichloroacetic acid, 7 mM Triton X-100 and 4% w/w gelatin. A diffusion coefficient of 0.14 mm(2) h(-1) was determined for MG(+) in this gel by fitting the time-dependent degradation of the transmission profile after irradiating half of the sample. The diffusion rate was three times lower than the standard radiochromic ferrous xylenol-orange (FX) gel. The primary feature of this 3D hydrogel is that it introduces transparent, radiochromic, micelle hydrogels. The radiochromic response to dose is instantaneous and images are stable for several hours. A dosimetric characterization revealed that the dose response is reproducible to within 10% over five separate batches and independent of both energy and dose rate. Uniform pre-irradiation of samples to 5 Gy provided a subsequent near linear response to greater than 110 Gy. LMG gels when read with a fast optical CT scanner can provide full 3D dose distributions in less than 30 min post-irradiation. LMG micelle gels scanned with a 633 nm light source are a promising system for quantitative water- or tissue-equivalent 3D dose verification in the 5-100 Gy dose range. These gels are useful for the scanning of larger volume dosimeters (i.e. >15 cm diameter) since they are easily prepared with inexpensive

  5. Radiochromic leuco dye micelle hydrogels: I. Initial investigation

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Avvakumov, Nikita

    2009-11-01

    This investigation reports the use of surfactants and colorless leuco triarylmethane dyes to form a new class of radiochromic micelle hydrogels for three-dimensional (3D) water-equivalent dosimetry. Gelatin gel samples with several surfactants and leuco dyes were prepared and evaluated for optical transparency, dose sensitivity and diffusion rates. The addition of Triton X-100, a non-ionic surfactant, at levels exceeding the critical micelle concentration provides a transparent hydrogel in which the water insoluble leuco Malachite Green (LMG) can dissolve. During irradiation, the LMG dye precursor converts to Malachite Green (MG+). The most sensitive reported LMG gel formulation contains 0.3 mM LMG leuco dye, 16 mM trichloroacetic acid, 7 mM Triton X-100 and 4% w/w gelatin. A diffusion coefficient of 0.14 mm2 h-1 was determined for MG+ in this gel by fitting the time-dependent degradation of the transmission profile after irradiating half of the sample. The diffusion rate was three times lower than the standard radiochromic ferrous xylenol-orange (FX) gel. The primary feature of this 3D hydrogel is that it introduces transparent, radiochromic, micelle hydrogels. The radiochromic response to dose is instantaneous and images are stable for several hours. A dosimetric characterization revealed that the dose response is reproducible to within 10% over five separate batches and independent of both energy and dose rate. Uniform pre-irradiation of samples to 5 Gy provided a subsequent near linear response to greater than 110 Gy. LMG gels when read with a fast optical CT scanner can provide full 3D dose distributions in less than 30 min post-irradiation. LMG micelle gels scanned with a 633 nm light source are a promising system for quantitative water- or tissue-equivalent 3D dose verification in the 5-100 Gy dose range. These gels are useful for the scanning of larger volume dosimeters (i.e. >15 cm diameter) since they are easily prepared with inexpensive ingredients, are

  6. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    PubMed Central

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  7. Removal of Cr(VI) from aqueous environments using micelle-clay adsorption.

    PubMed

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques.

  8. Investigation of the micropolarity of reverse micelles using quinolinium betaine compounds as probes

    SciTech Connect

    Ueda, Mitsuo; Kimura, Akimune; Wakida, Tomoji . Dept. of Chemistry and Materials Technology); Yoshimura, Yurika ); Schelly, Z.A. . Dept. of Chemistry and Biochemistry)

    1994-03-15

    There is considerable interest in the utilization of reverse micelle and microemulsion systems in a variety of applications such as reactivity control, tertiary oil recovery, solar energy conversion, enzyme mediated synthesis, etc. Fundamental to understanding improved applications of such systems are questions concerning solubilization; thus substantial efforts have been focused on the investigation of the solubilizing state of the assemblies. N-octyl-quinolinium betaine is introduced as an absorption probe for the micropolarity of the interior of reverse micelles. its solubilization by reverse micelles and water/oil microemulsions of Aerosol-OT in isooctane is compared with that of N-methyl-quinolinium betaine at various water contents of the solution. Analysis of the excitation energies in the visible range of the spectrum indicates that the methyl derivative probes the polarity of the aqueous pool of the micelle, whereas the octyl derivative behaves as a cosurfactant probe that reports on the polarity of the water/oil interfacial region.

  9. Light scattering investigation of phase separation in a micelle system

    SciTech Connect

    Wilcoxon, J.P.; Martin, J.E.; Odinek, J.

    1993-12-31

    We report a real-time, two-dimensional light scattering study of the evolution of structure in a two component nonionic micelle system during phase separation via spinodal decomposition. Our principal finding is that domain growth proceeds much slower than the cube root of time prediction for simple binary fluids. In fact, the growth kinetics can be empirically described as a stretched exponential approach to a pinned domain size. Although the kinetics are not yet understood, this anomalous behavior may be due to the ability of the spherical micelles to reorganize into more complex structures. The domain structure also shows some anomalies. Although at short times the expected structure factor for a critical quench is observed, at long times the structure factor crosses over to the off-critical form. However, in all cases the average scattered intensity is proportional to the cube of the domain size. These findings are discussed in comparison to standard theories of and experimental work on binary fluids.

  10. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions.

    PubMed

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-04-28

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10-40 nm range. Similarly, a 30-150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Microemulsions of water in supercritical carbon dioxide : an in-situ NMR investigation of micelle formation and structure.

    SciTech Connect

    Fremgen, D. E.; Smotkin, E. S.; Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Chemical Engineering; IIT

    2001-04-01

    High-pressure NMR spectroscopy was used for the first time to investigate microemulsions of water in supercritical carbon dioxide. The emulsions were formed using a family of anionic perfluoropolyether ammonium carboxylate surfactants. This system holds promise as a reaction medium for conducting homogeneous catalytic reactions within the aqueous micellular cores while, at the same time, exploiting the facile mass transfer properties of the supercritical fluid. Ammonium hexafluorophosphate was used as a water-soluble ionic guest to investigate micelle formation and structure. Under micelle-forming conditions, the PF{sub 6}{sup -} guest, surfactant, and water were uniformly dispersed throughout the CO{sub 2} phase, as demonstrated by in situ NMR imaging. In addition, the micelles were observed to form even in the absence of mechanical stirring. This spontaneous formation of micelles demonstrates that the NMR spectral properties were obtained under conditions that result in the production of thermodynamically stable microemulsions. The nuclear overhauser effect (NOE) was used to probe the micellular structure through dipole-dipole interactions between the PF{sub 6}{sup -} anion and the fluorinated backbone of the surfactant. A strong negative homonuclear NoE was observed between the PF{sub 6}{sup -} guest and the fluorine moiety that is located directly adjacent to the surfactant's carboxylate head group. This highly specific negative NOE indicates an ordered arrangement, where the PF{sub 6}{sup -} anion and carboxylate ion are located in close proximity to one another. This close association of two negatively charged ionic groups in an aqueous environment is unusual and suggests that the PF{sub 6}{sup -} guest is concentrated within the electric double layer that forms at the micellular interface.

  12. Theoretical and experimental investigations of electrostatic effects associated with ionic surfactant micelles

    NASA Astrophysics Data System (ADS)

    Diggs, Nancy Zoeller

    In this thesis, both theoretical and experimental investigations were conducted in order to develop a better molecular-level understanding of the micellar properties of aqueous ionic surfactant solutions. The first major contribution of this thesis was to extend a molecular-thermodynamic theory of micellization and micellar solution phase behavior previously developed for nonionic surfactants to describe and model the behavior of ionic surfactants. Analytical approximations to the Poisson-Boltzmann equation were used to calculate the electrostatic contribution to the free energy of micellization. To correct for the neglect of the finite size of the ions in the ion cloud, the model was modified to include a Stern layer, a region immediately surrounding the micelle surface from which the counterions are excluded. Including the Stern layer improved CMC predictions and provided some counterion specificity. In addition, a model for the fractional counterion binding was developed based on the Gibbs adsorption equation. The molecular-thermodynamic theory was incorporated into a computer program, PREDICT. PREDICT is capable of predicting a wide range of micellar solution properties for a variety of ionic, non-ionic, and zwitterionic surfactants. A new statistical-thermodynamic framework for micellar solutions based on the McMillan-Mayer theory of multicomponent solutions was developed. The framework was implemented in the case of nonionic surfactant solutions exhibiting attractive and excluded-volume intermicellar interactions. It was demonstrated that repulsive excluded-volume intermicellar interactions encourage micelle formation and growth. The McMillan-Mayer approach was then extended to model the behavior of ionic surfactant solutions which exhibit both excluded-volume and electrostatic intermicellar interactions. The other micelles in solution were included as part of the diffuse ion cloud surrounding a central micelle. Two approaches were used to calculate the

  13. Investigating Your Environment.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    The goal of this interdisciplinary curriculum is to enable students to make informed and responsible decisions about natural resources management by promoting an understanding of natural, social, and economic environments and the student's role in affecting all three. The included investigations utilize processes and techniques that help people…

  14. pH-Sensitive polymeric micelle-based pH probe for detecting and imaging acidic biological environments.

    PubMed

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W; Jeon, Yong Sun; Bae, You Han

    2012-09-10

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b-poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2-0.3 pH unit differences by pH-induced "on/off"-like sensing of NMR and magnetic resonance spectroscopy. The micellar pH probes sensed pH differences in nonbiological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo.

  15. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  16. Investigation of thermo-sensitive amphiphilic micelles as drug carriers for chemotherapy in cholangiocarcinoma in vitro and in vivo.

    PubMed

    Wang, Xuefeng; Li, Songgang; Wan, Ziwei; Quan, Zhiwei; Tan, Qinggang

    2014-03-10

    Cholangiocarcinoma is an epithelial cancer of the bile ducts with poor prognosis and, in recent years, a rapidly increasing incidence. In this study, nano-sized thermo-sensitive micelles were investigated as drug carriers to improve chemotherapy in cholangiocarcinoma. Thermo-sensitive amphiphilic block copolymer, P-(N,N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-caprolactone [P-(NIPAAm-co-NHMAAm)-b-PCL] with lower critical solution temperature (LCST) at about 38°C was synthesized. Doxorubicin (DOX)-loaded micelles were prepared by dialysis method. The micelles exhibited a sustained and temperature-dependent DOX release. Toxicity of the blank micelles for human cholangiocarcinoma (QBC939) cells was minimal both in vitro and in vivo. In contrast, the DOX-loaded micelles effectively inhibited proliferation and induced apoptosis of QBC939 cells in vitro (p<0.05) and inhibited tumor growth in nude mice by 21.49%. These results indicated that thermo-sensitive amphiphilic micelles are a promising and effective drug carrier, and show potential for improving chemotherapy for cholangiocarcinoma.

  17. Investigation of ultrafiltration rejection of surfactant micelles by dynamic light scattering

    SciTech Connect

    Singh, R.

    1996-05-01

    The absence of nonionic surfactant micelles in ultrafiltration membrane (molecular weight cut-off = 10,000) permeates is verified with the aid of a dynamic light-scattering (DLS) technique. DLS is also used to determine the hydrodynamic radii of micelles at concentrations above the critical micelle concentration. An empirical relationship between the micelle diameter, diffusion coefficient, and a pseudomolecular weight is plotted. The relationship can be used to screen high molecular weight cut-off membranes for surfactant-based UF applications.

  18. Effect of nucleoside analogue antimetabolites on the structure of PEO–PPO–PEO micelles investigated by SANS

    SciTech Connect

    Han, Youngkyu; Zhang, Zhe; Smith, Gregory S.; Do, Changwoo

    2017-01-01

    The effect of three nucleoside analogue antimetabolites (5-fluorouracil, floxuridine, and gemcitabine) on the structure of Pluronic L62 copolymer micelles was investigated using small-angle neutron scattering. These antimetabolites used for cancer chemotherapy have analogous molecular structures but different molecular sizes and aqueous solubilities. It was found that the addition of the three antimetabolites slightly reduced the micellar size and aggregation number, and the micellar anisotropy. The added antimetabolites also changed the internal molecular distribution of the micelles as measured by the scattering length densities, resulting in enhanced hydration of the hydrophobic core region of the micelle. The strength of the effect was found to correlate with the molecular properties of the model drugs, i.e. a larger molecular size and a higher aqueous solubility lead to enhanced hydration of the micellar core.

  19. Effect of nucleoside analogue antimetabolites on the structure of PEO–PPO–PEO micelles investigated by SANS

    DOE PAGES

    Han, Youngkyu; Zhang, Zhe; Smith, Gregory S.; ...

    2017-04-19

    In this work, the effect of three nucleoside analogue antimetabolites (5-fluorouracil, floxuridine, and gemcitabine) on the structure of Pluronic L62 copolymer micelles was investigated using small-angle neutron scattering. These antimetabolites used for cancer chemotherapy have analogous molecular structures but different molecular sizes and aqueous solubilities. It was found that the addition of the three antimetabolites slightly reduced the micellar size and aggregation number, and the micellar anisotropy. The added antimetabolites also changed the internal molecular distribution of the micelles as measured by the scattering length densities, resulting in enhanced hydration of the hydrophobic core region of the micelle. The strengthmore » of the effect was found to correlate with the molecular properties of the model drugs, i.e. a larger molecular size and a higher aqueous solubility lead to enhanced hydration of the micellar core.« less

  20. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    PubMed

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  1. Investigations on the lyophilisation of MPEG-hexPLA micelle based pharmaceutical formulations.

    PubMed

    Di Tommaso, Claudia; Como, Caterina; Gurny, Robert; Möller, Michael

    2010-04-16

    Lyophilisation is a common procedure to increase the long-term stability of pharmaceutical formulations. Its applicability to polymeric micelles is usually an issue because of the aggregation of materials during freeze-drying steps. The feasibility of this process was studied on polymeric micelles based on methoxy poly(ethylene glycol)-poly(hexyl-lactide) (MPEG-hexPLA) with and without Cyclosporin A, in order to increase the stability of these pharmaceutical formulations. Freeze-thawing tests were carried out to determine the protective effect of various excipients on the freezing step. Mannitol, trehalose, glucose and sucrose showed the best effectiveness in micelle protection. The lyophilisation process was optimised by thermal analysis (DSC) on excipients to determine the glass transition temperature of the cryoconcentrate solutions (T(g)') and their glass transition temperature (T(g)). The freeze-dried powders were characterized in terms of morphology (SEM) and of moisture content (Karl Fisher titration). The reconstituted micelle formulations were analysed for size by DLS with and without goniometer, for morphology by TEM, for drug loading by HPLC. The formulation presenting the best characteristics before and after reconstitution contained 10% (w/v) sucrose in phosphate buffer. This lyophilised formulation was constituted of a brittle and white cake, with a residual water content of around 2% and it was easily reconstituted in a transparent and clear solution giving back a colloidal system with spherical micelles in the submicron range (<250 nm). The drug loading was not affected by the freeze-drying procedure. This study showed that the MPEG-hexPLA micelles can be efficiently lyophilised and this process can be usefully applied to increase the pharmaceutical stability of these pharmaceutical micelle formulations. 2010 Elsevier B.V. All rights reserved.

  2. Geokinetic environment investigations

    NASA Astrophysics Data System (ADS)

    Hartnett, E. B.; Carleen, E. D.; Blaney, J. I.

    1981-03-01

    This report covers the development and implementation of special concepts, techniques and instrumentation for the collection, analysis and application of geokinetic data. The Geokinetic Data Acquisition System (GDAS) was modified, maintained and operationally deployed to various sites designated by AFGL. Tests were conducted at the Defense Nuclear Agency (DNA) CASINO Facility in Maryland; Central Inertial Guidance Test Facility (CIGTF), Holloman AFB, N.M.; Space Transportation System (STS) Launch Complex, Vandenberg AFB, Ca. and the SAC Wing V Minuteman Complex at Cheyenne, Wy. The CASINO data contributed to SAMSO's MX/TGG Advanced Development Bridge II Program for radiation hardening of third generation hardware. The CIGTF investigation supported USAF requirements for highly precise azimuth reference. The Hill AFB the performance of a minuteman III missile guidance system in an engineering silo. The STS program at Vandenberg AFB was to assist in determining the nature of a Titan III-D pressure load. The SAC Wing V deployment was to investigate plateau/valley basin geologic characteristics in respect to motion response.

  3. What is inside a nonionic reverse micelle? Probing the interior of Igepal reverse micelles using decavanadate.

    PubMed

    Sedgwick, M A; Crans, D C; Levinger, N E

    2009-05-19

    The interiors of reverse micelles formed using nonionic surfactants to sequester water droplets in a nonpolar environment have been investigated using the decavanadate molecule as a probe. Chemical shifts and line widths of the three characteristic signals in the 51V NMR spectrum of decavanadate, corresponding to vanadium atoms in equatorial peripheral, equatorial interior, and axial locations, measure the local proton concentration and characteristics of the reverse micellar interior near the decavandate probe. All samples investigated indicate deprotonation of the vanadate probe in the reverse micelle environment. However, the relative mobility of the decavanadate molecule depends on the reverse micellar components. Specifically, the 51V NMR signals of the decavandate in reverse micelles formed using only the Igepal CO-520 surfactant display sharp signals indicating that the decavandate molecule tumbles relatively freely while reverse micelles formed from a mixture of Igepal CO-610 and -430 present a more viscous environment for the decavanadate molecule; the nature of the interior of the nonionic reverse water pool varies significantly depending on the specific Igepal. The 51V NMR spectra also indicate that the interior core water pool of the reverse micelles is less acidic than the bulk aqueous solution from which the samples were created. Together, these data provide a description that allows for a comparison of the water pools in these different nonionic reverse micelles.

  4. Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles.

    PubMed

    Spry, D B; Goun, A; Glusac, K; Moilanen, David E; Fayer, M D

    2007-07-04

    The properties of confined water and diffusive proton-transfer kinetics in the nanoscopic water channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series of well-characterized AOT reverse micelles with known water nanopool sizes using the photoacid pyranine as a molecular probe. The side chains of Nafion are terminated by sulfonate groups with sodium counterions that are arrayed along the water channels. AOT has sulfonate head groups with sodium counterions that form the interface with the reverse micelle's water nanopool. The extent of excited-state deprotonation is observed by steady-state fluorescence measurements. Proton-transfer kinetics and orientational relaxation are measured by time-dependent fluorescence using time-correlated single photon counting. The time dependence of deprotonation is related to diffusive proton transport away from the photoacid. The fluorescence reflecting the long time scale proton transport has an approximately t-0.8 power law decay in contrast to bulk water, which has a t-3/2 power law. For a given hydration level of Nafion, the excited-state proton transfer and the orientational relaxation are similar to those observed for a related size AOT water nanopool. The effective size of the Nafion water channels at various hydration levels are estimated by the known size of the AOT reverse micelles that display the corresponding proton-transfer kinetics and orientational relaxation.

  5. Spectroscopic investigations on the interaction of an anionic probe with nonionic micelles of Igepal surfactants in aqueous media

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Palepu, R. M.

    The behaviour of the anionic dye 8-anilino-1-napthalenesulfonic acid ammonium salt, or ANS, in aqueous solutions containing the Igepal series of polyoxyethylene nonionic surfactants was investigated using fluorescence spectroscopic technique. The interactions of the dye with the nonionic surfactants were examined in micellar media, to prevent dye aggregate formation and to ensure maximum dye and surfactant interaction. From the relative fluorescence enhancements, binding constants of the dye to the surfactant micelles and aggregation numbers of the micelles were determined. The aggregation numbers were also separately determined by static fluorescence quenching of pyrene by cetylpyridinium chloride in aqueous surfactant mixtures at a fixed concentration of surfactant, and compared with the value obtained from the present investigation of the interaction of the micelles with the ANS probe. The values of binding constants, micropolarity values sensed by pyrene and the Stern-Volmer constants for quenching of pyrene fluorescence by cetylpyridinium chloride were correlated with the number of ethylene oxide groups in the Igepal series.

  6. Investigation of Chiral Molecular Micelles by NMR Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2013-01-01

    NMR spectroscopy and molecular dynamics (MD) simulation analyses of the chiral molecular micelles poly-(sodium undecyl-(L,L)-leucine-valine) (poly-SULV) and poly-(sodium undecyl-(L,L)- valine-leucine) (poly-(SUVL)) are reported. Both molecular micelles are used as chiral selectors in electrokinetic chromatography and each consists of covalently linked surfactant chains with chiral dipeptide headgroups. To provide experimental support for the structures from MD simulations, NOESY spectra were used to identify protons in close spatial proximity. Results from the NOESY analyses were then compared to radial distribution functions from MD simulations. In addition, the hydrodynamic radii of both molecular micelles were calculated from NMR-derived diffusion coefficients. Corresponding radii from the MD simulations were found to be in agreement with these experimental results. NMR diffusion experiments were also used to measure association constants for polar and non-polar binaphthyl analytes binding to both molecular micelles. Poly(SUVL) was found to bind the non-polar analyte enantiomers more strongly, while the more polar analyte enantiomers interacted more strongly with poly(SULV). MD simulations in tum showed that poly(SUL V) had a more open structure that gave greater access for water molecules to the dipeptide headgroup region. PMID:23991355

  7. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    NASA Astrophysics Data System (ADS)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  8. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery.

    PubMed

    Wang, Yan; Li, Qiu Yu; Liu, Xu Bo; Zhang, Can Yang; Wu, Zhi Min; Guo, Xin Dong

    2015-11-25

    The microstructures of doxorubicin-loaded micelles prepared from block polymers His(x)Lys10 (x = 0, 5, 10) conjugated with docosahexaenoic acid (DHA) are investigated under different pH conditions, using dissipative particle dynamics (DPD) simulations. The conformation of micelles and the DOX distributions in micelles were obviously influenced by pH values and the length of the histidine segment. At pH >6.0, the micelles self-assembled from the polymers were dense and compact. The drugs were entrapped well within the micellar core. The particle size increases as the histidine length increases. With the decrease of pH value to be lower than 6.0, there was no distinct difference for the micelles self-assembled from the polymer without histidine residues. However, the micelles prepared from the polymers with histidine residues shows a structural transformation from dense to swollen conformation, leading to an increased particle size from 10.3 to 14.5 DPD units for DHD-His10Lys10 micelles. This structural transformation of micelles can accelerate the DOX release from micelles under lower pH conditions. The in vitro drug release from micelles is accelerated by the decrease of pH value from 7.4 (physiological environment) to 5.0 (lysosomal environment). The integration of simulation and experiments might be a valuable method for the optimization and design of biomaterials for drug delivery with desired properties.

  9. Structural investigation of nonionic fluorinated micelles by SANS in relation to mesoporous silica materials.

    PubMed

    Michaux, Florentin; Blin, Jean-Luc; Teixeira, José; Stébé, Marie José

    2012-01-12

    In an attempt to answer the question if there is dependence between the pore ordering of the mesoporous silica, obtained through the cooperative template mechanism, and the shape of the micellar aggregates of the surfactant solutions, the micellar structures of two nonionic fluorinated surfactant based-systems are studied by SANS. By fitting the experimental spectra with theoretical models, the structural evolution of the molecular aggregates can be described, and some important parameters can be obtained, such as the water and eventually oil penetration into the surfactant film, the aggregation number, the area per polar head of the surfactant, and the surfactant chain conformations. We have shown that for the C(8)F(17)C(2)H(4)(OC(2)H(4))(9)OH system, the micelles are prolate spheroids. The increase of the surfactant concentration in water does not change the characteristics of the interfacial film, but the aggregation number raises and the particles become more elongated. By contrast, the experimental curves of C(7)F(15)C(2)H(4)(OC(2)H(4))(8)OH cannot be fitted considering a small particle model. However, progressive incorporation of fluorocarbon induces a change of size and shape of the globules, which become smaller and more and more spherical. Regarding the material mesopore ordering, it appears that the micelles that lead to hexagonal mesoporous silica materials are described with a model of quasi-spherical globules. On the contrary, when large micelles are found, only wormhole-like structures are obtained.

  10. Mixed Micelles of Sodium Cholate and Sodium Dodecylsulphate 1:1 Binary Mixture at Different Temperatures – Experimental and Theoretical Investigations

    PubMed Central

    Jójárt, Balázs; Poša, Mihalj; Fiser, Béla; Szőri, Milán; Farkaš, Zita; Viskolcz, Béla

    2014-01-01

    Micellisation process for sodium dodecyl sulphate and sodium cholate in 1∶1 molar ratio was investigated in a combined approach, including several experimental methods and coarse grained molecular dynamics simulation. The critical micelle concentration (cmc) of mixed micelle was determined by spectrofluorimetric and surface tension measurements in the temperature range of 0–50°C and the values obtained agreed with each other within the statistical error of the measurements. In range of 0–25°C the cmc values obtained are temperature independent while cmc values were increased at higher temperature, which can be explained by the intensive motion of the monomers due to increased temperature. The evidence of existing synergistic effect among different constituent units of the micelle is indicated clearly by the interaction parameter (β1,2) calculated from cmc values according to Rubingh. As the results of the conductivity measurements showed the negative surface charges of the SDS-NaCA micelle are not neutralized by counterions. Applying a 10 µs long coarse-grained molecular dynamics simulation for system including 30-30 SDS and CA (with appropriate number of Na+ cations and water molecules) we obtained semi-quantitative agreement with the experimental results. Spontaneous aggregation of the surfactant molecules was obtained and the key steps of the micelle formation are identified: First a stable SDS core was formed and thereafter due to the entering CA molecules the size of the micelle increased and the SDS content decreased. In addition the size distribution and composition as well as the shape and structure of micelles are also discussed. PMID:25004142

  11. Microcalorimetric investigation of the solubilization of water in reversed micelles and water-in-oil microemulsions

    SciTech Connect

    Haandrikman, G.; Daane, G.J.R.; Kerkhof, F.J.M.; Os, N.M. van; Rupert, L.A.M.

    1992-10-29

    Microcalorimetry has been used to study the solubilization of water in reversed micelles and water-in-oil (w/o) microemulsions. The systems were based on Aerosol OT (AOT) and two isomerically pure sodium alkylarenesulfonates as surfactants. The solubilization of water can be described in terms of hydration of the head group (ca. three H{sub 2}O molecules per AOT), swelling of the water droplet, and phase separation. All steps are endothermic, indicating that a gain in entropy is the driving forcing for solubilization. Above 60 {degrees}C the hydration energy for AOT is strongly affected by temperature. The swelling of alkylarenesulfonate w/o microemulsions droplets in n-heptane is more endothermic than that of AOT w/o microemulsion droplets in n-heptane, indicating a significant influence of surfactant structure. 57 refs., 7 figs., 1 tab.

  12. Micelles entrapped Cresyl Violet can selectively detect copper and mercury ions in solution: A fluorescence Correlation Spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Das, Nirmal Kumar; Ghosh, Subhadip; Jaiswal, Sunidhi; Tewary, Anu; Mukherjee, Saptarshi

    2017-08-01

    The dynamic interaction of Cresyl Violet (CV) in different micellar systems has been demonstrated in single molecular level by FCS studies. The SDS micelle entrapped CV efficiently detected Cu2+ ions in solution with a limit of detection (LOD) of 70 nM, which is further substantiated with the gradual enhancement of the translational motion. The CV entrapped in the DTAB micelles could selectively detect Hg2+ ions in solution with a LOD of 35 nM. The micelle encapsulated CV was effective in detecting these metal ions in real water samples from different sources.

  13. Distance dependence of magnetic field effect inside confined environment of reverse micelles

    NASA Astrophysics Data System (ADS)

    Sarangi, Manas Kumar; Basu, Samita

    2013-06-01

    In this article, we emphasize on the distance dependence of the magnetic field effect (MFE) on the donoracceptor (D-A) pair inside the confined environment of AOT/H2O/n-heptane reverse micellar (RMs) system. For this study N, N-dimethyl aniline (DMA) is used as an electron donor while the protonated form of Acr is treated as an electron acceptor. We report of the occurrence of an associated excited state proton transfer with the photoinduced electron transfer between Acr and DMA forming corresponding radical pair (RP) and radical ion pairs (RIP). The fate of these reaction products has been tested in the presence of an external magnetic field (˜0.08T) by varying the size of the RMs. The MFE between Acr and DMA has been compared to the results with the earlier reported interactions between Acr and TEA (Chemical Physics Letters, 2011, 506, 205-210). We accentuate the importance of the localization of the D and A inside the RMs, and the intervening distance between the pair to be the critical component for observing substantial MFE.

  14. Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals.

    PubMed

    Arnaud, N; Georges, J

    2001-04-01

    This work investigates the effect of micelles on the time-resolved and steady-state thermal lens signals in aqueous solutions. The temperature gradient produced subsequently to non-radiative relaxation of the sample induces migration of micelles towards the colder region of the irradiated area along with an opposite flow of solute molecules. This phenomenon, known as the Soret effect, produces an additional probe beam signal with a rise time that is much longer than the thermal time constant and depends on the surfactant and solute concentrations. Extrapolation of the mass-diffusion constant at zero solute concentration allowed the determination of diffusion coefficients that are close to those derived by other methods for Brij 35 micelles in water. It is also shown that the surfactant has only a small effect on the thermal lens signal and that the enhancement produced by micelles with respect to pure water originates mainly firom the Soret effect. It follows that interpretation of experimental data without discriminating both components of the probe beam signal can lead to erroneous values of dn/dT.

  15. Ultrafast Dynamics in Reverse Micelles

    NASA Astrophysics Data System (ADS)

    Levinger, Nancy E.; Swafford, Laura A.

    2009-05-01

    Recent advances in ultrafast laser technology have spurred investigations of microheterogeneous solutions. In particular, researchers have explored details of reverse micelles (RMs), which present isolated droplets of polar solvent sequestered from a continuous nonpolar phase by a surfactant layer. This review explores recent studies utilizing a variety of ultrafast laser techniques to uncover details about structure and dynamics in various RMs. Using ultrafast vibrational spectroscopy, researchers have probed hydrogen-bond dynamics and vibrational energy relaxation in RMs. These studies have developed our understanding of reverse micellar structure, identifying varying water environments in the RMs. In a plethora of experiments employing probe molecules, researchers have explored the confined environment presented by RMs and their impact on a range of chemical reactions. These studies have shown that confinement, rather than the specific interactions with surfactants, is an important factor determining the impact of the reverse micellar environment on the chemistry.

  16. Investigation of the Effect of Different Emulsifiers on the Transdermal Delivery of EGCG Entrapped in a Polymeric Micelle System.

    PubMed

    Casiraghi, Antonella; Franzè, Silvia; Selmin, Francesca; Dazio, Valeria; Minghetti, Paola

    2017-03-01

    Epigallocatechin gallate, one of the most active antioxidant compounds, has a low chemical stability and ability to permeate the human epidermis. The encapsulation in polymeric micelles would be beneficial to improve both stability and permeation of epigallocatechin gallate and, therefore, to facilitate the pharmacological effects. Polymeric micelles containing epigallocatechin gallate were incorporated in O/W emulsions prepared by using different types of emulsifying systems. All emulsions were uniform in colour and aspect, without evidences of phase separation after centrifugation at the preparation time and over a 6-month period of storage at room temperature. Emulsions containing epigallocatechin gallate incorporated in polymeric micelles showed a colour variation, probably due to epigallocatechin gallate degradation, over the stability period. The skin permeability study evidenced a significant increase in epigallocatechin gallate permeation after encapsulation in micelles. Pure epigallocatechin gallate was not able to permeate the skin and only limited amounts were retained in the epidermis, while both permeated and retained amounts after 24 h were measured in the case of polymeric micelles containing epigallocatechin gallate. Moreover, the epigallocatechin gallate release and human skin permeability were affected by the type of emulsifier. The epigallocatechin gallate release in the presence of an emulsifier system based on cereal and fruit fibres never occurred. The best results in terms of release and skin permeability were obtained using glycerides of synthetic or semisynthetic origin or esters. Georg Thieme Verlag KG Stuttgart · New York.

  17. Modulation of photophysics of 2-hydroxy 1-naphthaldehyde in non-ionic micelles

    NASA Astrophysics Data System (ADS)

    Adhikary, Tirtha Pratim; Chowdhury, Papia; Chakravorti, Sankar

    2007-07-01

    Interesting structural influence of different types of non-ionic micelles (Tween-40, Tween-80, Brij-30 and Brij-78) on the excited state proton transfer photophysics of 2-hydroxy 1-naphthaldehyde has been investigated. Anion band formation in the excited state is favored in Brij micelles, similar to aqueous environment due to hydrogen bonding ability of OH group in Brij but the same is hindered in Tween micelles. Quantum chemical calculations predicted, with free energy and enthalpy values, two possible anionic conformers ( cis and trans). One of the two anionic conformers is favored in Brij 30 and addition of base seems to lower the barrier for other conformer to appear.

  18. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.

    PubMed

    Zheng, Guanyu; Selvam, Ammaiyappan; Wong, Jonathan W C

    2012-11-06

    The effect of oil-swollen micelles formed with nonionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), cosurfactant 1-pentanol, and linseed oil on the solubilization and desorption of organochlorine pesticides (OCPs) including DDT and γ-HCH from both loam soil and clay soil were investigated. Results showed that the solubilizing capacities of oil-swollen micelles were dependent on the critical micelle concentration (CMC) of Tween 80. Once the concentrations of oil-swollen micelles exceeded the CMC of Tween 80, the oil-swollen micelles exhibited much higher solubilizing capacity than empty Tween 80 micelles for the two OCPs. Desorption tests revealed that oil-swollen micelles could successfully enhance desorption of OCPs from both loam soil and clay soil. However, compared with the efficiencies achieved by empty Tween 80 micelles, oil-swollen micelles exhibited their superiority to desorb OCPs only in loam soil-water system while was less effective in clay soil-water system. Distribution of Tween 80, 1-pentanol and linseed oil in soil-water system revealed that the difference in the sorption behavior of linseed oil onto the two soils is responsible for the different effects of oil-swollen micelles on the desorption of OCPs in loam soil and clay soil systems. Therefore, oil-swollen micelles formed with nonionic surfactant Tween 80 are better candidates over empty micelle counterparts to desorb OCPs from soil with relatively lower sorption capacity for oil fraction, which may consequently enhance the availability of OCPs in soil environment during remediation processes of contaminated soil.

  19. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  20. Development and qualification of an LC-MS/MS method for investigating the biological implications of micelle entrapped paclitaxel in cell culture and rats.

    PubMed

    Kaddoumi, Amal; Gill, Kanwaldeep K; Elfakhri, Khaled; Nazzal, Sami

    2017-09-01

    Paclitaxel is a front-line antineoplastic drug used in chemotherapeutic modalities for treatment of various types of malignancies. However, its efficacy is limited by dose-related toxicities. In this study, we have explored two important biological aspects of entrapping paclitaxel in PEG2000 -DSPE micelles. First, we evaluated the impact of this micellar delivery system on P-glycoprotein (P-gp)-paclitaxel interaction, and we investigated differences in plasma pharmacokinetics of free and micelle-entrapped paclitaxel. For quantification of paclitaxel, an LC-MS/MS method was developed. Paclitaxel was extracted from samples using a simple one-step protein precipitation. Chromatographic conditions included a C18 column with a mobile phase consisting of 0.1% formic acid in acetonitrile-water (60:40, v/v) pumped at 1 mL/min. The lower limit of quantitation in both plasma and cell lysate was 1.0 ng/mL. The quantitative linear range was 1-1000 ng/mL. In addition, P-gp efflux studies on free and micellar paclitaxel showed the proficiency of PEG2000 -DSPE micelles in evading P-gp-mediated efflux, thus increasing paclitaxel uptake. Furthermore, the micellar paclitaxel levels were maintained in the body for longer time as compared with taxol, which is desirable for increasing the efficacy of paclitaxel in cancer treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Reverse micelles as a water-property-control system to investigate the hydration/activity relationship of alpha-chymotrypsin.

    PubMed

    Dorovska-Taran, V; Veeger, C; Visser, A J

    1993-12-15

    alpha-Chymotrypsin, solubilized in hydrated reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in n-octane, was used as a model system for studying the involvement of different water structures (strongly bound water, disordered water, water clusters and bulk water) in the development of the catalytically active conformation of the enzyme. Results presented in this study indicate a characteristic dependence of the stability/activity profile on the water content of the reverse-micellar system for values of wo of approximately 5 (wo is defined as [H2O]/[AOT]). The results are consistent with heat-capacity measurements for proteins. At very low wo values, the conformation of alpha-chymotrypsin changes to a very rigid structure in comparison to the structure observed in water. This is demonstrated by the overall center of gravity of the tryptophan fluorescence spectrum of the enzyme at wo = 0.65, which is blue shifted in comparison to the spectrum in bulk water indicating that the enzyme is in an apolar environment. In the absence of a hydration shell, the protein is to a great extent frozen and inactive. A small increase in the level of enzyme hydration (up to wo = 2.3) causes an increase in the amount of strongly bound water associated with the enzyme and the enzyme displays a high catalytic activity. Upon further addition of water, a new unstable water structure with unfavourable enthalpy is developed and the enzyme activity declines, reaching a minimum at wo = 5.1. A new increase of water content within a relatively small range, wo = 5-8, causes a dramatic increase in enzymic activity, reminiscent of a cooperative hydration dependence. In the range wo = 10-29, the effect of hydration on the activity is complete which shows that the enzyme activity depends on the amount of water in contact with the enzyme and not on the total amount of bulk water in the system. The experimental results on enzyme incubation at different wo values followed by dilution to

  2. Investigation on design of stable etoposide-loaded PEG-PCL micelles: effect of molecular weight of PEG-PCL diblock copolymer on the in vitro and in vivo performance of micelles.

    PubMed

    Ukawala, Mukesh; Rajyaguru, Tushar; Chaudhari, Kiran; Manjappa, A S; Pimple, Smita; Babbar, A K; Mathur, Rashi; Mishra, A K; Murthy, R S R

    2012-04-01

    In the present study, six different molecular weight diblock copolymer of methoxy poly (ethylene glycol)-b-poly (ε-caprolactone) (MPEG-PCL) were synthesized and characterized and was used for fabrication of etoposide-loaded micelles by nanoprecipitation technique. The particle size and percentage drug entrapment of prepared micelles were found to be dependent on the molecular weight of PCL block and drug to polymer ratio. The maximum drug loading of 5.32% was found in micellar formulation MPEG5000-PCL10000, while MPEG2000-PCL2000 exhibited 2.73% of maximum drug loading. A variation in the fixed aqueous layer thickness and PEG surface density of micellar formulations was attributed to difference in MPEG molecular weight and interaction of PEG and PCL block of copolymer. The MPEG2000-PCL2000 micelles demonstrated poor in vitro stability among other micellar formulations, due to its interaction with bovine serum albumin and immediate release of drug from micelles. Furthermore, plain etoposide and MPEG2000-PCL2000 micelles exhibited greater extent of hemolysis, due to presence of surfactants and faster release of drug from micelles, respectively. The biodistribution studies carried out on Ehrlich ascites tumor-bearing Balb/C mice confirmed higher accumulation of etoposide-loaded micellar formulation at tumor site compared to plain etoposide due to enhanced permeability and retention effect.

  3. The Effect of Hydrophilic and Hydrophobic Structure of Amphiphilic Polymeric Micelles on Their Transportation in Rats.

    PubMed

    Deng, Feiyang; Yu, Chao; Zhang, Hua; Dai, Wenbing; He, Bing; Zheng, Ying; Wang, Xueqing; Zhang, Qiang

    2016-01-01

    In the previous study, we have clarified how the hydrophilic and hydrophobic structures of amphiphilic polymers impact the transport of their micelles (PEEP-PCL, PEG-PCL and PEG-DSPE micelles) in epithelial MDCK cells (Biomaterials 2013, 34: 6284-6298). In this study, we attempt to clarify the behavior of the three micelles in rats. Coumarin-6 loaded micelles were injected into different sections of intestine of rats and observed by confocal laser scanning microscope (CLSM) or orally administrated and conducted pharmacokinetic study. All of the three kinds of micelles were able to cross the intestinal epithelial cells and enter blood circulation. The PEEP-PCL micelles demonstrated the fastest distribution mainly in duodenum, while the PEGDSPE micelles showed the longest distribution with the highest proportion in ileum of the three. No significant difference was observed among the pharmacokinetic parameters of the three micelles. The results were consistent in the two analysis methods mentioned above, yet there were some differences between in vivo and in vitro results reported previously. It might be the distinction between the environments in MDCK model and intestine that led to the discrepancy. The hydrophobicity of nanoparticles could both enhance uptake and hinder the transport across the mucus. However, there was no intact mucus in MDCK model, which preferred hydrophobic nanoparticles. PEEP was the most hydrophilic material constructing the micelles in the study and its uptake would be increased in rats compared to that in MDCK model, while DSPE was more hydrophobic than the others and MDCK model would be more ideal for its uptake. Considering the inconsistency of the results in the two models, whether the methods researchers were generally using at present were reasonable needs further investigation.

  4. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances.

    PubMed

    Jin, Naixiong; Morin, Emily A; Henn, Daniel M; Cao, Yu; Woodcock, Jeremiah W; Tang, Shuangcheng; He, Wei; Zhao, Bin

    2013-08-12

    Hybrid agarose hydrogels embedded with pH-responsive diblock copolymers micelles were developed to achieve functional hydrogels capable of stimulus-triggered drug release. Specifically, a well-defined poly(ethylene oxide) (PEO)-based diblock copolymer, PEO-b-poly(2-(N,N-diisopropylamino)ethyl methacrylate) (PEO(113)-b-PDPAEMA(31), where the subscripts represent the degrees of polymerization of two blocks), was synthesized by atom transfer radical polymerization. PDPAEMA is a pH-responsive polymer with a pKa value of 6.3. The PEO(113)-b-PDPAEMA(31) micelles were formed by a solvent-switching method, and their pH-dependent dissociation behavior was investigated by dynamic light scattering and fluorescence spectroscopy. Both studies indicated that the micelles were completely disassembled at pH = 6.40. The biocompatibility of PEO(113)-b-PDPAEMA(31) micelles was demonstrated by in vitro primary cortical neural culture. Hybrid agarose hydrogels were made by cooling 1.0 wt % agarose solutions that contained various amounts of PEO(113)-b-PDPAEMA(31) micelles at either 2 or 4 °C. Rheological measurements showed that the mechanical properties of gels were not significantly adversely affected by the incorporation of diblock copolymer micelles with a concentration as high as 5.0 mg/g. Using Nile Red as a model hydrophobic drug, its incorporation into the core of diblock copolymer micelles was demonstrated. Characterized by fluorescent spectroscopy, the release of Nile Red from the hybrid hydrogel was shown to be controllable by pH due to the responsiveness of the block copolymer micelles. Based on the prominent use of agarose gels as scaffolds for cell transplantation for neural repair, the hybrid hydrogels embedded with stimuli-responsive block copolymer micelles could allow the controlled delivery of hydrophobic neuroprotective agents to improve survival of transplanted cells in tune with signals from the surrounding pathological environment.

  5. Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy.

    PubMed

    Fernández, César; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2002-10-15

    Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed description of protein-detergent interactions. The NOEs were measured in 3D (15)N- and (13)C-resolved [(1)H,(1)H]-NOESY spectra recorded with selectively methyl-protonated and otherwise uniformly (2)H,(13)C,(15)N-labeled OmpX in micelles of DHPC at natural isotope abundance. In these mixed micelles the NMR structure of OmpX consists of an eight-stranded antiparallel beta-barrel. The OmpX surface area covered with intermolecular NOEs to the DHPC hydrophobic tails forms a continuous cylinder jacket of approximately 28 A in height, which is centered about the middle of the long axis through the beta-barrel. In addition, some intermolecular NOEs with methyl groups of the DHPC polar head were identified along both boundaries of this cylinder jacket. The experimental data suggest that the hydrophobic surface areas of OmpX are covered with a monolayer of DHPC molecules, which appears to mimic quite faithfully the embedding of the beta-barrel in a double-layer lipid membrane.

  6. Lipid–protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy

    PubMed Central

    Fernández, César; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2002-01-01

    Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed description of protein–detergent interactions. The NOEs were measured in 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra recorded with selectively methyl-protonated and otherwise uniformly 2H,13C,15N-labeled OmpX in micelles of DHPC at natural isotope abundance. In these mixed micelles the NMR structure of OmpX consists of an eight-stranded antiparallel β-barrel. The OmpX surface area covered with intermolecular NOEs to the DHPC hydrophobic tails forms a continuous cylinder jacket of approximately 28 Å in height, which is centered about the middle of the long axis through the β-barrel. In addition, some intermolecular NOEs with methyl groups of the DHPC polar head were identified along both boundaries of this cylinder jacket. The experimental data suggest that the hydrophobic surface areas of OmpX are covered with a monolayer of DHPC molecules, which appears to mimic quite faithfully the embedding of the β-barrel in a double-layer lipid membrane. PMID:12370417

  7. Proton transfer in ionic and neutral reverse micelles.

    PubMed

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  8. Using Ants to Investigate the Environment

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2005-01-01

    The best place for students to begin to understand complex environmental relationships is in their own back yards. Doing investigations of ants allows students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenance, and increase their understanding of the environment and their…

  9. Investigating Your Environment--Intermountain Region.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    This resource notebook contains over 100 activities in which students investigate different aspects of the environment. The activities are presented in 21 sections covering the following environmental topics and issues: (1) soil; (2) water; (3) forests; (4) plant relationships; (5) wildlife; (6)measurement; (7) urban communities; (8) deserts; (9)…

  10. Using Ants to Investigate the Environment

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2005-01-01

    The best place for students to begin to understand complex environmental relationships is in their own back yards. Doing investigations of ants allows students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenance, and increase their understanding of the environment and their…

  11. Molecular Dynamics Simulation and NMR Investigation of the Association of the β-Blockers Atenolol and Propranolol with a Chiral Molecular Micelle

    PubMed Central

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-01-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies. PMID:26257464

  12. Interaction of the antibiotic norfloxacin with ionic micelles: pH-dependent binding.

    PubMed

    Muniz, Gabriel Silva Vignoli; Teixeira, Letícia Regina; Louro, Sonia Renaux Wanderley

    2014-11-01

    The interaction of the antimicrobial drug norfloxacin (NFX) with anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) micelles was studied using the intrinsic spectroscopic properties of NFX to obtain association constants and molecular modifications. Nonionic Tween(®) 20 micelles were also investigated, but the spectroscopic properties of NFX did not detect interactions with these micelles, and quenching by iodide suggested a weak association constant around 47 M(-1). For SDS and CTAB, UV-Vis absorption spectroscopy, steady-state and time-resolved fluorometry were monitored as a function of surfactant concentration ranging from the premicellar to micellar region. It was found that cationic (pH 4.0) and zwitterionic NFX (pH 7.4) associate with SDS micelles, with binding constants equal to 5.4 × 10(3) and 1.7 × 10(3) M(-1), respectively. Premicellar interaction slightly decreases the critical micelle concentration of SDS. Association of anionic NFX (pH 10.6) is very weak. The fluorescence spectrum and lifetime showed that SDS-associated NFX is cationic and that the heterocycle penetrates the interfacial environment of decreased polarity. Cationic CTAB micelles do not bind cationic NFX, and the association constant with zwitterionic NFX is two orders of magnitude lower than that of SDS micelles. From a pharmacological point of view, it is important that at neutral pH, NFX presented a two orders of magnitude higher affinity for anionic than for cationic sites, and did not interact significantly with nonionic or zwitterionic micelle interfaces.

  13. Polar Solvents Trigger Formation of Reverse Micelles.

    PubMed

    Khoshnood, Atefeh; Firoozabadi, Abbas

    2015-06-09

    We use molecular dynamics simulations and molecular thermodynamics to investigate the formation of reverse micelles in a system of surfactants and nonpolar solvents. Since the early observation of reverse micelles, the question has been whether the existence of polar solvent molecules such as water is the driving force for the formation of reverse micelles in nonpolar solvents. In this work, we use a simple coarse-grained model of surfactants and solvents to show that a small number of polar solvent molecules triggers the formation of large permanent aggregates. In the absence of polar molecules, both the thermodynamic model and molecular simulations show that small aggregates are more populated in the solution and larger ones are less frequent as the system evolves over time. The size and shape of reverse micelles depend on the size of the polar core: the shape is spherical for a large core and ellipsoidal for a smaller one. Using the coarse-grained model, we also investigate the effect of temperature and surfactant tail length. Our results reveal that the number of surfactant molecules in the micelle decreases as the temperature increases, but the average diameter does not change because the size of the polar core remains invariant. A reverse micelle with small polar core attracts fewer surfactants when the tail is long. The uptake of solvent particles by a micelle of longer surfactant tail is less than shorter ones when the polar solvent particles are initially distributed randomly.

  14. Musk Oxen and Micelles

    NASA Astrophysics Data System (ADS)

    Hill, John W.

    1996-09-01

    Musk oxen behavior provides an analogy to micelle formation by amphipathic substances. Mature male musk oxen protect their young and females from wolves by forming a protective circle around them. The males stand with their tails to the inside and their heads facing outward. Amphipathic substances such as soap form micelles. The hydrophobic hydrocarbon tails of the soap are turned to the inside of the micelle and the hydrophilic carboxylate heads are on the outside at the interface with the polar water molecules.

  15. Gas hydrate formation in reversed micelles

    SciTech Connect

    Nguyen, H.; Rao, A.M.; Phillips, J.B.; John, V.T.; Reed, W.F.

    1991-12-31

    We describe a technique to modify protein solubility and optimize enzyme activity in reversed micellar solutions. The technique is based on the ability of hydrates of natural gas to form in the microaqueous phase. Clathrate hydrates are crystalline inclusions of water and gas, and their formation in bulk water has traditionally been studied with relevance to natural gas recovery. We have found that hydrates can form in the environment of the microaqueous pools of reversed micelles, and that their extent of formation can be well controlled through the thermodynamic variables of temperature and pressure. Additionally, formation of hydrates affects the size and aggregation number of the micelles, and thus influences the solubility and conformation of encapsulated proteins. We demonstrate how the concept can be used in two applications: (1) protein extraction into reversed micelles and subsequent recovery, and (2) optimization of enzyme activity in reversed micelles.

  16. SISGR: Water dynamics in heterogeneous and confined environments: Salt solutions, reverse micelles, and lipid multi-bilayers

    SciTech Connect

    Skinner, James

    2013-11-05

    Our goal is to understand the structure and dynamics of water, in its different phases, at the interfaces between these phases, and in confined and heterogeneous environments. To this end, linear and nonlinear vibrational spectroscopy is playing a very important role. We have developed techniques for calculating spectroscopic observables, and then used our results to analyze and interpret experiment.

  17. Dendrimeric micelles for controlled drug release and targeted delivery

    PubMed Central

    Ambade, Ashootosh V.; Savariar, Elamprakash N.; Thayumanavan, S.

    2008-01-01

    This review highlights the developments in dendrimer-based micelles for drug delivery. Dendrimers, the perfectly branched monodisperse macromolecules, have certain structural advantages that make them attractive candidates as drug carriers for controlled release or targeted delivery. As polymeric micelle-based approaches precede the work in dendrimers, these are also discussed briefly. The review concludes with a perspective on possible applications of biaryl-based dendrimeric micelles that exhibit environment-dependent conformations, in drug delivery. PMID:16053329

  18. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  19. Interaction of triblock co-polymer micelles with phospholipid-bilayer: a spectroscopic investigation using a potential chloride channel blocker.

    PubMed

    Ganguly, Aniruddha; Ghosh, Soumen; Guchhait, Nikhil

    2015-03-07

    Interaction of a potential chloride channel blocker, 9-methyl anthroate (9-MA), has been studied with zwitterionic l-α-phosphatidylcholine (egg-PC) lipid vesicles, which ascertains the utility of the drug as an efficient molecular reporter for probing the microheterogeneous environment of lipid-bilayers. The effect of a non-ionic triblock co-polymer P123 on the stability of these drug-bound lipid-bilayers has also been investigated by means of steady state and time-resolved spectroscopic techniques exploiting the fluorescence properties of the drug. Experimental results reveal that the addition of P123 to the drug-bound lipid results in a preferential complexation of the drug with the Pluronic leaving the lipid vesicles aside, which has been attributed to a substantially stronger binding interaction of the drug with P123 than that with egg-PC. The result is of potential interest from a medical perspective owing to the context of excess drug desorption from bio-membranes.

  20. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    PubMed

    Oliver, Ryan C; Lipfert, Jan; Fox, Daniel A; Lo, Ryan H; Doniach, Sebastian; Columbus, Linda

    2013-01-01

    Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  1. Dependence of Micelle Size and Shape on Detergent Alkyl Chain Length and Head Group

    PubMed Central

    Oliver, Ryan C.; Lipfert, Jan; Fox, Daniel A.; Lo, Ryan H.; Doniach, Sebastian; Columbus, Linda

    2013-01-01

    Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2–1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions. PMID:23667481

  2. An Investigation of Person-Environment Congruence

    ERIC Educational Resources Information Center

    McMurray, Marissa Johnstun

    2013-01-01

    This study tested a hypothesis derived from Holland's (1997) theory of personality and environment that congruence between person and environment would influence satisfaction with doctoral training environments and career certainty. Doctoral students' (N = 292) vocational interests were measured using questions from the Interest Item Pool, and…

  3. An Investigation of Person-Environment Congruence

    ERIC Educational Resources Information Center

    McMurray, Marissa Johnstun

    2013-01-01

    This study tested a hypothesis derived from Holland's (1997) theory of personality and environment that congruence between person and environment would influence satisfaction with doctoral training environments and career certainty. Doctoral students' (N = 292) vocational interests were measured using questions from the Interest Item Pool, and…

  4. Cellular uptake and trafficking of polydiacetylene micelles

    NASA Astrophysics Data System (ADS)

    Gravel, Edmond; Thézé, Benoit; Jacques, Isabelle; Anilkumar, Parambath; Gombert, Karine; Ducongé, Frédéric; Doris, Eric

    2013-02-01

    Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells.Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells. Electronic supplementary information (ESI) available: Detailed synthetic procedures and supplementary figures. See DOI: 10.1039/c2nr34149b

  5. Structural changes in block copolymer micelles induced by cosolvent mixtures†

    PubMed Central

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.

    2013-01-01

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles. PMID:24282441

  6. Shear Thinning and Orientational Ordering of Wormlike Micelles

    NASA Astrophysics Data System (ADS)

    Förster, S.; Konrad, M.; Lindner, P.

    2005-01-01

    Shear thinning and orientation of cylindrical surfactant and block copolymer micelles was investigated by rheo-SANS (small-angle neutron scattering) experiments. Shear thinning and orientation occur for shear rates γ˙τdis≫1, where τdis is the disentanglement time of the micelles. Micelles align in the flow direction with an orientational distribution that can be well described by an Onsager-type distribution function. Over nearly the whole range of concentrations and for all cylindrical micelles investigated, the shear viscosity η follows a simple η˜e-aS behavior as a function of the orientational order parameter S with the same prefactor a.

  7. Time dependent sphere-to-rod growth of the pluronic micelles: investigating the role of core and corona solvation in determining the micellar growth rate.

    PubMed

    Kadam, Y; Ganguly, R; Kumbhakar, M; Aswal, V K; Hassan, P A; Bahadur, P

    2009-12-24

    The salt induced sphere-to-rod growth in the micelles of the PEO-PPO triblock copolymers, Pluronic P123 (EO(20)PO(70)PEO(20)) and Pluronic P103 (EO(16)PO(61)PEO(16)), has been studied by dynamic light scattering (DLS), viscometry, and small angle neutron scattering (SANS) techniques. The observed micellar growths are found to be time dependent and have a strong variation in their growth rate with changing anion type and copolymer composition. The rate of growth increases rather significantly with an increase in the water structure making abilities of the anions along the Hofmeister series in the order Cl(-) < F(-)< (PO(4))(3-). This has been attributed to an increasing ability of these ions to dehydrate the micellar corona, a factor that plays an important role in inducing sphere-to-rod shape transition of the micelles. The copolymer composition also has a significant influence on the micellar growth rate, as the P103 with a smaller molecular weight than P123 shows a significantly faster growth of its micelles under similar conditions. The observed time dependence in micellar growth in these systems has been attributed to a slow micellar restructuring process necessary to attain the equilibrium structure of the micelles. A remarkable improvement in the growth rate of the micelles, however, could be achieved in the presence of ethanol, a solvent that has affinity toward both the PPO and PEO blocks. Our spectroscopic studies suggest that the observed improvement in the micellar growth rate by ethanol is due to an accelerated restructuring process of the micelles in the presence of the solvated micellar core. These studies thus highlight the role of changing core and corona solvation characteristics of the pluronic micelles in determining their rearrangement and the growth rate, which is first of its kind in the aqueous pluronic system.

  8. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery.

    PubMed

    Yang, Qinglai; Tan, Lianjiang; He, Changyu; Liu, Bingya; Xu, Yuhong; Zhu, Zhenggang; Shao, Zhifeng; Gong, Bing; Shen, Yu-Mei

    2015-04-01

    Redox-responsive micelles self-assembled from dynamic covalent block copolymers with double disulfide linkage in the backbone have been developed successfully. The amphiphilic block copolymers PEG-PLA associated with complementary H-bonding sequences can self-assemble into spherical micelles in aqueous media with sizes from 34 nm to 107 nm with different molar mass of PEG and PLA. Moreover, in vitro drug release analyses indicate that reductive environment can result in triggered drug release profiles. The glutathione (GSH) mediated intracellular drug delivery was investigated against HeLa human cervical carcinoma cell line. Flow cytometry and fluorescence microscopy measurements demonstrated that the micelles exhibited faster drug release in glutathione monoester (GSH-OEt) pretreated HeLa cells than that in the nonpretreated cells. Cytotoxicity assay of DOX-loaded micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated HeLa cells than that of the nonpretreated ones. These reduction-responsive, biodegradable and biocompatibility micelles could provide a favorable platform to construct excellent drug delivery systems for cancer therapy.

  9. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  10. Polymeric Micelles for Acyclovir Drug Delivery

    PubMed Central

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ε-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200 nm and the CMCs of ACV-PCLMPEG and ACV-PCL-chitosan were 2.0 mg L−1 and 6.6 mg L−1, respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. PMID:25193154

  11. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  12. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  13. Diclofenac/biodegradable polymer micelles for ocular applications

    NASA Astrophysics Data System (ADS)

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-07-01

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml-1). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC0-24 h than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  14. Diclofenac/biodegradable polymer micelles for ocular applications.

    PubMed

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-08-07

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml(-1)). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC(0-24 h) than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  15. Sirolimus-loaded polymeric micelles with honokiol for oral delivery.

    PubMed

    Li, Xinru; Hou, Xucheng; Ding, Weiming; Cong, Shuangchen; Zhang, Yuanyuan; Chen, Mengmeng; Meng, Yansha; Lei, Jiongxi; Liu, Yan; Li, Guiling

    2015-12-01

    The aims of the present study were to design polymeric micelles loading sirolimus with honokiol to increase drug solubility and to gain an insight into the effect of honokiol on oral transport of P-glycoprotein substrate (P-gp). Particle size distribution, encapsulation efficiency, drug-loading content and in-vitro release of sirolimus-loaded micelles with honokiol were determined. Transport of sirolimus-loaded micelles across Caco-2 cell monolayers and jejunum segment of rats were investigated. In-vitro cytotoxicity experiments and the cellular uptake study were carried out via sulforhodamine B assay and flow cytometry, respectively. A coadministration of honokiol with sirolimus in micelles did not significantly modify the particle size, polydispersity index and release of drugs demonstrating successful loading within the micelles. The apparent transport coefficients (Papp ) and effective permeability (Peff ) of sirolimus were increased with more amount of honokiol loaded in micelles. Cellular uptake study demonstrated that rhodamine123 uptake rate was enhanced by honokiol-loaded micelles, indicating substantial P-gp inhibition action by honokiol and mPEG-PLA-based micelles. Oral transport of sirolimus was significantly improved by coadministration with honokiol, an inhibitor of the P-gp, in polymeric micelles formulation. © 2015 Royal Pharmaceutical Society.

  16. Investigation on the structure of water/AOT/IPM/alcohols reverse micelles by conductivity, dynamic light scattering, and small angle X-ray scattering.

    PubMed

    Zhang, Xiaoguang; Chen, Yingjun; Liu, Jiexiang; Zhao, Chuanzhuang; Zhang, Haijiao

    2012-03-29

    We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems.

  17. Crystal nucleation of zincophosphate open frameworks in reverse micelle nanoreactors

    NASA Astrophysics Data System (ADS)

    Castagnola, Mario J.

    The synthesis of microporous zincophosphates was studied through a novel synthetic route based on reactants encapsulated in reverse micelles. The zincophosphate analog of sodalite had been previously synthesized in a reverse micelle system using Aerosol OT (AOT) as surfactant. The synthesis of open framework zincophosphates using this detergent proved unsuccessful. By studying the conventional synthesis of zincophosphates and the AOT reverse micelle aqueous environment through Raman microscopy, FTIR, NMR and XRD, it was found that the relatively high concentrations of sodium ions and the disordered structure of water present in the AOT reverse micelles prevented the synthesis of open framework structures. Based on these results, a system containing reverse micelles of the cationic surfactant dioctyldimethylammonium chloride (DODMAC) was developed. Zn 2+- and PO43--containing DODMAC reverse micelles were characterized by dynamic light scattering and conductivity measurements, indicating a rod-like shape for the former and a spherical shape for the latter reverse micelles. Combination of the two reverse micelle solutions led to the first successful reverse micelle based synthesis of the zincophosphate analog of Zeolite-X, ZnPO-X. The size of the crystals was controlled by modifying the volume ratio between the individual reagent micellar solutions. Nanocrystals of the order of 20 nm were obtained by interrupting the reaction at early stages. Studies of both the conventional aqueous and the reverse micelle based syntheses of ZnPO-X revealed that the morphology of the ZnPO-X crystals was controlled by the concentration of tetramethylammonium ions (TMA+). The ZnPO-X crystals synthesized via the reverse micelles were obtained as a single phase. Using Raman spectroscopy, it was determined that, during conventional synthesis, H+ ions promote the hydrolysis of the ZnPO-X crystals that leads to hopeite formation. Ion-exchange by monovalent cations indicated that the crystal

  18. Spectroscopic studies of interaction of Safranine T with nonionic micelles and mixed micelles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sujan; Bhattacharya, Subhash Chandra

    2006-05-01

    The visible spectra of Safranine T (ST) in micellar solution of Brij 58, Tween 20 and Tween 40 and mixed micellar solution of Brij 58/Tween 20 and Brij 58/Tween 40 indicate formation of 1:1 charge transfer (CT) complex between acceptor ST and donor nonionic micelles and mixed micelles. The experimental CT transition energies are well correlated (through Mulliken's equation) with the vertical ionization potential of the donors. The solvent parameters, i.e. the intramolecular charge transfer energy ET(30) have been determined from the Stokes spectral shift. Variations of ionization potential and micropolarity in the mixed micellar region have been investigated as a function of surfactant composition and the obtained results in mixed micellar medium has been compared to the normal micelles. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic interaction. The interaction parameter ( β) and micellar stability has been calculated using regular solution theory.

  19. Evaluation and perturbation of micelle-solute interactions

    SciTech Connect

    Armstrong, D.W.; Stine, G.Y.

    1983-10-05

    The partitioning or binding of compounds to micelles is an important phenomena in many areas of study including membrane mimetic chemistry, catalysis, enzyme modeling, chromatography, tertiary oil recovery, spectroscopic analysis, and emulsion polymerization. The interaction of 7 compounds (i.e., naphthol green B, bromophenol blue, alizarin red S, 2-naphthol-6-sulfonic acid, ammonium thiocyanate, sodium 2-naphthalenesulfonate, and sodium nitroferricyanide) with sodium dodecyl sulfate micelles was studied using LC and TLC. All compounds showed unusual chromatographic behavior in that their retention increased when the concentration of micelles in the mobile phase increased. Relatively small changes in the micellar environment or the micelle itself can result in pronounced alteration of micelle-solute interactions. 24 references.

  20. Do the physical properties of water in mixed reverse micelles follow a synergistic effect: a spectroscopic investigation.

    PubMed

    Das, Arindam; Patra, Animesh; Mitra, Rajib Kumar

    2013-04-04

    In this contribution we have tried to investigate whether the mechanical properties of the reverse micellar (RM) interface dictate the physical properties of entrapped water molecules in the RM waterpool. We choose AOT/Igepal-520/cyclohexane (Cy) mixed RM as a model system which exhibits synergistic water solubilization behavior as a function of interfacial stoichiometry. Such a phenomenon associates systematic modification of the interface curvature. Dynamic light scattering (DLS) studies reveal linear increase in the droplet size and aggregation number of the RMs with increasing XIgepal (mole fraction of Igepal in the surfactant mixture). FTIR study in the 3000-3800 cm(-1) region identifies that the relative population of the surface-bound water molecules is higher in AOT RM compared to that in Igepal RM, and in mixed systems it also follows a linear trend with XIgepal. Water relaxation dynamics as probed by time-resolved fluorescence spectroscopy using Coumarin-500 also reveals an overall linear trend with no characteristic feature around the solubilization inflation point. Our study clearly identifies that the physical properties of water in RM are mostly governed by the interfacial stoichiometry and water content, and merely bares any dependence on the mechanical properties of the interface.

  1. Does the optimum hydrophilic lipophilic balance condition affect the physical properties of mixed reverse micelles? A spectroscopic investigation.

    PubMed

    Das, Arindam; Mitra, Rajib Kumar

    2014-05-22

    Synergism in several physical properties as realized in many mixed surfactant reverse micellar (RM) systems often manifests optimum hydrophilic-lipophilic balance (HLB), interdroplet interaction, or both. Such synergism is often desired for specific applications of RM systems; however, a proper rationale on the effect of such phenomenon imparted on the structure, dynamics, and activity of water molecules in RM waterpool is strongly demanded. In the present contribution we have investigated how the optimum HLB condition of mixed RM composed two nonionic surfactants (Igepal 210 and Igepal 630) affects the physical properties of entrapped water molecules in the RM waterpool. The studied mixed RM exhibits synergistic water solubilization behavior as a function of the mixing ratio with a maximum in solubilization capacity being reached at X(Ig630) = 0.3. Dynamic light scattering (DLS) studies show a bimodal distribution of droplet size in this region, whereas it is monomodal in terminal compositions. Fourier transform infrared spectroscopy (FTIR) study in the 3000-3800 cm(-1) region identifies a linear trend in which the content of "bound" water increases at the expense of the "network" water as the content of the hydrophilic surfactant Igepal 630 is increased in the mixture. Subnanosecond relaxation dynamics of the entrapped water as revealed by the fluoroprobe coumarin 500 corroborates a similar linear trend as observed in the FTIR measurements as the rotational diffusion gets retarded with the increase of ethylene oxide chain length of Igepal. Reaction kinetics of solvolysis of benzoyl chloride reaction, however, does not offer any linear trend as it gets slower in the optimum HLB region, the nonlinearity being a consequence of the distribution of the substrate in the different phases.

  2. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Lee, Hui Sun; Klauda, Jeffery B; Im, Wonpil

    2013-08-26

    Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation. The robustness of Micelle Builder is tested by simulating four detergent-only homogeneous micelles of DHPC (dihexanoylphosphatidylcholine), DPC (dodecylphosphocholine), TPC (tetradecylphosphocholine), and SDS (sodium dodecyl sulfate) and comparing the calculated micelle properties with experiments and previous simulations. As a representative protein/micelle model, Pf1 coat protein is modeled and simulated in DHPC micelles with three different numbers of DHPC molecules. While the number of DHPC molecules in direct contact with Pf1 protein converges during the simulation, distinct behavior and geometry of micelles lead to different protein conformations in comparison to that in bilayers. It is our hope that CHARMM-GUI Micelle Builder can be used for simulation studies of various protein/micelle systems to better understand the protein structure and dynamics in micelles as well as distribution of detergents and their dynamics around proteins.

  3. Chirality-mediated polypeptide micelles for regulated drug delivery.

    PubMed

    Ding, Jianxun; Li, Chen; Zhang, Ying; Xu, Weiguo; Wang, Jincheng; Chen, Xuesi

    2015-01-01

    Two kinds of triblock poly(ethylene glycol)-polyleucine (PEG-PLeu) copolymers were synthesized through the ring-opening polymerization of L-Leu N-carboxyanhydride (NCA), or equivalent D-Leu NCA and L-Leu NCA with amino-terminated PEG as a macroinitiator. The amphiphilic copolymers spontaneously self-assembled into spherical micellar aggregations in an aqueous environment. The micelle with a racemic polypeptide core exhibited smaller critical micelle concentration and diameter compared to those with a levorotatory polypeptide core. A model anthracycline antineoplastic agent, i.e., doxorubicin (DOX), was loaded into micelles through nanoprecipitation, and the PEG-P(D,L-Leu) micelle exhibited higher drug-loading efficacy than that with a P(L-Leu) core-this difference was attributed to the flexible and compact P(L-Leu) core. Sustained in vitro DOX release from micelles with both levorotatory and racemic polypeptide cores was observed, and the DOX-loaded PEG-P(D,L-Leu) micelle exhibited a slower release rate. More interestingly, DOX-loaded micelles exhibited chirality-mediated antitumor efficacy in vitro and in vivo, which are all better than that of free DOX. Furthermore, both enhanced tumor inhibition and excellent security in vivo were confirmed by histopathological or in situ cell apoptosis analyses. Therefore, DOX-loaded PEG-PLeu micelles appear to be an interesting nanoscale polymeric formulation for promising malignancy chemotherapy.

  4. Crosslinking of casein by microbial transglutaminase and its resulting influence on the stability of micelle structure.

    PubMed

    Partschefeld, Claudia; Schwarzenbolz, Uwe; Richter, Sven; Henle, Thomas

    2007-04-01

    The influence of enzymatic crosslinking by microbial transglutaminase (mTG) on the stability of casein micelles of ultrahigh temperature (UHT)-treated milk in the presence of EDTA (0-0.45 mM) or ethanol (0-74 vol%) as well as under high hydrostatic pressures up to 400 MPa was investigated. Disintegration of micelles and changes in micelle size were monitored by the measurement of turbidity as well as by dynamic light scattering. The results show that the incubation of UHTtreated milk with mTG resulted in an improved micelle stability toward disintegration on addition of EDTA, ethanol, or pressure treatment. Intramicellar formed isopetides significantly enhanced the stability of casein micelles. It is supposed that net-like crosslinks are formed within the external region of the micelles and they adopt the stabilizing role of colloidal calcium phosphate within the micelles, thus making the micelles less contestable for disrupting influences.

  5. Investigating the Human Environment: Land Use.

    ERIC Educational Resources Information Center

    Uno, Gordon E.; And Others

    This book, designed as a 7-week instructional module for high school and community college students, uses case studies and independent investigations to emphazise the transdisciplinary nature of land use questions. In addition, the program focuses on the development of independent thought, a healthy skepticism, and problem-solving skills that lead…

  6. Using Ants To Investigate the Environment.

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2003-01-01

    Describes three inquiry-based activities designed for students to begin to understand complex environmental relationships in their own backyard. Includes investigations of ants, which allow students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenances, and increase student…

  7. Using Ants To Investigate the Environment.

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2003-01-01

    Describes three inquiry-based activities designed for students to begin to understand complex environmental relationships in their own backyard. Includes investigations of ants, which allow students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenances, and increase student…

  8. Investigating Our Environment. Science: Grade 6.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    Intended mainly for use in the intermediate grades, this document provides demonstrations, field trips and laboratory experiences designed to help students investigate the role that people play in problems associated with environmental quality, pollution, and ecology in general. The book was developed as an alternative program to the regular sixth…

  9. Investigating Our Environment. Science: Grade 6.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    Intended mainly for use in the intermediate grades, this document provides demonstrations, field trips and laboratory experiences designed to help students investigate the role that people play in problems associated with environmental quality, pollution, and ecology in general. The book was developed as an alternative program to the regular sixth…

  10. Decision investigation and support environment (DISE)

    NASA Astrophysics Data System (ADS)

    VonPlinsky, Michael J.; Johnson, Pete; Crowder, Ed

    2001-09-01

    The "Decision Integration and Support Environment" (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision process. FTI has developed two BNs to model these processes, incorporating aircraft, target, and overall mission priorities from the Air Operations Center (OAC) and the mission planners/command staff. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR Sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosectued, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process, including factors such as: * Fuel Level - amount of fuel in aircraft * Type of Weapon - available weapons on board aircraft * Probability of Survival - depends on the type of TST, time criticality and other factors * Potential Collateral Damage - amount of damage incurred on TST surroundings * Time Criticality of TST - how "critical" it is to attack the target depending on its launch status * Time to Target - aircraft's distance (in minutes) from the TST * Current Mission Priority - priority of the mission to which the aircraft is currently assigned * TST Mission Priority - determined when the target is originally nominated * Possible Reassignment - represents whether it is even possible to reassign the aircraft * Aircraft Re-tasking Availability - represents any factor not taken into account by the model, including commander override.

  11. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry.

    PubMed

    Kjellin, U R Mikael; Reimer, Johan; Hansson, Per

    2003-06-15

    Several physicochemical properties have been determined for N-dodecyllactobionamide (LABA), maltose 6'-O-dodecanoate (C12-maltose ester), and tetra(ethylene oxide) dodecyl amide (TEDAd). The increase in the flexibility of the sugar headgroup, enabling more possible molecular conformations, reduces the minimum area/molecule at the liquid-vapor interface obtained at the critical micelle concentration (cmc). The obtained cmc's were 0.35 mM (LABA), 0.3 mM (C12-maltose ester), and 0.5 mM (TEDAd). The monomer diffusion coefficient decreased with the molecular weight and increasing headgroup flexibility of the sugar headgroup, and values were in the range from 3.1 x 10(-10) to 3.6 x 10(-10) m2/s. The micelle diffusion coefficients (0.46 x 10(-10) to 0.68 x 10(-10) m2/s) indicated that the TEDAd micelles deviated most from spherical shape. The micelle aggregation numbers determined by time-resolved fluorescence quenching (TRFQ) were estimated to be 120+/-10 (LABA), 90+/-10 (C12-maltose ester), and 130+/-10 (TEDAd). The dynamic surface tension measurements show that the adsorption of TEDAd onto the liquid-vapor interface at short surface lifetimes is diffusion-limited, whereas an adsorption barrier is present for the sugar surfactants. The analysis of the dynamic surface tension data above the cmc shows that the rate of demicellization is faster for TEDAd than for the two sugar-based surfactants.

  12. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    PubMed

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  13. Effects of copolymer component on the properties of phosphorylcholine micelles.

    PubMed

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers.

  14. Effects of copolymer component on the properties of phosphorylcholine micelles

    PubMed Central

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers. PMID:28138244

  15. [Progress in the study of core-crosslinked polymeric micelles in drug delivery system].

    PubMed

    Yu, Jing-Mou; Wu, Jia-Zhong; Wang, Xin-Shi; Jin, Yi

    2014-02-01

    The core-crosslinked polymeric micelles were used as a new drug delivery system, which can decrease the premature drug release in blood circulation, improve the stability of the micelles, and effectively transport the drug into the therapy sites. Then the drug bioavailability increased further, while the side effect reduced. Most drugs were physically entrapped or chemically covalent with the polymer in the internals of micelles. Based on the various constitutions and properties of polymeric micelles as well as the special characteristics of body microenvironment, the environment-responsive or active targeting core-crosslinked micelles were designed and prepared. As a result, the drug controlled release behavior was obtained. In the present paper, the research progress of all kinds of core-crosslinked micelles which were published in recent years is introduced. Moreover, the characteristic and application prospect of these micelles in drug delivery system are analyzed and summarized.

  16. Effect of confinement on excited-state proton transfer of firefly's chromophore D-luciferin in AOT reverse micelles.

    PubMed

    Kuchlyan, Jagannath; Banik, Debasis; Kundu, Niloy; Ghosh, Surajit; Banerjee, Chiranjib; Sarkar, Nilmoni

    2014-03-27

    Excited-state intermolecular proton transfer of D-luciferin in reverse micelles has been investigated using steady-state and time-resolved fluorescence spectroscopy measurement. The different polar cores have been chosen for the study of proton transfer dynamics in aerosol-OT (AOT) reverse micelles. It is shown that aqueous reverse micelle is the suitable environment for the photoprotolytic reaction of D-luciferin. The neutral form of the chromophore is present both in ground and excited state at W0 = 0. The proton transfer in nanometer size water pool of water/AOT/n-heptane begins at W0 = 8 and increases with increasing W0 values. However, the intermolecular excited-state proton transfer (ESPT) of D-luciferin is inhibited in nonaquous reverse micelles with DMF and DMSO as a polar core. Thus, the requirement of ESPT of D-luciferin to take place in reverse micelles consists of polar protic solvent like water as a polar core.

  17. Supramolecular structure of the casein micelle.

    PubMed

    McMahon, D J; Oommen, B S

    2008-05-01

    The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on

  18. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  19. Smart wormlike micelles.

    PubMed

    Chu, Zonglin; Dreiss, Cécile A; Feng, Yujun

    2013-09-07

    A major scientific challenge of the past decade pertaining to the field of soft matter has been to craft 'adaptable' materials, inspired by nature, which can dynamically alter their structure and functionality on demand, in response to triggers produced by environmental changes. Amongst these, 'smart' surfactant wormlike micelles, responsive to external stimuli, are a particularly recent area of development, yet highly promising, given the versatility of the materials but simplicity of the design-relying on small amphiphilic molecules and their spontaneous self-assembly. The switching 'on' and 'off' of the micellar assembly structures has been reported using electrical, optical, thermal or pH triggers and is now envisaged for multiple stimuli. The structural changes, in turn, can induce major variations in the macroscopic characteristics, affecting properties such as viscosity and elasticity and sometimes even leading to a spontaneous and effective 'sol-gel' transition. These original smart materials based on wormlike micelles have been successfully used in the oil industry, and offer a significant potential in a wide range of other technological applications, including biomedicine, cleaning processes, drag reduction, template synthesis, to name but a few. This review will report results in this field published over the last few years, describe the potential and practical applications of stimuli-responsive wormlike micelles and point out future challenges.

  20. Using Desktop Virtual Environments To Investigate the Role of Landmarks.

    ERIC Educational Resources Information Center

    Jansen-Osmann, Petra

    2002-01-01

    Discusses research in spatial cognition that uses computer-simulated three dimensional environments and evaluates the use of virtual desktop environments by replicating an experiment which was formerly done in a laboratory or real world setting. Investigates the role of landmarks when acquiring route knowledge in a system of paths. (Author/LRW)

  1. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  2. Impact of urea on detergent micelle properties.

    PubMed

    Broecker, Jana; Keller, Sandro

    2013-07-09

    Co-solvents, such as urea, can entail drastic changes in the micellization behavior of detergents. We present a systematic quantification of the impact of urea on the critical micellar concentration, the micellization thermodynamics, and the micelle size in three homologous series of commonly used non-ionic alkyl detergents. To this end, we performed demicellization experiments by isothermal titration calorimetry and hydrodynamic size measurements by dynamic light scattering on alkyl maltopyranosides, cyclohexyl alkyl maltopyranosides, and alkyl glucopyranosides at urea concentrations of 0-8 M. For all detergents studied, we found that the critical micellar concentration increases exponentially because the absolute Gibbs free energy of micellization decreases linearly over the entire urea concentration range, as does the micelle size. In contrast, the enthalpic and entropic contributions to micellization reveal more complex, nonlinear dependences on urea concentration. Both free energy and size changes are more pronounced for long-chain detergents, which bury more apolar surface area upon micelle formation. The Gibbs free energy increments per methylene group within each detergent series depend on urea concentration in a linear fashion, although they result from the entropic term for alkyl maltosides but are of enthalpic origin for cyclohexyl alkyl maltosides. We compare our results to transfer free energies of amino acid side chains, relate them to protein-folding data, and discuss how urea-induced changes in detergent micelle properties affect in vitro investigations on membrane proteins.

  3. Ultrasonic transformation of micelle structures: effect of frequency and power.

    PubMed

    Yusof, Nor Saadah Mohd; Ashokkumar, Muthupandian

    2015-05-01

    A comprehensive investigation on the effect of ultrasonic frequency and power on the structural transformation of CTABr/NaSal micelles has been carried out. Sonication of this micelle system at various ultrasonic frequencies and power resulted in the formation and separation of two types of micelles. High viscoelastic threadlike micelles of ∼ 2 nm in diameter and several μm in length and tubular micelles possessing a viscosity slightly above that of water with ∼ 30-50 nm diameter and few hundred nm length. The structural transformation of micelles was induced by the shear forces generated during acoustic cavitation. At a fixed acoustic power of 40 W, the structural transformation was found to decrease from 211 to 647 kHz frequency due to the decreasing shear forces generated, as evidenced by rheological measurements and cryo-TEM images. At 355 kHz, an increase in the structural transformation was observed with an increase in acoustic power. These findings provide a knowledge base that could be useful for the manipulation of viscosity of micelles that may have applications in oil industry.

  4. Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water.

    PubMed

    Chen, Ming; Jafvert, Chad T

    2017-07-05

    Surfactant micelles combined with ultrafiltration can partially, or sometimes nearly completely, separate various ionic and nonionic pollutants from water. To this end, the selectivity of aqueous micelles composed of either cetyltrimethylammonium (CTA(+)) bromide or cetylpyridinium (CP(+)) chloride toward many environmentally relevant anions (IO3(-), F(-), Cl(-), HCO3(-), NO2(-), Br(-), NO3(-), H2PO4(-), HPO4(2-), SO4(2-), and CrO4(2-)) was investigated. Selectivity coefficients of CTA(+) micelles (with respect to Br(-)) and CP(+) micelle (with respect to Cl(-)) for these anions were evaluated using a simple thermodynamic ion exchange model. The sequence of anion affinity for the CTA(+) micelles and for the CP(+) micelles were the same, with decreasing affinity occurring in the order of: CrO4(2-) > SO4(2-) > HPO4(2-) > NO3(-) > Br(-) > NO2(-) > Cl(-) > HCO3(-) > H2PO4(-) ≈ F(-). From the associated component mass balance and ion exchange (i.e., mass action) equations, an overall speciation model was developed to predict the distribution of all anions between the aqueous and micellar pseudophase for complex ionic mixtures. Experimental results of both artificial and real surface waters were in good agreement to model predictions. Further, the results indicated that micelles combined with ultrafiltration may be a potential technology for nutrient and other pollutant removal from natural or effluent waters.

  5. Pharmacokinetics of core-polymerized, boron-conjugated micelles designed for boron neutron capture therapy for cancer.

    PubMed

    Sumitani, Shogo; Oishi, Motoi; Yaguchi, Tatsuya; Murotani, Hiroki; Horiguchi, Yukichi; Suzuki, Minoru; Ono, Koji; Yanagie, Hironobu; Nagasaki, Yukio

    2012-05-01

    Core-polymerized and boron-conjugated micelles (PM micelles) were prepared by free radical copolymerization of a PEG-b-PLA block copolymer bearing an acetal group and a methacryloyl group (acetal-PEG-b-PLA-MA), with 1-(4-vinylbenzyl)-closo-carborane (VB-carborane), and the utility of these micelles as a tumor-targeted boron delivery system was investigated for boron neutron capture therapy (BNCT). Non-polymerized micelles (NPM micelles) that incorporated VB-carborane physically showed significant leakage of VB-carborane (ca. 50%) after 12 h incubation with 10% fetal bovine serum (FBS) at 37 °C. On the other hand, no leakage from the PM micelles was observed even after 48 h of incubation. To clarify the pharmacokinetics of the micelles, (125)I (radioisotope)-labeled PM and NPM micelles were administered to colon-26 tumor-bearing BALB/c mice. The (125)I-labeled PM micelles showed prolonged blood circulation (area under the concentration curve (AUC): 943.4) than the (125)I-labeled NPM micelles (AUC: 495.1), whereas tumor accumulation was similar for both types of micelles (AUC(PM micelle): 249.6, AUC(NPM micelle): 201.1). In contrast, the tumor accumulation of boron species in the PM micelles (AUC: 268.6) was 7-fold higher than the NPM micelles (AUC: 37.1), determined by ICP-AES. Thermal neutron irradiation yielded tumor growth suppression in the tumor-bearing mice treated with the PM micelles without reduction in body weight. On the basis of these data, the PM micelles represent a promising approach to the creation of boron carrier for BNCT. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Optimization and in vitro characterization of resveratrol-loaded poloxamer 403/407 mixed micelles].

    PubMed

    Li, Jin-feng; Gao, Ming-yue; Wang, Hui-min; Liu, Qiao-yu; Mao, Shi-rui

    2015-08-01

    The objectives of this study are to prepare resveratrol loaded mixed micelles composed of poloxamer 403 and poloxamer 407, and optimize the formulation in order to achieve higher drug solubility and sustained drug release. Firstly, a thin-film hydration method was utilized to prepare the micelles. By using drug-loading, encapsulation yield and particle size of the micelles as criteria, influence of three variables, namely poloxamer 407 mass fraction, amount of water and feeding of resveratrol, on the quality of the micelles was optimized with a central composite design method. Steady fluorescence measurement was carried out to evaluate the critical micelle concentration of the carriers. Micelle stability upon dilution with simulated gastric fluid and simulated intestinal fluid was investigated. The in vitro release of resveratrol from the mixed micelles was monitored by dialysis method. It was observed that the particle size of the optimized micelle formulation was 24 nm, with drug-loading 11.78%, and encapsulation yield 82.51%. The mixed micelles increased the solubility of resveratrol for about 197 times. Moreover, the mixed micelles had a low critical micelle concentration of 0.05 mg · mL(-1) in water and no apparent changes in particle size and drug content were observed upon micelles dilution, indicating improved kinetic stability. Resveratrol was released from the micelles in a controlled manner for over 20 h, and the release process can be well described by Higuchi equation. Therefore, resveratrol-loaded poloxamer 403/407 mixed micelles could improve the solubility of resveratrol significantly and sustained drug release behavior can be achieved.

  7. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    PubMed

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor.

  8. Formose reaction accelerated in aerosol-OT reverse micelles

    PubMed Central

    Masaoka, Makoto; Michitaka, Tomohiro

    2016-01-01

    The formose reaction in reverse micelles of aerosol-OT (AOT), triton X-100 (TX), and hexadecyltrimethylammonium bromide (CTAB) was investigated. Time–conversion data have indicated that the interfacial water layer of AOT reverse micelles is a medium that accelerates formation of glycolaldehyde in the formose reaction. The 13C NMR spectra for the products of the formose reaction using formaldehyde-13C as starting material are indicative of the formation of ethylene glycol as a major product. PMID:28144336

  9. Iron Oxide Nanoparticle-Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging and Magnetic Resonance Imaging

    PubMed Central

    Starmans, Lucas W. E.; Burdinski, Dirk; Haex, Nicole P. M.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Background Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. Methods and Results IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. Conclusions The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for

  10. Block copolymer micelles: preparation, characterization and application in drug delivery.

    PubMed

    Gaucher, Geneviève; Dufresne, Marie-Hélène; Sant, Vinayak P; Kang, Ning; Maysinger, Dusica; Leroux, Jean-Christophe

    2005-12-05

    Block copolymer micelles are generally formed by the self-assembly of either amphiphilic or oppositely charged copolymers in aqueous medium. The hydrophilic and hydrophobic blocks form the corona and the core of the micelles, respectively. The presence of a nonionic water-soluble shell as well as the scale (10-100 nm) of polymeric micelles are expected to restrict their uptake by the mononuclear phagocyte system and allow for passive targeting of cancerous or inflamed tissues through the enhanced permeation and retention effect. Research in the field has been increasingly focused on achieving enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the drug for optimal targeting. With that in mind, our group has developed a range of block copolymers for various applications, including amphiphilic micelles for passive targeting of chemotherapeutic agents and environment-sensitive micelles for the oral delivery of poorly bioavailable compounds. Here, we propose to review the innovations in block copolymer synthesis, polymeric micelle preparation and characterization, as well as the relevance of these developments to the field of biomedical research.

  11. Structural changes of casein micelles in a calcium gradient film.

    PubMed

    Gebhardt, Ronald; Burghammer, Manfred; Riekel, Christian; Roth, Stephan Volkher; Müller-Buschbaum, Peter

    2008-04-09

    Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium phosphate. At length scales within the beam size the film surface is flat and detection of size distribution in a macroscopic casein gradient becomes accessible. The model used to analyze the data is based on a set of three log-normal distributed particle sizes. Increasing calcium concentration causes a decrease in casein micelle diameter while the size of casein mini-micelles increases and micellar calcium phosphate particles remain unchanged.

  12. Reverse micelles directed synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides and investigation of their crystal structure and morphology

    SciTech Connect

    Matejova, Lenka; Vales, Vaclav; Fajgar, Radek; Matej, Zdenek; Holy, Vaclav; Solcova, Olga

    2013-02-15

    The synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi{sub 2}O{sub 6} crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO{sub 2} and anatase TiO{sub 2} for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO{sub 2} anatase, rutile and cubic CeO{sub 2} appear. In these mixtures TiO{sub 2} rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character. - Graphical abstract: The phase composition of Ti90--Ce10 and Ti50--Ce50 oxide mixtures as a function of annealing temperature. The amount of the amorphous phase was estimated and attributed to TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Ti/Ce oxides were prepared using reverse micelles of Triton X-114. Black-Right-Pointing-Pointer Crystallization of TiO{sub 2}, CeO{sub 2} or CeTi{sub 2}O{sub 6} depends on Ti:Ce molar ratio. Black-Right-Pointing-Pointer Amorphous phase attributed to TiO{sub 2} was identified. Black-Right-Pointing-Pointer Metal oxides surface area is influenced by the character of present carbon impurities.

  13. An Investigation of a Measure of Twins’ Equal Environments

    PubMed Central

    Mitchell, Karen S.; Mazzeo, Suzanne E.; Bulik, Cynthia M.; Aggen, Steven H.; Kendler, Kenneth S.; Neale, Michael C.

    2008-01-01

    The equal environments assumption, which holds that trait-relevant environments are equally correlated among monozygotic (MZ) and dizygotic (DZ) twin pairs, is essential to twin designs. Violations of this assumption could lead to biased parameter estimates in twin models. A variety of methods and measures have been used to test this assumption. No studies to date have evaluated the measurement invariance of such items or examined the distribution of the underlying equal environments trait. The current study was an investigation of the psychometric properties of a self-report measure of twins’ equal environments. Exploratory and confirmatory factor analysis results indicated that items loaded onto ‘child’ and ’teen’ equal environments factors. Factor loadings and factor variances and their covariance were invariant for MZ and DZ twins; however, DZ twins had significantly lower factor means than MZ twins. Further, these items demonstrated adequate test–retest reliability. Lastly, the child and teen factors may be bimodally distributed, particularly for MZ twin pairs. Measurement invariance issues, as well as distributions of equal environments traits, should be considered when evaluating the equal environments assumption, in order to produce accurate parameter estimates in twin models. PMID:18179396

  14. Preliminary results from Radiation Environment Investigations on GIOVE-A

    NASA Astrophysics Data System (ADS)

    Underwood, C. I.; Taylor, B.; Ryden, K. A.; Rodgers, D. J.; Dyer, C. S.; Evans, H. D. R.; Daly, E. J.

    GIOVE-A is a small satellite build by SSTL UK for the European Space Agency as a first element of its Galileo satellite navigation programme GIOVE-A s primary payload is a navigation payload to secure use of the frequencies allocated by the International Telecommunications Union ITU for the Galileo system and to demonstrate critical technologies for the navigation payload of future operational Galileo satellites It also includes radiation environments and effects experiments constructed by the University of Surrey CEDEX and QinetiQ MERLIN to characterise the hazardous MEO environment GIOVE-A was launched 28 December 2005 into a 24000 km circular orbit with 56 degree inclination The environment experiments contain detectors to register the electron proton and ion signals and also to investigate the resulting total dose and charging environments The payloads will be described and preliminary results will be presented

  15. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  16. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  17. Reverse micelles directed synthesis of TiO2-CeO2 mixed oxides and investigation of their crystal structure and morphology

    NASA Astrophysics Data System (ADS)

    Matějová, Lenka; Valeš, Václav; Fajgar, Radek; Matěj, Zdeněk; Holý, Václav; Šolcová, Olga

    2013-02-01

    The synthesis of TiO2-CeO2 mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi2O6 crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO2 and anatase TiO2 for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO2 anatase, rutile and cubic CeO2 appear. In these mixtures TiO2 rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character.

  18. Investigating High School Teachers' Perceptions of School Environment.

    ERIC Educational Resources Information Center

    Huang, Shwu-yong L.

    This study examined public high school teachers' perceptions of school environment, focusing on satisfaction, collegiality, teacher-student relationships, discipline, principal leadership, equity, and teacher influence. It also investigated differences in attitudes by gender. Participating teachers from 8 schools in the Southern United States…

  19. Effect of alkyl length of peptide-polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles.

    PubMed

    Dube, Nikhil; Seo, Jai W; Dong, He; Shu, Jessica Y; Lund, Reidar; Mahakian, Lisa M; Ferrara, Katherine W; Xu, Ting

    2014-08-11

    3-Helix micelles have demonstrated excellent in vitro and in vivo stability. Previous studies showed that the unique design of the peptide-polymer conjugate based on protein tertiary structure as the headgroup is the main design factor to achieve high kinetic stability. In this contribution, using amphiphiles with different alkyl tails, namely, C16 and C18, we quantified the effect of alkyl length on the stability of 3-helix micelles to delineate the contribution of the micellar core and shell on the micelle stability. Both amphiphiles form well-defined micelles, <20 nm in size, and show good stability, which can be attributed to the headgroup design. C18-micelles exhibit slightly higher kinetic stability in the presence of serum proteins at 37 °C, where the rate constant of subunit exchange is 0.20 h(-1) for C18-micelles vs 0.22 h(-1) for C16-micelles. The diffusion constant for drug release from C18-micelles is approximately half of that for C16-micelles. The differences between the two micelles are significantly more pronounced in terms of in vivo stability and extent of tumor accumulation. C18-micelles exhibit significantly longer blood circulation time of 29.5 h, whereas C16-micelles have a circulation time of 16.1 h. The extent of tumor accumulation at 48 h after injection is ∼43% higher for C18-micelles. The present studies underscore the importance of core composition on the biological behavior of 3-helix micelles. The quantification of the effect of this key design parameter on the stability of 3-helix micelles provides important guidelines for carrier selection and use in complex environment.

  20. Toward Rational Design of Protein Detergent Complexes: Determinants of Mixed Micelles That Are Critical for the In Vitro Stabilization of a G-Protein Coupled Receptor

    PubMed Central

    O'Malley, Michelle A.; Helgeson, Matthew E.; Wagner, Norman J.; Robinson, Anne S.

    2011-01-01

    Although reconstitution of membrane proteins within protein detergent complexes is often used to enable their structural or biophysical characterization, it is unclear how one should rationally choose the appropriate micellar environment to preserve native protein folding. Here, we investigated model mixed micelles consisting of a nonionic glucosylated alkane surfactant from the maltoside and thiomaltoside families, bile salt surfactant, and the steryl derivative cholesteryl hemisuccinate. We correlated several key attributes of these micelles with the in vitro ligand-binding activity of hA2aR in these systems. Through small-angle neutron scattering and radioligand-binding analysis, we found several key aspects of mixed micellar systems that preserve the activity of hA2aR, including a critical amount of cholesteryl hemisuccinate per micelle, and an optimal hydrophobic thickness of the micelle that is analogous to the thickness of native mammalian bilayers. These features are closely linked to the headgroup chemistry of the surfactant and the hydrocarbon chain length, which influence both the morphology and composition of resulting micelles. This study should serve as a general guide for selecting the appropriate mixed surfactant systems to stabilize membrane proteins for biophysical analysis. PMID:22004748

  1. Production Scaleup of Reverse Micelle Synthesis

    SciTech Connect

    Morrison,S.; Cahill, C.; Carpenter, E.; Harris, V.

    2006-01-01

    A wide range of techniques for the successful synthesis of nanosized materials have been developed recently. These procedures are sufficient for normal scientific investigation; however, for these materials to be incorporated into any practical application, the process for making them must be scalable to a larger volume. In this work, we focus on a published recipe for manganese zinc ferrite (MZFO) nanoparticles, which uses the reverse micelle synthesis technique. The normal bench-top synthesis has been scaled by a factor of 40 and successfully adapted to a 30-L pilot plant. The product of this synthesis is similar to the bench-top sample, which is also comparable to a ceramic MZFO standard. Through this work, we have demonstrated that the reverse micelle process is scalable to larger volumes.

  2. Molecular dynamics study of micelles properties according to their size.

    PubMed

    Lebecque, S; Crowet, J M; Nasir, M N; Deleu, M; Lins, L

    2017-03-01

    Surfactants are molecules able to spontaneously self-assemble to form aggregates with well-defined properties, such as spherical micelles, planar bilayers, cylindrical micelles or vesicles. Micelles have notably several applications in many domains, such as drug delivery or membrane protein solubilization. In this context, the study of micelle formation in relation with the structural and physico-chemical properties of surfactants is of great interest to better control their use in the different application fields. In this work, we use the MD approach developed by Yoshii et al. and extend it to surfactants with different structures. We aim to systematically investigate different micellar properties as a function of the aggregates size by a molecular dynamics approach, to get an insight into the micellar organization and to collect some relevant descriptors about micelle formation. For this, we perform short MD simulations of preformed micelles of various sizes and analyze three parameters for each micelle size, namely the eccentricity of the micelles, the hydrophobic/hydrophilic surface ratio and the hydrophobic tails hydration. If these parameters are known descriptors of micelles, they were not yet studied in this way by MD. We show that eccentricity, used as "validator" parameter, exhibits minimal values when the aggregate size is close to the experimental aggregation number for surfactants that are known to form spherical micelles. This hence indicates that our methodology gives consistent results. The evolution of the two descriptors follows another scheme, with a sharp increase and decrease, respectively, followed by a leveling-off. The aggregate sizes at which this stabilization starts to occur are close to the respective aggregation number of each surfactant. In our approach, we validate the use of these descriptors to follow micelle formation by MD, from "simple" surfactants to more complex structures, like lipopeptides. Our calculations also suggest that

  3. Synthesis and agglomeration of gold nanoparticles in reverse micelles

    NASA Astrophysics Data System (ADS)

    Herrera, Adriana P.; Resto, Oscar; Briano, Julio G.; Rinaldi, Carlos

    2005-07-01

    Reverse micelles prepared in the system water, sodium bis-(2-ethylhexyl) sulfoccinate (AOT), and isooctane were investigated as a templating system for the production of gold nanoparticles from Au(III) and the reducing agent sulfite. A core-shell Mie model was used to describe the optical properties of gold nanoparticles in the reverse micelles. Dynamic light scattering of gold colloids in aqueous media and in reverse micelle solution indicated agglomeration of micelles containing particles. This was verified theoretically with an analysis of the total interaction energy between pairs of particles as a function of particle size. The analysis indicated that particles larger than about 8 nm in diameter should reversibly flocculate. Transmission electron microscopy measurements of gold nanoparticles produced in our reverse micelles showed diameters of 8-10 nm. Evidence of cluster formation was also observed. Time-correlated UV-vis absorption measurements showed a red shift for the peak wavelength. This was interpreted as the result of multiple scattering and plasmon interaction between particles due to agglomeration of micelles with particles larger than 8 nm.

  4. Comparative Fluorescence Resonance Energy-Transfer Study in Pluronic Triblock Copolymer Micelle and Niosome Composed of Biological Component Cholesterol: An Investigation of Effect of Cholesterol and Sucrose on the FRET Parameters.

    PubMed

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-01-14

    The formation of pluronic triblock copolymer (F127)-cholesterol-based niosome and its interaction with sugar (sucrose) molecules have been investigated. The morphology of F127-cholesterol -based niosome in the presence of sucrose has been successfully demonstrated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. The DLS profiles and TEM images clearly suggest that the size of the niosome aggregates increases significantly in the presence of sucrose. In addition to structural characterization, a detailed comparative fluorescence resonance energy transfer (FRET) study has been carried out in these F127-containing aggregates, involving coumarin 153 (C153) as donor (D) and rhodamine 6G (R6G) as an acceptor (A) to monitor the dynamic heterogeneity of the systems. Besides, time-resolved anisotropy and fluorescence correlation spectroscopy measurements have been carried out to monitor the rotational and lateral diffusion motion in these F127-cholesterol-based aggregates using C153 and R6G, respectively. During the course of FRET study, we have observed multiple time constants of FRET inside the F127-cholesterol-based niosomes in contrast with the F127 micelle. This corresponds to the presence of more than one preferential donor-acceptor (D-A) distance in niosomes than in F127 micelle. FRET has also been successfully used to probe the effect of sucrose on the morphology of F127-cholesterol-based niosome. In the presence of sucrose, the time constant of FRET further increases as the D-A distances increase in sucrose-decorated niosome. Finally, the excitation-wavelength-dependent FRET studies have indicated that as the excitation of donor molecules varies from 408 to 440 nm the contribution of the faster rise component of the acceptor enhances considerably, which clearly establishes the dynamics heterogeneity of both systems. Our findings also indicate that FRET is completely intravesicular in nature in these block copolymer

  5. Development of the simple and sensitive method for lipoxygenase assay in AOT/isooctane reversed micelles.

    PubMed

    Park, Kyung Min; Kim, Yu Na; Choi, Seung Jun; Chang, Pahn-Shick

    2013-06-01

    In this study, we investigated the possibility of reversed micelles, widely used as an enzyme reactor for lipases, for the determination of lipoxygenase activity. Although it is rapid and simple, reversed micelles have some limitations, such as interference by UV-absorbing materials and surfactant. Lipoxygenase activity in the reversed micelles was determined by reading the absorbance of the lipid hydroperoxidation product (conjugated diene) at 234 nm. Among surfactants and organic media, AOT and isooctane were most effective for the dioxygenation of linoleic acid in reversed micelles. The strong absorbance of AOT in the UV region is a major obstacle for the direct application of the AOT/isooctane reversed micelles to lipoxygenase activity determination. To prevent interference by AOT, we added an AOT removal step in the procedure for lipoxygenase activity determination in reversed micelles. The lipoxygenase activity was dependent on water content, and maximum activity was obtained at an R-value of 10.

  6. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure.

  7. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  8. Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles

    NASA Astrophysics Data System (ADS)

    Shannigrahi, Mrinmoy; Bagchi, Sanjib

    2005-07-01

    Aggregational behaviour of micelles sodium dodecyl sulphate (SDS and Triton X-100, TX-100 both in pure and mixed form) and micelle like aggregates such as polymer-surfactant system [polymer poly(vinyl pyrrolidone), PVP]-SDS have been studied by using fluorescence characteristics of a newly synthesized probe. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic effect. The value of the interaction parameter for the surfactant mixture has been determined which agrees well with the value calculated according to molecular thermodynamic theory. The total aggregation number of surfactant in mixed micelle shows a drastic variation in the SDS mole fraction range 0 ≤ α1 ≤ 0.3 and beyond the range it remains practically constant. Molar-based partition coefficients for the dye between the micellar and aqueous phase have been determined and a non-linear variation is obtained for the mixed micellar system. Variations of micro-polarity in the mixed micellar region have been investigated as a function of surfactant composition and results have been explained in terms of a suitable realistic model.

  9. Micelle Formation in Liquid Ammonia.

    PubMed

    Griffin, Joseph M; Atherton, John H; Page, Michael I

    2015-07-17

    Perfluorinated long chain alkyl amides aggregate in liquid ammonia with increasing concentration which reflects micelle-type formation based on changes in (19)F NMR chemical shifts. The critical micelle concentrations (cmc) decrease with increasing chain length and give Kleven parameters A = 0.18 and B = 0.19. The micelles catalyze the ammonolysis of esters in liquid ammonia. The corresponding perfluorinated long chain alkyl carboxylates form ion pairs in liquid ammonia, but the equilibrium dissociation constants indicate favorable interactions between the chains in addition to the electrostatic forces. These perfluorinated carboxylates form micelles in aqueous solution, and their cmc's generate a Kleven B-value = 0.52 compared with 0.30 for the analogous alkyl carboxylates. The differences in hydrophobicity of CH2 and CF2 units in water and liquid ammonia are discussed, as is the possible relevance to life forms in liquid ammonia.

  10. Radioecological investigation of food of animal origin in Belgrade environment.

    PubMed

    Gordana, Vitorović; Svetlana, Grdović; Branislava, Mitrović; Milan, Obradović; Branko, Petrujkić

    2009-11-01

    The activity concentrations of 40K, 238U, 232Th and 137Cs were measured using gamma spectrometric method in different food chain samples from Serb Belgrade environment during the periods May-June 2007 and May-June 2008 year. Relatively high activities of 40K and 137Cs were detected in the soil. These results indicate that 137Cs is present in Belgrade environment even 20 years after nuclear accident in Chernobyl. However, in the samples of feedstuffs, animal products and bio indicators (meat of wild animals and fish), activity concentrations of primordial radionuclides and 137Cs were low and below the detection limits. Results of these trials have shown that investigated animal products from the natural environment around Belgrade, are radioactivity safe.

  11. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  12. Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core-shell micelles via a small change in pH.

    PubMed

    Cai, Guoqiang; Zhang, Haiwen; Liu, Peng; Wang, Liqun; Jiang, Hongliang

    2011-10-01

    The size and surface property of nanomaterial-based delivery systems administered intravenously play important roles in their cell uptake and in vivo distribution. Both of them should be capable of self-evolution in order to achieve efficient targeting performance. A facile strategy was proposed to manipulate both the size and surface property of polymeric micelles. It was found that the hierarchical assembly between trimethylated chitosan-g-poly(ε-caprolactone) (TMC-PCL) micelles and carboxyethyl chitosan-g-poly(ethylene glycol) (CEC-PEG) could produce onion-like micelles with enlarged size and PEGylated surface. The onion-like micelles could withstand the ionic strength of plasma and competitive exchange with BSA, and abruptly disassemble into the pristine TMC-PCL micelles via a small change in pH. By varying the degree of carboxyethylation, the disassembly pH could be modulated to the range of the tumoral microclimate pH. In contrast with TMC-PCL micelles, which displayed high cytotoxicity and endocytic ability towards C6 glioma cells, the onion-like micelles were cell-friendly and internalized by the cells at a very low level. Doxorubicin was used as a model chemotherapeutic agent and incorporated within TMC-PCL micelles. Dox release from both TMC-PCL micelles and the onion-like micelles was very slow under normal physiological conditions and displayed excellent pH sensitivity. Cell viability of Dox-loaded micelles was also investigated. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Numerical investigation of the dynamical environment of 65803 Didymos

    NASA Astrophysics Data System (ADS)

    Dell'Elce, L.; Baresi, N.; Naidu, S. P.; Benner, L. A. M.; Scheeres, D. J.

    2017-03-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is planning to visit the Didymos binary system in 2022 in order to perform the first demonstration ever of the kinetic impact technique. Binary asteroids are an ideal target for this since the deflection of the secondary body can be accurately measured by a satellite orbiting in the system. However, these binaries offer an extremely rich dynamical environment whose accurate investigation through analytical approaches is challenging at best and requires a significant number of restrictive assumptions. For this reason, a numerical investigation of the dynamical environment in the vicinity of the Didymos system is offered in this paper. After computing various families of periodic orbits, their robustness is assessed in a high-fidelity environment consisting of the perturbed restricted full three-body problem. The results of this study suggest that several nominally stable trajectories, including the triangular libration points, should not be considered as safe as a state vector perturbation may cause the spacecraft to drift from the nominal orbit and possibly impact one of the primary bodies within a few days. Nonetheless, there exist two safe solutions, namely terminator and interior retrograde orbits. The first one is adequate for observation purposes of the entire system and for communications. The second one is more suitable to perform close investigations of the primary body.

  14. Micellization of St/MMA gradient copolymers: a general picture of structural transitions in gradient copolymer micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2013-10-01

    In this work, a gradient copolymer of styrene (St) and methyl methacrylate (MMA) is synthesized via reversible addition-fragmentation chain transfer living radical polymerization and its micellization behaviors in an acetone and water mixture are investigated by transmission electron microscopy, light scattering, and NMR spectroscopy. Three different kinds of transitions were found to coexist in a single system for the first time: a unimers to micelles transition, a star-like micelles to crew-cut micelles transition resulting from the shrinkage of micelles, and morphological transitions from spherical micelles to cylindrical micelles to vesicles. Our findings provide a general picture of structural transitions and relaxation processes in gradient copolymer micelles, which can lead to the development of novel materials and applications based on gradient copolymers.

  15. Solute and solvent dynamics in confined equal-sized aqueous environments of charged and neutral reverse micelles: a combined dynamic fluorescence and all-atom molecular dynamics simulation study.

    PubMed

    Guchhait, Biswajit; Biswas, Ranjit; Ghorai, Pradip K

    2013-03-28

    Here a combined dynamic fluorescence and all-atom molecular dynamics simulation study of aqueous pool-size dependent solvation energy and rotational relaxations of a neutral dipolar solute, C153, trapped in AOT (charged) and IGPAL (neutral) reverse micelles (RMs) at 298 K, is described. RMs in simulations have been represented by a reduced model where SPC/E water molecules interact with a trapped C153 that possesses realistic charge distributions for both ground and excited states. In large aqueous pools, measured average solvation and rotation rates are smaller for the neutral RMs than those in charged ones. Interestingly, while the measured average solvation and rotation rates increase with pool size for the charged RMs, the average rotation rates for the neutral RMs exhibit a reverse dependence. Simulations have qualitatively reproduced this experimental trend and suggested interfacial location for the solute for all cases. The origin for the subnanosecond Stokes shift dynamics has been investigated and solute-interface interaction contribution quantified. Simulated layer-wise translational and rotational diffusions of water molecules re-examine the validity of the core-shell model and provide a resolution to a debate regarding the origin of the subnanosecond solvation component in dynamic Stokes shift measurements with aqueous RMs but not detected in ultrafast IR measurements.

  16. Bending energetics of tablet-shaped micelles: a novel approach to rationalize micellar systems.

    PubMed

    Bergström, L Magnus

    2007-02-19

    A novel approach to rationalize micellar systems is expounded in which the structural behavior of tablet-shaped micelles is theoretically investigated as a function of the three bending elasticity constants: spontaneous curvature (H0), bending rigidity (k(c)), and saddle-splay constant (k(c)). As a result, experimentally accessible micellar properties, such as aggregation number, length-to-width ratio, and polydispersity, may be related to the different bending elasticity constants. It is demonstrated that discrete micelles or connected cylinders form when H0 > 1/4xi, where xi is the thickness of a surfactant monolayer, whereas various bilayer structures are expected to predominate when H0 < 1/4xi. Our theory predicts, in agreement with experiments, a transition from discrete globular (tablet-shaped) micelles to a phase of ordered, or disordered, connected cylinders above a critical surfactant concentration. Moreover, a novel explanation for the mechanism of growth, from small globular to long rodlike or wormlike micelles, follows as a consequence from the theory. In accordance, polydisperse elongated micelles (large length-to-width ratio) form as the bending rigidity is lowered, approaching the critical point at k(c) = 0, whereas monodisperse globular micelles (small length-to-width ratio) are expected to be present at large k(c) values. The spontaneous curvature mainly determines the width of tablet-shaped or ribbonlike micelles, or the radius of disklike micelles, whereas the saddle-splay constant primarily influences the size but not the shape of the micelles.

  17. Fabrication of novel coumarin derivative functionalized polypseudorotaxane micelles for drug delivery

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Li, Yuan; Wang, Gang; He, Bin; Gu, Zhongwei

    2012-12-01

    The fabrication and drug delivery of novel polypseudorotaxane micelles with small molecule coumarin derivative as hydrophobic segment were reported. 7-Carboxymethoxy coumarin was immobilized on the terminal hydroxyl groups of poly(ethylene glycol) (PEG). The modified PEG chains were threaded in α-cyclodextrins (α-CDs) to form polypseudorotaxanes. The polypseudorotaxanes self-assembled into supramolecular micelles driven by hydrophobic interaction and polypseudorotaxane crystallization. Anti-tumor drug doxorubicin (DOX) was trapped in the micelles. The structure, morphology, drug release profile and cytotoxicity of the micelles were investigated. The in vitro anti-tumor studies including cellular uptake and inhibition efficiency were performed on mice cancer cell lines of TC1 lung cancer cells and B16 melanoma cells. The results revealed that the 7-carboxymethoxy coumarin modified PEG could thread into the cavity of α-CDs to form necklace-like polypseudorotaxanes. The polypseudorotaxanes self-assembled into spherical micelles with the mean size of 30 nanometers, and the size was increased to about 80 nanometers after the drug was loaded. The drug loading content of the micelles was decreased with increasing the chain length of PEG. The sustaining release of DOX could last for 32 hours. The polypseudorotaxane micelles were non-toxic to both TC1 and B16 cells. The IC50 of the DOX loaded polypseudorotaxane micelles with PEG2k was lower than that of micelles with PEG4k or PEG6k both in TC1 and B16 cells.

  18. Development and in vitro/in vivo evaluation of a novel targeted polymeric micelle for delivery of paclitaxel.

    PubMed

    Emami, Jaber; Rezazadeh, Mahboubeh; Hasanzadeh, Farshid; Sadeghi, Hojjat; Mostafavi, Abolfazl; Minaiyan, Mohsen; Rostami, Mahboubeh; Davies, Neal

    2015-09-01

    In this study a novel receptor-targeted micelle delivery system based on tocopherol succinate-chitosan-polyethylene glycol-folic acid (TS-CS-PEG-FA) was synthesized and loaded with paclitaxel (PTX). Physicochemical properties of the micelles such as critical micelle concentration, micelle size, entrapment efficiency, stability, release properties, cellular uptake and in vitro cytotoxicity were investigated in detail. Furthermore, the pharmacokinetics and tissue distributions of PTX-loaded micelles were evaluated in Balb/c mice and compared with Anzatax(®) (PTX in Cremophor EL(®)). Particle sizes and zeta potentials of the micelles were in the range of 162.3-277.1 nm and 18.5-28.3 mV, respectively. The drug entrapment efficiencies of the micelles were within 53.6-82.5% (w/w). Cytotoxicity assay demonstrated increased cytotoxic activity of PTX-loaded TS-CS-PEG-FA micelles compared to free PTX. The Vd and t1/2β of PTX-loaded TS-CS-PEG-FA were increased by 2.76- and 2.05-fold, respectively, while the plasma AUC of the micelles was only 0.76-fold lower than those of Anzatax(®) As demonstrated by tissue distribution, the PTX/TS-CS-PEG-FA micelles increased accumulation of PTX in tumor tissue. Therefore, the targeted chitosan derived micelle offered a stable and effective delivery system for PTX cancer chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly and Small Molecule Encapsulation.

    PubMed

    Robin, Mathew P; Osborne, Shani A M; Pikramenou, Zoe; Raymond, Jeffery E; O'Reilly, Rachel K

    2016-01-26

    Block copolymer micelles have been prepared with a dithiomaleimide (DTM) fluorophore located in either the core or shell. Poly(triethylene glycol acrylate)-b-poly(tert-butyl acrylate) (P(TEGA)-b-P(tBA)) was synthesized by RAFT polymerization, with a DTM-functional acrylate monomer copolymerized into either the core forming P(tBA) block or the shell forming P(TEGA) block. Self-assembly by direct dissolution afforded spherical micelles with Rh of ca. 35 nm. Core-labeled micelles (CLMs) displayed bright emission (Φf = 17%) due to good protection of the fluorophore, whereas shell-labeled micelles (SLMs) had lower efficiency emission due to collisional quenching in the solvated corona. The transition from micelles to polymer unimers upon dilution could be detected by measuring the emission intensity of the solutions. For the core-labeled micelles, the fluorescence lifetime was also responsive to the supramolecular state, the lifetime being significantly longer for the micelles (τAv,I = 19 ns) than for the polymer unimers (τAv,I = 9 ns). The core-labeled micelles could also self-report on the presence of a fluorescent hydrophobic guest molecule (Nile Red) as a result of Förster resonance energy transfer (FRET) between the DTM fluorophore and the guest. The sensitivity of the DTM fluorophore to its environment therefore provides a simple handle to obtain detailed structural information for the labeled polymer micelles. A case will also be made for the application superiority of core-labeled micelles over shell-labeled micelles for the DTM fluorophore.

  20. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation

    PubMed Central

    Liu, Yuling; Fu, Sai; Lin, Longfei; Cao, Yuhong; Xie, Xi; Yu, Hua; Chen, Meiwan; Li, Hui

    2017-01-01

    Pluronic F127 (F127), an amphiphilic triblock copolymer, has been shown to have significant potential for drug delivery, as it is able to incorporate hydrophobic drugs and self-assemble into nanosize micelles. However, it suffers from dissociation upon dilution owing to the relatively high critical micelle concentration and lack of stimuli-responsive behavior. Here, we synthesized the α-tocopherol (TOC) modified F127 polymer (F127-SS-TOC) via a redox-sensitive disulfide bond between F127 and TOC, which formed stable micelles at relatively low critical micelle concentration and was sensitive to the intracellular redox environment. The particle size and zeta potential of the F127-SS-TOC micelles were 51.87±6.39 nm and -8.43±2.27 mV, respectively, and little changes in both particle size and zeta potential were observed within 7 days at room temperature. With 10 mM dithiothreitol stimulation, the F127-SS-TOC micelles rapidly dissociated followed by a significant change in size, which demonstrated a high reduction sensitivity of the micelles. In addition, the micelles showed a high hemocompatibility even at a high micelle concentration (1,000 μg/mL). Low cytotoxicity of the F127-SS-TOC micelles at concentrations ranging from 12.5 μg/mL to 200 μg/mL was also found on both Bel 7402 and L02 cells. Overall, our results demonstrated F127-SS-TOC micelles as a stable and safe aqueous formulation with a considerable potential for drug delivery. PMID:28435248

  1. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  2. Molecular mechanism of Ca(2+)-catalyzed fusion of phospholipid micelles.

    PubMed

    Tsai, Hui-Hsu Gavin; Juang, Wei-Fu; Chang, Che-Ming; Hou, Tsai-Yi; Lee, Jian-Bin

    2013-11-01

    Although membrane fusion plays key roles in intracellular trafficking, neurotransmitter release, and viral infection, its underlying molecular mechanism and its energy landscape are not well understood. In this study, we employed all-atom molecular dynamics simulations to investigate the fusion mechanism, catalyzed by Ca(2+) ions, of two highly hydrated 1-palmitoyl-2-oleoyl-sn-3-phosphoethanolamine (POPE) micelles. This simulation system mimics the small contact zone between two large vesicles at which the fusion is initiated. Our simulations revealed that Ca(2+) ions are capable of catalyzing the fusion of POPE micelles; in contrast, we did not observe close contact of the two micelles in the presence of only Na(+) or Mg(2+) ions. Determining the free energy landscape of fusion allowed us to characterize the underlying molecular mechanism. The Ca(2+) ions play a key role in catalyzing the micelle fusion in three aspects: creating a more-hydrophobic surface on the micelles, binding two micelles together, and enhancing the formation of the pre-stalk state. In contrast, Na(+) or Mg(2+) ions have relatively limited effects. Effective fusion proceeds through sequential formation of pre-stalk, stalk, hemifused-like, and fused states. The pre-stalk state is the state featuring lipid tails exposed to the inter-micellar space; its formation is the rate-limiting step. The stalk state is the state where a localized hydrophobic core is formed connecting two micelles; its formation occurs in conjunction with water expulsion from the inter-micellar space. This study provides insight into the molecular mechanism of fusion from the points of view of energetics, structure, and dynamics. © 2013 Elsevier B.V. All rights reserved.

  3. Investigation of crystal growth from solutions. [in zero gravity environments

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1974-01-01

    The quality was investigated of a crystal of Rochelle salt grown from a solution placed in the zero-gravity environment of Skylab 4. The crystal has the following unique features: (1) the typical cavity is a long tube extending along the c-axis, the average length being 4mm, compared to 0.1mm that is the average size for earth-grown crystals; and (2) the crystal consists of several single crystals, the axes of which are parallel to each other. A preliminary measurement was made on the ferroelectric hysteresis curve of this Rochelle salt crystal.

  4. Thermodynamics of hexadecyltrimethylammonium bromide micelle formation

    NASA Astrophysics Data System (ADS)

    Velikov, A. A.

    2017-07-01

    The thermodynamic parameters for CTAB micelle formation (Δ H, Δ G, Δ S) are calculated at different temperatures. Critical micelle concentrations CMC1 are determined. The possibility of determining CMC2 is demonstrated.

  5. Achieving micelle control through core crystallinity.

    PubMed

    Glavas, Lidija; Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2013-11-11

    We have designed a pathway for controlling the critical micelle concentration and micelle size of polyester-based systems. This was achieved by creating an array of different copolymers with semicrystalline or amorphous hydrophobic blocks. The hydrophobic block was constructed through ring-opening polymerization of ε-caprolactone, L-lactide, and ε-decalactone, either as homopolymers or random copolymers, using PEG as both the initiator and the hydrophilic block. Micelles formed with amorphous cores exhibited considerably higher critical micelle concentrations than those with semicrystalline cores. Micelles with amorphous cores also became larger in size with an increased molecular weight of the hydrophobic bock, in contrast to micelles with semicrystalline cores, which displayed the opposite behavior. Hence, core crystallinity was found to be a potent tool for tailoring micelle properties and thereby facilitating the optimization of drug delivery systems. The introduction of PEG-PεDL also proved to be a valuable asset in the tuning of micelle properties.

  6. Achieving Micelle Control through Core Crystallinity

    PubMed Central

    2013-01-01

    We have designed a pathway for controlling the critical micelle concentration and micelle size of polyester-based systems. This was achieved by creating an array of different copolymers with semicrystalline or amorphous hydrophobic blocks. The hydrophobic block was constructed through ring-opening polymerization of ε-caprolactone, l-lactide, and ε-decalactone, either as homopolymers or random copolymers, using PEG as both the initiator and the hydrophilic block. Micelles formed with amorphous cores exhibited considerably higher critical micelle concentrations than those with semicrystalline cores. Micelles with amorphous cores also became larger in size with an increased molecular weight of the hydrophobic bock, in contrast to micelles with semicrystalline cores, which displayed the opposite behavior. Hence, core crystallinity was found to be a potent tool for tailoring micelle properties and thereby facilitating the optimization of drug delivery systems. The introduction of PEG-PεDL also proved to be a valuable asset in the tuning of micelle properties. PMID:24066701

  7. Theory of liquid crystalline micelles.

    PubMed

    Matsuyama, Akihiko

    2013-01-21

    A theory is introduced to describe self-assembly of liquid crystalline AB diblock copolymers, consisting of a homopolymer (A) and a side-chain liquid crystalline polymer (B). We derive the free energy of the liquid crystalline micellar solutions and examine the equilibrium solution properties: critical micelle concentration (CMC), nematic-isotropic phase transition (NIT) of the rigid side-chains inside the micelle core, and phase separations. It is shown that there is a critical micelle size below which the NIT becomes continuous due to a packing effect. We also find re-entrant micellizations near the NIT temperature. The phase diagrams, including binodal, spinodal, CMC, and NIT curves are also examined on the temperature-concentration plane.

  8. Investigation of the strong turbulence in the geospace environment

    NASA Astrophysics Data System (ADS)

    Kharshiladze, O.; Chargazia, K.

    2015-11-01

    Plasma vortices are often detected by spacecraft in the geospace (atmosphere, ionosphere, magnetosphere) environment, for instance in the magnetosheath and in the magnetotail region. Large scale vortices may correspond to the injection scale of turbulence, so that understanding their origin is important for understanding the energy transfer processes in the geospace environment. In a recent work, turbulent state of plasma medium (especially, ionosphere) is overviewed. Experimental observation data from THEMIS mission (Keiling et al., 2009) is investigated and numerical simulations are carried out. By analyzing the THEMIS data for that event, we find that several vortices in the magnetotail are detected together with the main one and these vortices constitute a vortex chain. Such vortices can cause the strong turbulent state in the different media. The strong magnetic turbulence is investigated in the ionsophere as an ensemble of such strongly localized (weakly interacting) vortices. Characteristics of power spectral densities are estimated for the observed and analytical stationary dipole structures. These characteristics give good description of the vortex structures.

  9. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  10. Fate of micelles and quantum dots in cells.

    PubMed

    Maysinger, Dusica; Lovrić, Jasmina; Eisenberg, Adi; Savić, Radoslav

    2007-03-01

    Micelles and quantum dots have been used as experimental drug delivery systems and imaging tools both in vitro and in vivo. Investigations of their fate at the subcellular level require different surface-core modifications. Among the most common modifications are those with fluorescent probes, dense-core metals or radionucleids. Cellular fate of several fluorescent probes incorporated into poly(caprolactone)-b-copolymer micelles (PCL-b-PEO) was followed by confocal microscopy, and colloidal gold incorporated in poly 4-vinyl pyridine-PEO micelles were developed to explore micelle fate by electron microscopy. More recently, we have examined quantum dots (QDs) as the next-generation-labels for cells and nanoparticulate drug carriers amenable both to confocal and electron microscopic analyses. Effects of QDs at the cellular and subcellular levels and their integrity were studied. Results from different studies suggest that size, charge and surface manipulations of QDs may play a role in their subcellular distribution. Examples of pharmacological agents incorporated into block copolymer micelles, administered or attached to QD surfaces show how the final biological outcome (e.g. cell death, proliferation or differentiation) depends on physical properties of these nanoparticles.

  11. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    SciTech Connect

    Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2010-10-08

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  12. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    NASA Astrophysics Data System (ADS)

    Han, Bing; Li, Bei-Bei; Zhang, Hong-Chao; Chen, Jun; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2010-10-01

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton (μN) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  13. Anomalous diffusion and stress relaxation in surfactant micelles

    NASA Astrophysics Data System (ADS)

    Dhakal, Subas; Sureshkumar, Radhakrishna

    2017-07-01

    We investigate the mechanisms of anomalous diffusion in cationic surfactant micelles using molecular dynamics simulations in the presence of explicit salt and solvent-mediated interactions. Simulations show that when the counterion density increases, saddle-shaped branched interfaces manifest. In experiments, branched structures exhibit lower viscosity as compared to linear and wormlike micelles. This has long been attributed to stress relaxation arising from the sliding motion of branches along the main chain. Our simulations reveal a mechanism of branch motion resulting from an enhanced counterion condensation at the branched interfaces and provide quantitative evidence of stress relaxation facilitated by branched sliding. Furthermore, depending on the surfactant and salt concentrations, which in turn determine the microstructure, we observe normal, subdiffusive, and superdiffusive motions of surfactants. Specifically, superdiffusive behavior is associated with branch sliding, breakage and recombination of micelle fragments, as well as constraint release in entangled systems.

  14. Photoionization of psoralen derivatives in micelles: Imperatorin and alloimperatorin

    NASA Astrophysics Data System (ADS)

    El-Gogary, Sameh R.

    2010-11-01

    The fluorescence properties of psoralen derivatives, 8-methoxypsoralen (8-MOP), imperatorin (IMP) and alloimperatorin (ALLOI), were investigated in various solvent and micellar solutions. The variation in intensity and maxima of the fluorescence in micellar solutions suggest that psoralens are located in the micelle-water interface region. Radical cations and hydrated electrons were generated by photoionization in micellar solution upon excitation at 266 nm. A nonlinear relationship between transient yield and photon fluency was obtained for each compound, indicating that a two-photon mechanism is predominant in the photoionization of the sensitizers. The photoionization efficiencies are significantly higher in anionic sodium dodecyl sulfate (SDS) than in cationic cetyltrimethylammonium bromide (CTAB) micelles, reflecting the influence of micelle charge on the efficiency of the separation of the photoproduced charge carriers. The photoionization efficiencies of IMP and ALLOI are similar.

  15. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  16. Preparation of Two Types of Polymeric Micelles Based on Poly(β-L-Malic Acid) for Antitumor Drug Delivery

    PubMed Central

    Duan, Xiao; Zhu, Lin; Fan, Li; Qiao, Youbei; Wu, Hong

    2016-01-01

    Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. In this work, two types of CPT-conjugated polymers were synthesized based on poly(β-L-malic acid) (PMLA) derivatives. Folic acid (FA) was introduced into the polymers as tumor targeting group. The micellization behaviors of these polymers and antitumor activity of different self-assembled micelles were investigated. Results indicate that poly(ethylene glycol)-poly(β-L-malic acid)-campotothecin-I (PEG-PMLA-CPT-I, P1) is a grafted copolymer, and could form star micelles in aqueous solution with a diameter of about 97 nm, also that PEG-PMLA-CPT-II (P2) is an amphiphilic block copolymer, and could form crew cut micelles with a diameter of about 76 nm. Both P1 and P2 micelles could improve the cellular uptake of CPT, especially the FA-modified micelles, while P2 micelles showed higher stability, higher drug loading efficiency, smaller size, and slower drug release rate than that of P1 micelles. These results suggested that the P2 (crew cut) micelles possess better stability than that of the P1 (star) micelles and might be a potential drug delivery system for cancer therapy. PMID:27649562

  17. Characteristic of core materials in polymeric micelles effect on their micellar properties studied by experimental and dpd simulation methods.

    PubMed

    Cheng, Furong; Guan, Xuewa; Cao, Huan; Su, Ting; Cao, Jun; Chen, Yuanwei; Cai, Mengtan; He, Bin; Gu, Zhongwei; Luo, Xianglin

    2015-08-15

    Polymeric micelles are one important class of nanoparticles for anticancer drug delivery, but the impact of hydrophobic segments on drug encapsulation and release is unclear, which deters the rationalization of drug encapsulation into polymeric micelles. This paper focused on studying the correlation between the characteristics of hydrophobic segments and encapsulation of structurally different drugs (DOX and β-carotene). Poly(ϵ-caprolactone) (PCL) or poly(l-lactide) (PLLA) were used as hydrophobic segments to synthesize micelle-forming amphiphilic block copolymers with the hydrophilic methoxy-poly(ethylene glycol) (mPEG). Both blank and drug loaded micelles were spherical in shape with sizes lower than 50 nm. PCL-based micelles exhibited higher drug loading capacity than their PLLA-based counterparts. Higher encapsulation efficiency of β-carotene was achieved compared with DOX. In addition, both doxorubicin and β-carotene were released much faster from PCL-based polymeric micelles. Dissipative particle dynamics (DPD) simulation revealed that the two drugs tended to aggregate in the core of the PCL-based micelles but disperse in the core of PLLA based micelles. In vitro cytotoxicity investigation of DOX loaded micelles demonstrated that a faster drug release warranted a more efficient cancer-killing effect. This research could serve as a guideline for the rational design of polymeric micelles for drug delivery.

  18. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  19. Preparation of Two Types of Polymeric Micelles Based on Poly(β-L-Malic Acid) for Antitumor Drug Delivery.

    PubMed

    Yang, Tiehong; Li, Wei; Duan, Xiao; Zhu, Lin; Fan, Li; Qiao, Youbei; Wu, Hong

    2016-01-01

    Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. In this work, two types of CPT-conjugated polymers were synthesized based on poly(β-L-malic acid) (PMLA) derivatives. Folic acid (FA) was introduced into the polymers as tumor targeting group. The micellization behaviors of these polymers and antitumor activity of different self-assembled micelles were investigated. Results indicate that poly(ethylene glycol)-poly(β-L-malic acid)-campotothecin-I (PEG-PMLA-CPT-I, P1) is a grafted copolymer, and could form star micelles in aqueous solution with a diameter of about 97 nm, also that PEG-PMLA-CPT-II (P2) is an amphiphilic block copolymer, and could form crew cut micelles with a diameter of about 76 nm. Both P1 and P2 micelles could improve the cellular uptake of CPT, especially the FA-modified micelles, while P2 micelles showed higher stability, higher drug loading efficiency, smaller size, and slower drug release rate than that of P1 micelles. These results suggested that the P2 (crew cut) micelles possess better stability than that of the P1 (star) micelles and might be a potential drug delivery system for cancer therapy.

  20. Nanoparticle-Loaded Multifunctional Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Bae, Jinhye; Lawrence, Jimmy; Miesch, Caroline; Ribbe, Alexander; Li, Weikun; Emrick, Todd; Zhu, Jintao; Hayward, Ryan

    2012-02-01

    We have studied the incorporation of pre-synthesized hydrophobic inorganic nanoparticles within the cores of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymer micelles formed through solvent-evaporation-induced interfacial instabilities of emulsion droplets. Using iron oxide, gold, and cadmium selenide nanoparticles coated with native alkane ligands, highly uniform encapsulation is obtained for cylindrical micelles, while spherical micelles can be enriched to ˜ 90 % of loaded micelles through simple magnetic or centrifugal purification steps. Multiple different types of nanoparticles can easily be incorporated into each micelle, yielding multi-functional micelles. The ability to encapsulate both spherical and rod-like particles of different core chemistries and sizes ranging from ˜ 1 to 20 nm, without the necessity of coating particles with specially designed ligands, makes this a versatile route to prepare hybrid micelle structures.

  1. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  2. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

    PubMed Central

    Li, Jingguo; Li, Zhanrong; Zhou, Tianyang; Zhang, Junjie; Xia, Huiyun; Li, Heng; He, Jijun; He, Siyu; Wang, Liya

    2015-01-01

    Purpose The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. Methods The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. Results The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. Conclusion Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications. PMID:26451109

  3. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    The results of the investigation were presented at a Astrobiology Institute General Meeting. Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions.

  4. Interaction of dipicolinatodioxovanadium(V) with polyatomic cations and surfaces in reverse micelles.

    PubMed

    Stover, Jessica; Rithner, Christopher D; Inafuku, Rae Anne; Crans, Debbie C; Levinger, Nancy E

    2005-07-05

    In confined media such as reverse micelles, molecular probes frequently reside at and interact strongly with the interface. If the interface is charged, it is often difficult to separate effects arising from interactions with the charged species from the effect of the interfacial environment. With reverse micelles as a model system, the work reported here explores the interaction of the charged surfactant headgroups at a self-assembled interface with the dipicolinatodioxovanadium(V) coordination complex. The vanadium complex studied in these experiments serves as an excellent probe to investigate how charged metal complexes interact with lipid interfaces. For comparison, measurements were also carried out probing the interaction of the vanadium complex with a model cationic headgroup, tetramethylammonium bromide. The impact of the environment is gauged by changes in the 51V chemical shift, longitudinal relaxation times, and 1H NMR pulsed field gradient measurements. These measurements suggest that while interface component parts, as modeled by the dispersed systems, interact with the vanadium complex, the interfacial environment perturbs the complex substantially more strongly than the sum of the components alone. Coulomb attraction dominates the interaction in all systems probed and surprisingly orients the hydrophobic portion into the bulk water.

  5. Why is sodium cocoyl isethionate (SCI) mild to the skin barrier? - An in vitro investigation based on the relative sizes of the SCI micelles and the skin aqueous pores.

    PubMed

    Ghosh, Saswata; Blankschtein, Daniel

    2007-01-01

    Sodium cocoyl isethionate (SCI) is an important surfactant ingredient in mild, syndet (synthetic detergent) cleansing bars. In vitro and in vivo studies have demonstrated that SCI is mild and less damaging to the skin barrier than soaps and surfactants such as sodium dodecyl sulfate (SDS). We have recently shown that SDS forms small micelles in aqueous solutions contacting the skin relative to the aqueous pores in the stratum corneum (SC), and as a result, the SDS micelles can contribute to SDS skin penetration and induce skin barrier perturbation. In this paper, we attempt to explain the well-documented skin mildness of SCI by examining the size of the SCI micelles relative to that of the aqueous pores in the SC. For this purpose, we have conducted in vitro mannitol skin permeability and average skin electrical resistivity measurements upon exposure of the skin to an aqueous SCI contacting solution in the context of a hindered-transport aqueous porous pathway model of the SC. These in vitro studies demonstrate that an SCI micelle of radius 33.5 +/- 1 Angstrom (as determined using dynamic light-scattering measurements) experiences significant steric hindrance and cannot penetrate into the SC through aqueous pores that have an average radius of 29 +/- 5 Angstrom. We believe that this inability of the SCI micelles to contribute to SCI skin penetration and associated skin barrier perturbation is responsible for the observed skin mildness of SCI. Through in vitro quantitative skin radioactivity assays using (14)C-radiolabeled SCI and pig full-thickness skin (p-FTS), we also show conclusively that SCI skin penetration is dose-independent, an important finding that provides additional evidence that the larger SCI micelles cannot penetrate into the SC through the smaller aqueous pores that exist in the SC, and therefore, cannot induce skin barrier perturbation.

  6. Synthesis of hybrid gold/iron oxide nanoparticles in block copolymer micelles for imaging, drug delivery and magnetic hyperthermia.

    SciTech Connect

    Kim, D.-H.; Rozhkova, E. A.; Rajh, T.; Bader, S. D.; Novosad, V.

    2009-10-01

    In our study, hybrid gold/iron oxide loaded thermoresponsive micelles were synthesized for combined hyperthermia and chemotherapy, and optical imaging. Polymeric micelles made of amphiphilic block copolymer of poly(N-isopropylacrylamide-co-acrylamide)-block-poly({var_epsilon}-caprolactone) were conjugated with gold/iron oxide particles which are self-assembled at the hydrophobic polymer core. Thermal sensitivity and magnetic and optical properties of the hybrid gold/iron oxide micelles were investigated for the combined therapy and optical imaging.

  7. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia.

    PubMed

    Ding, Huiying; Yu, Haijun; Dong, Ying; Tian, Ruhai; Huang, Gang; Boothman, David A; Sumer, Baran D; Gao, Jinming

    2011-12-20

    Photodynamic therapy (PDT) is an emerging clinical modality for the treatment of a variety of diseases. Most photosensitizers are hydrophobic and poorly soluble in water. Many new nanoplatforms have been successfully established to improve the delivery efficiency of PS drugs. However, few reported studies have investigated how the carrier microenvironment may affect the photophysical properties of photosensitizer (PS) drugs and subsequently, their biological efficacy in killing malignant cells. In this study, we describe the modulation of type I and II photoactivation processes of the photosensitizer, 5,10,15,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), by the micelle core environment. Electron-rich poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) micelles increased photoactivations from type II to type I mechanisms, which significantly increased the generation of O(2)(-) through the electron transfer pathway over (1)O(2) production through energy transfer process. The PDPA micelles led to enhanced phototoxicity over the electron-deficient poly(D,L-lactide) control in multiple cancer cell lines under argon-saturated conditions. These data suggest that micelle carriers may not only improve the bioavailability of photosensitizer drugs, but also modulate photophysical properties for improved PDT efficacy. Published by Elsevier B.V.

  8. Photoactivation Switch from Type II to Type I Reactions by Electron-Rich Micelles for Improved Photodynamic Therapy of Cancer Cells Under Hypoxia

    PubMed Central

    Ding, Huiying; Yu, Haijun; Dong, Ying; Tian, Ruhai; Huang, Gang; Boothman, David A.; Sumer, Baran D.; Gao, Jinming

    2011-01-01

    Photodynamic therapy (PDT) is an emerging clinical modality for the treatment of a variety of diseases. Most photosensitizers are hydrophobic and poorly soluble in water. Many new nanoplatforms have been successfully established to improve the delivery efficiency of PS drugs. However, few reported studies have investigated how the carrier microenvironment may affect the photophysical properties of PS drugs and subsequently, their biological efficacy in killing malignant cells. In this study, we describe the modulation of type I and II photoactivation processes of the photosensitizer, 5,10,15,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), by the micelle core environment. Electron-rich poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) micelles increased photoactivations from type II to type I mechanisms, which significantly increased the generation of O2•− through the electron transfer pathway over 1O2 production through energy transfer process. The PDPA micelles led to enhanced phototoxicity over the electron-deficient poly(D,L-lactide) control in multiple cancer cell lines under argon-saturated conditions. These data suggest that micelle carriers may not only improve the bioavailability of photosensitizer drugs, but also modulate photophysical properties for improved PDT efficacy. PMID:21888934

  9. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-03-27

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  10. Dissipative particle dynamics simulation on the self-assembly and disassembly of pH-sensitive polymeric micelle with coating repair agent

    NASA Astrophysics Data System (ADS)

    Wang, Xiumin; Gao, Jianbang; Wang, Zhikun; Xu, Jianchang; Li, Chunling; Sun, Shuangqing; Hu, Songqing

    2017-10-01

    Dissipative particle dynamics (DPD) simulations were applied to investigate the coating repair agent dicyclopentadience (DCPD) in pH-sensitive micelles. The results show micelles self-assembled from triblock copolymers with strong hydrophobic interaction are not conducive to loading DCPD, and only micelles with weak interaction parameter can encapsulate DCPD well. After protonation, the structure of micelle was disassembled and DCPD beads have a stronger ability to shrink polymer chains and exposed to water. This work provides mesoscopic insight into self-assembly and disassembly of desired agent-loaded micelle, and might be useful for the design of new materials for agent delivery.

  11. Polyaniline particles: Material properties when synthesized with aqueous nonionic micelles and environmental stability

    NASA Astrophysics Data System (ADS)

    Hobaica, Stephen Charles

    Polyaniline is a member of the class of electrically conducting polymers, which have possible commercial applications as anticorrosive or static charge removal coatings. Aqueous-based polyaniline coatings are preferred over organic solvent or strong acid based coatings because the water used in these coatings does not pollute the environment. The overall goal of this dissertation was to further the development of useful water-based polyaniline coatings by studying new methods of synthesizing polyaniline particles for water-based coatings, to investigate the material properties of these particles such as molecular weight, electrical conductivity, particle size distribution, and stability of polyaniline in air and water. One method of polymerizing polyaniline for aqueous-based coatings uses micelles, which are composed of a cluster of amphiphile surfactants. Micelles can change the local environment by aligning and absorbing the monomer, and may yield polymers with improved material properties and reaction rates. Nonionic micelles have not been extensively investigated. Therefore the first specific goal of this work was to use an aqueous nonionic micelle solution of nonylphenoxypoly(ethyleneoxy) ethanol surfactant (NP-30 surfactant) to comprehensively investigate a one step chemical polymerization of polyaniline conducted at -3°C, in 1.25 M HCl, with ammonium peroxydisulfate oxidizer. The results show that increasing surfactant concentrations caused a decrease in molecular weight, electrical conductivity and sharper particle size distribution of the polymer. The second specific objective of this dissertation was to determine the effect of water and air on polyaniline. The results showed no degradation of molecular weight, a decrease in chloride and hydrogen composition, and decrease in electrical conductivity for polyaniline immersed in water for extended periods. A chloride ion diffusion coefficient of 2.5 to 74 x 10-9 cm2/hour was measured. The aging of

  12. Minimal motif peptide structure of metzincin clan zinc peptidases in micelles.

    PubMed

    Onoda, Akira; Suzuki, Takako; Ishizuka, Hiroaki; Sugiyama, Rumiko; Ariyasu, Shinya; Yamamura, Takeshi

    2009-12-01

    It is well known that the functions of metalloproteins generally originate from their metal-binding motifs. However, the intrinsic nature of individual motifs remains unknown, particularly the details about metal-binding effects on the folding of motifs; the converse is also unknown, although there is no doubt that the motif is the core of the reactivity for each metalloprotein. In this study, we focused our attention on the zinc-binding motif of the metzincin clan family, HEXXHXXGXXH; this family contains the general zinc-binding sequence His-Glu-Xaa-Xaa-His (HEXXH) and the extended GXXH region. We adopted the motif sequence of stromelysin-1 and investigated the folding properties of the Trp-labeled peptides WAHEIAHSLGLFHA (STR-W1), AWHEIAHSLGLFHA (STR-W2), AHEIAHSLGWFHA (STR-W11), and AHEIAHSLGLFHWA (STR-W14) in the presence and absence of zinc ions in hydrophobic micellar environments by circular dichroism (CD) measurements. We accessed successful incorporation of these zinc peptides into micelles using quenching of Trp fluorescence. Results of CD studies indicated that two of the Trp-incorporated peptides, STR-W1 and STR-W14, exhibited helical folding in the hydrophobic region of cetyltrimethylammonium chloride micelle. The NMR structural analysis of the apo STR-W14 revealed that the conformation in the C-terminus GXXH region significantly differred between the apo state in the micelle and the reported Zn-bound state of stromelysin-1 in crystal structures. The structural analyses of the qualitative Zn-binding properties of this motif peptide provide an interesting Zn-binding mechanism: the minimum consensus motif in the metzincin clan, a basic zinc-binding motif with an extended GXXH region, has the potential to serve as a preorganized Zn binding scaffold in a hydrophobic environment.

  13. Micelle hydrogels for three-dimensional dose verification

    NASA Astrophysics Data System (ADS)

    Babic, S.; Battista, J.; Jordan, K.

    2009-05-01

    Gelatin hydrogels form a transparent and colourless matrix for polymerization or chromic reactions initiated by absorption of ionizing radiation. Generally, hydrogel chemistries have been limited to water soluble reactants. Work to adapt a water insoluble colourless leuco dye to coloured dye conversion reaction in hydrogels, led to the idea that micelles (i.e. tiny aggregates of surfactant molecules) may provide the necessary polar and nonpolar hybrid environment. Both leucomalachite green and leuco crystal violet radiochromic gels have been developed as three-dimensional (3-D) radiochromic dosimeters for optical computed tomography (CT) scanners. It has been found that the post-irradiation diffusion rates strongly correlate with the solubility of the leuco dyes. Since the crystal violet dye is more soluble in the micelle than in the surrounding water, the dose distribution degrades at the slower rate of micelle diffusion, thus yielding stable images of dose. A dosimetric characterization of leucomalachite green and leuco crystal violet gels, respectively, reveals that tissue equivalent micelle hydrogels are promising dosimeters for radiation therapy 3-D dose verification.

  14. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  15. Investigation of building energy autonomy in the sahelian environment

    NASA Astrophysics Data System (ADS)

    Coulibaly, O.; Ouedraogo, A.; Kuznik, F.; Baillis, D.; Koulidiati, J.

    2012-02-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m2/year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  16. Investigations on laser hard tissue ablation under various environments.

    PubMed

    Kang, H W; Oh, J; Welch, A J

    2008-06-21

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 microm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.

  17. Experimental investigation of magnetic mineral formation in hydrocarbon environments

    NASA Astrophysics Data System (ADS)

    Abubakar, Rabiu; Muxworthy, Adrian; Sephton, Mark; Fraser, Alastair

    2013-04-01

    Experimental investigation of magnetic mineral formation in hydrocarbon environments Rabiu Abubakar, Adrian Muxworthy, Mark Septhon and Alastair Fraser Dept. of Earth Science and Engineering, Imperial College London Magnetic anomalies have been observed over oil fields from aeromagnetic surveys. These anomalies have been linked with the presence of hydrocarbons and that has generated a lot of interest over possible application of magnetism in the exploration of oil and gas but there has also been debate over the origin of the magnetic minerals causing the magnetic anomaly. Our approach was to generate crude oil in the lab using three source rocks from the Wessex Basin, England, which is a hydrocarbon province. The source rocks were the Kimmeridge Clay, Oxford Clay and the Blue Lias. The source rocks were powered and pyrolysed in a high pressure vessel. The crude oil was then extracted and the magnetic signal of the remaining pyrolysate measured. We discovered a significant contrast in the magnetic hysteresis and thermomagnetic properties between the pyrolysate and the unpyrolysed (immature) source rocks. We will present the preliminary results, which indicate that magnetic minerals were generated as a result of heat and therefore related linked to maturation of the source rocks

  18. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers

    PubMed Central

    Miteva, Martina; Kirkbride, Kellye C.; Kilchrist, Kameron V.; Werfel, Thomas A.; Li, Hongmei; Nelson, Christopher E.; Gupta, Mukesh K.; Giorgio, Todd D.; Duvall, Craig L.

    2017-01-01

    A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (~80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus

  19. Doxorubicin-loaded micelle targeting MUC1: a potential therapeutics for triple negative breast cancer treatment.

    PubMed

    Khondee, Supang; Chittasupho, Chuda; Tima, Singkome; Anuchapreeda, Songyot

    2017-07-12

    Triple negative breast cancer (TNBC) is an aggressive disease associated with poor prognosis and lack of validated targeted therapy. Thus chemotherapy is a main adjuvant treatment for TNBC patients, but it associates with severe toxicities. For a better treatment outcome, we developed an alternative therapeutic, doxorubicin (DOX)-loaded micelles targeting human mucin1 protein (MUC1) that is less toxic, more effective and targeted to TNBC. From many candidate peptides, QNDRHPR-GGGSK (QND) and HSQLPQV-GGGSK (HSQ), were identified computationally, synthesized and purified using solid phase peptide synthesis and semi-preparative HPLC. The peptides showed significant high binding to MUC1 expressing cells using a fluorescent microscope. The peptides were then conjugated on pegylated octadecyl lithocholate copolymer. DOX-encapsulated micelles were formed through self-assembly. MUC1-targeted micelles were characterized using dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM). Drug entrapment efficiency was examined using a microplate reader. Cytotoxicity and binding and uptake were also investigated. Two types of DOX-loaded micelles with different targeting peptides, QND or HSQ, were developed. DOX-loaded micelles were spherical in shape with average particle size around 300-320 nm. Drug entrapment efficiency of untargeted and targeted DOX micelles was about 71-93%. Targeted QND-DOX and HSQ-DOX micelles exhibited significantly higher cytotoxicity compared to free DOX and untargeted DOX micelles on BT549-Luc cells. In addition, significantly greater binding and uptake were observed for QND-DOX and HSQ-DOX micelles on BT549-Luc and T47D cells. Taken together, these results suggested that QND-DOX and HSQ-DOX micelles have a potential application in the treatment of TNBC-expressing MUC1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy.

    PubMed

    Hu, Fu-Qiang; Zhang, Yin-Ying; You, Jian; Yuan, Hong; Du, Yong-Zhong

    2012-09-04

    The main objective of this study was aimed at tumor microenvironment-responsive vesicle for targeting delivery of the anticancer drug, doxorubicin (DOX). A glucolipid-like conjugate (CS) was synthesized by the chemical reaction between chitosan and stearic acid, and polyethylene glycol (PEG) was then conjugated with CS via a pH-responsive cis-aconityl linkage to produce acid-sensitive PEGylated CS conjugates (PCCS). The conjugates with a critical micelle concentration (CMC) of 181.8 μg/mL could form micelles in aqueous phase, and presented excellent DOX loading capacity with a drug encapsulation efficiency up to 87.6%. Moreover, the PCCS micelles showed a weakly acid-triggered PEG cleavage manner. In vitro drug release from DOX-loaded PCCS micelles indicated a relatively faster DOX release in weakly acidic environments (pH 5.0 and 6.5). The CS micelles had excellent cellular uptake ability, which could be significantly reduced by the PEGylation. However, the cellular uptake ability of PCCS was enhanced comparing with insensitive PEGylated CS (PCS) micelles in weakly acidic condition imitating tumor tissue. Taking PCS micelles as a comparative group, the PCCS drug delivery system was demonstrated to show much more accumulation in tumor tissue, followed by a relatively better performance in antitumor activity together with a security benefit on xenograft tumor model.

  1. Results of microbiological Investigations of Orbital Station MIR Environment

    NASA Astrophysics Data System (ADS)

    Novikova, N.

    15-year experience of orbital station MIR service demonstrated that specifically modified space vehicle environment allows to consider spaceship habitats as a certain ecological niche of microbial community development and functioning, which was formed from the organisms of different physiological and taxonomical groups. As a result of on-board experiments and revision of interior and equipment more than 234 microorganisms were identified. They were represented by technophylic specia, which cause material damage, as well as potential pathogens (bacteria, actinomyces spp, fungi), which capable to grow on artificial substrates. Resident colonization of interior and equipment of space habitat by bacterial and fungal associations, taking place during long-term microbiota exposure on cosmophysic, physic-chemical and biological factors, which is accompanied by appearance of technological and medical risks, capable to provide significant influence on safety of humans and reliability of space equipment. These risks are due to such processes: biodestruction of synthetic and organic polymeres, biocorrosion of metals, biofoulding of surfaces (biofilms), formation of obturation in vital activity support system, occurrence of biodisturbances resulting in devise and equipment failure, occurrence and development of supertolerants and other variants with unpredictable attributes, which are expressed as a result of phenotypical and genotypical modifications. Based on the information from results of in-flight and laboratory microbiological investigations, the following suppositions can be made to characterize evolution of the microbial community aboard long-operating space vehicle: - environment of a long-operating piloted space vehicle may be a peculiar kind of ecological niche for development and reproduction of bacilli and fungi belonging to particular species, - bacteriofungal associations primarily reside on decorative-finish and structural materials of space interior and

  2. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  3. Investigating the Marine Environment and Its Resources, Part I.

    ERIC Educational Resources Information Center

    Lien, Violetta F.

    This is the first of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of geography of the Gulf of Mexico, geology, physical characteristics of the marine environment, marine ecology, and ocean/land interaction.…

  4. Teaching Materials for Environmental Education. Investigating Your Environment.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    The environment lesson plans in this packet are designed to take an in-depth look at different components of the environment. The plans were developed with the assistance of specialists in educational processes and educators, students, and resource-agency people for whom they are designed. They have been field-tested in environmental education…

  5. Investigating the Marine Environment and Its Resources, Part II.

    ERIC Educational Resources Information Center

    Lien, Violetta F.

    This is the second of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of changes in the human and marine environment, human needs, marine resources, living marine resources, marine transportation, marine energy…

  6. Molecular Simulation of Reverse Micelles

    NASA Astrophysics Data System (ADS)

    Chowdhary, Janamejaya; Ladanyi, Branka

    2009-03-01

    Reverse micelles (RM) are surfactant assemblies containing a nanosized water pool dissolved in a hydrophobic solvent. Understanding their properties is crucial for insight into the effect of confinement on aqueous structure, dynamics as well as physical processes associated with solutes in confinement. We perform molecular dynamics simulations for the RM formed by the surfactant Aerosol-OT (AOT) in isooctane (2,2,4-trimethyl pentane) in order to study the effect of reverse micelle size on the aqueous phase. The structure of the RM is quantified in terms of the radial and pair density distributions. Dynamics are studied in terms of the mean squared displacements and various orientational time correlation functions in different parts of the RM so as to understand the effect of proximity to the interface on aqueous dynamics. Shape fluctuations of the RM are also analyzed.

  7. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles.

    PubMed

    Huang, Shuling; Yu, Xiaohong; Yang, Linlin; Song, Fenglan; Chen, Gang; Lv, Zhufen; Li, Tiao; Chen, De; Zhu, Wanhua; Yu, Anan; Zhang, Yongming; Yang, Fan

    2014-10-15

    In order to develop and compare mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles, with the intention to develop a highly efficient formulation for nimodipine (NIM), NIM-loaded micelles and mixed micelles were made and their pharmacokinetics were studied. Single factor experiments and orthogonal experiments were designed to optimize the final preparation process, characterizations and drug release behaviors were studied. Pharmacokinetics of NIM micelles, NIM mixed micelles were researched and were compared to NIM solution. Micelles and mixed micelles were prepared by solvent evaporation method, with relatively high drug loading efficiency and within nano-particle size range. The CMC value of mPEG-PLA was lower than that of mPEG-PLA/TPGS. The results of FTIR and TEM confirmed the spherical core-shell structure of micelles as well as mixed micelles, and the encapsulation of NIM inside the cores. In vitro release showed that micelles and mixed micelles had sustained release effect in the forms of passive diffusion and dissolution process, respectively. Following intraperitoneal administration (5mg/kg), micelles and mixed micelles were absorbed faster than solution, and with larger MRT(0-t), smaller CLz and larger AUC(0-t) as compared to that of solution, which showed micelles and mixed micelles had higher retention, slower elimination and higher bioavailability. This experiment also showed that mixed micelles released NIM more stably than micelles. By evaluate the bioequivalence, NIM micelles and NIM mixed micelles were testified non-bioequivalent to NIM solution. Micelles and mixed micelles could sustain the NIM concentrations more efficiently in plasma as compared to solution. Mixed micelles were the best ones since they had high loading content and released more stably. Thus, apprehending micelles and mixed micelles were suited as poor aqueous solubility drug carriers, and mixed micelles were better due to their high loading content and more stable release

  8. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  9. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  10. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity In Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids

    PubMed Central

    WANG, JUNPING; MONGAYT, DIMITRY; TORCHILIN, VLADIMIR P.

    2006-01-01

    Paclitaxel-loaded mixed polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-PE), solid triglycerides (ST), and cationic Lipofectin® lipids (LL) have been prepared. Micelles with the optimized composition (PEG-PE/ST/LL/paclitaxel = 12/12/2/1 by weight) had an average micelle size of about 100 nm, and zeta-potential of about 26 mV. Micelles were stable and did not release paclitaxel when stored at 4°C in the darkness (just 2.9% of paclitaxel have been lost after 4 months with the particle size remaining unchanged). The release of paclitaxel from such micelles at room temperature was also insignificant. However, at 37°C, approx. 16% of paclitaxel was released from PEG-PE/ST/LL/paclitaxel micelles in 72 h, probably, because of phase transition in the ST-containing micelle core. In vitro anticancer effects of PEG-PE/ST/LL/paclitaxel and control micelles were evaluated using human mammary adenocarcinoma (BT-20) and human ovarian carcinoma (A2780) cell lines. Paclitaxel in PEG-PE/ST/LL micelles demonstrated the maximum anti-cancer activity. Cellular uptake of fluorescently-labeled paclitaxel-containing micelles by BT-20 cells was investigated using a fluorescence microscopy. It seems that PEG-PE/ST/LL micelles, unlike micelles without the LL component, could escape from endosomes and enter the cytoplasm of BT-20 cancer cells thus increasing the anticancer efficiency of the micellar paclitaxel. PMID:15848957

  11. Hydrolysis-Sensitive Dithiolethione Prodrug Micelles.

    PubMed

    Hasegawa, Urara; Tateishi, Naoya; Uyama, Hiroshi; van der Vlies, André J

    2015-11-01

    Prodrug micelles carrying 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), a compound possessing chemopreventive properties, are prepared from amphiphilic block copolymers linking ADT-OH via an ester bond using glycine (PAM-PGlyADT) and isoleucine linkers (PAM-PIleADT). The release of ADT-OH from the PAM-PIleADT micelles is much slower than the PAM-PGlyADT micelles. The PAM-PGlyADT micelles show comparable toxicity with ADT-OH in different cancer cell lines, whereas the PAM-PIleADT micelles are not toxic up to 400 µM. This ADT-ester prodrug micelle approach enables to modulate the release rate of ADT-OH and thus might find application in cancer therapy and prevention. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles.

    PubMed

    Bourbigot, Sarah; Dodd, Erin; Horwood, Chrystal; Cumby, Nichole; Fardy, Liam; Welch, William H; Ramjan, Zachary; Sharma, Shantanu; Waring, Alan J; Yeaman, Michael R; Booth, Valerie

    2009-01-01

    Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.

  13. Nimodipine-Loaded Pluronic® Block Copolymer Micelles: Preparation, Characterization, In-vitro and In-vivo Studies

    PubMed Central

    Sotoudegan, Farzaneh; Amini, Mohsen; Faizi, Mehrdad; Aboofazeli, Reza

    2016-01-01

    Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This investigation was aimed to develop NM-loaded polymeric micelles and evaluate their potential to cross the blood brain barrier (BBB). Micelles from Pluronics®P85, F127 and F68 were fabricated for the delivery of NM, using thin film hydration and direct dissolution techniques. Critical micelle concentration of the drug-free micelles was determined by pyrene fluorescence spectroscopy. Dynamic light scattering showed that in most cases, micelles less than 100 nm and low polydispersity indices were successfully developed. Transmission electron microscopy demonstrated spherical shape of micelles. The NM-loaded micelles were also characterized for particle size, morphology, entrapment efficiency, drug loading , in vitro drug release in phosphate buffer and artificial cerebrospinal fluid (CSF). Stability was assessed from size analysis, clarity of dispersion on standing and EE(%), following 3 months storage at room temperature. The in-vitro release of NM from polymeric micelles presented the sustained-release profile. Animal studies revealed the existence of fluorescein 5-isothiocyanate-labeled micelles in rat CSF following intraperitoneal administration, proving that the micelles crossed the BBB. Anticonvulsant effect of NM was shown to be significantly greater than that of NM solution. Our results confirmed that Pluronic micelles might serve as a potential nanocarrier to improve the activity of NM in brain. PMID:28243263

  14. Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles.

    PubMed

    Chen, Shui-Fang; Lu, Wen-Fen; Wen, Zhi-Yong; Li, Qiang; Chen, Jian-Hai

    2012-09-01

    In this study, a novel amphiphilic block copolymer biomaterial - poly (ethylene glycol)-poly (caprolactone) (PEG-PCL), was used to entrap norcantharidin (NCTD), taking advantage of self-assembly theory. Dialysis and volatilization dialysis were used to prepare copolymer micelles. Drug-loaded micelles were compared with blank micelles in terms of their particle diameter, morphology and IR spectral characteristics. The results revealed that there was no significant difference in respect of morphology and IR spectrum, but particle size differed. Drug-loaded micelles had a smaller particle size than blank micelles. Three important factors influencing particle size, the drug loading content (LC) and the drug entrapment efficiency (EE) of the NCTD-loaded micelles, were studied. The results indicated that the method of preparation and the type of organic solvent had a significant influence on the size of the micelles. LC and EE were greatly affected by the ratio of NCTD to copolymer. In vitro release of NCTD from the conjugate micelles showed that its release rate depended on the pH of the phosphate buffer solution (PBS). The amount released was higher at lower pH than under neutral conditions. In vitro antitumor activity of the NCTD conjugate against human hepatoma (HepG2) cell line and human lung cancer (A549) cell line was evaluated by the MTT method. Micelles loaded with NCTD demonstrated greater and more satisfactory cell viability inhibition than the free drug. In vivo antitumor activity of drug-loaded micelles was investigated in mice bearing S180 mouse sarcoma. NCTD-loaded micelles displayed tumor inhibition effects, better than the free drug. As a new drug delivery system, copolymer micelles present many advantages including easy formulation, good water solubility, low toxicity and high treatment efficacy, and show great potential as carriers of hydrophobic drugs.

  15. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  16. Electrosorption of pectin onto casein micelles.

    PubMed

    Tuinier, R; Rolin, C; de Kruif, C G

    2002-01-01

    Pectin, a polysaccharide derived from plant cells of fruit, is commonly used as stabilizer in acidified milk drinks. To gain a better understanding of the way that pectin stabilizes these drinks, we studied the adsorption and layer thickness of pectin on casein micelles in skim milk dispersions. Dynamic light scattering was used to measure the layer thickness of adsorbed pectin onto casein micelles in situ during acidification. The results indicate that the adsorption of pectin onto casein micelles is multilayered and takes place at and below pH 5.0. Renneting, i.e., cleaving-off kappa-casein from the casein micelles, did not alter the adsorption pH. It did, however, show that pectin arrests the rennet-induced flocculation of casein micelles below pH 5.0. From the findings we concluded the attachment of pectin onto casein micelles is driven by electrosorption. Adsorption measurements confirmed the multilayered nature of the adsorption of pectin onto casein micelles. Both the adsorbed amount and the layer thickness increased with decreasing pH in the relevant range 3.5-5.0. The phase behavior of a casein micelles/pectin mixture was determined and could be explained in terms of thermodynamic incompatibility being relevant above pH 5.0 and adsorption, leading to either stabilization and bridging, being relevant below pH 5.0. The results confirm that electrosorption is the driving force for the adsorption of pectin onto casein micelles.

  17. Stabilized micelles as delivery vehicles for paclitaxel.

    PubMed

    Yoncheva, Krassimira; Calleja, Patricia; Agüeros, Maite; Petrov, Petar; Miladinova, Ivanka; Tsvetanov, Christo; Irache, Juan M

    2012-10-15

    Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol(®)), longer mean residence time (9-times longer than i.v. Taxol(®)) and high distribution volume (2-fold higher than i.v. Taxol(®)) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol(®), in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  19. l-Histidine-based pH-sensitive anticancer drug carrier micelle: Reconstitution and brief evaluation of its systemic toxicity

    PubMed Central

    Oh, Kyung T.; Lee, Eun Seong; Kim, Dongin; Bae, You Han

    2011-01-01

    Adoxorubicin (DOX)-carrier micellar system consisting of poly(histidine)(5K)-b-poly(ethylene glycol)(2K) and poly(l-lactic acid)(3K)-b-PEG(2K)-folate has been developed targeting the early endosomal pH and it have been convincingly proved that intracellular high dose strategy using such micelles is effective in overcoming multidrug resistance (MDR) of cancer cells. Due to the low DOX concentrations in the micelle solution obtained by dialysis and the lack of long-term stability of the micelles, stable and lyophilized micelle formulations were the subject of investigation reported here by using excipients of sucrose, PEG or Pluronic. The reconstituted micelle solutions were examined by particle size, pH sensitivity, and cytotoxicity for MDR cells and the results were compared with the non-lyophilized micelles. Among tested excipients, Pluronic F127 (33 wt%) added to the polymer/drug solution prior to dialysis resulted in a reconstituted product stable for a week and presented equivalent benefits as the fresh micelle formulation. The blank micelles did not present any apparent systemic toxicity in mice up to 2400 mg/kg i.v. injection (800 mg/(kg day) for 3 days). The brief toxicity of reconstituted DOX loaded micelles was examined by the maximum tolerated dose (MTD), which was approximately 7.5-fold higher than free DOX and guaranteeing further animal toxicity and efficacy study. PMID:18407443

  20. Dissipative particle dynamics simulation on paclitaxel loaded PEO-PPO-PEO block copolymer micelles.

    PubMed

    Wang, Zhigao; Jiang, Jie

    2014-03-01

    Self-assembly behavior of the polymer drug loading micelle PEO-PPO-PEO was studied using dissipative particle dynamics (DPD) simulation method with various simulation steps. The distributions of drugs in polymer carriers were also investigated with different drug feed ratios. Polymer carriers distributed on the surface of the spherical micelle, and drugs were almost encapsulated in the inner of the micelle. Our simulation work demonstrates that the DPD simulation is effective to study the drug loaded systems and can give useful guidance on the design and preparation of new drug carriers with tailored properties.

  1. Nanostructured oxygen sensor--using micelles to incorporate a hydrophobic platinum porphyrin.

    PubMed

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Youngbull, Cody; Johnson, Roger H; Meldrum, Deirdre R

    2012-01-01

    Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH₂Cl₂). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.

  2. Nanostructured Oxygen Sensor - Using Micelles to Incorporate a Hydrophobic Platinum Porphyrin

    PubMed Central

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Youngbull, Cody; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment. PMID:22457758

  3. How does the urea dynamics differ from water dynamics inside the reverse micelle?

    PubMed

    Sengupta, Abhigyan; Khade, Rahul V; Hazra, Partha

    2011-09-29

    In this study, the urea dynamics inside AOT reverse micelle (RM) has been monitored without intervention of water using time-resolved fluorescence techniques from the picosecond to nanosecond time regime. It has been observed that urea dynamics inside the reverse micelle is severely retarded compared to water RM due to the formation of highly networked urea cluster inside the RM. Time-resolved fluorescence anisotropy study also confirms the existence of a confined environment around the dye at higher concentrations of urea inside the reverse micelle. The dynamics of urea-water mixtures inside AOT reverse micelle has also been monitored with increasing urea concentration to get insight about the effect of urea on the overall solvation dynamics feature. It has been observed that with the increase in urea concentration, the overall dynamics becomes slower, and it infers the presence of few water or urea molecules, those strongly associated with surrounding urea and (or) water by hydrogen bonds.

  4. Vibrational energy relaxation of water in Aerosol OT reverse micelle

    NASA Astrophysics Data System (ADS)

    Pang, Yoonsoo; Deak, John; Dlott, Dana

    2005-03-01

    An IR-Raman technique with mid-IR pump and anti-Stokes Raman probe is used to investigate reverse micelle mixture of Aerosol OT, water, and carbon tetrachloride, where polar water phase and nonpolar oil phase is separated by a monolayer of surfactant molecules. Anti-Stokes Raman scattering is only dependent on the population of vibrationally excited states, thus time-dependent population changes of parent/daughter vibrations can be monitored with this technique. Vibrational energy from nanodroplet of water is transferred to the surfactant head group in 1.8 ps and then out to solvent in 10 ps. Vibrational energy directly pumped into the surfactant tail group results in a slower 20-40 ps energy transfer to solvent. This energy transfer cannot be explained by ordinary heat transfer, but the specific vibrational energy relaxation pathway such as sulfonate stretch of surfactant molecules should be used. We can change the water-to-solvent energy transfer rate by adopting different size of reverse micelles or changing pump frequency over the broad OH stretch mode of water due to hydrogen bond network. Water molecules confined in nanometer scale reverse micelles have very different properties from bulk water and we have found many differences between the vibrational dynamics of water in these reverse micelles and those of bulk water.

  5. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.

    PubMed

    Khalaf, Samer; Al-Rimawi, Fuad; Khamis, Mustafa; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Mecca, Gennaro; Karaman, Rafik

    2013-01-01

    The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of a widely used non-steroid anti-inflammatory drug (NSAID) mefenamic acid was investigated. The sequential system included activated sludge, ultrafiltration by hollow fibre membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff, activated carbon and a reverse osmosis (RO) unit. The performance of the integrated plant showed complete removal of mefenamic acid from spiked wastewater samples. The activated carbon column was the most effective component in removing mefenamic acid with a removal efficiency of 97.2%. Stability study of mefenamic acid in pure water and Al-Quds activated sludge revealed that the anti-inflammatory drug was resistant to degradation in both environments. Batch adsorption of mefenamic acid by activated charcoal and a composite micelle (otadecyltrimethylammonium (ODTMA)-clay (montmorillonite) was determined at 25.0°C. Langmuir isotherm was found to fit the data with Qmax of 90.9 mg g(-1) and 100.0 mg g(-1) for activated carbon and micelle-clay complex, respectively. Filtration experiment by micelle-clay columns mixed with sand in the mg L(-1) range revealed complete removal of the drug with much larger capacity than activated carbon column. The combined results demonstrated that an integration of a micelle-clay column in the plant system has a good potential to improve the removal efficiency of the plant towards NSAID drugs such as mefenamic acid.

  6. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 (188Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  7. Long circulating micelles of an amphiphilic random copolymer bearing cell outer membrane phosphorylcholine zwitterions.

    PubMed

    Zhao, Jing; Chai, Yu-Dong; Zhang, Jing; Huang, Peng-Fei; Nakashima, Kenichi; Gong, Yong-Kuan

    2015-04-01

    Polymeric micelles with cell outer membrane mimetic structure were prepared in water from amphiphilic random copolymers bearing both the hydrophilic phosphorylcholine zwitterions and hydrophobic octadecyl side chains of cell outer membrane. The polymeric micelles showed sizes ranging from 80 nm to 120 nm in hydrodynamic diameter and zeta-potentials from -6.4 mV to -2.4 mV by dynamic light scattering measurements. The micelles loaded with 6-coumarin as a fluorescence probe were stable to investigate their blood circulation and biodistribution. The in vitro phagocytosis results using murine peritoneal macrophages showed 10-fold reduction compared with a reference micelle. The in vivo blood circulation half-life of the polymeric micelles following intravenous administration in New Zealand Rabbits was increased from 0.55 h to 90.5h. More interestingly, tissue distribution results showed that the concentration of the micelles in the kidney is 4-fold higher than that in the liver and other organs 48 h after administration. The results of this work show great promise for designing more effective stealth drug carriers that can minimize reticuloendothelial system clearance and circulate for long time to reach target by using simple cell membrane mimetic random copolymer micelles.

  8. A Novel Solubility-Enhanced Rubusoside-Based Micelles for Increased Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Meiying; Dai, Tongcheng; Feng, Nianping

    2017-04-01

    Many anti-cancer drugs have a common problem of poor solubility. Increasing the solubility of the drugs is very important for its clinical applications. In the present study, we revealed that the solubility of insoluble drugs was significantly enhanced by adding rubusoside (RUB). Further, it was demonstrated that RUB could form micelles, which was well characterized by Langmuir monolayer investigation, transmission electron microscopy, atomic-force microscopy, and cryogenic transmission electron microscopy. The RUB micelles were ellipsoid with the horizontal distance of 25 nm and vertical distance of 1.2 nm. Insoluble synergistic anti-cancer drugs including curcumin and resveratrol were loaded in RUB to form anti-cancer micelles RUB/CUR + RES. MTT assay showed that RUB/CUR + RES micelles had more significant toxicity on MCF-7 cells compared to RUB/CUR micelles + RUB/RES micelles. More importantly, it was confirmed that RUB could load other two insoluble drugs together for remarkably enhanced anti-cancer effect compared to that of RUB/one drug + RUB/another drug. Overall, we concluded that RUB-based micelles could efficiently load insoluble drugs for enhanced anti-cancer effect.

  9. Relationship between physical properties of casein micelles and rheology of skim milk concentrate.

    PubMed

    Karlsson, A O; Ipsen, R; Schrader, K; Ardö, Y

    2005-11-01

    The properties of casein micelles in milk concentrates are of interest for the use of ultrafiltered (UF) skim milk concentrates in dairy products, and for the general understanding of colloidal stability and behavior of the casein micelle. The rheological behavior of UF skim milk concentrate with a casein concentration of 19.5% (wt/wt) was investigated at different pH and NaCl concentrations by analyzing flow viscometry and small amplitude oscillatory shear measurements. Viscometric flow curves were fitted to the Carreau-Yasuda model with the aim of determining values for the viscosity at infinite high shear rates and thereby estimate the voluminosity of the casein micelles (nu(casein)) in the UF concentrate. The voluminosity of the casein micelles increased with addition of NaCl and decreased when pH was decreased from 6.5 to 5.5. At pH 5.2, nu(casein) increased because of acid-induced aggregation of the casein micelles. The changes in nu(casein) could be interpreted from transmission electron microscopy of freeze-fractured samples of the UF concentrate and partly from dynamic light scattering measurements. Altered interactions between casein micelles due to different pH and NaCl concentrations are proposed to occur due to collapse of the kappa-casein layer, changed ionic strength, and altered distance between casein micelles.

  10. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles

    PubMed Central

    Kastantin, Mark; Ananthanarayanan, Badriprasad; Karmali, Priya; Ruoslahti, Erkki

    2009-01-01

    Micellar nanoparticles are showing promise as carriers of diagnostic and therapeutic biofunctionality, leading to increased interest in their properties and behavior, particularly their size, shape, and stability. This work investigates the physical chemistry of micelles formed from DSPE-PEG(2000) monomers as it pertains to these properties. A melting transition in the lipid core of spheroidal DSPE-PEG(2000) micelles is observed as an endothermic peak at 12.8°C upon heating in differential scanning calorimetry thermograms. Bulky PEG(2000) head groups prevent regular crystalline packing of lipids in both the low-temperature glassy and high-temperature fluid phases, as evidenced by wide-angle x-ray scattering. Equilibrium micelle geometry is spheroidal above and below the transition temperature indicating that the entropic penalty to force the PEG brush into flat geometry is greater than the enthalpic benefit to the glassy core to pack in an extended configuration. Increased micelle stability is seen in the glassy phase with monomer desorption rates significantly lower than in the fluid phase. Activation energies for monomer desorption are 156 ± 6.7 and 79 ± 5.0 kJ/mol for the glassy and fluid phases, respectively. The observation of a glass transition that increases micelle stability but does not perturb micelle geometry is useful for the design of more effective biofunctional micelles. PMID:19358585

  11. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛmicelles. Even though ɛ is small, the interaction energy between a macromolecule and a micelle can be a few kBT due to many contacts, and thus leads to polymer adsorption on micelles' surfaces. The rapid growth of the viscosity with surfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  12. Thermal responsive micelles for dual tumor-targeting imaging and therapy

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Li, Bowen; Qiu, Jiadan; Li, Jiangyu; Jin, Jing; Dai, Shuhang; Ma, Yuxiang; Gu, Yueqing

    2013-11-01

    Two kinds of thermally responsive polymers P(FAA-NIPA-co-AAm-co-ODA) and P(FPA-NIPA-co-AAm-co-ODA) containing folate, isopropyl acrylamide and octadecyl acrylate were fabricated through free radical random copolymerization for targeted drug delivery. Then the micelles formed in aqueous solution by self-assembly and were characterized in terms of particle size, lower critical solution temperature (LCST) and a variety of optical spectra. MTT assays demonstrated the low cytotoxicity of the control micelle and drug-loaded micelle on A549 cells and Bel 7402 cells. Then fluorescein and cypate were used as model drugs to optimize the constituents of micelles for drug entrapment efficiency and investigate the release kinetics of micelles in vitro. The FA and thermal co-mediated tumor-targeting efficiency of the two kinds of micelles were verified and compared in detail at cell level and animal level, respectively. These results indicated that the dual-targeting micelles are promising drug delivery systems for tumor-targeting therapy.

  13. Some Speculation about the Investigation of Person-Environment Transactions.

    ERIC Educational Resources Information Center

    Holland, John L.

    1987-01-01

    Speculates about the outcomes of person-environment research and suggests how more successful research might be planned. Focuses on congruence effects and the value of meta-analysis. Suggests careful use of theory; attention to both environmental and personal assessment; identification of potent personal, environmental, and theoretical variables;…

  14. Investigating Elementary School Students' Perceptions about Environment through Their Drawings

    ERIC Educational Resources Information Center

    Ozsoy, Sibel

    2012-01-01

    The purpose of this study is to determine elementary school students' perceptions about environment through their drawings. The study was carried out during the spring semester of 2010-2011 academic year. A total of 429 elementary school students, including 68 fourth grade, 78 fifth grade, 97 sixth grade, 85 seventh grade, 101 eighth grade,…

  15. Catalytic performance and thermostability of chloroperoxidase in reverse micelle: achievement of a catalytically favorable enzyme conformation.

    PubMed

    Wang, Yali; Wu, Jinyue; Ru, Xuejiao; Jiang, Yucheng; Hu, Mancheng; Li, Shuni; Zhai, Quanguo

    2011-06-01

    The catalytic performance of chloroperoxidase (CPO) in peroxidation of 2, 2'-azinobis-(-3 ethylbenzothiazoline-6-sulfononic acid) diammonium salt (ABTS) and oxidation of indole in a reverse micelle composed of surfactant-water-isooctane-pentanol was investigated and optimized in this work. Some positive results were obtained as follows: the peroxidation activity of CPO was enhanced 248% and 263%, while oxidation activity was enhanced 215% and 222% in cetyltrimethylammonium bromide (CTABr) reverse micelle medium and dodecyltrimethylammonium bromide (DTABr) medium, respectively. Thermostability was also greatly improved in reverse micelle: at 40 °C, CPO essentially lost all its activity after 5 h incubation, while 58-76% catalytic activity was retained for both reactions in the two reverse micelle media. At 50 °C, about 44-75% catalytic activity remained for both reactions in reverse micelle after 2 h compared with no observed activity in pure buffer under the same conditions. The enhancement of CPO activity was dependent mainly on the surfactant concentration and structure, organic solvent ratio (V(pentanol)/V(isooctane)), and water content in the reverse micelle. The obtained kinetic parameters showed that the catalytic turnover frequency (k(cat)) was increased in reverse micelle. Moreover, the lower K(m) and higher k(cat)/K(m) demonstrated that both the affinity and specificity of CPO to substrates were improved in reverse micelle media. Fluorescence, circular dichroism (CD) and UV-vis spectra assays indicated that a catalytically favorable conformation of enzyme was achieved in reverse micelle, including the strengthening of the protein α-helix structure, and greater exposure of the heme prosthetic group for easy access of the substrate in bulk solution. These results are promising in view of the industrial applications of this versatile biological catalyst.

  16. A biophysical characterization of the interaction of a hepatitis C virus membranotropic peptide with micelles.

    PubMed

    Alves, N S; Mendes, Y S; Souza, T L F; Bianconi, M L; Silva, J L; Gomes, A M O; Oliveira, A C

    2016-04-01

    Membrane fusion is a highly regulated process that allows enveloped viruses to enter cells and replicate. Viral glycoproteins trigger membrane fusion by means of internal sequences known as fusion peptides. The hepatitis C virus (HCV) genome encodes the envelope glycoproteins E1 and E2, but their specific roles in the fusion step and the localization of the fusion peptide remain uncharacterized. Here, we studied the biophysics of the interactions between the glycoprotein E2 peptide HCV421-445 and four different micellar systems providing ionic, non-ionic and zwitterionic surfaces to investigate the importance of electrostatic interactions for peptide-membrane binding. Circular dichroism, fluorescence spectroscopy and calorimetry were used to characterize peptide-micelle interactions and structural changes. Fluorescence quenching showed that HCV421-445 interacts with SDS or CTAB ionic, n-OGP non-ionic and DPC zwitterionic micelles. The indole ring of Trp seems to anchor the peptide in micelles. Trp residues seem to be more deeply inserted in ionic and non-ionic micelles where peptide interactions are more stable than with DPC zwitterionic micelles. The interaction with zwitterionic micelles appears to occur at the surface. Both interaction types are exothermic because of peptide-micelle interactions and a gain of secondary structure in the helical conformation. HCV421-445 interacts with detergent monomers and micelles. Peptide-micelle interaction is pH-independent. HCV421-445 interacts with membranes, promoting aggregation and coalescence of vesicles with content leakage, suggesting that HCV421-445 may participate in membrane fusion. This structural characterization contributes to our understanding of the molecular process that promotes fusion, which is important in the further development of new antiviral therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preparation of multilocation reduction-sensitive core crosslinked folate-PEG-coated micelles for rapid release of doxorubicin and tariquidar to overcome drug resistance

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Zhao, Dan; Zhang, Quan; Xu, Jiaqi; Yuan, Gongdao; Zhuo, Renxi; Li, Feng

    2017-02-01

    Herein, we prepared folate-targeting core crosslinked polymeric micelles (CCL/FA) containing multiple disulfide bonds located at the interface and core of the micelles to co-deliver doxorubicin (DOX) and the P-glycoprotein (P-gp) inhibitor tariquidar (TQR) for reversing drug resistance. The stability and redox-responsive behavior of the CCL/FA micelles was evaluated through the changes in morphology, molecular weight and hydrodynamic size. On the one hand, the micelles possessed good stability, which led to the suppression of drug release from the CCL micelles in the physiological environment. On the other hand, under reductive conditions, the CCL micelles collapsed rapidly and accelerated drug release markedly. In vitro cytotoxicity measurements, combined with confocal laser scanning microscopy (CLSM) and flow cytometry, confirmed that the dual-drug-loaded micelles exhibited obviously higher cytotoxicity to MCF-7/ADR-resistant cells than free DOX · HCl, single-drug loaded CCL micelles and nontargeted CCL micelles. The results imply that co-delivering DOX and TQR by CCL/FA micelles may be a promising way of overcoming multidrug resistance in tumor treatments.

  18. The interaction of Co 2+ ions and sodium deoxycholate micelles

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Yang, Z.-L.; Zhang, L.; Zhou, N.-F.; Weng, S.-F.; Wu, J.-G.

    2003-07-01

    To mimic the interaction between divalent metal ions and bile slats in vivo, two groups of coordination complex compounds, crystalline and gel-like, were synthesized in vitro by mixing the aqueous solutions of CoCl 2 with sodium deoxycholate (NaDC) at various concentrations. Structures and compositions of the compounds were investigated using FT-IR, EXAFS, XRD as well as elemental and ICP analysis, respectively. Then the interaction of Co 2+ with deoxycholate in solution was observed by laser light scattering (LLS), Transmission electronic microscope techniques and ICP analysis. Conclusions are (1) the crystalline complexes, Co (DC) 2·3H 2O were obtained by reaction of Co 2+ with mono-molecules of NaDC, and the gel-like complexes, Na nCo m(DC) n+2 m formed by reaction of Co 2+ with NaDC micelles. The gel-like complexes exhibit the non-stoichiometric character; (2) the coordination structures of carboxyl groups with Co 2+ were different between the crystalline and gel-like complexes. In Co(DC) 2·3H 2O complex, the carboxyl groups of deoxycholate coordinated with Co 2+ in chelating and pseudo-chelating modes, but that in bridge mode in the case of Na nCo m(DC) n+2 m complexes. The non-stoichiometric complexes of Na nCo m(DC) n+2 m are formed with a macromolecular structure through the Co 2+ bridges; (3) NaDC can increase the solubility of Co(DC) 2·3H 2O in aqueous solution, and larger micelles (30-80 nm diameter) formed in the supernate. It is a mixed micelle formed by Co 2+ ions bridges connecting with NaDC simple micelles. So these micelles are a new kind of micelle containing two kinds of metal ions; (4) these results are in agreement with those formed under physiological conditions in that the different states such as gel, precipitate, micelles of various structures are present in bile of gallbladder. An ideal model of the interaction between Co 2+ and bile salts in vivo has been proposed.

  19. The Distribution of Solubilized Molecules among Micelles.

    ERIC Educational Resources Information Center

    Miller, Dennis J.

    1978-01-01

    Conflicting views have been put forward on the derivation of the distribution of solubilized molecules among micelles. This stems from failure to consider the arrangement of the solubilized molecules in the micelles. In the treatment presented enthalpy effects are ignored as they are not amenable to a simple general theory. (Author/BB)

  20. The Distribution of Solubilized Molecules among Micelles.

    ERIC Educational Resources Information Center

    Miller, Dennis J.

    1978-01-01

    Conflicting views have been put forward on the derivation of the distribution of solubilized molecules among micelles. This stems from failure to consider the arrangement of the solubilized molecules in the micelles. In the treatment presented enthalpy effects are ignored as they are not amenable to a simple general theory. (Author/BB)

  1. Investigation of human-robot interface performance in household environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  2. Shaping and patterning gold nanoparticles via micelle templated photochemistry.

    PubMed

    Kundrat, F; Baffou, G; Polleux, J

    2015-10-14

    Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as reactive and light-responsive templates, which enable to grow gold deformed nanoparticles (potatoids) and nanorings. Optical characterization reveals that arrays of individual potatoids and rings feature a localized plasmon resonance around 600 and 800 nm, respectively, enhanced photothermal properties and high temperature sustainability, making them ideal platforms for future developments in nanochemistry and biomolecular manipulation controlled by near-infrared-induced heat.

  3. Hybridization of Block Copolymer Micelles

    DTIC Science & Technology

    1993-01-01

    J. Macromol. Sci., Part A 1973, 7,601. (10) Tiara, M.; Ramireddy, C.; Webber, S. K; Munk,P. Collect. Czer" (14) 0snford, C. In The Hydrophobic Effect ...equilibrate In the first series of experiments we have studied the within 20 min, similarly as ASA-10 micelles do. However, effect of the copolymer...high. This may happen after a sudden The Johnston-Ogston effect 2’ 6- also may play a role in jump in temperature or in the composition of the mixed

  4. Molecular connectivity indices for modeling the critical micelle concentration of cationic (chloride) Gemini surfactants.

    PubMed

    Mozrzymas, Anna

    2017-01-01

    The molecular connectivity indices were used to derive the simple model relating the critical micelle concentration of cationic (chloride) gemini surfactants to their structure. One index was selected as the best to describe the effect of the structure of investigated compounds on critical micelle concentration consistent with the experimental results. This index encodes the information about molecular size, the branches, and also the information about heteroatoms. The selected model can be helpful in designing novel chloride gemini surfactants.

  5. Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant

    PubMed Central

    Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu

    2014-01-01

    The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131

  6. Investigating Factors Affecting Group Processes in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Hazari, Sunil; Thompson, Sandra

    2015-01-01

    With the widespread popularity of distance learning, there is a need to investigate elements of online courses that continue to pose significant challenges for educators. One of the challenges relates to creating and managing group projects. This study investigated business students' perceptions of group work in online classes. The constructs of…

  7. Investigating Factors Affecting Group Processes in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Hazari, Sunil; Thompson, Sandra

    2015-01-01

    With the widespread popularity of distance learning, there is a need to investigate elements of online courses that continue to pose significant challenges for educators. One of the challenges relates to creating and managing group projects. This study investigated business students' perceptions of group work in online classes. The constructs of…

  8. Identification of the Uncertainty Structure to Estimate the Acoustic Release of Chemotherapeutics From Polymeric Micelles.

    PubMed

    Wadi, Ali; Abdel-Hafez, Mamoun; Husseini, Ghaleb A

    2017-10-01

    This paper estimates the acoustic drug release from micelles after accurately identifying the underlying statistical noise characteristics in experimental data. The drug release is measured as a change in fluorescence as ultrasound is applied. First, the noise structure affecting the process dynamics and the measurement process is identified in terms of statistical covariance of the aforementioned quantities. Then, the identified covariance magnitudes are utilized to estimate the dynamics of drug release. The performance of different filters is investigated. The identified a priori knowledge is used to implement an optimal Kalman filter, a multi-hypothesis Kalman filter, and a variant of the full information estimator (moving horizon estimator) to the problem at hand. The proposed algorithms are initially deployed in a simulation environment, and then the experimental data sets are fed into the algorithms to validate their performance. Experiments span a number of ultrasonic power densities for both non-targeted and targeted polymeric micelles (the targeting being accomplished using the folate moiety). The results suggest that the proposed algorithm, the optimal Kalman filter, performs better than the other two in all tests performed.

  9. Compartmentalization and delivery via asymmetric copolymer monolayers with swollen or inverse swollen micelles

    SciTech Connect

    Guo, Hong Xia; Olvera de la Cruz, Monica

    2011-01-01

    We investigate the equilibrium properties and the underlying dynamics of emulsions formed in asymmetric A-B copolymers in matrices of immiscible B and C molecular fluids using coarse-grained molecular dynamics simulations. The emulsions are generated by introducing net attractions among the A units of the copolymers and the C molecules. They coexist with an absorbed copolymer monolayer. We determine the interfacial properties as the emulsions are forming. In general, highly asymmetric copolymers self-assemble within the B-matrix phase into swollen micelles; the cores of which are composed of C-component material. Less asymmetric copolymers, however, after initially budding and eventually fissioning from the interfacial copolymer monolayer, generate emulsified “inverse swollen micelles” within the C-matrix phase. These stable inverse (crew-cut) swollen micelles, which form under the inward bending of the saturated or oversaturated interfaces toward the longer B-block due to the attraction between the A and C units, can encapsulate large amounts of B-matrix component in their cores. This monolayer collapse mechanism can be exploited to generate nanoreactors or containers that enhance the delivery of molecular components into immiscible molecular fluid environments.

  10. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  11. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  12. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    SciTech Connect

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; Leheny, Robert L.

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentration is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.

  13. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  14. Biodegradable polyphosphoester micelles for gene delivery.

    PubMed

    Wen, Jie; Mao, Hai-Quan; Li, Weiping; Lin, Kevin Y; Leong, Kam W

    2004-08-01

    A new biodegradable polyphosphoester, poly[[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate] (PCEP) was synthesized and investigated for gene delivery. Carrying a positive charge in its backbone and a lipophilic cholesterol structure in the side chain, PCEP self-assembled into micelles in aqueous buffer at room temperature with an average size of 60-100 nm. It could bind and protect plasmid DNA from nuclease digestion. Cell proliferation assay indicated a lower cytotoxicity for PCEP than for poly-L-lysine and Lipofectamine. The IC50 determined by the WST-1 assay was 69.8, 51.6, and 12.1 microg/mL for PCEP, Lipofectamine, and poly-L-lysine, respectively. PCEP efficiently delivered DNA to several cell lines such as HEK293, Caco-2, and HeLa. The highest efficiency was achieved when PCEP/DNA complex was prepared in Opti-MEM with a +/- charge ratio of 1.5-2. The transfection efficiency did not change significantly when the complex was used 3 days after preparation. The addition of chloroquine to the formulation increased transfection efficiency 10- to 50-fold compared to the complex alone. In vivo studies showed a luciferase expression by PCEP/DNA complexes in muscle increasing with time during 3 months, although the expression level was lower than that by direct injection of naked DNA. In addition to biodegradability and lower toxicity, the PCEP micelle carrier offers structural versatility. The backbone charge density and the side chain lipophilicity are two parameters that can be varied through copolymerization and monomer variation to optimize the transfection efficiency.

  15. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  16. [Study on the backward extraction of cellulase in rhamnolipid reverse micelles].

    PubMed

    Zhao, Yan-Ge; Yuan, Xing-Zhong; Huang, Hua-Jun; Cui, Kai-Long; Peng, Xin; Peng, Zi-Yuan; Zeng, Guang-Ming

    2014-02-01

    This paper studied the backward extraction of cellulase in RL/isooctane/n-hexanol reverse micelles system. Several key parameters influencing the backward extraction efficiency and activity recovery of cellulase were investigated, including stripping aqueous pH, stripping time, salt type and ionic strength, and addition of alcohols. The experiment results indicated that the optimal parameter values as follows: stripping aqueous pH 7.0, stripping time 30 min, 0.15 mol x L(-1) of KCl, dosage of n-butanol 2%. Under above optimum conditions, the backward extraction efficiency and activity recovery were up to 76.22% and 93.39%, respectively. The backward extraction of cellulase using reverse micelles based on biosurfactant RL performs well. Furthermore, RL has many advantages such as high biodegradability, low critical micelle concentration, etc. The application prospects of RL reverse micelles are extensive.

  17. Thermodynamics of the surfaces of nonionic spherical micelles with relatively large extensions of the interfacial layer

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. S.; Blinov, A. P.; Zherdev, V. P.

    2017-05-01

    The structural properties of nonionic spherical micelles with relatively large extensions of the interfacial layer are investigated, and the size dependences of their adsorption, interfacial tension, and chemical potential are obtained. Such familiar thermodynamic relationships as the Gibbs and Laplace equations, the differential equation for the chemical potential, and the concept of hydrophilic-lipophilic balance are used. The method is applied to micelles formed in surfactant solutions of a homologous series of tetraethylene glycol alkyl ethers. The region of the existence of micellar solutions and the structural characteristics of the interfacial layer of micelles are determined. The interfacial tension minimum corresponding to ideal hydrophilic-lipophilic balance in the micelle interfacial layer is detected. The chemical potential is negative over the range of the homologous series, and its derivative with respect to the tension radius is also negative.

  18. Multiscale coarse graining of diblock copolymer self-assembly: from monomers to ordered micelles.

    PubMed

    Pierleoni, Carlo; Addison, Chris; Hansen, Jean-Pierre; Krakoviack, Vincent

    2006-03-31

    Starting from a microscopic lattice model, we investigate clustering, micellization, and micelle ordering in semidilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar structures, we implement a two-step coarse-graining strategy, whereby the AB copolymers are mapped onto ultrasoft dumbells with monomer-averaged effective interactions between the centers of mass of the blocks. Monte Carlo simulations of this coarse-grained model yield clear-cut evidence for self-assembly into micelles with a mean aggregation number n approximately 100 beyond a critical concentration. At a slightly higher concentration the micelles spontaneously undergo a disorder-order transition to a cubic phase. We determine the effective potential between these micelles from first principles.

  19. Sampling the kinetic pathways of a micelle fusion and fission transition

    NASA Astrophysics Data System (ADS)

    Pool, René; Bolhuis, Peter G.

    2007-06-01

    The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.

  20. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    SciTech Connect

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  1. Prediction of an Autocatalytic Replication Mechanism for Micelle Formation

    NASA Astrophysics Data System (ADS)

    Pool, René; Bolhuis, Peter G.

    2006-07-01

    We report molecular simulations suggesting that the kinetics of surfactant micelle formation can be sped up significantly by a replication mechanism, in which growing micelles become unstable and split into two similar sized micelles. We argue that for certain surfactants types around the critical micelle concentration, such a mechanism becomes more dominant than the commonly accepted nucleation pathway.

  2. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel.

    PubMed

    Li, Jing; Huo, Meirong; Wang, Jing; Zhou, Jianping; Mohammad, Jumah M; Zhang, Yinlong; Zhu, Qinnv; Waddad, Ayman Y; Zhang, Qiang

    2012-03-01

    A targeted intracellular delivery system of paclitaxel (PTX) was successfully developed based on redox-sensitive hyaluronic acid-deoxycholic acid (HA-ss-DOCA) conjugates. The conjugates self-assembled into nano-size micelles in aqueous media and exhibited excellent drug-loading capacities (34.1%) and entrapment efficiency (93.2%) for PTX. HA-ss-DOCA micelles were sufficiently stable at simulated normal physiologic condition but fast disassembled in the presence of 20 mm reducing agent, glutathione. In vitro drug release studies showed that the PTX-loaded HA-ss-DOCA micelles accomplished rapid drug release under reducing condition. Intracellular release of fluorescent probe nile red indicated that HA-ss-DOCA micelles provide an effective approach for rapid transport of cargo into the cytoplasm. Enhanced cytotoxicity of PTX-loaded HA-ss-DOCA micelles further confirmed that the sensitive micelles are more potent for intracellular drug delivery as compared to the insensitive control. Based on flow cytometry and confocal microscopic analyses, observations revealed that HA-ss-DOCA micelles were taken up to human breast adenocarcinoma cells (MDA-MB-231) via HA-receptor mediated endocytosis. In vivo investigation of micelles in tumor-bearing mice confirmed that HA-ss-DOCA micelles possessed much higher tumor targeting capacity than the insensitive control. These results suggest that redox-sensitive HA-ss-DOCA micelles hold great potential as targeted intracellular delivery carriers of lipophilic anticancer drugs.

  3. Fluid mechanics and solidification investigations in low-gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.

    1980-01-01

    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  4. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  5. [Preparation and characterization of irinotecan hydrochloride loaded PEO-PPO-PEO micelles and its mechanism of decreasing drug intestinal toxicity].

    PubMed

    Zhang, Xin-Xin; Guo, Shi-Yan; Li, Fei-Fei; Gan, Yong

    2012-11-01

    In this work, we developed PEO-PPO-PEO micelles loaded with irinotecan hydrochloride (CPT-11) using breast cancer resistance protein (BCRP) inhibitory material PEO20-PPO70-PEO20, and studied its mechanism of decreasing CPT-11 induced delayed diarrhea and intestinal toxicity. BCRP-overexpressing MDCKII (MDCKII/BCRP) cells were used to evaluate the effect of PEO20-PPO70-PEO20 and PEO-PPO-PEO micelles on transmembrane transport of CPT-11 in vitro. The biliary excretion, delayed diarrhea and intestinal damage of CPT-11 loaded PEO-PPO-PEO micelles of rats were investigated. The results showed that the obtained micelles could decrease the biliary excretion of CPT-11, ameliorate delayed diarrhea and intestinal toxicity of rats through inhibiting BCRP-mediated CPT-11 efflux. PEO-PPO-PEO micelles were promising carriers to reduce intestinal toxicity of CPTs.

  6. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  7. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  8. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  9. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  10. An Instrument for Investigating Chinese Language Learning Environments in Singapore Secondary Schools

    ERIC Educational Resources Information Center

    Chua, Siew Lian; Wong, Angela F. L.; Chen, Der-Thanq

    2009-01-01

    This paper describes how a new classroom environment instrument, the "Chinese Language Classroom Environment Inventory (CLCEI)", was developed to investigate the nature of Chinese language classroom learning environments in Singapore secondary schools. The CLCEI is a bilingual instrument (English and Chinese Language) with 48 items…

  11. Micelle confined mechanistic pathway for 4-nitrophenol reduction.

    PubMed

    Roy, Anindita; Debnath, Biplab; Sahoo, Ramkrishna; Aditya, Teresa; Pal, Tarasankar

    2017-05-01

    The model 4-nitrophenol reduction has been carried out by different groups in presence of metallic or even non-metallic catalyst elaborating different mechanistic aspects. In the present investigation, we have thoroughly studied the hydrogenation of 4-nitrophenol in a completely metal free homogeneous condition. The introduction of a non-fluorescent probe unequivocally generates a fluorescent molecule that indirectly justifies the anion radical stabilization in the micelle. The reduction mechanism under metal-free condition was proposed and the concept of stabilization of anion radical transition state of 4-nitrophenol at the positively charged Stern layer of anionic micelle was established. The plausible reduction mechanism has also enlightened the graphene-like conducting property of Stern layer of the homogeneous micellar system. Furthermore, the confinement effect for catalysis has also been authenticated by supporting experimental evidences. The borrowed concept of catalysis in confinement drives the catalytic study to a new era of catalysis.

  12. Jamming and gelation of dense beta-casein micelle suspensions.

    PubMed

    Panouillé, Maud; Durand, Dominique; Nicolai, Taco

    2005-01-01

    The rheology of dense suspensions of beta-casein micelles is investigated at pH 6. For a given temperature, the viscosity increases dramatically at a critical concentration (Cc) of about 100 g/L due to jamming of the micelles. For a given concentration close to and above Cc, the viscosity of dense suspensions decreases strongly with increasing temperature because Cc increases. The suspensions show weak shear thickening followed by strong shear thinning. At lower pH, that is, closer to the isoelectric point, spontaneous gelation is observed, which is favored by lowering the temperature and addition of sodium polyphosphate. The gelation process is studied at pH 5.5 by rheology and light scattering.

  13. Film/contact loading method improves the encapsulated amount of triazene anticancer compounds in polymeric micelles.

    PubMed

    de Freitas, Augusto G O; Dazzi, Robson L; Muraro, Paulo I R; Schmidt, Vanessa; Hörner, Manfredo; Giacomelli, Cristiano

    2013-05-01

    The development of organic solvent-free methods for the encapsulation of hydrophobic molecules is necessary for advances in micelle-mediated drug delivery. In this study we investigated the film/contact approach in which the use of organic solvents is limited to the preparation of a dry film before encapsulation. Unloaded micelles of five structurally related block copolymers were placed in contact with thin homogeneous films of two hydrophobic triazene anticancer compounds (1-(4-amidophenyl)-3-(4-acetylphenyl)triazene (1) and corresponding triazenido complex with triphenylphosphanegold(I) fragment (2)). The micelle surface becomes saturated with the drug, which eventually penetrates as a front into the core. Because the drug interacts with both the shell and the core microenvironments of micelle during the process, the maximum loading capacities were very sensitive to block copolymer micelle composition, ranging from 2.2 to 20.4% (wt./wt. of polymer). We conclude that micelles with poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) cores are the best option for the encapsulation of triazene compounds because i) they are prepared in absence of organic phase; ii) the drug concentration in the particles is high enough for a therapeutic effect and iii) the responsiveness properties of PDPA is appropriate for practical applications in pH-triggered drug release systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo.

    PubMed

    Harris, Michael A; Pearce, Timothy R; Pengo, Thomas; Kuang, Huihui; Forster, Colleen; Kokkoli, Efrosini

    2017-09-11

    In this work we hypothesized that the chemokine fractalkine can serve as a cancer molecular target. We engineered aptamer micelles functionalized with an outer poly(ethylene glycol) (PEG) corona, and investigated the extent and efficacy of using them as a targeting tool against fractalkine-expressing colon adenocarcinoma cells. In vitro cell binding results showed that aptamer micelles bound and internalized to fractalkine-expressing cancer cells with the majority of the micelles found free in the cytoplasm. Minimal surface binding was observed by healthy cells. Even though partial PEGylation did not prevent serum adsorption, micelles were highly resistant to endonuclease and exonuclease degradation. In vivo biodistribution studies and confocal studies demonstrated that even though both aptamer and control micelles showed tumor accumulation, only the aptamer micelles internalized into fractalkine-expressing cancer cells, thus demonstrating the potential of the approach and showing that fractalkine may serve as a specific target for nanoparticle delivery to cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interaction of cyclic and linear Labaditin peptides with anionic and zwitterionic micelles.

    PubMed

    Barbosa, S C; Cilli, E M; Dias, L G; Fuzo, C A; Degrève, L; Stabeli, R G; Itri, R; Ciancaglini, P

    2015-01-15

    Conformational changes of the cyclic (Lo) peptide Labaditin (VWTVWGTIAG) and its linear analogue (L1) promoted by presence of anionic sodium dodecyl sulfate (SDS) and zwitterionic L-α-Lysophosphatidylcholine (LPC) micelles were investigated. Results from λ(max) blue-shift of tryptophan fluorescence emission combined with Stern-Volmer constants values and molecular dynamics (MD) simulations indicated that L1 interacts with SDS micelles to a higher extent than does Lo. Further, the MD simulation demonstrated that both Lo and L1 interact similarly with LPC micelles, being preferentially located at the micelle/water interface. The peptide-micelle interaction elicits conformational changes in the peptides. Lo undergoes limited modifications and presents unordered structure in both LPC and SDS micelles. On the other hand, L1 displays a random-coil structure in aqueous medium, pH 7.0, and it acquires a β-structure upon interaction with SDS and LPC, albeit with structural differences in each medium. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. [Construction of biotin-modified polymeric micelles for pancreatic cancer targeted photodynamic therapy].

    PubMed

    Deng, Chun-yue; Long, Ying-ying; Liu, Sha; Chen, Zhang-bao; Li, Chong

    2015-08-01

    In this study, we explored the feasibility of biotin-mediated modified polymeric micelles for pancreatic cancer targeted photodynamic therapy. Poly (ethylene glycol)-distearoyl phosphatidyl ethanolamine (mPEG2000-DSPE) served as the drug-loaded material, biotin-poly(ethylene glycol)-distearoyl phosphatidyl ethanolamine (Biotin-PEG3400-DSPE) as the functional material and the polymeric micelles were prepared by a thin-film hydration method. The targeting capability of micelles was investigated by cell uptake assay in vitro and fluorescence imaging in vivo and the amounts of Biotin-PEG-DSPE were optimized accordingly. Hypocrellin B (HB), a novel photosensitizer was then encapsulated in biotinylated polymeric micelles and the anti-tumor efficacy was evaluated systemically in vitro and in vivo. The results showed that micelles with 5 mol % Biotin-PEG-DSPE demonstrated the best targeting capability than those with 20 mol % or 0.5 mol % of corresponding materials. This formulation has a small particle size [mean diameter of (36.74 ± 2.16) nm] with a homogeneous distribution and high encapsulation efficiency (80.06 ± 0.19) %. The following pharmacodynamics assays showed that the biotinylated micelles significantly enhanced the cytotoxicity of HB against tumor cells in vitro and inhibited tumor growth in vivo, suggesting a promising potential of this formulation for treatment of pancreatic cancer, especially those poorly permeable, or insensitive to radiotherapy and chemotherapy.

  17. Micelle structure in a deep eutectic solvent: a small-angle scattering study.

    PubMed

    Sanchez-Fernandez, A; Edler, K J; Arnold, T; Heenan, R K; Porcar, L; Terrill, N J; Terry, A E; Jackson, A J

    2016-05-18

    In recent years many studies into green solvents have been undertaken and deep eutectic solvents (DES) have emerged as sustainable and green alternatives to conventional solvents since they may be formed from cheap non-toxic organic precursors. In this study we examine amphiphile behaviour in these novel media to test our understanding of amphiphile self-assembly within environments that have an intermediate polarity between polar and non-polar extremes. We have built on our recently published results to present a more detailed structural characterisation of micelles of sodium dodecylsulfate (SDS) within the eutectic mixture of choline chloride and urea. Here we show that SDS adopts an unusual cylindrical aggregate morphology, unlike that seen in water and other polar solvents. A new morphology transition to shorter aggregates was found with increasing concentration. The self-assembly of SDS was also investigated in the presence of water; which promotes the formation of shorter aggregates.

  18. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.18 ± 0.08 Å).

  19. Investigating and improving pedestrian safety in an urban environment.

    PubMed

    Pollack, Keshia M; Gielen, Andrea C; Mohd Ismail, Mohd Nasir; Mitzner, Molly; Wu, Michael; Links, Jonathan M

    2014-12-01

    Prompted by a series of fatal and nonfatal pedestrian-vehicle collisions, university leadership from one urban institution collaborated with its academic injury research center to investigate traffic-related hazards facing pedestrians. This descriptive epidemiologic study used multiple data collection strategies to determine the burden of pedestrian injury in the target area. Data were collected in 2011 through a review of university crash reports from campus police; a systematic environmental audit and direct observations using a validated instrument and trained raters; and focus groups with faculty, students, and staff. Study findings were synthesized and evidence-informed recommendations were developed and disseminated to university leadership. Crash reports provided some indication of the risks on the streets adjacent to the campus. The environmental audit identified a lack of signage posting the speed limit, faded crosswalks, issues with traffic light and walk sign synchronization, and limited formal pedestrian crossings, which led to jaywalking. Focus groups participants described dangerous locations and times, signal controls and signage, enforcement of traffic laws, use of cell phones and iPods, and awareness of pedestrian safety. Recommendations to improve pedestrian safety were developed in accordance with the three E's of injury prevention (education, enforcement, and engineering), and along with plans for implementation and evaluation, were presented to university leadership. These results underscore the importance of using multiple methods to understand fully the problem, developing pragmatic recommendations that align with the three E's of injury prevention, and collaborating with leadership who have the authority to implement recommended injury countermeasures. These lessons are relevant for the many colleges and universities in urban settings where a majority of travel to offices, classrooms, and surrounding amenities are by foot.

  20. Confinement of 4,4-diaminodiphenyl sulfone by γ -CD in micellar environment: a spectroscopic investigation.

    PubMed

    Bhattacharya, Prosenjit; Chakravorti, Sankar

    2014-05-01

    This paper reports the double confinement of 4,4-diaminodiphenyl sulfone (Dapsone) inside γ-cyclodextrin (CD) in presence of surfactants (cationic, anionic and nonionic) using steady-state and time-resolved fluorescence spectroscopy. Interpretation of fluorescence spectra, fluorescence anisotropy and time resolved fluorescence decay of the γ-CD • Dapsone•micellar system hints at lesser microviscosity and the partial release of the probe molecule from the supramolecular host-guest complex in ionic micelles, of which greater in cationic micelles, but due to greater restriction and rigidity in presence of non-ionic micelle makes the probe more rigidly inside CD. Changes in computed rotational decay also corroborate the above findings.

  1. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  2. Detection of hydrogen peroxide with chemiluminescent micelles.

    PubMed

    Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren

    2008-01-01

    The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a 'stealth' polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona.

  3. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  4. Pluronic® P123/F127 mixed micelles delivering sorafenib and its combination with verteporfin in cancer cells

    PubMed Central

    Pellosi, Diogo Silva; Moret, Francesca; Fraix, Aurore; Marino, Nino; Maiolino, Sara; Gaio, Elisa; Hioka, Noboru; Reddi, Elena; Sortino, Salvatore; Quaglia, Fabiana

    2016-01-01

    Here, we developed Pluronic® P123/F127 (poloxamer) mixed micelles for the intravenous delivery of the anticancer drug sorafenib (SRB) or its combination with verteporfin (VP), a photosensitizer for photodynamic therapy that should complement well the cytotoxicity profile of the chemotherapeutic. SRB loading inside the core of micelles was governed by the drug:poloxamer weight ratio, while in the case of the SRB–VP combination, a mutual interference between the two drugs occurred and only specific ratios could ensure maximum loading efficiency. Coentrapment of SRB did not alter the photophysical properties of VP, confirming that SRB did not participate in any bimolecular process with the photosensitizer. Fluorescence resonance energy-transfer measurement of micelles in serum protein-containing cell-culture medium demonstrated the excellent stability of the system in physiologically relevant conditions. These results were in line with the results of the release study showing a release rate of both drugs in the presence of proteins slower than in phosphate buffer. SRB release was sustained, while VP remained substantially entrapped in the micelle core. Cytotoxicity studies in MDA-MB231 cells revealed that at 24 hours, SRB-loaded micelles were more active than free SRB only at very low SRB concentrations, while at 24+24 hours a prolonged cytotoxic effect of SRB-loaded micelles was observed, very likely mediated by the block in the S phase of the cell cycle. The combination of SRB with VP under light exposure was less cytotoxic than both the free combination and VP-loaded micelles + SRB-loaded micelles combination. This behavior was clearly explainable in terms of micelle uptake and intracellular localization. Besides the clear advantage of delivering SRB in poloxamer micelles, our results provide a clear example that each photochemotherapeutic combination needs detailed investigations on their particular interaction, and no generalization on enhanced cytotoxic

  5. Magnetic resonance imaging-visible and pH-sensitive polymeric micelles for tumor targeted drug delivery.

    PubMed

    Zhang, Zuoquan; Sun, Qiquan; Zhong, Jinglian; Yang, Qihua; Li, Hao; Du, Cheng; Liang, Biling; Shuai, Xintao

    2014-02-01

    Folate-functionalized copolymers of poly(ethylene glycol) and 2-(diisopropylamino) ethylamine grafted poly(L-aspartic acid) are synthesized. The copolymers can self-assemble into nanoscaled micelles encapsulated with hydrophobic model drug Fluorescein Diacetate (FDA) and MRI diagnostic agents superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous solution of a neutral pH resembling physiological environment, whereas disassemble in acidic endosomal/lysosomal compartments of tumor cells to achieve rapid drug release. In vitro drug release study showed that FDA release from the pH-sensitive micelles was much faster at pH 5.0 than at pH 7.4. Clustering of SPIONs inside the hydrophobic core of the micelles resulted in a high spin-spin (T2,) relaxivity for a super MRI sensitivity. Cell culture studies showed that the FDA-SPION-loaded micelles were effectively internalized by human hepatic Bel-7402 cancer cells following a folate receptor-mediated targeting mechanism, and then FDA was rapidly release from micelles inside lysosomal compartments. Micelles encapsulating paclitaxel (PTX) studies showed it can induce more effective cell toxicity. This study demonstrated the great potential of the pH-sensitive micelles as an effective multifunctional nanomedician platform for cancer therapy due to their active tumor targeting, pH-triggered drug release and ultrasensitive MRI responsiveness.

  6. Micelles as Soil and Water Decontamination Agents.

    PubMed

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali

    2016-05-25

    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.

  7. Nonionic reverse micelles near the critical point.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami

    2013-01-01

    We report shape, size, and internal cross-sectional structure of diglycerol monomyristate (C₁₄G₂) reverse micelles in n-hexadecane near the critical point using small-angle X-ray scattering (SAXS). Pair-distance distribution function, p(r), which gives structural information in real-space, was obtained by indirect Fourier transformation (IFT) method. The p(r) showed a clear picture of rodlike micelles at higher temperatures well above the critical point (micellar solution phase separates into two immiscible liquids at ~ 48°C). At a fixed surfactant concentration (5% C₁₄G₂), decrease in temperature increases the micellar size monotonously and surprisingly shape of the p(r) curve at 50°C; close to the critical point, mimics the shape of the two dimensional disk-like micelles indicating the onset of critical fluctuations (attractive interactions among rodlike micelles forming a weak network). A similar behavior has been observed with normal micelles in aqueous system near the critical point. When the system is heated to 60°C, shape of the p(r) curve regains rodlike structure. At fixed temperature of 60°C, increase in C₁₄G₂ concentration induced one dimensional micellar growth. Maximum length of micelles increases from ca. 23.5 to 46.0 nm upon increasing concentration from 1 to 12% keeping cross section diameter apparently unchanged at ca. 4.0 nm.

  8. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media

    SciTech Connect

    Schacher, Felix; Walther, Andreas; Ruppel, Markus A; Drechsler, Markus; Muller, Axel

    2009-01-01

    The formation of multicompartment micelles featuring a spheres on sphere core morphology in acetone as a selective solvent is presented. The polymers investigated are ABC triblock terpolymers, polybutadieneb-poly(2-vinyl pyridine)-b-poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential anionic polymerization in THF. Two polymers with different block lengths of the methacrylate moiety were studied with respect to the formation of multicompartmental aggregates. The micelles were analyzed by static and dynamic light scattering as well as by transmission electron microscopy. Cross-linking of the polybutadiene compartment could be accomplished via two different methods, cold vulcanization and with photopolymerization after the addition of a multifunctional acrylate. In both cases, the multicompartmental character of the micellar core is fully preserved, and the micelles could be transformed into core-stabilized nanoparticles. The successful cross-linking of the polybutadiene core is indicated by 1H NMR and by the transfer of the aggregates into nonselective solvents such as THF or dioxane.

  9. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation.

    PubMed

    Gibot, Laure; Lemelle, Arnaud; Till, Ugo; Moukarzel, Béatrice; Mingotaud, Anne-Françoise; Pimienta, Véronique; Saint-Aguet, Pascale; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Chassenieux, Christophe; Vicendo, Patricia

    2014-04-14

    Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems.

  10. Interplay between micelle formation and waterlike phase transitions

    NASA Astrophysics Data System (ADS)

    Heinzelmann, G.; Figueiredo, W.; Girardi, M.

    2010-02-01

    A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.

  11. A simple method to improve the stability of docetaxel micelles

    PubMed Central

    Zhang, Lan; Tan, LiWei; Chen, LiJuan; Chen, XiaoXin; Long, ChaoFeng; Peng, JinRong; Qian, ZhiYong

    2016-01-01

    Self-assembled polymeric micelles have been widely applied in drug delivery systems. In this study, we found that pH value of micellar system solution was the decisive factor of physical stability. Furthermore, the weak basic solution could maintain the solution clarification for a relative long time. To investigate the stability of polymeric micelles in different pH solutions, the micellar particle size and the docetaxel content remaining in solution were detected at predetermined time points. The crystallographic assay of freeze-drying powder was characterized by an X-ray diffractometer. In vitro release results indicated that the PBS had little influence on the sustained-release effect of docetaxel-loaded polymeric micelles (DPM). Besides, the safety of micellar formulation was determined by an MTT assay on HEK293 cells, and the anti-tumor activity was tested on MCF-7 cells. The results demonstrated that DPM adjusted with PBS (DPM (PBS)) was of low toxicity and maintained the effectiveness of docetaxel. In vivo antitumor results indicated that DPM (PBS) had better antitumor efficacy than common docetaxel injection (DTX). Thus it was concluded that regulation of micellar solution PH by PBS is a safe and effective method to improve the physical stability of DPM. It might promote the application of micellar formulation in clinical applications. PMID:27833135

  12. Superactivity and conformational changes on alpha-chymotrypsin upon interfacial binding to cationic micelles.

    PubMed Central

    Celej, M Soledad; D'Andrea, Mariana G; Campana, Patricia T; Fidelio, Gerardo D; Bianconi, M Lucia

    2004-01-01

    The catalytic behaviour of alpha-CT (alpha-chymotrypsin) is affected by cationic micelles of CTABr (hexadecyltrimethylammonium bromide). The enzyme-micelle interaction leads to an increase in both the V(max) and the affinity for the substrate p -nitrophenyl acetate, indicating higher catalytic efficiency for bound alpha-CT. The bell-shaped profile of alpha-CT activity with increasing CTABr concentrations suggests that the micelle-bound enzyme reacts with the free substrate. Although more active with CTABr micelles, the enzyme stability is essentially the same as observed in buffer only. Enzyme activation is accompanied by changes in alpha-CT conformation. Changes in tertiary structure were observed by the increase in intensity and the red shift in the alpha-CT tryptophan fluorescence spectrum, suggesting the annulment of internal quenching and a more polar location of tryptophan residues. Near-UV CD also indicated the transfer of aromatic residues to a more flexible environment. CTABr micelles also induces an increase in alpha-helix, as seen by far-UV CD and FTIR (Fourier-transform infrared) spectroscopies. The far-UV CD spectrum of alpha-CT shows an increase in the intensity of the positive band at 198 nm and in the negative band at 222 nm, indicating an increased alpha-helical content. This is in agreement with FTIR studies, where an increase in the band at 1655 cm(-1), corresponding to the alpha-helix, was shown by fitting analysis and difference spectroscopy. Spectral deconvolution indicated a reduction in the beta-sheet content in micelle-bound alpha-CT. Our data suggest that the higher catalytic efficiency of micelle-bound alpha-CT results from significant conformational changes. PMID:14641111

  13. Fluorescence visualization and modeling of a micelle-free zone formed at the interface between an oil and an aqueous micellar phase during interfacial surfactant transport.

    PubMed

    Bhole, Nikhil S; Huang, Fenfen; Maldarelli, Charles

    2010-10-19

    micelles; the dye fluoresces only in the hydrophobic environment of the micelles, providing visual contrast between the two zones. Through spatial mapping of the fluorescence using confocal microscopy, the movement of the micelle-free zone boundary can be measured and is shown to compare favorably with simulations of the transport model.

  14. Nonionic polymeric micelles for oral gene delivery in vivo.

    PubMed

    Chang, Shwu-Fen; Chang, Han-Yi; Tong, Yaw-Chong; Chen, Sy-Hann; Hsaio, Fei-Chin; Lu, Shao-Chun; Liaw, Jiahorng

    2004-05-01

    The main aim of this study was to investigate the feasibility of using nonionic polymeric micelles of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) as a carrier for oral DNA delivery in vivo. The size and appearance of DNA/PEO-PPO-PEO polymeric micelles were examined, respectively, by dynamic light scattering and atomic force microscopy, and their zeta potential was measured. Expression of the delivered lacZ gene in various tissues of nude mice was assessed qualitatively by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of sections and quantitatively by measuring enzyme activity in tissue extracts, using the substrate of beta-galactosidase, chlorophenol red-beta-D-galactopyranoside. In addition, the types of cells expressing the lacZ gene in the duodenum were identified by histological analysis. DNA/PEO-PPO-PEO polymeric micelles are a single population of rounded micelles with a mean diameter of 170 nm and a zeta potential of -4.3 mV. Duodenal penetration of DNA/PEO-PPO-PEO polymeric micelles was evaluated in vitro by calculating the apparent permeability coefficient. The results showed a dose-independent penetration rate of (5.75 +/- 0.37) x 10(-5) cm/sec at low DNA concentrations (0.026-0.26 microg/microl), but a decrease to (2.89 +/- 0.37) x 10(-5) cm/sec at a concentration of 1.3 microg/microl. Furthermore, when 10 mM RGD peptide or 10 mM EDTA was administered before and concurrent with the administration of DNA/PEO-PPO-PEO polymeric micelles, transport was inhibited ([0.95 +/- 0.57] x 10(-5) cm/sec) by blocking endocytosis or enhanced ([29.8 +/- 5.7] x 10(-5) cm/sec) by opening tight junctions, respectively. After oral administration of six doses at 8-hr intervals, the highest expression of transferred gene lacZ was seen 48 hr after administration of the first dose, with gene expression detected in the villi, crypts, and goblet cells of the duodenum and in the crypt cells of the stomach. Reporter gene activity was

  15. Knockdown of STAT3 expression in SKOV3 cells by biodegradable siRNA-PLGA/CSO conjugate micelles.

    PubMed

    Zhao, Yunchun; Zheng, Caihong; Zhang, Li; Chen, Yue; Ye, Yiqing; Zhao, Mengdan

    2015-03-01

    Biodegradable and biocompatible poly(d,l-lactic-co-glycolic acid) (PLGA)was conjugated to the 5'-thiol end of signal transducer and activator of transcription 3 (STAT3) small interfering RNA (STAT3-siRNA) via a disulfide bond. In aqueous environments, these siRNA-PLGA conjugates can spontaneously form core/shell type spherical micelles with a particle size of about 200 nm. A biodegradable, low molecular weight cationic polymer, chitosan oligosaccharide (CSO), was added to the siRNA-PLGA micelles at different nitrogen to phosphate (N/P) ratios to form stable, spherical siRNA-PLGA/CSO micelles with sizes of 150-180 nm. The siRNA-PLGA/CSO micelles were produced via ionic complexation between negatively charged siRNA and positively charged CSO on the outer shell of the micelles. The siRNA-PLGA/CSO micelles exhibited superior cellular uptake and STAT3 gene silencing efficiency in SKOV3 ovarian cancer cells when compared with siRNA/CSO complexes at the same N/P ratios with no significant differences with lipofectamine 2000. Furthermore, the siRNA-PLGA/CSO micelles showed that the efficiencies of cellular uptake and STAT3 gene silencing gradually increased with increasing N/P ratios. The siRNA-PLGA/CSO micelles also inhibited the growth of SKOV3 cells, as well as, promoted apoptosis of the cells. These results indicate that siRNA-PLGA/CSO micelles can be utilized as a novel and efficient siRNA carrier to treat a variety of diseases.

  16. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles.

    PubMed

    Giacomelli, Fernando C; Stepánek, Petr; Schmidt, Vanessa; Jäger, Eliézer; Jäger, Alessandro; Giacomelli, Cristiano

    2012-08-07

    Selective protein fouling on block copolymer micelles with well-known potential for tumour-targeting drug delivery was evidenced by using dynamic light scattering measurements. The stability and interaction of block copolymer micelles with model proteins (BSA, IgG, lysozyme and CytC) is reported for systems featuring a hydrophobic (poly[2-(diisopropylamino)-ethyl methacrylate]) (PDPA) core and hydrophilic coronas comprising poly(ethylene oxide)/poly(glycerol monomethacrylate) (PEO-b-PG2MA) or poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). The results revealed that protein size and hydrophilic chain density play important roles in the observed interactions. The PEO(113)-b-PG2MA(30)-b-PDPA(50) nanoparticles are stable and protein adsorption is prevented at all investigated protein environments. The successful protein-repellent characteristic of these nanoparticles is attributed to a high hydrophilic surface chain density (>0.1 chains per nm(2)) and to the length of the hydrophilic chains. On the other hand, although PMPC also has protein-repellent characteristics, the low surface chain density of the hydrophilic shell is supposed to enable interactions with small proteins. The PMPC(40)-b-PDPA(70) micelles are stable in BSA and IgG environments due to weak repulsion forces between PMPC and the proteins, to the hydration layer, and particularly to a size-effect where the large BSA (R(H) = 4.2 nm) and IgG (R(H) = 7.0 nm) do not easily diffuse within the PMPC shell. Conversely, a clear interaction was observed with the 2.1 nm radius lysozyme. The lysozyme protein can diffuse within the PMPC micellar shell towards the PDPA hydrophobic core in a process favored by its smaller size and the low hydrophilic PMPC surface chain density (∼0.049 chains per nm(2)) as compared to PEO-b-PG2MA (∼0.110 chains per nm(2)). The same behavior was not evidenced with the 2.3 nm radius positively charged CytC, probably due to its higher surface hydrophilicity and the consequent

  17. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes

    PubMed Central

    Valente, Gianpiero; Fanizza, Elisabetta; Laquintana, Valentino; Denora, Nunzio; Fasano, Anna; Striccoli, Marinella; Colella, Matilde; Agostiano, Angela; Curri, M. Lucia; Liuzzi, Grazia Maria

    2016-01-01

    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo

  18. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes.

    PubMed

    Latronico, Tiziana; Depalo, Nicoletta; Valente, Gianpiero; Fanizza, Elisabetta; Laquintana, Valentino; Denora, Nunzio; Fasano, Anna; Striccoli, Marinella; Colella, Matilde; Agostiano, Angela; Curri, M Lucia; Liuzzi, Grazia Maria

    2016-01-01

    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo

  19. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy.

    PubMed

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2016-01-07

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.

  20. Water-induced micelle formation of block copoly(oxyethylene-oxypropylene-oxyethylene) in o-xylene

    SciTech Connect

    Wu, Guangwei; Zhou, Zukang; Chu, B. )

    1993-04-12

    Static and dynamic light scattering, viscometry, NMR, and vapor pressure osmometry techniques have been employed to study the water-induced micellization behavior of poly(oxyethylene-oxypropylene-oxyethylene) block copolymer, Pluronic L64, in o-xylene solution. Results show that Pluronic L64 does not form polymolecular micelles in the absence of water or in the presence of a small amount of water (molar ratio water/EO < 0.15). Micelles, consisting of a PPO shell and a PEO and H[sub 2]O core, are formed when the water to EO molar ratio (Z) in the micelle is greater than 0.2. For Z < 1.3, spherical micelles with an average hydrodynamic radius R[sub h] of ca. 9.2 nm are formed, with R[sub h] almost independent of Z. For Z > 1.3, both the aggregation number and the hydrodynamic radius become dependent on the Z value, then the micelle shape could be nonspherical. As experimentally evidenced by NMR spectra, the solubilized water can be classified into bound water and free water. Most likely, water is not evenly distributed in the core, as the environments of EO units at different positions in the block copolymer are not identical.

  1. Synthesis of chlorambucil-tempol adduct and its delivery using fluoroalkyl double-ended poly (ethylene glycol) micelles.

    PubMed

    Prabhutendolkar, Anuja; Liu, Xiangli; Mathias, Errol V; Ba, Yong; Kornfield, Julie A

    2006-01-01

    In our pursuit to find potent anticancer drugs, we have covalently bonded free radical tempol to chlorambucil giving a chlorambucil-tempol (CT) adduct in which both of the anticancer active sites in tempol and chlorambucil were left intact. Analysis using NMR, Maldi-TOF, and EPR verified the designed chemical structure. Because the CT adduct is more hydrophobic than chlorambucil, its delivery also was investigated using fluoroalkyl double-ended poly (ethylene glycol) (Rf-PEG) micelles. Results from EPR spectra and(19) F and(1) H NMR spin lattice relaxation times show that the Rf-PEG micelles are able to encapsulate CT into the Rf cores of the micelles.

  2. MICELLE, the micelle size effect on the LS counting efficiency

    NASA Astrophysics Data System (ADS)

    Grau Carles, A.

    2007-02-01

    This version extends the computation of the liquid-scintillation counting efficiency to electron-capture radionuclides of 30⩽Z⩽54. The simplified deterministic models of previous versions are replaced by a complete stochastic model, which considers all possible subshells involved in the atomic rearrangement of the atom. The program can simulate samples in the gel phase, including the effects of the micelles on the counting efficiency. These effects have been found to be useful for building nanodosimeters based on gel scintillators. Program summaryTitle of program: MICELLE Catalogue identifier:ACPU_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ACPU_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing previsions: none Computers revisions: any IBM PC compatible with 80386 or higher Intel processors Operating systems under which the program has been tested: MS-DOS and higher systems Programming language used: FORTRAN 77 Memory required to execute with typical data: 235 kword No. of bits in a word: 16 No. of lines in distributed program, including test data, etc.: 16 653 No. of bytes in distributed program, including test data, etc.: 358 166 Distribution format: tar.gz Nature of the physical problem: Both β and electron-capture are decay processes characterized by a large variability in energy. In the first case, one single β-particle is emitted per decay following the Fermi distribution. In the second, several electrons (Auger and/or Coster-Kronig) of very different energies can be ejected simultaneously. The detailed simulation of these two electron release processes has practical interest in two situations: (1) to standardize radionuclides with a liquid-scintillation counter, (2) to compute the absorbed dose in the surroundings of a radiolabeled molecule. Method of solution: Although the application of simplified deterministic models is sufficiently accurate for pure β-ray emitters, the large

  3. Thermodynamic and kinetic stability of DSPE-PEG(2000) micelles in the presence of bovine serum albumin.

    PubMed

    Kastantin, Mark; Missirlis, Dimitris; Black, Matthew; Ananthanarayanan, Badriprasad; Peters, David; Tirrell, Matthew

    2010-10-07

    This work investigated the stability of DSPE-PEG(2000) micelles in the presence of bovine serum albumin (BSA). DSPE-PEG(2000) was found to exist in equilibrium among monomeric, micellar, and BSA-bound states, and this equilibrium shifted toward the BSA-bound state when the temperature increased from 20 to 37 °C. The micellar state is thermodynamically unstable at both temperatures when the concentration of BSA approaches that of DSPE-PEG(2000), and micelle breakup occurs with a first-order time constant of 130 ± 9 min at 20 °C and 7.8 ± 1.6 min at 37 °C. Thus, previous targeting experiments that demonstrate synergistic effects in multiply functionalized DSPE-PEG(2000) micelles are likely due to targeting that occurs on a timescale faster than that of micelle breakup. Micelle breakup was limited by diffusion at 20 °C whereas at 37 °C monomer desorption from the micelle was the rate-limiting step. These findings give clear guidance concerning the lifetimes of micelles that may be used as diagnostic and therapeutic nanoparticles.

  4. Student-Centred Learning Environments: An Investigation into Student Teachers' Instructional Preferences and Approaches to Learning

    ERIC Educational Resources Information Center

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne

    2016-01-01

    The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…

  5. An Empirical Investigation of the Dimensionality of the Physical Literacy Environment in Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Dynia, Jaclyn M.; Schachter, Rachel E.; Piasta, Shayne B.; Justice, Laura M.; O'Connell, Ann A.; Yeager Pelatti, Christina

    2016-01-01

    This study investigated the dimensionality of the physical literacy environment of early childhood education classrooms. Data on the classroom physical literacy environment were collected from 245 classrooms using the Classroom Literacy Observation Profile. A combination of confirmatory and exploratory factor analysis was used to identify five…

  6. Student-Centred Learning Environments: An Investigation into Student Teachers' Instructional Preferences and Approaches to Learning

    ERIC Educational Resources Information Center

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne

    2016-01-01

    The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…

  7. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A theoretical study on the expression of enzymic activity in reverse micelles.

    PubMed Central

    Bru, R; Sánchez-Ferrer, A; Garcia-Carmona, F

    1989-01-01

    The present work deals with a theoretical model of catalysis by enzymes entrapped in reverse micelles. Three aspects of the enzyme-reverse-micelle system have been considered: structure, dynamics and enzyme distribution and catalysis in reverse micelles. A proposed structural model of reverse micelles [El Seoud (1984) in Reverse Micelles (Luisi, P. L. & Straub, B. E., eds.), p. 81, Plenum Press, New York] consists of three domains: surfactant apolar tails, bound water and free water. Dynamics are based on a dynamic equilibrium of association-dissociation that lead one to consider the dispersed polar phase as a pseudo-continuous phase [Luisi, Giomini, Pileni & Robinson (1988) Biochim. Biophys. Acta 947, 207-246]. Enzyme is distributed among the reverse-micelle domains and it expresses a catalytic constant for each one of them. The overall activity is calculated taking into account the volume in which enzyme is solubilized, and expressed as a function of the whole volume (V). The characteristic parameters of reverse micelles, omega 0 (= [H2O]/[surfactant]) and theta (= % water, v/v), were investigated as modulators of enzymic activity. Three basic patterns of modulation by omega 0 were found depending on which domain the enzyme expressed the highest catalytic constant. Combinations of those basic patterns lead to other modulation types that can be found experimentally, such as superactivation. Other combinations predict behaviour patterns not described to date, such as superinhibition. Dependence of catalytic activity on theta was only stated at omega 0 values around a critical value, which coincides with the appearance of free water. PMID:2719652

  9. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-07

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.

  10. Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity

    NASA Astrophysics Data System (ADS)

    You, Jian; Li, Xin; de Cui, Fu; Du, Yong-Zhong; Yuan, Hong; Hu, Fu qiang

    2008-01-01

    To obtain an active-targeting carrier to cancer cells, folate-conjugated stearic acid grafted chitosan oligosaccharide (Fa-CSOSA) was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The substitution degree is 22.1%. The critical micelle concentrations (CMCs) of Fa-CSOSA were 0.017 and 0.0074 mg ml-1 in distilled water and PBS (pH 7.4), respectively. The average volume size range of Fa-CSOSA micelles was 60-120 nm. The targeting ability of Fa-CSOSA micelles was investigated against two kinds of cell lines (A549 and Hela), which have different amounts of folate receptors in their surface. The results indicated that Fa-CSOSA micelles presented a targeting ability to the cells (Hela) with a higher expression of folate receptor during a short-time incubation (<6 h). As incubation proceeded, the special spatial structure of the micelles gradually plays a main role in cellular internalization of the micelles. Good internalization of the micelles into both Hela and A549 cells was shown. Then, paclitaxel (PTX) was encapsulated into the micelles, and the content of PTX in the micelles was about 4.8% (w/w). The average volume size range of PTX-loaded micelles was 150-340 nm. Furthermore, the anti-tumor efficacy in vitro was investigated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The IC50 of Taxol (a clinical formulation containing PTX) on A549 and Hela cells was 7.0 and 11.0 µg ml-1, respectively. The cytotoxicity of PTX-loaded micelles was improved sharply (IC50 on A549: 0.32 µg ml-1 IC50 on Hela: 0.268 µg ml-1). This is attributed to the increased intracellular delivery of the drug. The Fa-CSOSA micelles that are presented may be a promising active-targeting carrier candidate via folate mediation.

  11. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation.

    PubMed

    Ren, Henglei; Gao, Chunli; Zhou, Liang; Liu, Min; Xie, Cao; Lu, Weiyue

    2015-01-01

    The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35 ± 2.8 nm [the polydispersity index (PDI) = 0.207] and 28 ± 2.1 nm (PDI = 0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11 ± 3.89% and 3.58 ± 2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel's chemotherapeutic effects on EGFR over-expressed cancer cells.

  12. Shaping and patterning gold nanoparticles via micelle templated photochemistry

    NASA Astrophysics Data System (ADS)

    Kundrat, F.; Baffou, G.; Polleux, J.

    2015-09-01

    Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as reactive and light-responsive templates, which enable to grow gold deformed nanoparticles (potatoids) and nanorings. Optical characterization reveals that arrays of individual potatoids and rings feature a localized plasmon resonance around 600 and 800 nm, respectively, enhanced photothermal properties and high temperature sustainability, making them ideal platforms for future developments in nanochemistry and biomolecular manipulation controlled by near-infrared-induced heat.Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as

  13. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy.

    PubMed

    Ko, Jinyoung; Park, Kyeongsoon; Kim, Yoo-Shin; Kim, Min Sang; Han, Jong Kwon; Kim, Kwangmeyung; Park, Rang-Woon; Kim, In-San; Song, Hyun Kyu; Lee, Doo Sung; Kwon, Ick Chan

    2007-11-06

    The main objective of this study was to develop and characterize a pH-responsive and biodegradable polymeric micelle as a tumor-targeting drug delivery system. The pH-responsive block copolymer was synthesized by a Michael-type step polymerization of hydrophilic methyl ether poly(ethylene glycol) (MPEG) and pH-responsive and biodegradable poly(beta-amino ester), resulting in an amphiphilic MPEG-poly(beta-amino ester) block copolymer. This copolymer, which formed nano-sized self-assembled micelles under aqueous conditions, could be efficiently (74.5%) loaded with doxorubicin (DOX) using a solvent evaporation method. In an in vitro drug release study, these DOX-loaded polymeric micelles showed noticeable pH-dependent micellization-demicellization behavior, with rapid release of DOX from the micelles in weakly acidic environments (pH 6.4) but very slow release under physiological conditions (pH 7.4). Moreover, due to demicellization, the tumor cell uptake of DOX released from polymeric micelles was much higher at pH 6.4 than at pH 7.4. When in vivo anti-tumor activity of pH-responsive polymeric micelles was evaluated by injecting the DOX-loaded polymeric micelles into B16F10 tumor-bearing mice, these micelles notably suppressed tumor growth and also prolonged survival of the tumor-bearing mice, compared with mice treated with free DOX.

  14. Targeted anti-thrombotic protein micelles

    PubMed Central

    Kim, Wookhyun; Haller, Carolyn; Dai, Erbin; Wang, Xiowei; Hagemeyer, Christoph E.; Liu, David R.; Peter, Karlheinz; Chaikof, Elliot L.

    2015-01-01

    Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Herein, we report the efficient design of multifunctional protein micelles bearing targeting and therapeutic proteins by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand induced binding site (LIBS) of activated GPIIb/IIIa receptors enabled efficient detection of thrombi. Inhibiting thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for local generation of activated protein C, which serves to inhibit thrombin formation. An effective strategy has been developed for preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events. PMID:25504546

  15. Statistical crystallography of surface micelle spacing

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.

  16. Stability of casein micelles in milk

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  17. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  18. Titration of fatty acids solubilized in cationic and anionic micelles. Calorimetry and thermodynamic modeling.

    PubMed

    Söderman, Olle; Jönsson, Bengt; Olofsson, Gerd

    2006-02-23

    The electrostatic properties of charged surfactant micelles are investigated through titrations of fatty acid probes solubilized in the micelles. The titration process is followed by means of calorimetric measurements and by determining the pH values as a function of added base. This approach yields a complete thermodynamic description of the titration process. In particular, we find that the process is endothermic at 298 K. This is contrary to the titration of carboxylic acids in water, where DeltaH is approximately 0. To identify the main effect underlying the difference in DeltaH between titration in a micelle and water, a thermodynamic model has been developed which focuses on the transfer properties of charged and uncharged species from bulk water to the surface of a micelle and which incorporates a dielectric discontinuity at the micellar surface. The model relies on the use of the Poisson-Boltzmann equation which is solved using a finite element method. Experimental results and the model calculations imply that the dielectric discontinuity at (or near) the micellar surface plays a major role and hence must be included when analyzing the titration behavior of an acid functionality at the surface of a charged micelle.

  19. NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment.

    PubMed

    Stanczak, Pawel; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2009-12-30

    Using microcoil NMR technology, the uniformly (2)H,(15)N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein-detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [(15)N,(1)H]-transverse relaxation-optimized spectroscopy (TROSY) spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90-180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, D(r) and D(t), respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies.

  20. Spontaneous Formation of Detergent Micelles around the Outer Membrane Protein OmpX

    PubMed Central

    Böckmann, Rainer A.; Caflisch, Amedeo

    2005-01-01

    The structure and flexibility of the outer membrane protein X (OmpX) in a water-detergent solution and in pure water are investigated by molecular dynamics simulations on the 100-ns timescale and compared with NMR data. The simulations allow for an unbiased determination of the structure of detergent micelles and the protein-detergent mixed micelle. The short-chain lipid dihexanoylphosphatidylcholine, as a detergent, aggregates into pure micelles of ∼18 molecules, or alternatively, it binds to the protein surface. The detergent binds in the form of a monolayer ring around the hydrophobic β-barrel of OmpX rather than in a micellar-like oblate; ∼40 dihexanoylphosphatidylcholine lipids are sufficient for an effective suppression of water from the surface of the β-barrel region. The phospholipids bind also on the extracellular, protruding β-sheet. Here, polar interactions between charged amino acids and phosphatidylcholine headgroups act as condensation seed for detergent micelle formation. The polar protein surface remains accessible to water molecules. In total, ∼90–100 detergent molecules associate within the protein-detergent mixed micelle, in agreement with experimental estimates. The simulation results indicate that OmpX is not a water pore and support the proposed role of the protruding β-sheet as a “fishing rod”. PMID:15749771

  1. Self-assembled gold nanocrystal micelles act as an excellent artificial nanozyme with ribonuclease activity.

    PubMed

    Zhang, Zhiming; Fu, Qiuan; Li, Xiangqiu; Huang, Xin; Xu, Jiayun; Shen, Jiacong; Liu, Junqiu

    2009-06-01

    Water-soluble Au nanocrystal (NC) micelles with an inserted catalytic Cu(II) center that act as excellent nanoenzyme models for imitating ribonuclease were constructed by supramolecular self-assembly. The dodecane-1-thiol-based Au NC was constructed first, and subsequently the cationic surfactant hexadecyltrimethylammonium bromide and the catalytic ligand (N1,N1-bis(2-aminoethyl)-N2-dodecylethane-1,2-diamine) copper(II) were installed on the surface of the Au NC via hydrophobic interaction. The catalytic capability of the Au NC micelles designed was estimated by the cleavage of a typical RNA analogue, 2-hydroxypropyl p-nitrophenyl phosphate (HPNP). The study of the catalytic behavior of Au NC micelle catalysis showed that the Au NC micelles exhibited dramatic ribonuclease-like activity: a high rate acceleration of k(cat)/k(uncat) = 1.10 x 10(5) for the cleavage of HPNP in comparison with the spontaneous cleavage of HPNP (k(uncat)) was observed. The catalytic capability for HPNP cleavage by these functionalized Au NC micelles can be compared with that of covalent Au nanoparticles reported previously as nanozymes under comparable conditions. A detailed investigation of enzymatic kinetics was carried out and a possible mechanism was suggested.

  2. Micelle and microemulsion properties of cesium di-dodecyl-dimethylsulfosuccinate, Cs-AOT

    SciTech Connect

    Sheu, E.Y.; Nostro, P.L.; Capuzzi, G.; Baglioni, P.

    1999-09-28

    Cesium di-2-ethylsulfosuccinate (Cs-AOT) micelles in aqueous solutions and Cs-AOT/water/n-decane microemulsions were investigated, at 22 {plus{underscore}minus} 0.1 C, by small angle neutron scattering (SANS). The critical micelle concentration of Cs-AOT is {approximately}2mM, comparable to that of Na-AOT. However, their solution properties and micellar structures were found to be very different. The solubility of Na-AOT in water is approximately 1 wt %, and the micelles grow from spherical (at a concentration of about 0.1 wt %) to oblate objects with eccentricity equal to about 0.8 (at a concentration of 1 wt %), whereas Cs-AOT is largely soluble in water, over 30 wt %, and its micelles are disklike at 1 wt %. As the surfactant concentration increases, micelles may go through an L{sub 3} region, and enter the lamellar phase. Cs-AOT/water/n-decane microemulsions, with a [water]/[Cs-AOT] = 29.1, form isotropic L{sub 2} phases only at very low Cs-AOT + ater volume fractions (below 0.0165), whereas Na-AOT has a large L{sub 2} region. These differences are probably due to the degree of charge condensation near the AOT polar headgroups. A theoretical description is needed to better understand this behavior.

  3. Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity.

    PubMed

    Anantaworasakul, Pimporn; Okonogi, Siriporn

    2017-02-01

    Clinical applications of Sesbania grandiflora bark extract (SGE) are limited because of its poor water solubility and stability. SGE was loaded in micelles of Pluronics. In vitro and in vivo antibacterial and toxicity tests were investigated using broth dilution and silkworm model. Aqueous solubility of SGE was improved by these micelles. Activity and toxicity of SGE loaded micelles were dependent on type and concentration of Pluronics. The micelles composed of 1:3 SGE to Pluronic F68 (SGE-PF68-13) showed small size (24.95 ± 0.34 nm), narrow PdI (<0.2), high entrapment efficiency (99.63 ± 0.19%) and negative zeta potential (-41.53 ± 0.15 mV). Stability of SGE in SGE-PF68-13 was 10 times higher than the unentrapped SGE. SGE-PF68-13 showed a dose dependent activity and significantly higher therapeutic effect than the unentrapped SGE. It is concluded that encapsulation of SGE in Pluronic micelles can enhance SGE solubility, stability, and antibacterial activity. SGE-PF68-13 is suitable for further study in mammalian animals.

  4. NMR characterization of membrane protein–detergent micelle solutions using microcoil equipment

    PubMed Central

    Stanczak, Pawel; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2010-01-01

    Using microcoil NMR technology, the uniformly 2H,15N-labeled integral membrane protein OmpX and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein–detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [15N,1H]-TROSY spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90 mM to 180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, Dr and Dt, respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations, and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies. PMID:19950959

  5. Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer.

    PubMed

    Zhao, Changwen; He, Pan; Xiao, Chunsheng; Gao, Xiaoye; Zhuang, Xiuli; Chen, Xuesi

    2011-07-15

    A polypeptide-based double hydrophilic graft copolymer was synthesized by the sequential grafting of poly(N-isopropylacrylamide) (PNIPAM) and 2-hydroxyethyl methacrylate (HEMA) onto poly(l-glutamic acid) (PGA) backbone. The copolymers were sensitive to both temperature and pH. The phase transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering (DLS). The light transmittance decrease of the copolymers at temperature above lower critical solution temperature (LCST) was remarkably weakened at pH around 6.5 due to the coil to α helix change of PGA chain induced by pH. The copolymers can self-assembly into micelles with PNIPAM cores in the aqueous solution at pH 8.0 and 60°C. Subsequently, polymerization of HEMA led to the facile preparation of crosslinked micelles, which were observed directly by transmission electron microscopy (TEM). The temperature controlled shrinkage behaviors of crosslinked micelles highly depended on the pH values of the solution. The crosslinked micelles aggregated at pH 5.0 due to the increased hydrophobic interactions among them induced by the protonation of PGA component. These crosslinked micelles have promising applications as intelligent drug delivery vehicles. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Direct Measurement of the Thermodynamics of Chiral Recognition in Bile Salt Micelles.

    PubMed

    Anderson, Shauna L; Rovnyak, David; Strein, Timothy G

    2016-04-01

    Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔH(demic) of these bile salt micelle systems is directly observable and is strongly temperature-dependent, allowing also for the determination of ΔCp(demic). Using the pseudo-phase separation model, ΔG(demic) and TΔS(demic) were also calculated. Chirally selective guest-host binding of model racemic compounds 1,1'-bi-2-napthol (BN) and 1,1'-binaphthyl-2,2'-diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S-isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol(-1).

  7. Solubilization of n-alkylbenzenes into gemini surfactant micelles in aqueous medium.

    PubMed

    Nakahara, Hiromichi; Kojima, Yui; Moroi, Yoshikiyo; Shibata, Osamu

    2014-05-27

    Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, and n-pentylbenzene into micelles of decanediyl-1-10-bis(dimethyltetradecylammonium bromide) (14-10-14,2Br(-)) has been investigated in the temperature range from 288.2 to 308.2 K. The equilibrium concentrations of all the solubilizates are determined spectrophotometrically. The concentration of the solubilizates remains constant below the critical micelle concentration (cmc) and increases linearly with an increase in 14-10-14,2Br(-) concentration above the cmc. Compared to the mother micelle, the solubilized micelles indicate much larger hydrodynamic diameters, which are determined by dynamic light scattering. Therefore, the Gibbs energy change for the solubilization of n-alkylbenzenes has been evaluated by the partitioning of the solubilizates between the aqueous and micellar phases. Furthermore, the enthalpy and entropy changes for the solubilization could be calculated from temperature dependence of the Gibbs energy change. From the thermodynamic parameters, it is found that the solubilization for the present system is entropy-driven and that the location of the solubilizates moves into the inner core of the micelle with an elongation of their alkyl chains. The movement on the location is also supported by the results of absorption spectra, Fourier transform infrared (FTIR) spectra, and two-dimensional nuclear Overhauser effect spectroscopy (2-D NOESY).

  8. Nanoscaled buffering zone of charged (PLGA)n-b-bPEI micelles in acidic microclimate for potential protein delivery application

    PubMed Central

    Kang, Han Chang; Lee, Ji Eun; Bae, You Han

    2012-01-01

    Poly(lactide-co-glycolide) (PLGA) has most often been employed for the controlled release of protein formulations because of its safety profile with non-toxic degradation products. Nevertheless, such formulations have been plagued by a local acidic microenvironment and protein-polymer interactions, which result in chemical and physical denaturation of loaded proteins and often unfavorable release profiles. This study investigated the pH change of inner PLGA microsphere (MS) using charged (PLGA)n-b-branched polyethyleneimine (bPEI) micelles. The designed micelles can be transformed into either micelle or reverse micelle (RM) depending on the solvent and RM can form microspheres. In addition, (PLGA)n-b-bPEI can be modified into (PLGA)n-b-(carboxylated bPEI) via carboxylation of the primary amines. Cationic micelle (CM) or anionic micelle (AM) were complexed with counter-charged proteins leading to nanosized particles (approximately 100 nm). In the micelle/protein complexes, the micelles mostly maintained their proton buffering capacity, and consequently, prevented or delayed the typical decrease in pH caused by degradation of PLGA in aqueous solution. Reconstitutable micelle/protein complexes allowed for increased and fine-tuned protein loading (~20 wt% when using CM1 (CM prepared from PLGA36kDa-b-bPEI25kDa)/insulin complexes) in PLGA MS. In CM2 (CM prepared from (PLGA36kDa)2-b-bPEI25kDa)/insulin (4 of weight ratio (WR) of micelle to protein; WR4)-loaded PLGA MS, CM2 strongly prevented the micellar nanoenvironmental pH (pH 6.6 within 5 days and then approximately pH 8.5) to be acidified in PLGA MS for 9 weeks, unlike CM2-free PLGA MS. In conclusion, our findings propose that the proton buffering capacity and protein loading in PLGA MS can be tuned by controlling the complexation ratios of micelles and proteins, polymeric architectures of (PLGA)n-b-bPEI copolymers and WR of micelle/protein complexes and PLGA (or RM). PMID:22405902

  9. Multimeric grain-marked micelles for highly efficient photodynamic therapy and magnetic resonance imaging of tumors.

    PubMed

    Lee, Ung Yeol; Oh, Young Taik; Kim, Dongin; Lee, Eun Seong

    2014-08-25

    Multimeric grain-marked micelles consisting of an inner core micelle (for Fe3O4 encapsulation) and outer multi-grain micelles (for chlorin e6 (Ce6, a model drug) encapsulation) were fabricated using a micelle-to-micelle conjugation method. Grain micelles (mono-thiol functionalized micelles) were chemically linked to the surface of the core micelle (multi-maleimide functionalized micelle). These micelles enable discrete compartments for Ce6 and iron oxide (Fe3O4) that enable a significantly increased in vivo photodynamic tumor inhibition while preserving high contrast magnetic resonance (MR) imaging of the tumor in vivo.

  10. Fmoc-conjugated PEG-vitamin E2 micelles for tumor-targeted delivery of paclitaxel: enhanced drug-carrier interaction and loading capacity.

    PubMed

    Zhang, Yifei; Huang, Yixian; Zhao, Wenchen; Lu, Jianqin; Zhang, Peng; Zhang, Xiaolan; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Li, Song

    2014-11-01

    The purpose of this study is to develop an improved drug delivery system for enhanced paclitaxel (PTX) loading capacity and formulation stability based on PEG5K-(vitamin E)2 (PEG5K-VE2) system. PEG5K-(fluorenylmethoxycarbonyl)-(vitamin E)2 (PEG5K-FVE2) was synthesized using lysine as the scaffold. PTX-loaded PEG5K-FVE2 micelles were prepared and characterized. Fluorescence intensity of Fmoc in the micelles was measured as an indicator of drug-carrier interaction. Cytotoxicity of the micelle formulations was tested on various tumor cell lines. The therapeutic efficacy and toxicity of PTX-loaded micelles were investigated using a syngeneic mouse model of breast cancer (4T1.2). Our data suggest that the PEG5K-FVE2 micelles have a low CMC value of 4 μg/mL and small sizes (~60 nm). The PTX loading capacity of PEG5K-FVE2 micelles was much higher than that of PEG5K-VE2 micelles. The Fmoc/PTX physical interaction was clearly demonstrated by a fluorescence quenching assay. PTX-loaded PEG5K-FVE2 micelles exerted more potent cytotoxicity than free PTX or Taxol formulation in vitro. Finally, intravenous injection of PTX-loaded PEG5K-FVE2 micelles showed superior anticancer activity compared with PEG5K-VE2 formulation with minimal toxicity in a mouse model of breast cancer. In summary, incorporation of a drug-interactive motif (Fmoc) into PEG5K-VE2 micelles represents an effective strategy to improve the micelle formulation for the delivery of PTX.

  11. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  12. Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.

    PubMed

    Hilty, Christian; Wider, Gerhard; Fernández, César; Wüthrich, Kurt

    2004-04-02

    For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed detergent/protein micelles is then of key importance to validate the results from such studies, and to evaluate how faithfully the natural environment of the protein in the biological membrane is mimicked by the micelle. In this paper, a selection of paramagnetic probes with different physicochemical properties are used to characterize the 60 kDa mixed micelles consisting of about 90 molecules of the detergent dihexanoylphosphatidylcholine (DHPC) and one molecule of the Escherichia coli outer-membrane protein X (OmpX), which had previously been extensively studied by solution NMR techniques. The observation of highly selective relaxation effects on the NMR spectra of OmpX and DHPC from a water-soluble relaxation agent and from nitroxide spin labels attached to lipophilic molecules, confirmed data obtained previously with more complex NMR studies of the diamagnetic OmpX/DHPC system, and yielded additional novel insights into the protein-detergent interactions in the mixed micelles. The application of paramagnetic probes to the well-characterized OmpX/DHPC system indicates that such probes should be widely applicable as an efficient support of NMR studies of the topology of mixed membrane protein-detergent micelles.

  13. Protein and water confined in nanometer-scale reverse micelles studied by near infrared, terahertz, and ultrafast visible spectroscopies.

    PubMed

    Murakami, Hiroshi

    2013-01-01

    Protein-containing reverse (PCR) micelles are suitable systems to study the properties of proteins and waters in a cell-like environment. A model for determining the structural parameters of PCR micelles, such as the aqueous cavity size and molecule number of water within the reverse micelle, is presented. The model is based on an important hypothesis that the structural parameters of the protein-unfilled reverse micelle do not change after solubilization of protein. I describe a procedure using near infrared spectroscopy of OH stretching vibration band of water to verify the hypothesis. Further, the terahertz (THz) absorption spectrum of myoglobin is derived from THz time-domain spectroscopy of the PCR micellar solution, and the states of waters in reverse micelles with and without protein are discussed on the basis of the structural parameters. The last topic is on internal dynamics of PCR micelles on timescales from femtoseconds to nanoseconds studied by femtosecond time-resolved fluorescence spectroscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Synthesis, characterization, and evaluation of mPEG-SN38 and mPEG-PLA-SN38 micelles for cancer therapy.

    PubMed

    Xie, Jing; Zhang, Xiaomin; Teng, Meiyu; Yu, Bo; Yang, Shuang; Lee, Robert J; Teng, Lesheng

    2016-01-01

    7-Ethyl-10-hydroxy camptothecin (SN38) is a potent topoisomerase inhibitor and a metabolite of irinotecan. Its clinical development has been hampered by its poor solubility. To address this problem, methoxy poly(ethylene glycol)-2000 (mPEG2K)-SN38 and mPEG2K-poly(lactide) (PLA1.5K)-SN38 conjugates were prepared and then dispersed into an aqueous medium to form micelles. Physicochemical characteristics of SN38-polymer conjugate micelles, for example, micelle diameter, zeta potential, morphology, and drug content, were then evaluated. The results showed that the mean diameters of mPEG2K-SN38 and mPEG2K-PLA1.5K-SN38 micelles were ~130 and 20 nm, respectively. These two micelles had similar drug contents. mPEG2K-PLA1.5K-SN38 micelles were more homogeneous than mPEG2K-SN38 micelles. Moreover, in vitro drug release behavior of the micelles was studied by high performance liquid chromatography. SN38 release from mPEG2K-SN38 micelles was much faster than from mPEG2K-PLA1.5K-SN38 micelles. In vitro cytotoxicity, cellular uptake, and apoptosis assays of the SN38-polymer conjugate micelles were carried out on BEL-7402 human liver cancer cells. In vivo biodistribution and antitumor tumor efficacy studies were carried out in a nude mouse xenograft model derived from BEL-7402 cells. The results showed that mPEG2K-PLA1.5K-SN38 micelles were significantly more effective than mPEG2K-SN38 micelles in tumor inhibition, and the inhibitory effect of mPEG2K-PLA1.5K-SN38 micelles on tumor growth was significantly greater than that of mPEG2K-SN38 micelles (1,042 vs 1,837 mm) at 30 days. In conclusion, mPEG-PLA-SN38 is a promising anticancer agent that warrants further investigation.

  15. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Giacomelli, Fernando C.; Stepánek, Petr; Schmidt, Vanessa; Jäger, Eliézer; Jäger, Alessandro; Giacomelli, Cristiano

    2012-07-01

    Selective protein fouling on block copolymer micelles with well-known potential for tumour-targeting drug delivery was evidenced by using dynamic light scattering measurements. The stability and interaction of block copolymer micelles with model proteins (BSA, IgG, lysozyme and CytC) is reported for systems featuring a hydrophobic (poly[2-(diisopropylamino)-ethyl methacrylate]) (PDPA) core and hydrophilic coronas comprising poly(ethylene oxide)/poly(glycerol monomethacrylate) (PEO-b-PG2MA) or poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). The results revealed that protein size and hydrophilic chain density play important roles in the observed interactions. The PEO113-b-PG2MA30-b-PDPA50 nanoparticles are stable and protein adsorption is prevented at all investigated protein environments. The successful protein-repellent characteristic of these nanoparticles is attributed to a high hydrophilic surface chain density (>0.1 chains per nm2) and to the length of the hydrophilic chains. On the other hand, although PMPC also has protein-repellent characteristics, the low surface chain density of the hydrophilic shell is supposed to enable interactions with small proteins. The PMPC40-b-PDPA70 micelles are stable in BSA and IgG environments due to weak repulsion forces between PMPC and the proteins, to the hydration layer, and particularly to a size-effect where the large BSA (RH = 4.2 nm) and IgG (RH = 7.0 nm) do not easily diffuse within the PMPC shell. Conversely, a clear interaction was observed with the 2.1 nm radius lysozyme. The lysozyme protein can diffuse within the PMPC micellar shell towards the PDPA hydrophobic core in a process favored by its smaller size and the low hydrophilic PMPC surface chain density (~0.049 chains per nm2) as compared to PEO-b-PG2MA (~0.110 chains per nm2). The same behavior was not evidenced with the 2.3 nm radius positively charged CytC, probably due to its higher surface hydrophilicity and the consequent chemical

  16. Micelle-derived catalysts for extended Schulz-Flory

    SciTech Connect

    Not Available

    1985-01-01

    The reduced C-73-1-101 iron catalyst was retested in Run 10, under the third set of reference conditions: 208[degree]C, 500 psig, 0.9 (molar) H[sub 2]/CO feed ratio, [approximately] 35% initial CO conversion. The analysis of the products collected during the entire 252-hour run, including the wax recovered from the catalyst, resulted in [alpha] = 0.78 for carbon numbers 1 to 15 and [alpha] = 0.88 for carbon numbers 16 to 45. The results of Run 10 are satisfactory and will be used in the future as reference performance. No further tests with the reference catalyst are going to be conducted until a method for testing experimental catalysts is established and new reference performance under different conditions is necessitated. Ruthenium particles, mostly in the 40 to 60 [Angstrom] size range, were prepared on the [gamma]-alumina by using a micelle technique. The narrow size distribution of ruthenium particles was not maintained and some very large particles up to 1000 [Angstrom] resulted when the catalyst preparation was upscaled from 2 g to [approximately] 30 g. The causes of the maldistribution that occurred during the scaling up of the catalyst preparation are under investigation. The catalyst which showed broad size distribution of ruthenium particles showed rapid deactivation during a test in Plant 700. Investigations are under way to improve the catalytic stability. Small angle X-ray scattering was used to characterize the reversed micelle solution used in the preparation of ruthenium catalysts. The volume averaged diameter of the water core for the reversed micelles is between 75 and 90 [Angstrom].

  17. Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy

    NASA Astrophysics Data System (ADS)

    Cai, Zhixiong; Zhang, Da; Lin, Xinyi; Chen, Yunzhu; Wu, Ming; Wei, Zuwu; Zhang, Zhenxi; Liu, Xiaolong; Yao, Cuiping

    2017-10-01

    Nanoplatform integrated with photothermal therapy (PTT) and chemotherapy has been recognized a promising agent for enhancing cancer therapeutic outcomes, but still suffer from less controllability for optimizing their synergistic effects. We fabricated glutathione (GSH) responsive micelles incorporated with semiconducting polymer dots and doxorubicin (referred as SPDOX NPs) for combining PTT with chemotherapy to enhance cancer therapeutic efficiency. These micelles, with excellent water dispersibility, comprises of three distinct functional components: (1) the monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), which forms the micelles, can render hydrophobic substances water-soluble and improve the colloidal stability; (2) disulfide linkages can be cleaved in a reductive environment for tumor specific drug release due to the high GSH concentrations of tumor micro-environment; (3) PCPDTBT dots and anti-cancer drug DOX that are loaded inside the hydrophobic core of the micelle can be applied to simultaneously perform PTT and chemotherapy to achieve significantly enhanced tumor killing efficiency both in vitro and in vivo. In summary, our studies demonstrated that our SPDOX NPs with simultaneous photothermal-chemotherapy functions could be a promising platform for a tumor specific responsive drug delivery system.

  18. Transformation from Globular to Cylindrical Mixed Micelles through Molecular Exchange that Induces Micelle Fusion.

    PubMed

    Jensen, Grethe V; Lund, Reidar; Narayanan, Theyencheri; Pedersen, Jan Skov

    2016-06-02

    Transformations between different micellar morphologies in solution induced by changes in composition, salt, or temperature are well-known phenomena; however, the understanding of the associated kinetic pathways is still limited. Especially for mixed surfactant systems, the micelles can take a very wide range of structures, depending on the surfactant packing parameter and other thermodynamic conditions. Synchrotron-based small-angle X-ray scattering (SAXS) in combination with fast mixing using a stopped-flow apparatus can give direct access to the structural kinetics on a millisecond time scale. Here, this approach is used to study the formation of cylindrical micelles after mixing two solutions with globular micelles of the nonionic surfactant dodecyl maltoside (DDM) and the anionic surfactant sodium dodecyl sulfate (SDS), respectively. Two separate processes were identified: (i) a transition in micellar shell structure, interpreted as exchange of surfactant molecules resulting in mixed globular micelles, and subsequently, (ii) fusion into larger, cylindrical structures.

  19. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    SciTech Connect

    Ray, D. Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  20. On-line micellar electrokinetic chromatography-electrospray ionization mass spectrometry using anodically migrating micelles

    SciTech Connect

    Yang, L.; Harrata, A.K.; Lee, C.S. |

    1997-05-15

    On-line micellar electrokinetic chromatography (MEKC)-electrospray ionization mass spectrometry (ESIMS) is demonstrated for the analysis of chlorotriazine herbicides and barbiturates. In this study, the micellar velocity is directly manipulated by the adjustment of electroosmosis rather than the electrophoretic velocity of the micelle. The electroosmotic flow is adjusted against the electrophoretic velocity of the micelle by changing the solution pH in MEKC. The elimination of MEKC surfactant introduction into ESIMS is achieved with an anodically migrating micelle, moving away from the electrospray interface. The effects of moving surfactant boundary in the MEKC capillary on separation efficiency and resolution of triazine herbicides and barbiturates are investigated. The mass detection of herbicides and barbiturates sequentially eluted from the MEKC capillary is acquired using the positive and negative electrospray modes, respectively. 30 refs., 8 figs., 3 tabs.

  1. Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation.

    PubMed

    Lu, Xiaoyan; Zhang, Fayun; Qin, Lei; Xiao, Fengying; Liang, Wei

    2010-05-01

    Polymeric micelles had been used as an efficacious carrier system for anti-cancer drug delivery. However, it is not clear whether the molecular mechanism of drug encapsulated in micelles is same as free drug. In this study, the mechanism of vinorelbine loaded in glycol-phosphatidylethanolamine (PEG-PE) micelles (M-Vino) on tumor cells was investigated. Compared with free vinorelbine (Free Vino), M-Vino was more effective in inhibiting the growth of tumor cells in vitro, inducing G(2)/M phase arrest and apoptosis of tumor cells. M-Vino showed a faster entry and higher accumulation in 4T1 cells than free vinorelbine. Therefore, M-Vino destabilized microtubules, induced cell death, and enhanced its cytotoxicity through more intercellular accumulation of vinorelbine.

  2. Static and dynamic structures of spherical nonionic surfactant micelles during the disorder-order transition.

    PubMed

    Imai, M; Yoshida, I; Iwaki, T; Nakaya, K

    2005-01-22

    We have investigated the static and dynamic structures of nonionic surfactant micelles, a C(12)E(8)/water binary system, during the disorder-order transition using small angle x-ray scattering, static light scattering, and dynamic light scattering techniques. In the disordered phase, the micelles have spherical shape and intermicellar interactions are governed by the hard core and weak long ranged attractive potentials. With increase of the micellar concentration, the disordered micelles transform to the three characteristic ordered micellar phases, a hexagonally close packed lattice, a body centered cubic lattice, and an A15 lattice having area-minimizing structure. The stability of these phases is well explained by balance of a close packing rule and a minimal-area rule proposed by Ziherl and Kamien [Phys. Rev. Lett. 85, 3528 (2000)]. The role of hydrodynamic interactions in surfactant micellar solutions was compared with that in hard sphere colloidal particle suspensions.

  3. Applications of micelle enhancement in luminescence-based analysis.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2015-02-01

    Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Investigation of LEO environment exposure monitoring potential using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Park, Yurim; Kwon, Hyunseok; Shrestha, Pratik; Kim, Chun-Gon

    2017-04-01

    Composite materials provide many advantages over conventional materials including metals, especially for space applications. However, composites have failure modes that are complex and difficult to identify, and various cracks and delamination are predominantly difficult to detect visually. In this regard, an effective method of monitoring the integrity of composite materials and structures exposed to hazardous space environments is necessary to ensure the long-term reliability of composite materials in aerospace applications. FBG sensors are advantageous for space applications due to their immunity to various environments. In this study, FBG sensors were used to investigate LEO environment exposure monitoring of CFRP.

  5. Peptide-micelle Hybrids Containing Fasudil for Targeted Delivery to the Pulmonary Arteries and Arterioles to Treat PAH

    PubMed Central

    Gupta, Nilesh; Ibrahim, Hany M.; Ahsan, Fakhrul

    2017-01-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell penetrating and lung homing peptide, conjugated DSPE-PEG micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline induced PAH rats, respectively. CAR-micelles containing fasudil had an entrapment efficiency of ∼58%, showed controlled release of the drug, and were monodispersed with an average size of ∼14nm. NMR scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by ∼1.7-fold and extended the drug half-life by ∼5-fold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy. PMID:25266507

  6. On the composition fluctuations of reverse micelles.

    PubMed

    Tovstun, Sergey A; Razumov, Vladimir F

    2010-11-15

    The polydispersity of the reverse micelles is determined mainly by the fluctuations of their composition. The composition of the reverse micelle is a two-dimensional random variable whose components are the numbers of water (i) and surfactant (j) molecules. In this study the fluctuations of the composition of the reverse micelles are considered in the Gaussian approximation. It is shown that the standard deviation of the quantity w=i/j may be calculated from the dependence of the water vapor pressure above the microemulsion on the molar ratio W=[water]/[surfactant]. The estimation based on the literature data for microemulsion system sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane at 37°C in the range W=0-18 has shown that the relative standard deviation of the quantity w is about 10%. It is shown that the value of the composition fluctuations is related to the dependence of average composition on the concentration of reverse micelles at constant parameter W.

  7. Hollow flower micelles from a diblock copolymer

    NASA Astrophysics Data System (ADS)

    Changez, Mohammad; Kang, Nam-Goo; Kim, Dong Woo; Lee, Jae-Suk

    2013-11-01

    A poly(2-vinylpyridine)-block-poly(2-(4-vinylphenyl)pyridine) (P2VP106-b-PVPPy95) coil-coil diblock copolymer forms hollow flower micelles in a mixed solvent of methanol and water (95/5, v/v) in a one step process. The geometry and composition of the micelles allow formation of a Pt-Au bimetallic dendritic nanocatalyst with a Pt leaf at room temperature.A poly(2-vinylpyridine)-block-poly(2-(4-vinylphenyl)pyridine) (P2VP106-b-PVPPy95) coil-coil diblock copolymer forms hollow flower micelles in a mixed solvent of methanol and water (95/5, v/v) in a one step process. The geometry and composition of the micelles allow formation of a Pt-Au bimetallic dendritic nanocatalyst with a Pt leaf at room temperature. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr03063f

  8. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  9. Detection of hydrogen peroxide with chemiluminescent micelles

    PubMed Central

    Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren

    2008-01-01

    The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona. PMID:19337415

  10. Statistical thermodynamics of amphiphile chains in micelles

    PubMed Central

    Ben-Shaul, A.; Szleifer, I.; Gelbart, W. M.

    1984-01-01

    The probability distribution of amphiphile chain conformations in micelles of different geometries is derived through maximization of their packing entropy. A lattice model, first suggested by Dill and Flory, is used to represent the possible chain conformations in the micellar core. The polar heads of the chains are assumed to be anchored to the micellar surface, with the other chain segments occupying all lattice sites in the interior of the micelle. This “volume-filling” requirement, the connectivity of the chains, and the geometry of the micelle define constraints on the possible probability distributions of chain conformations. The actual distribution is derived by maximizing the chain's entropy subject to these constraints; “reversals” of the chains back towards the micellar surface are explicitly included. Results are presented for amphiphiles organized in planar bilayers and in cylindrical and spherical micelles of different sizes. It is found that, for all three geometries, the bond order parameters decrease as a function of the bond distance from the polar head, in accordance with recent experimental data. The entropy differences associated with geometrical changes are shown to be significant, suggesting thereby the need to include curvature (environmental)-dependent “tail” contributions in statistical thermodynamic treatments of micellization. PMID:16593492

  11. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  12. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-08

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications.

  13. Non-diffusing radiochromic micelle gel

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-11-01

    The addition of Laponite, a synthetic clay nanoparticle material to radiochromic leuco Malachite Green micelle hydrogel eliminates diffusion of the cationic dye by electrostatic binding. The clay nanoparticles also increased dose sensitivity ten-fold relative to the parent gel formulation. This material is a suitable 3D water equivalent dosimeter with optical CT readout.

  14. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  15. Micelle assisted structural conversion with fluorescence modulation of benzophenanthridine alkaloids

    NASA Astrophysics Data System (ADS)

    Pradhan, Ankur Bikash; Bhuiya, Sutanwi; Haque, Lucy; Tiwari, Richa; Das, Suman

    2017-01-01

    In this study we have reported the anionic surfactant (Sodium dodecyl sulfate, SDS) driven structural conversion of two benzophenanthridine plant alkaloids namely Chelerythrine (herein after CHL) and Sanguinarine (herein after SANG). Both the alkaloids exist in two forms: the charged iminium and the neutral alkanolamine form. The iminium form is stable at low pH (< 6.5) and the alkanolamine form exists at higher pH (> 10.1). The fluorescence intensity of the alkanolamine form is much stronger than the iminium form. The iminium form of both the alkaloids remains stable whereas the alkanolamine form gets converted to the iminium form in the SDS micelle environment. The iminium form possesses positive charge and it seems that electrostatic interaction between the positively charged iminium and negatively charged surfactant leads to the stabilization of the iminium form in the Stern layer of the anionic micelle. Whereas the conversion of the alkanolamine form into the iminium form takes place and that can be monitored in naked eye since the iminium form is orange in colour and the alkanolamine form has blue violet emission. Such a detail insight about the photophysical properties of the benzophenanthridine alkaloids would be a valuable addition in the field of alkaloid-surfactant interaction.

  16. Purification of a membrane protein with conjugated engineered micelles.

    PubMed

    Patchornik, Guy; Danino, Dganit; Kesselman, Ellina; Wachtel, Ellen; Friedman, Noga; Sheves, Mordechai

    2013-07-17

    A novel method for purifying membrane proteins is presented. The approach makes use of engineered micelles composed of a nonionic detergent, β-octylglucoside, and a hydrophobic metal chelator, bathophenanthroline. Via the chelators, the micelles are specifically conjugated, i.e., tethered, in the presence of Fe(2+) ions, thereby forming micellar aggregates which provide the environment for separation of lipid-soluble membrane proteins from water-soluble proteins. The micellar aggregates (here imaged by cryo-transmission electron microscopy) successfully purify the light driven proton pump, bacteriorhodopsin (bR), from E. coli lysate. Purification takes place within 15 min and can be performed both at room temperature and at 4 °C. More than 94% of the water-soluble macromolecules in the lysate are excluded, with recovery yields of the membrane protein ranging between 74% and 85%. Since this approach does not require precipitants, high concentrations of detergent to induce micellar aggregates, high temperature, or changes in pH, it is suggested that it may be applied to the purification of a wide variety of membrane proteins.

  17. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Theodoly, O.; Checco, A; Muller, P

    2010-01-01

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters.

  18. Influence of succinylation on the conformation of yak casein micelles.

    PubMed

    Yang, Min; Cui, Na; Fang, Yan; Shi, Ying; Yang, Jitao; Wang, Jiangyu

    2015-07-15

    Succinylation modifies the physicochemical characteristics and improves the functional properties of proteins. This study assessed the effects of succinylation on the conformation of yak casein micelles with seven degree of modification. The results revealed that succinylation contributed to the dissociation of casein micelles. With the increase of succinylated degree, soluble nitrogen and minerals content increased, while casein micelle size and polydispersity index of micelles decreased. Succinylation affected the spatial conformation of yak casein micelles: turn decreased, ß-sheet and α-helix increased, and irregular structure were non-significantly affected. The intrinsic and ANS fluorescence intensity decreased and the maximum emission wavelength shifted red with increasing succinylation. Based on the results, the structure of yak casein micelles was characteristic of the sub-micelle model.

  19. In vitro and in vivo toxicity evaluation of cationic PDMAEMA-PCL-PDMAEMA micelles as a carrier of curcumin.

    PubMed

    Tzankova, Virginia; Gorinova, Cvetelina; Kondeva-Burdina, Magdalena; Simeonova, Rumiana; Philipov, Stanislav; Konstantinov, Spiro; Petrov, Petar; Galabov, Dimitar; Yoncheva, Krassimira

    2016-11-01

    Polymeric micelles have attracted significant attention because of their potential application as promising drug-delivery systems. In the present study cationic micelles, based on triblock copolymer poly(dimethylaminoethyl methacrylate) - poly(e-caprolactone) - poly(dimethylaminoethyl methacrylate) were prepared and loaded with curcumin. In vitro cytotoxicity of empty and curcumin loaded polymer micelles was investigated on two cell culture models, human hepatoma cell line HEP G2 and freshly isolated rat hepatocytes, following their viability and lactate dehydrogenase (LDH) leakage. MTT dye reduction assay and LDH release study showed that empty cationic micelles did not cause significant changes in cell viability and membrane integrity at the concentration range from 10.0 to 80.0 μg/ml. Our special attention was focused on the effects of empty and curcumin loaded micelles on oxidative stress markers malondialdehyde (MDA) and reduced glutathione (GSH). The increase in the micelles concentration to 100 μg/ml was accompanied by GSH depletion and increased levels of MDA production in isolated rat hepatocytes. The in vivo toxicity of polymeric micelles was examined in male Wistar rats. The results showed that neither single (7.5 mg/kg, i.p.), nor repeated (3.5 mg/kg, i.p., 14 days) exposure to empty or curcumin loaded polymeric micelles induced any toxicity changes, e.g. hematopoietic and liver tissue damages.

  20. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers.

    PubMed

    Fan, Haiyan; Li, Yixia; Yang, Jinxian; Ye, Xiaodong

    2017-09-19

    Reduction-responsive micelles hold enormous promise for the application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, are not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.

  1. Casein micelles and their internal structure.

    PubMed

    de Kruif, Cornelis G; Huppertz, Thom; Urban, Volker S; Petukhov, Andrei V

    2012-01-01

    The internal structure of casein micelles was studied by calculating the small-angle neutron and X-ray scattering and static light scattering spectrum (SANS, SAXS, SLS) as a function of the scattering contrast and composition. We predicted experimental SANS, SAXS, SLS spectra self consistently using independently determined parameters for composition size, polydispersity, density and voluminosity. The internal structure of the casein micelles, i.e. how the various components are distributed within the casein micelle, was modeled according to three different models advocated in the literature; i.e. the classical sub-micelle model, the nanocluster model and the dual binding model. In this paper we present the essential features of these models and combine new and old experimental SANS, SAXS, SLS and DLS scattering data with new calculations that predict the spectra. Further evidence on micellar substructure was obtained by internally cross linking the casein micelles using transglutaminase, which led to casein nanogel particles. In contrast to native casein micelles, the nanogel particles were stable in 6M urea and after sequestering the calcium using trisodium citrate. The changed scattering properties were again predicted self consistently. An important result is that the radius of gyration is independent of contrast, indicating that the mass distribution within a casein micelle is homogeneous. Experimental contrast is predicted quite well leading to a match point at a D(2)O volume fraction of 0.41 ratio in SANS. Using SANS and SAXS model calculations it is concluded that only the nanocluster model is capable of accounting for the experimental scattering contrast variation data. All features and trends are predicted self consistently, among which the 'famous' shoulder at a wave vector value Q=0.35 nm(-1) In the nanocluster model, the casein micelle is considered as a (homogeneous) matrix of caseins in which the colloidal calcium phosphate (CCP) nanoclusters are

  2. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Cao, Yanwu; Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Peer, Dan; Zhao, Yanjun

    2015-03-01

    Nanoscale drug delivery platforms have been developed over the past four decades that have shown promising clinical results in several types of cancer and inflammatory disorders. These nanocarriers carrying therapeutic payloads are maximizing the therapeutic outcomes while minimizing adverse effects. Yet one of the major challenges facing drug developers is the dilemma of premature versus on-demand drug release, which influences the therapeutic regiment, efficacy and potential toxicity. Herein, we report on redox-sensitive polymer-drug conjugate micelles for on-demand intracellular delivery of a model active agent, curcumin. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide bond or ester bond (control), respectively. The self-assembled redox-sensitive micelles exhibited a hydrodynamic size of 115.6 ± 5.9 (nm) with a zeta potential of -10.6 ± 0.7 (mV). The critical micelle concentration was determined at 6.7 ± 0.4 (μg mL-1). Under sink conditions with a mimicked redox environment (10 mM dithiothreitol), the extent of curcumin release at 48 h from disulfide bond-linked micelles was nearly three times higher compared to the control micelles. Such rapid release led to a lower half maximal inhibitory concentration (IC50) in HeLa cells at 18.5 ± 1.4 (μg mL-1), whereas the IC50 of control micelles was 41.0 ± 2.4 (μg mL-1). The cellular uptake study also revealed higher fluorescence intensity for redox-sensitive micelles. In conclusion, the redox-sensitive polymeric conjugate micelles could enhance curcumin delivery while avoiding premature release, and achieving on-demand release under the high glutathione concentration in the cell cytoplasm. This strategy opens new avenues for on-demand drug release of nanoscale intracellular delivery platforms that ultimately might be translated into pre-clinical and future clinical practice.

  3. Electroactive Self-Assembled Monolayers Detect Micelle Formation.

    PubMed

    Dionne, Eric R; Badia, Antonella

    2017-02-15

    The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC12SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°'SAM) of the FcC12SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°'SAM is also investigated. Weakly hydrated anions, such as ClO4(-), pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°'SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°'SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°'SAM are addressed. Ultimately, the E°'SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC12SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.

  4. Anodic oxidation of surfactants and organic compounds entrapped in micelles - Selective degradation mechanisms and soil washing solution reuse.

    PubMed

    Trellu, Clément; Oturan, Nihal; Pechaud, Yoan; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2017-07-01

    Formation of micelles at high surfactant concentration strongly modifies organic pollutant oxidation mechanisms and kinetics during anodic oxidation (AO) using boron doped diamond (BDD) anode. Results presented and discussed in this study emphasized the following mechanisms: (i) micelles act as a protective environment and reduce the availability of target molecules towards BDD((•)OH); (ii) the use of low current density strongly reduces micelle degradation kinetics due to both steric hindrance phenomenon for oxidation of micelles at the BDD surface and decrease of mediated oxidation in the bulk; (iii) compounds solubilized in surfactant-containing solutions can be either oxidized after degradation of the protective environment formed by micelles or if they are present as free extra-micellar compounds. Therefore, selective degradation of organic compounds entrapped in micelles can be achieved by using low current density and high surfactant concentration. In fact, these operating conditions strongly hinder micelle oxidation, while free (extra-micellar) compounds can still be oxidized. Then, the remaining entrapped compounds can also be continuously released in the aqueous phase, according to the micellar/aqueous phase partitioning coefficient (Km). These results have been applied for the treatment of a real polycyclic aromatic hydrocarbon-containing soil washing (SW) solution. After 23 h of treatment at 2.1 mA cm(-2), 83% of phenanthrene, 90% of anthracene, 77% of pyrene and 75% of fluoranthene were degraded and the treated SW solution was reused for an additional SW step with only 5% lower extraction capacity than a fresh TW80 solution. A comparative study highlighted the superiority of this treatment strategy, compared to the use of activated carbon for selective adsorption of polycyclic aromatic hydrocarbons and SW solution reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A systematic investigation of the rate laws valid in intracellular environments.

    PubMed

    Grima, R; Schnell, S

    2006-10-20

    Recently there has been significant interest in deducing the form of the rate laws for chemical reactions occurring in the intracellular environment. This environment is typically characterized by low-dimensionality and a high macromolecular content; this leads to a spatial heterogeneity not typical of the well stirred in vitro environments. For this reason, the classical law of mass action has been presumed to be invalid for modeling intracellular reactions. Using lattice-gas automata models, it has recently been postulated [H. Berry, Monte Carlo simulations of enzyme reactions in two dimensions: Fractal kinetics and spatial segregation, Biophys. J. 83 (2002) 1891-1901; S. Schnell, T.E. Turner, Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws, Prog. Biophys. Mol. Biol. 85 (2004) 235-260] that the reaction kinetics is fractal-like. In this article we systematically investigate for the first time how the rate laws describing intracellular reactions vary as a function of: the geometry and size of the intracellular surface on which the reactions occur, the mobility of the macromolecules responsible for the crowding effects, the initial reactant concentrations and the probability of reaction between two reactant molecules. We also compare the rate laws valid in heterogeneous environments in which there is an underlying spatial lattice, for example crystalline alloys, with the rate laws valid in heterogeneous environments where there is no such natural lattice, for example in intracellular environments. Our simulations indicate that: (i) in intracellular environments both fractal kinetics and mass action can be valid, the major determinant being the probability of reaction, (ii) the geometry and size of the intracellular surface on which reactions are occurring does not significantly affect the rate law, (iii) there are considerable differences between the rate laws valid in heterogeneous non-living structures such

  6. Aggregation of rennet-altered casein micelles at low temperatures.

    PubMed

    Bansal, Nidhi; Fox, Patrick F; McSweeney, Paul L H

    2007-04-18

    The rennet-induced coagulation of bovine milk at 10 degrees C was investigated. The rate of change of absorbance at 600 nm was higher in milk renneted at 30 degrees C than that at 10 degrees C. The amount of casein sedimented on centrifuging skim milk at 5000g for 1 h at 10 degrees C increased with time after renneting. The viscosity of milk at 10 degrees C at low shear rates did not change significantly until 10 h after rennet addition, but it increased markedly after 20 h. Smaller particles in milk at 10 degrees C disappeared slowly over 36 h after rennet addition and aggregated into larger particles. These results suggested that casein micelles in milk aggregate at low temperatures. Reasons for the slow aggregation of milk renneted at 10 degrees C were investigated by inhibiting chymosin activity by pepstatin A. It is likely that beta-casein, or its hydrolysis, plays a role in aggregation of rennet-altered casein micelles at low temperatures.

  7. Phospholipid containing mixed micelles. Characterization of diheptanoyl phosphatidylcholine (DHPC) and sodium dodecyl sulfate and DHPC and dodecyl trimethylammonium bromide.

    PubMed

    Ranganathan, Radha; Vautier-Giongo, Carolina; Bakshi, Mandeep Singh; Bales, Barney L; Hajdu, Joseph

    2005-05-01

    Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.

  8. Synthesis and characterization of 3,6-O,O'- dimyristoyl chitosan micelles for oral delivery of paclitaxel.

    PubMed

    Silva, Daniella S; Almeida, Andreia; Prezotti, Fabíola; Cury, Beatriz; Campana-Filho, Sérgio P; Sarmento, Bruno

    2017-04-01

    The aim of the present study was to investigate the potential application of 3,6-O,O'- dimyristoyl chitosan DMCh, an amphiphilic derivative of chitosan, for improving the oral bioavailability of paclitaxel (PTX), a water insoluble anticancer drug. The O-acylation of chitosan with myristoyl chloride was carried out by employing high (≈13.3) or low (2.0) molar excess of chitosan to result in samples DMCh07 and DMCh12, respectively. The successful O-acylation of chitosan was confirmed by FTIR and (1)H NMR spectroscopy, the latter allowing also the determination of average degree of substitution (DS). The critical aggregation concentration (CAC) of samples DMCh07 (DS≈6.8%) and DMCh12 (DS≈12.0%) were 8.9×10(-3)mg/mL and 13.2×10(3)mg/mL, respectively. It was observed by TEM that the DMCh micelles showed spherical shape while DLS measurements allowed the determination of their average size (287nm-490nm) and zeta potential (+32mV to +44mV). Such DMCh micelles were able to encapsulate paclitaxel with high drug encapsulation efficiency (EE), as confirmed by HPLC analyses. Studies on the cytotoxicity of DMCh07 micelles toward Caco-2 and HT29-MTX cells showed that, regardless the PTX loaded, DMCh07 micelles slightly decreased cellular viability at low micelles concentration (≤1μg/mL) while at high concentration (>10μg/mL) PTX-loaded DMCh07 micelles were less toxic toward Caco-2 cells when compared to free PTX. The PTX permeation across Caco-2 monoculture and Caco-2/HT29-MTX co-culture model confirmed the potential of DMCh micelles in improving the intestinal absorption of PTX. These results suggest that DMCh micelles may be a promising carrier to encapsulate PTX aiming cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform.

    PubMed

    Kapishon, Vitaliy; Allison, Stephanie; Whitney, Ralph A; Cunningham, Michael F; Szewczuk, Myron R; Neufeld, Ronald J

    2016-03-01

    Targeted drug delivery using polymeric nanostructures has been at the forefront of cancer research, engineered for safer, more efficient and effective use of chemotherapy. Here, we designed a new polymeric micelle delivery system for active tumor targeting followed by micelle-drug internalization via receptor-induced endocytosis. We recently reported that oseltamivir phosphate targets and inhibits Neu1 sialidase activity associated with receptor tyrosine kinases such as epidermal growth factor receptors (EGFRs) which are overexpressed in cancer cells. By decorating micelles with oseltamivir, we investigated whether they actively targeted human pancreatic PANC1 cancer cells. Amphiphilic block copolymers with oseltamivir conjugated at the hydrophilic end, oseltamivir-pPEGMEMA-b-pMMA (oseltamivir-poly(polyethylene glycol methyl ether methacrylate)-block-poly(methyl methacrylate), were synthesized using reversible addition-fragmentation chain transfer (RAFT) living radical polymerization. Oseltamivir-conjugated micelles have self-assembling properties to give worm-like micellar structures with molecular weight of 80 000 g mol(-1). Oseltamivir-conjugated water soluble pPEGMEMA, dose dependently, both inhibited sialidase activity associated with Neu1, and reduced viability of PANC1 cells. In addition, oseltamivir-conjugated micelles, labelled with a hydrophobic fluorescent dye within the micelle core, were subsequently internalized by PANC1 cells. Blocking cell surface Neu1 with anti-Neu1 antibody, reduced internalization of oseltamivir-conjugated micelles, demonstrating that Neu1 binding linked to sialidase inhibition were prerequisite steps for subsequent internalization of the micelles. The mechanism of internalization is likely that of receptor-induced endocytosis demonstrating potential as a new nanocarrier system for not only targeting a tumor cell, but also for directly reducing viability through Neu1 inhibition, followed by intracellular delivery of hydrophobic

  10. New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery.

    PubMed

    Licciardi, Mariano; Cavallaro, Gennara; Di Stefano, Mauro; Pitarresi, Giovanna; Fiorica, Calogero; Giammona, Gaetano

    2010-08-30

    A new amphiphilic copolymer have been synthesized starting from the hydrosoluble polyaspartylhydrazide (PAHy) polymer, by grafting both hydrophilic PEG(2000) chains and hydrophobic palmitic acid (C(16)) moieties on polymer backbone, and the structure of obtained PAHy-PEG(2000)-C(16) copolymer have been characterized by 2D (1)H/(13)C NMR experiments. PAHy-PEG(2000)-C(16) copolymer showed the ability of self-assembling in aqueous media giving a core-shell structure and resulted potentially useful for encapsulating and dissolving hydrophobic drug. The formation of micellar core-shell structure has been investigated by 2D (1)H NMR NOESY experiments. The presence of cross-peaks for protons of C(16) and PAHy portions, indicated that the two domains are in close proximity forming micelle core. The critical aggregation concentration (CAC) values of PAHy-PEG(2000)-C(16) amphiphilic graft copolymer was determined in water by fluorescence technique, and it was demonstrated that PAHy-PEG(2000)-C(16) micelles are well suited to be micellar vehicle of highly hydrophobic molecules. Therefore, anticancer drug tamoxifen, used as a model hydrophobic molecule, was loaded into PAHy-PEG(2000)-C(16) micelles obtaining an increase of drug solubility of about 3000 times. Transmission electron microscopy (TEM) observations showed the spherical morphology of micelles formed by PAHy-PEG(2000)-C(16) copolymer with a mean diameter of about 30nm, as confirmed also by dynamic light scattering (DLS) studies. Finally, in vitro cell viability studies were carried out on human breast cancer cells (MCF-7) testing the pharmacological activity of tamoxifen-loaded PAHy-PEG(2000)-C(16) micelles, in comparison with free tamoxifen at different drug concentrations, demonstrating that tamoxifen-loaded PAHy-PEG(2000)-C(16) micelles exhibited a concentration-dependent cytotoxic activity. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Amphiphilic polymeric micelle as pseudostationary phase in electrokinetic chromatography for analysis of eight corticosteroids in cosmetics.

    PubMed

    Xu, Xiaojin; Ni, Xinjiong; Cao, Yuhua; Zhuo, Xiaolu; Yang, Xiaoxiao; Cao, Guangqun

    2014-03-01

    Amphiphilic polymeric micelle, as a novel pseudostationary phase in EKC was used to determine eight kinds of corticosteroids namely hydrocortisone, prednisolone, hydrocortisone acetate, prednisone, cortisone acetate, prednisolone acetate, dexamethasone, and triamcinolone acetonide in cosmetics. Amphiphilic random copolymer poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) was micellizated via neutralization in alkaline aqueous solution. The influences of the molar ratio of monomer MMA to MAA, the concentration of polymer and pH on the polymeric micelle microstructure and EKC performances were investigated. As molar ratio of MMA to MAA in P(MMA-co-MAA) increased, both CMC and environmental polarity of the inner core in polymeric micelle decreased dramatically. With increasing monomer ratio, the size of polymeric micelles increased firstly, and then decreased, finally increased again. ζ potential of the micelle had a slight decline trend. As increment of polymer concentration, the size of the polymeric micelle increased steadily. By optimizing the monomer ratio, the polymer concentration, and pH of the running buffer, as well as operation conditions such as separation voltage and temperature, the eight analytes could be separated within 16.5 min using 7.5 mg/mL polymer with the monomer ratio of 7:3 dissolved in pH 9.2 borax buffer as the running buffer. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for eight analytes were between 85.9 and 106%. This method was of accuracy, repeatability, pretreatment simplicity, and could be applied to the quality control of cosmetics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells.

    PubMed

    Sugawara, T; Kushiro, M; Zhang, H; Nara, E; Ono, H; Nagao, A

    2001-11-01

    Despite the interest in the beneficial roles of dietary carotenoids in human health, little is known about their solubilization from foods to mixed bile micelles during digestion and the intestinal uptake from the micelles. We investigated the absorption of carotenoids solubilized in mixed micelles by differentiated Caco-2 human intestinal cells, which is a useful model for studying the absorption of dietary compounds by intestinal cells. The micelles were composed of 1 micromol/L carotenoids, 2 mmol/L sodium taurocholate, 100 micromol/L monoacylglycerol, 33.3 micromol/L fatty acid and phospholipid (0-200 micromol/L). The phospholipid content of micelles had profound effects on the cellular uptake of carotenoids. Uptake of micellar beta-carotene and lutein was greatly suppressed by phosphatidylcholine (PC) in a dose-dependent manner, whereas lysophosphatidylcholine (lysoPC), the lipolysis product of PC by phospholipase A2 (PLA2), markedly enhanced both beta-carotene and lutein uptake. The addition of PLA2 from porcine pancreas to the medium also enhanced the uptake of carotenoids from micelles containing PC. Caco-2 cells could take up 15 dietary carotenoids, including epoxy carotenoids, such as violaxanthin, neoxanthin and fucoxanthin, from micellar carotenoids, and the uptakes showed a linear correlation with their lipophilicity, defined as the distribution coefficient in 1-octanol/water (log P(ow)). These results suggest that pancreatic PLA2 and lysoPC are important in regulating the absorption of carotenoids in the digestive tract and support a simple diffusion mechanism for carotenoid absorption by the intestinal epithelium.

  13. Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt.

    PubMed

    Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong

    2007-12-15

    The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain

  14. Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.

    PubMed Central

    Tang, S S; Chang, G G

    1996-01-01

    Octopus glutathione transferase (GST) was enzymically active in aerosol-OT [sodium bis-(2-ethylhexyl)sulphosuccinate]/iso-octane reverse micelles albeit with lowered catalytic constant (kcat). The enzyme reaction rate was found to be dependent on the [H2O]/[surfactant] ratio (omega(o)) of the system with maximum rate observed at omega(o) 13.88, which corresponded to vesicles with a core volume of 64 nm3. According to the physical examinations, a vesicle of this size is barely large enough to accommodate a monomeric enzyme subunit. Dissociation of the enzyme in reverse micelles was confirmed by cross-linking of the associated subunits with glutaraldehyde and separation of the monomers and dimers with electrophoresis in the presence of SDS. The kinetic properties of the enzyme were investigated by steady-state kinetic analysis. Both GSH and 1-chloro-2,4-dinitrobenzene (CDNB) showed substrate inhibition and the Michaelis constant for CDNB was increased by 36-fold to 11.05 mM in reverse micelles. Results on the initial-velocity and product-inhibition studies indicate that the octopus GST conforms to a steady-state sequential random Bi Bi mechanism. The results from a log kcat versus pH plot suggest that amino acid residues with pKa values of 6.56 0.07 and 8.81 0.17 should be deprotonated to give optimum catalytic function. In contrast, the amino acid residue with a pKa value of 9.69 0.16 in aqueous solution had to be protonated for the reaction to proceed. We propose that the pKa1 (6.56) is that for the enzyme-bound GSH, which has a pKa value lowered by 1.40-1.54 pH units compared with that of free GSH in reverse micelles. The most probable candidate for the observed pKa2 (8.81) is Tyr7 of GST. The pKa of Tyr7 is 0.88 pH unit lower than that in aqueous solution and is about 2 pH units below the normal tyrosine. This tyrosyl residue may act as a base catalyst facilitating the dissociation of enzyme-bound GSH. The possible interaction of GST with plasma membrane in vivo

  15. Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.

    PubMed

    Tang, S S; Chang, G G

    1996-04-15

    Octopus glutathione transferase (GST) was enzymically active in aerosol-OT [sodium bis-(2-ethylhexyl)sulphosuccinate]/iso-octane reverse micelles albeit with lowered catalytic constant (kcat). The enzyme reaction rate was found to be dependent on the [H2O]/[surfactant] ratio (omega(o)) of the system with maximum rate observed at omega(o) 13.88, which corresponded to vesicles with a core volume of 64 nm3. According to the physical examinations, a vesicle of this size is barely large enough to accommodate a monomeric enzyme subunit. Dissociation of the enzyme in reverse micelles was confirmed by cross-linking of the associated subunits with glutaraldehyde and separation of the monomers and dimers with electrophoresis in the presence of SDS. The kinetic properties of the enzyme were investigated by steady-state kinetic analysis. Both GSH and 1-chloro-2,4-dinitrobenzene (CDNB) showed substrate inhibition and the Michaelis constant for CDNB was increased by 36-fold to 11.05 mM in reverse micelles. Results on the initial-velocity and product-inhibition studies indicate that the octopus GST conforms to a steady-state sequential random Bi Bi mechanism. The results from a log kcat versus pH plot suggest that amino acid residues with pKa values of 6.56 0.07 and 8.81 0.17 should be deprotonated to give optimum catalytic function. In contrast, the amino acid residue with a pKa value of 9.69 0.16 in aqueous solution had to be protonated for the reaction to proceed. We propose that the pKa1 (6.56) is that for the enzyme-bound GSH, which has a pKa value lowered by 1.40-1.54 pH units compared with that of free GSH in reverse micelles. The most probable candidate for the observed pKa2 (8.81) is Tyr7 of GST. The pKa of Tyr7 is 0.88 pH unit lower than that in aqueous solution and is about 2 pH units below the normal tyrosine. This tyrosyl residue may act as a base catalyst facilitating the dissociation of enzyme-bound GSH. The possible interaction of GST with plasma membrane in vivo

  16. The Formation of pH-Sensitive Wormlike Micelles in Ionic Liquids Driven by the Binding Ability of Anthranilic Acid

    PubMed Central

    You, Qing; Zhang, Yan; Wang, Huan; Fan, Hongfu; Guo, Jianping; Li, Ming

    2015-01-01

    Wormlike micelles are typically formed by mixing cationic and anionic surfactants because of attractive interactions in oppositely charged head-groups. The structural transitions of wormlike micelles triggered by pH in ionic liquids composed of N-alkyl-N-methylpyrrolidinium bromide-based ILs (ionic liquids) and anthranilic acid were investigated. These structures were found responsible for the variations in flow properties identified by rheology and dynamic light scattering, and account for the structures observed with cryogenic transmission electron microscopy (Cryo-TEM). High-viscosity, shear-thinning behavior, and Maxwell-type dynamic rheology shown by the system at certain pH values suggested that spherical micelles grow into entangled wormlike micelles. Light scattering profiles also supported the notion of pH-sensitive microstructural transitions in the solution. Cryo-TEM images confirmed the presence of spherical micelles in the low-viscosity sample and entangled wormlike micelles in the peak viscosity sample. Nuclear magnetic resonance spectroscopy analysis revealed that the pH sensitivity of ionic liquid systems originated from the pH-dependent binding ability of anthranilic acid to the cationic headgroup of ionic liquids. PMID:26703567

  17. Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin

    PubMed Central

    Chen, Qing; Long, Miaomiao; Qiu, Lipeng; Zhu, Mengqin; Li, Zhen; Qiao, Mingxi; Hu, Haiyang; Zhao, Xiuli; Chen, Dawei

    2016-01-01

    To improve the targeting efficacy of hyaluronic acid (HA)-based micelles, pH-sensitive mixed micelles based on HA-g-poly(L-histidine) (PHis) and d-α-tocopheryl polyethylene glycol 2000 copolymers were prepared and decorated with human epidermal growth factor receptor 2 (Her2) peptide, a tumor cell-specific peptide ligand, on their surface. The doxorubicin-loaded micelles (HA-PHis/peptide–d-α-tocopheryl polyethylene glycol 2000 mixed micelles [PHTM]) were characterized to have a unimodal size distribution and pH-dependent drug release pattern. In vitro tumor targeting studies demonstrated that PHTM exhibited the pronounced cytotoxicity and efficient internalization in MDA-MB-231 cells overexpressing CD44 and Her2 receptors. In vivo investigation into micelles in MDA-MB-231 tumor-bearing mice confirmed that PTHM could reach the tumor site more effectively and exert excellent tumor killing activity. In general, Her2 peptide decoration can enhance the selective cytotoxicity and antitumor activity of HA-based micelles. PMID:27799766

  18. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis.

    PubMed

    Jaiswal, Munmun; Kumar, Manish; Pathak, Kamla

    2015-06-01

    The aim of this article is to investigate the role of amphiphilic block copolymer-based polymeric micelles of itraconazole for the management of fungal keratitis to overcome the limitations of the conventional dosage form. The polymeric micelles were made using pluronics above critical micelle concentration. Itraconazole-loaded polymeric micelles prepared by rotary evaporation method were characterized and the optimized micellar formulation (M5) was selected on the basis of least micelle size (79.99 nm), maximum entrapment efficiency (91.32%±1.73%) and in vitro permeation (90.28%±0.31%) in 8h, that best fitted zero-order kinetics. M5 was developed as pH sensitive in situ gel and characterized for various parameters. The optimized in situ gel (F5) proved to be superior in its ex vivo transcorneal permeation when compared with Itral(®) eye drop and pure drug suspension, exhibiting 41.45%±0.87% permeation with zero-order kinetics (r(2)=0.994) across goat cornea. Transmission electron microscopy revealed spherical polymeric micelles entrapped in the gel matrix. A spectrum of tests revealed hydration capability, non-irritancy, and histologically safe gel formulation that had appropriate handling characteristics. Conclusively, a controlled release pH-sensitive ocular formulation capable of carrying drug to the anterior segment of the eye via topical delivery was successfully developed for the treatment of fungal keratitis.

  19. Preparation of core-shell nanofibers with selectively localized CNTs from Shish Kebab-like hierarchical composite micelles.

    PubMed

    Liu, Chang-Lei; Wang, Mei-Jia; Wu, Gang; You, Jiao; Chen, Si-Chong; Liu, Ya; Wang, Yu-Zhong

    2014-08-01

    A novel and facile bottom-up strategy for preparing core-shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline-coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di-block copolymer of poly (p-dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py-PPDO-b-PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self-assembly of Py-PPDO-b-PEG and MWCNTs is co-induced by the crystallization of PPDO blocks and the π-π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with "shish kebab"-like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py-PPDO-b-PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigating Design and Technology Students' Participation and Learning in a Technology Mediated Learning Environment

    ERIC Educational Resources Information Center

    Yeo, Tiong Meng; Quek, Choon Lang

    2008-01-01

    This study investigates how 15 Design & Technology (D&T) students (aged 15 years) participated in three stages of the design process in a technology mediated environment. The three stages are named "Situation," "Ideation" and "Development." The learning process is mediated by "Knowledge Forum" (KF),…

  1. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  2. Investigating the Development of Work-Oriented Groups in an e-Learning Environment

    ERIC Educational Resources Information Center

    Yu, Chia-Ping; Kuo, Feng-Yang

    2012-01-01

    In this study, we have investigated developmental patterns of virtual groups in the e-learning environment. Our findings suggest that for virtual groups formed for the purpose of e-learning, dependency and inclusion characterize the initial stage of group development, as such characteristics reinforce cooperative relationships and help to build a…

  3. Investigating Adult Language Input and Young Children's Responses in Naturalistic Environments: An Observational Framework

    ERIC Educational Resources Information Center

    Marinac, Julie V.; Woodyatt, Gail C.; Ozanne, Anne E.

    2008-01-01

    This paper reports the design and trial of an original Observational Framework for quantitative investigation of young children's responses to adult language in their typical language learning environments. The Framework permits recording of both the response expectation of the adult utterances, and the degree of compliance in the child's…

  4. Investigating the Effects of the Classroom Learning Environment on Students' Motivation in Social Studies.

    ERIC Educational Resources Information Center

    Knight, Stephanie L.; Waxman, Hersholt C.

    1990-01-01

    Investigates the relationship between social studies classroom environment and student motivation. Correlates several environmental variables with three motivational constructs (academic motivation, academic self-concept, and social self-concept) among 157 sixth grade, predominantly Hispanic students. Finds student satisfaction significantly…

  5. Investigating Design and Technology Students' Participation and Learning in a Technology Mediated Learning Environment

    ERIC Educational Resources Information Center

    Yeo, Tiong Meng; Quek, Choon Lang

    2008-01-01

    This study investigates how 15 Design & Technology (D&T) students (aged 15 years) participated in three stages of the design process in a technology mediated environment. The three stages are named "Situation," "Ideation" and "Development." The learning process is mediated by "Knowledge Forum" (KF),…

  6. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  7. Investigating the Development of Work-Oriented Groups in an e-Learning Environment

    ERIC Educational Resources Information Center

    Yu, Chia-Ping; Kuo, Feng-Yang

    2012-01-01

    In this study, we have investigated developmental patterns of virtual groups in the e-learning environment. Our findings suggest that for virtual groups formed for the purpose of e-learning, dependency and inclusion characterize the initial stage of group development, as such characteristics reinforce cooperative relationships and help to build a…

  8. Investigating Adult Language Input and Young Children's Responses in Naturalistic Environments: An Observational Framework

    ERIC Educational Resources Information Center

    Marinac, Julie V.; Woodyatt, Gail C.; Ozanne, Anne E.

    2008-01-01

    This paper reports the design and trial of an original Observational Framework for quantitative investigation of young children's responses to adult language in their typical language learning environments. The Framework permits recording of both the response expectation of the adult utterances, and the degree of compliance in the child's…

  9. Synthesis and characterization of mPEG-PLA prodrug micelles.

    PubMed

    Hans, Meredith; Shimoni, Karin; Danino, Dganit; Siegel, Steven J; Lowman, Anthony

    2005-01-01

    Polymeric prodrugs of mPEG-PLA-haloperidol (methoxypoly(ethylene glycol)-b-poly(lactic acid)) can self-assemble into nanoscale micelle-like structures in aqueous solutions. mPEG-PLA-haloperidol was prepared and characterized using 1H and 13C NMR. The conjugation efficiency was found to be 64.8 +/- 21%. Micelles that form spontaneously upon solubilization of the mPEG-PLA and the polymeric prodrugs in water were characterized using a variety of techniques. The mPEG-PLA and prodrug micelles were found to have diameters of 28.73 +/- 1.45 and 49.67 +/- 4.29 nm, respectively, using dynamic light scattering (DLS). The micelle size and polydispersity were also evaluated with cryogenic transmission electron microscopy (cryo-TEM) and were consistent with the DLS results. Cryo-TEM and proton NMR confirmed that the micelles were spherical in shape. DLS was also used to determine the aggregation numbers of the micelles. The aggregation numbers ranged from 351 to 603. The change in aggregation number was dependent on the total drug incorporation into the micelle core. Critical micelle concentrations were determined for the various micelle/drug formulations and found to range from 3 to 14 microg/mL. Finally, drug was incorporated into the micelle core using the conjugate, free drug with a saturated aqueous phase during production, or a combination of both techniques. Drug incorporation could be increased from 3% to 20% (w/w) using the different formulations.

  10. Interaction of chlorpromazine and trifluoperazine with ionic micelles: electronic absorption spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Caetano, Wilker; Tabak, Marcel

    1999-10-01

    The characteristics of binding of two phenothiazine antipsychotic drugs, namely, chlorpromazine (CPZ) and trifluoperazine (TFP), to cationic cetyltrimethylammonium chloride (CTAC), zwitterionic N-hexadecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (HPS), neutral t-octylphenoxypolyethoxyethanol (TRITON X-100) and polyoxyethylene dodecyl ether (Brij-35) micelles were investigated using electronic absorption spectroscopy. Binding constants Kb and p Ka values of drugs in micelles were estimated using the red shifts of the maximum absorption upon alkalization or in the presence of detergents. The p Ka of TFP seems to be shifted by 2.5-4.1 units to lower values in the presence of different surfactants as compared to the experimental value of p Ka obtained in buffer which is around 7.0. Consideration of the second p Ka around 4.0 reported in the literature for TFP leads to a better rationalization of p Ka changes for this compound. The changes in p Ka contributed by electrostatic effects are all positive, small for CTAC (+0.2), and greater for HPS (+0.9). For CPZ the p Ka shift due to its interaction with micelles is in the 0.7-2.3 range, the direction of the shift depending on the charge of the polar head. The electrostatic contribution for the shift is great for CTAC (-0.8) and smaller for HPS (+0.2). This result suggests a more polar localization in the micelle of CPZ as compared to TFP. The values of binding constants Kb for TFP and CPZ in different protonation states show that electrostatic interactions are essential in the affinity of the drugs to micelles bearing different charges on their headgroups (CTAC, HPS). Data for Brij-35 demonstrate that the additional charge on the TFP ring at pH 2.0 leads to a decrease of binding constant probably due to the repulsion of the phenothiazine ring from the protons accumulated at the polar head of the micelle at acidic pH values. For this micelle at pH 5.0 TFP has a Kb 3-fold greater than that for CPZ while at pH 2.0 Kb for

  11. Mixed micelles of a PEO-PPO-PEO triblock copolymer (P123) and a nonionic surfactant (C12EO6) in water. a dynamic and static light scattering study.

    PubMed

    Schillén, Karin; Jansson, Jörgen; Löf, David; Costa, Telma

    2008-05-08

    The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.

  12. Catalytic activity of elastase in reverse micelles.

    PubMed

    Bru, R; Walde, P

    1993-11-01

    The activity of porcine pancreatic elastase has been studied in reverse micelles formed by AOT (sodium bis(2-ethylhexyl) sulfosuccinate) in isooctane. For the two substrates succinyl-L-Ala-L-Ala-L-Ala-p-nitroanilide and succinyl-L-Ala-L-Ala-L-Pro-L-Leu-p-nitroanilide, the catalytic constant, kcat, in reverse micelles increases with increasing wo until, at high wo, the value of kcat measured in bulk buffer solution is approached (wo = [H2O/]AOT]). In analogy to alpha-chymotrypsin--and in apparent contrast to many other enzymes--elastase does not show a maximum in the kcat-wo profile. Within the wo range of 8 to 35, for both substrates, the Michaelis constant Km (as expressed relative to the total volume of the solution, Km,overall) increases with increasing wo.

  13. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    PubMed Central

    Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin

    2016-01-01

    In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy. PMID:27785018

  14. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance.

    PubMed

    Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin

    In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy.

  15. Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery.

    PubMed

    Karami, Zahra; Sadighian, Somayeh; Rostamizadeh, Kobra; Parsa, Maliheh; Rezaee, Saeed

    2016-04-01

    A conjugate of the NSAIDs drug, naproxen, with diblock methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) copolymer was synthesized by the reaction of copolymer with naproxen in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The naproxen conjugated copolymers were characterized with different techniques including (1)HNMR, FTIR, and DSC. The naproxen conjugated mPEG-PCL copolymers were self-assembled into micelles in aqueous solution. The TEM analysis revealed that the micelles had the average size of about 80 nm. The release behavior of conjugated copolymer was investigated in two different media with the pH values of 7.4 and 5.2. In vitro release study showed that the drug release rate was dependant on pH as it was higher at lower pH compared to neutral pH. Another feature of the conjugated micelles was a more sustained release profile compared to the conjugated copolymer. The kinetic of the drug release from naproxen conjugated micelles under different values of pH was also investigated by different kinetic models such as first-order, Makoid-Banakar, Weibull, Logistic, and Gompertz. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Infrared Pump-Probe Study of Nanoconfined Water Structure in Reverse Micelle.

    PubMed

    Lee, Jooyong; Maj, Michał; Kwak, Kyungwon; Cho, Minhaeng

    2014-10-02

    The influence of nanoconfinement on water structure is studied with time- and frequency-resolved vibrational spectroscopy of hydrazoic acid (HN3) encapsulated in reverse micelle. The azido stretch mode of HN3 is found to be a promising infrared probe for studying the structure and local hydrogen-bond environment of confined and interfacial water in reverse micelle due to its narrow spectral bandwidth and large transition dipole moment. The results show a clear separation between the core and shell spectral components, making it advantageous over the previously studied infrared probes. The measured vibrational lifetimes appear to be substantially different for the interfacial and bulk-like environments but show no remarkable size dependency, which indicates that water structures around this IR probe are distinctively different in the core and shell regions. The influence of local hydrogen bond network in the first and higher solvation shells on the vibrational dynamics of HN3 is further discussed.

  17. Association of nitrophenols to sodium dodecylsulfate micelles

    SciTech Connect

    Senz, A.; Gsponer, H.E.

    1997-11-01

    The luminescence quenching of tris(2,2{prime}-bipyridine)ruthenium(II) Ru(bpy){sub 3}{sup 2+} by 2-, 3-, and 4-nitrophenol (NO{sub 2}PhOH), in their protonated forms, has been studied by static and time-resolved techniques in water and sodium dodecyl sulfate (SDS) aqueous solution. In water, the biomolecular rate constants were obtained separately from both techniques and they were coincident. The values were close to the diffusional limit. In the presence of SDS micelles at a fixed detergent concentration, the Stern-Volmer plots of {tau}{sup 0}/{tau} vs quencher total concentration ([Q]{sub t}) were linear in the whole range of [Q]{sub t} used. However, the Stern-Volmer plots of the ratio I{sup 0}/I vs [Q]{sub t} in SDS micelles showed an upward deviating curve. From these plots of I{sup 0}/I, the concentrations of the NO{sub 2}PhOHs in the micellar pseudophase were measured. The treatment of the data of both types of measurements let the authors determine the association constants (K) of the NO{sub 2}PhOHs to SDS micelles and the exit (k{sub {minus}}) and entrance (k{sub +}) rate constants of NO{sub 2}PhOHs to the micelles. The K values obtained from either static or time-resolved luminescence techniques were in agreement within experimental error. An electron-transfer mechanism was also proposed for the quenching reaction of the excited state Ru(bpy){sub 3}{sup 2+} by nitrophenols in which the metallic complex is oxidized.

  18. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.

    PubMed

    Zhan, Changyou; Gu, Bing; Xie, Cao; Li, Jin; Liu, Yu; Lu, Weiyue

    2010-04-02

    The use of glioblastoma-targeted drug delivery system facilitates efficient delivery of chemotherapeutic agents to malignant gliomas in the central nervous system while minimizing high systemic doses associated with debilitating toxicities. To employ the high binding affinity of a cyclic RGD peptide (c(RGDyK), cyclic Arginine-Glycine-Aspartic acid-D-Tyrosine-Lysine) with integrin alpha(v)beta(3) over-expressed on tumor neovasculature and U87MG glioblastoma cells, we prepared paclitaxel-loaded c(RGDyK)-Poly(ethylene glycol)-block-poly(lactic acid) micelle (c(RGDyK)-PEG-PLA-PTX). In vitro physicochemical characterization of these novel micelles showed satisfactory encapsulated efficiency, loading capacity and size distribution. In vitro cytotoxicity studies proved that the presence of c(RGDyK) enhanced the anti-glioblastoma cell cytotoxic efficacy by 2.5 folds. The binding affinity of c(RGDyK)-PEG-PLA micelle with U87MG cells was also investigated. The competitive binding IC(50) value of c(RGDyK)-PEG-PLA micelle was 26.30 nM, even lower than that of c(RGDyK) (56.23 nM). In U87MG glioblastoma-bearing nude mice model, biodistribution of (125)I-radiolabeled c(RGDyK)-PEG-PLA or DiR encapsulated micelles and anti-glioblastoma pharmacological effect was investigated after intravenous administration. c(RGDyK)-PEG-PLA micelle accumulated in the subcutaneous and intracranial tumor tissue, and when loaded with PTX (c(RGDyK)-PEG-PLA-PTX), exhibited the strongest tumor growth inhibition among the studied paclitaxel formulations. The anti-glioblastoma effect of c(RGDyK)-PEG-PLA-PTX micelle was also reflected in the median survival time of mice bearing intracranial U87MG tumor xenografts where the median survival time of c(RGDyK)-PEG-PLA-PTX micelle-treated mice (48 days) was significantly longer than that of mice treated with PEG-PLA-PTX micelle (41.5 days), Taxol (38.5 days) or saline (34 days). Therefore, our results suggested that c(RGDyK)-PEG-PLA micelle may be a potential

  19. Sucrose Monoester Micelles Size Determined by Fluorescence Correlation Spectroscopy (FCS)

    PubMed Central

    Sanchez, Susana A.; Gratton, Enrico; Zanocco, Antonio L.; Lemp, Else; Gunther, German

    2011-01-01

    One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS) and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, Rh. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene), a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured. PMID:22216230

  20. Investigation of Bonded Jacket Cable Insulation Failure Mechanisms: HELB Environment Results

    SciTech Connect

    L. Duncan

    2002-11-01

    When overaged from thermal or radiation environments, composite insulation composed of a layer of ethylene propylene rubber (EPR) covered with a bonded layer of chlorosulfonated polyethylene (CSPE[Hypalon]) can crack if subjected to steam environments associated with loss-of-coolant accidents (LOCAs). The work described in this report evaluated the effects of a lesser accident, a high-energy line break (HELB), on the aged insulating materials. The object of the test was to determine if the same cracking concerns exist for the less severe HELB environment. The work is based on the use of aged specimens that were prepared under the test program described in EPRI report Investigation of Bonded Jacket Cable Insulation Failure Mechanisms (1001002).

  1. An investigation of model forensic bone in soil environments studied using infrared spectroscopy.

    PubMed

    Howes, Johanna M; Stuart, Barbara H; Thomas, Paul S; Raja, Sophil; O'Brien, Christopher

    2012-09-01

    Infrared spectroscopy has been used to examine changes to bone chemistry as a result of soil burial. Pig carcasses were buried as part of a controlled field study, and pig bone was used in soil environments established in the laboratory. The variables of species type, bone pretreatment, soil type and pH, moisture content, temperature, and burial time were investigated. The crystallinity index (CI) and the organic and carbonate contents of the bones were monitored. The data revealed decreasing trends in the organic and carbonate contents and an increase in the CI of the bone with burial time. An acidic soil environment and soil type are the factors that have the most influence on bone chemistry as a result of burial. The study demonstrates the potential of infrared spectroscopy as a straightforward method of monitoring the changes associated with aging of bones in a variety of soil environments.

  2. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.

    PubMed Central

    Mattila, K; Kinder, R; Bechinger, B

    1999-01-01

    The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed. PMID:10512830

  3. Reverse Micelle Synthesis of Gadolinium Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fukuda, R. H.; Castro, M. M.; Ho, P.-C.; Attar, S.; Golden, M.; Margosan, D.

    2013-03-01

    Nanotechnology is an area of great interest due to its variety of applications such as nano-medicine. The reverse micelle method has been used to synthesize Gd nanoparticles by our research group. Through this method, a surfactant protectively cages particles of Gd in the presence of polar methanol and nonpolar hexane. This method can control particle size by growth temperature and the molar ratio of polar solvent to surfactant. The Gd was reduced from its chloride compound by using sodium borohydride. The final products have been derived either through a method of liquid liquid extraction or filtration. Scanning electron microscopy (SEM) paired with energy dispersive x-ray spectroscopy (EDX) was used to examine the size, shape, and composition of the products. The size and shape were also examined using a Leica light microscope between SEM analyses. We found that liquid liquid extraction does not work in the solvent combination of methanol-hexane due to the instability of the reverse micelles. Additionally, the process of carbon coating SEM samples may have destroyed the reverse micelle structures. Research at CSU-Fresno is supported by NSF DMR-1104544. Ryan Fukuda is also supported by Undergraduate Research Grant and Faculty- Sponsored Student Research Award at CSU Fresno.

  4. Electrostatic attraction between ionic reverse micelles with dielectric discontinuity

    NASA Astrophysics Data System (ADS)

    Chen, Peilong

    2002-11-01

    We have calculated the thermally-averaged electrostatic attractive potential between two spherical ionic reverse micelles in a medium of a different dielectric constant. Specifically the attractions between the charge density fluctuations in one micelle and interface polarizations on the other are computed. For water-in-oil microemulsions, we find that these contributions completely overwhelm those from correlated fluctuations in charge densities between two micelles.

  5. On the Structural and Dynamical Properties of DOPC Reverse Micelles.

    PubMed

    Abel, Stéphane; Galamba, Nuno; Karakas, Esra; Marchi, Massimo; Thompson, Ward H; Laage, Damien

    2016-10-04

    The structure and dynamics of phospholipid reverse micelles are studied by molecular dynamics. We report all-atom unconstrained simulations of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC) reverse micelles in benzene of increasing sizes, with water-to-surfactant number ratios ranging from W0 = 1 to 16. The aggregation number, i.e., the number of DOPC molecules per reverse micelle, is determined to fit experimental light-scattering measurements of the reverse micelle diameter. The simulated reverse micelles are found to be approximately spherical. Larger reverse micelles (W0 > 4) exhibit a layered structure with a water core and the hydration structure of DOPC phosphate head groups is similar to that found in phospholipid membranes. In contrast, the structure of smaller reverse micelles (W0 ≤ 4) cannot be described as a series of concentric layers successively containing water, surfactant head groups, and surfactant tails, and the head groups are only partly hydrated and frequently present in the core. The dynamics of water molecules within the phospholipid reverse micelles slow down as the reverse micelle size decreases, in agreement with prior studies on AOT and Igepal reverse micelles. However, the average water reorientation dynamics in DOPC reverse micelles is found to be much slower than in AOT and Igepal reverse micelles with the same W0 ratio. This is explained by the smaller water pool and by the stronger interactions between water and the charged head groups, as confirmed by the red-shift of the computed infrared line shape with decreasing W0.

  6. The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine at the micelle-water interface.

    PubMed Central

    Chang, D K; Cheng, S F; Chien, W J

    1997-01-01

    A peptide based on the N-terminal fusion domain of gp41 of human immunodeficiency virus type 1 (HIV-1) and its tryptophan analog were synthesized to examine the secondary structure in the micellar environment. Nuclear magnetic resonance (NMR), circular dichroism and electron paramagnetic resonance experiments indicated that the gp41 fusion peptide inserted into the micelle primarily as a helix (59%), with substantial beta-structure (26.7%). Deep penetration of the peptide into the apolar hydrocarbon core was supported by the results of fluorescence experiments in which the tryptophan analog exhibited a blue shift of about 30 nm in the presence of a sodium dodecyl sulfate micelle, in 1,2-dimyristoyl-rac-glycero-3-phosphocholine, and in 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine vesicular solutions. The results of spin label-attenuated 1H resonance experiments show that the region C-terminal to G16, which contains a turn structure, exhibited substantial interaction with the micelle, suggesting that it lies on the surface of micelle. Molecular simulation based on data from NMR experiments revealed a flexible hinge at residues 15 and 16 (alanine and glycine, respectively) from the N terminus of the peptide located at the micelle-solution interface. The highly conserved A15-G16 dipeptide may play a role in the function of fusion domain of HIV-1 envelope glycoprotein. PMID:9261381

  7. Synergistic dual-pH responsive copolymer micelles for pH-dependent drug release

    NASA Astrophysics Data System (ADS)

    Deng, Hongzhang; Zhao, Xuefei; Liu, Jinjian; Zhang, Jianhua; Deng, Liandong; Liu, Jianfeng; Dong, Anjie

    2016-01-01

    The tuning of the structure of nanocarriers with fast acidic-degradation rate and high stability in physiological conditions or during storage is under intensive study. In this context, a kind of dual-pH responsive micelles with well-balanced stability, that is, fast hydrolysis in acidic environment and stability towards blood drug release at 7.4 were developed. This is achieved by the self-assembly of micelles of poly(ethylene glycol)-b-(poly ε-caprolactone-g-poly(2,2-dimethyl-1,3-dioxolane-4-yl)methylacrylate-co-2(dimethylamino)ethyl methacrylate) (mPEG-b-(PCL-g-P(DA-co-DMAEMA))) copolymers with two inert pH responsive moieties of DA and DMAEMA. The fast synergistic acid-triggered disassembly and high stability at physiological condition of the mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles was verified by 1H NMR, particle size and optical stability measurements, which was induced and mediated by the synergistic pH responses of the hydrolysis of the ketal in DA moieties and the switch in solubility of tertiary amino moieties (DMAEMA) under mild acid conditions. It was observed that the hydrolysis rate of the ketal could be promoted by increasing the content of DMAEMA moieties. The fast intracellular disassembly of the micelles depending on the contents of DMAEMA moieties was also traced by fluorescence resonance energy transfer (FRET). The in vitro release studies showed that the release of DOX from mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles at mild acid condition was significantly accelerated by increasing the content of DMAEMA moieties, while greatly impeding drug release in physiological conditions. The antitumor activity of DOX-loaded micelles was studied in MCF-7 and 4T1 cells in vitro and in 4T1 tumor-bearing Balb-c mice in vivo. The results indicated the DOX-loaded micelles with higher content of DMAEMA moieties exhibited enhanced anticancer activity. Collectively, the synergistic dual-pH responsive design of mPEG-b-(PCL-g-P(DA-co-DMAEMA)) micelles provided a new

  8. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel.

    PubMed

    Babic, Steven; Battista, Jerry; Jordan, Kevin

    2009-11-21

    Radiation-sensitive hydrogels offer the capability of verifying intricate dose distributions in three-dimensional (3D) space conveniently in a single measurement with sub-millimetre spatial resolution. In this study, a new radiochromic hydrogel called leuco crystal violet (LCV) micelle gel is introduced. Upon irradiation, LCV converts to crystal violet (CV(+)). Triton X-100 micelles are used to provide the required hybrid-interfacing environment to dissolve LCV. The diffusion coefficient of the LCV gel has been measured to be 0.036 +/- 0.001 mm(2) h(-1), which is a factor of 25 times less than the standard radiochromic ferrous xylenol-orange (FX) gel; LCV gels without Triton X-100 micelles have a diffusion coefficient of 0.33 +/- 0.02 mm(2) h(-1). The LCV gel formulation contains: 1 mM LCV, 25 mM trichloroacetic acid, 4 mM Triton X-100 and 4% w/w gelatin. The primary innovative feature of this 3D hydrogel is that the radiation-induced CV(+) dye is more soluble in the Triton X-100 micelles than in the surrounding water which consequently leads to more stable post-irradiation dose distributions. A dosimetric characterization revealed that the dose response is reproducible to within 1% over three separate batches, independent of energy, dose rate and dose fractionation but is affected by the temperature ( approximately 4% per degree C) during irradiation. LCV micelle gels scanned optically with a yellow light source are a promising system for 3D dose verification. They may prove to be, especially, useful for scanning large volume dosimeters (i.e. 20 cm) since they are easily manufactured, transparent and near colourless prior to irradiation.

  9. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.

    PubMed

    Holt, C; Carver, J A; Ecroyd, H; Thorn, D C

    2013-10-01

    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional

  10. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Battista, Jerry; Jordan, Kevin

    2009-11-01

    Radiation-sensitive hydrogels offer the capability of verifying intricate dose distributions in three-dimensional (3D) space conveniently in a single measurement with sub-millimetre spatial resolution. In this study, a new radiochromic hydrogel called leuco crystal violet (LCV) micelle gel is introduced. Upon irradiation, LCV converts to crystal violet (CV+). Triton X-100 micelles are used to provide the required hybrid-interfacing environment to dissolve LCV. The diffusion coefficient of the LCV gel has been measured to be 0.036 ± 0.001 mm2 h-1, which is a factor of 25 times less than the standard radiochromic ferrous xylenol-orange (FX) gel; LCV gels without Triton X-100 micelles have a diffusion coefficient of 0.33 ± 0.02 mm2 h-1. The LCV gel formulation contains: 1 mM LCV, 25 mM trichloroacetic acid, 4 mM Triton X-100 and 4% w/w gelatin. The primary innovative feature of this 3D hydrogel is that the radiation-induced CV+ dye is more soluble in the Triton X-100 micelles than in the surrounding water which consequently leads to more stable post-irradiation dose distributions. A dosimetric characterization revealed that the dose response is reproducible to within 1% over three separate batches, independent of energy, dose rate and dose fractionation but is affected by the temperature (~4% per °C) during irradiation. LCV micelle gels scanned optically with a yellow light source are a promising system for 3D dose verification. They may prove to be, especially, useful for scanning large volume dosimeters (i.e. 20 cm) since they are easily manufactured, transparent and near colourless prior to irradiation.

  11. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton.

    PubMed

    Verma, Devendra; Tomar, Vikas

    2014-11-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment.

  12. Stable polymer micelle systems as anti-cancer drug delivery carriers

    NASA Astrophysics Data System (ADS)

    Zeng, Yi

    2005-07-01

    Several temporarily stable polymer micelle systems that might be used as ultrasonic-activated drug delivery carriers were synthesized and investigated. These polymeric micelle systems were PlurogelRTM, Tetronic RTM, poly(ethylene oxide)-b-poly(N-isopropylacrylamide) and poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n). In previous work in our lab, Pruitt et al. developed a stabilized drug carrier named PlurogelRTM [5, 6]. Unfortunately, the rate of the successful PlurogelRTM synthesis was only about 30% by simply following Pruitt's process. In this work, this rate was improved to 60% by combining the process of adding 0.15 M NaCl and/or 10 mul/ml n-butanol and by preheating the solution before polymerization. TetronicsRTM were proved not to be good candidates to form temporarily stable polymeric micelle system by polymerizing interpenetrating networks inside their micelle cores. Tetronic micelle systems treated by this process still were not stable at concentrations below their critical micelle concentration (CMC). Poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-N,N-bis(acryloyl)cystamine micelle-like nanoparticles were developed and characterized. When the N,N-bis(acryloyl)cystamine (BAC) was from 0.2 wt% to 0.75 wt% of the mass of poly(N-isopropylacrylamide), diameters of the nanoparticles at 40°C were less than 150 nm. The cores of the nanoparticles were hydrophobic enough to sequester 1,6-diphenylhexatriene (DPH) and the anti-cancer drug doxorubicin (DOX). Nanoparticles with 0.5 wt% BAC stored at room temperature in 0.002 mg/ml solutions were stable for up to two weeks. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n) micelle systems were synthesized and characterized. The degree of polymerization of lactate side group, n, was 3 or 5. The copolymers with N-isopropylacrylamide:2-hydroxyethyl methacrylate-lactate3: poly(ethylene oxide) (NIPAAm:HEMA-lactate 3:PEO) ratios of

  13. Toward Understanding Pore Formation and Mobility During Controlled Directional Solidification in a Microgravity Environment Investigation (PFMI)

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Luz, P.; Jeter, L.; Volz, M. P.; Spievy, R.; Smith, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. It is detrimental to material properties and precludes obtaining meaningful scientific results. On Earth, density differences allow an initiated bubble can rise through the liquid and "pop" at the surface resulting in a sound casting. This is not likely to occur in a microgravity environment and, unfortunately, a number of experiments conducted in microgravity have suffered from porosity effects. The current investigation is a systematic effort towards understanding porosity formation and mobility during controlled directional solidification in a microgravity environment. This will be investigated by utilizing a transparent material, succinonitrile (SCN), in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. The talk will cover the porosity problem, the details of the proposed experiments and the experimental hardware, and the expectations from the microgravity experiments.

  14. The critical micelle concentration of tetraethylammonium perfluorooctylsulfonate in water.

    PubMed

    López-Fontán, José L; González-Pérez, Alfredo; Costa, Julian; Ruso, Juan M; Prieto, Gerardo; Schulz, Pablo C; Sarmiento, Félix

    2006-02-15

    The aggregation characteristics of tetraethylammonium perfluorooctylsulfonate in water were studied by several techniques: conductivity, pH, ion-selective electrodes, and surface tension. It was concluded that the aggregation process is gradual and starts with the formation of oligomers such as ion pairs that grow to give spherical micelles, which become wormlike with increasing concentration. Because of the size and hydrophobicity of the counterion, micelles quickly increase in ionization degree up to about 0.5. Differences among different critical micelle concentration values in the literature are explained on the basis of the gradual formation of micelles.

  15. Study of Brij Micelles Using Dynamic Light Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Karen; Lekan, Mike; Streletzky, Kiril

    2007-10-01

    We studied properties of Brij-35 surfactant micelles using Dynamic Light Scattering (DLS) and Optical Probe Diffusion method. Aqueous solutions of Brij-35 with concentrations ranging from 2 to 100g/L were prepared, both with and without polystyrene latex probes of diameters 24, 50, 282, and 792nm. Solutions were studied at four temperatures of 10, 25, 40, and 70^oC with DLS to obtain micelle and probe diffusion coefficients (Dm, Dp). Using both diffusion coefficients we deduced micelle radius (am), micelle water content (δ), and number of surfactant molecules per micelle (N) using two different models. First, we used the hard sphere model of micelle/probe interaction to analyze the data by two methods. In this model, am is obtained from Stokes-Einstein equation using the intercept of Dm(c). The first method of the model uses the slope of Dm(c) and the size of probes to determine N and δ. The second method of the model uses the linear least-squares fit of Dp(c) for different probe sizes to determine N and δ. Both methods reveal that with solution temperature increase, am increases by 10%, N increases and δ decreases by a factor of 2. Two hard sphere methods yield somewhat different trends, but overall agree with published data on Brij micelles. The second model treats micelles as core-shell particles and uses Dm(c) to determine not only am, δ, and N, but also micelle corona radius ac.

  16. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  17. Modeling the Self-Assembly and Stability of DHPC Micelles Using Atomic Resolution and Coarse Grained MD Simulations.

    PubMed

    Kraft, Johan F; Vestergaard, Mikkel; Schiøtt, Birgit; Thøgersen, Lea

    2012-05-08

    Membrane mimics such as micelles and bicelles are widely used in experiments involving membrane proteins. With the aim of being able to carry out molecular dynamics simulations in environments comparable to experimental conditions, we set out to test the ability of both coarse grained and atomistic resolution force fields to model the experimentally observed behavior of the lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), which is a widely used lipid for biophysical characterization of membrane proteins. It becomes clear from our results that a satisfactory modeling of DHPC aggregates in solution poses different demands to the force field than do the modeling of bilayers. First, the representation of the short tailed lipid DHPC in the coarse grained force field MARTINI is assessed with the intend of successfully self-assemble micelles with structural characteristics comparable to experimental data. Then, the use of the recently presented polarizable water model in MARTINI is shown to be essential for producing micelles that are structurally in accordance with experiments. For the atomistic representations of DHPC micelles in solution the GROMOS96 force field with lipid parameters by A. Kukol fails to maintain stable micelles, whereas the most recent CHARMM36 lipid parameters and GROMOS96 with the so-called Berger lipid parameters both succeed in this regard.

  18. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance.

    PubMed

    Zhao, Dujuan; Zhang, Huiyuan; Yang, Shengfeng; He, Wenxiu; Luan, Yuxia

    2016-12-30

    The main cause of multidrug resistance (MDR) is overexpression of active efflux transporters, such as P-glycoprotein (P-gp). To reverse MDR and improve the chemotherapy effect of paclitaxel (PTX), we propose a new drug delivery system based on mixed micelles constructed with d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) and the mPEG-SS-PTX conjugate with consideration that TPGS is a P-gp inhibitor that can block the cancer cell action of pumping drugs outside of cells and can enhance the anticancer effect. mPEG-SS-PTX is synthesized by conjugating hydrophilic mPEG with a hydrophobic drug, PTX, via a redox-sensitive disulfide bond. The mPEG-SS-PTX conjugate is amphiphilic and can self-assemble in water. Mixed micelles formed by the mPEG-SS-PTX conjugate and TPGS have a low critical micelle concentration (CMC, ∼1.05×10(-3)mg/mL) and high drug loading content (∼19.6%). The disulfide bond in the mPEG-SS-PTX conjugate can be broken in cancer cells (a reductive environment) and release PTX to kill cancer cells. In vitro cytotoxicity and cell uptake suggest that mixed micelles can effectively improve the accumulation of PTX in multidrug-resistant MCF-7 cells. Therefore, the present as-prepared mixed micelles very effectively reverse the MDR and enhance the therapeutic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles.

    PubMed

    Stangl, Michael; Veerappan, Anbazhagan; Kroeger, Anja; Vogel, Peter; Schneider, Dirk

    2012-12-19

    Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Detergent Properties Influence the Stability of the Glycophorin A Transmembrane Helix Dimer in Lysophosphatidylcholine Micelles

    PubMed Central

    Stangl, Michael; Veerappan, Anbazhagan; Kroeger, Anja; Vogel, Peter; Schneider, Dirk

    2012-01-01

    Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important. PMID:23260047

  1. Transition from star-like to crew-cut micelles induced by UV radiation.

    PubMed

    Fayad, Samira Jamil; Minatti, Edson; Soldi, Valdir; Borsali, Redouane

    2014-02-15

    In the present article, the effect of UV on PS-b-PMMA micelles in solution is discussed. Micellar solutions of the amphiphilic poly(styrene-b-methylmethacrylate) block copolymer in selective solvent (methanol for the PMMA block) were exposed to UV radiation, which has simultaneously led to cross linking of the micellar core (PS) and degradation of the micellar corona (PMMA). The kinetics of such process were investigated in situ by means of dynamic light scattering, allowing the measurement of hydrodynamic radius as a function of UV exposure time. Results indicate that the size of micelles has decreased with UV exposure time down to a minimum value. Such reduced size resulted from PMMA degradation, which later promoted aggregation and coagulation because the micellar core was no longer well protected by PMMA. Addition of good solvent for both blocks (toluene) to non-UV exposed micelles has led to core swelling (PS) and, ultimately, system disassembly (free copolymer chain). The effect of adding toluene on the UV-exposed micelles has only caused core swelling as a consequence of the PS cross-linking.

  2. The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.

    PubMed

    Wang, Pengjie; Jin, Shaoming; Guo, Huiyuan; Zhao, Liang; Ren, Fazheng

    2015-04-15

    The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment.

  3. Disruption and reassociation of casein micelles during high pressure treatment: influence of whey proteins.

    PubMed

    Huppertz, Thom; de Kruif, Cornelis G

    2007-05-01

    In the study presented in this article, the influence of added alpha-lactalbumin and beta-lactoglobulin on the changes that occur in casein micelles at 250 and 300 MPa were investigated by in-situ measurement of light transmission. Light transmission of a serum protein-free casein micelle suspension initially increased with increasing treatment time, indicating disruption of micelles, but prolonged holding of micelles at high pressure partially reversed HP-induced increases in light transmission, suggesting reformation of micellar particles of colloidal dimensions. The presence of alpha-la and/or beta-lg did not influence the rate and extent of micellar disruption and the rate and extent of reformation of casein particles. These data indicate that reformation of casein particles during prolonged HP treatment occurs as a result of a solvent-mediated association of the micellar fragments. During the final stages of reformation, kappa-casein, with or without denatured whey proteins attached, associates on the surface of the reformed particle to provide steric stabilisation.

  4. Isothermal titration calorimetry studies of neutral salt effects on the thermodynamics of micelle formation.

    PubMed

    Kresheck, Gordon C

    2009-05-14

    Isothermal titration calorimetry, ITC, was used to determine the enthalpy and heat capacity changes that accompany micelle formation of decyldimethylphosphine oxide, APO10, from 15-79 degrees C in the presence of representative neutral salts from the Hofmeister series. The solutions investigated were water, 0.2, 0.5, and 1.0 NaCl, 0.5 M NaF, KCl, KI, guanidinium chloride (GuHCl) and mannitol, and 0.333 M Na2SO4. The heat capacity change at 25 degrees C (but not the cmc) and the parameter that describes the temperature dependence of the heat capacity change, B (cal/(mol K2)), appear to be correlated. Calculated values of the ion effects on micelle formation from a recent salt ion partitioning model (SPM) of Pegram and Record [J. Phys. Chem. B 2007, 111, 5411-5417] were quantitatively related to the experimental value of the solute free energy increment (SFEI). Use of this model requires a calculation of the solvent accessible area (ASA), which yields values for the extent of hydration of the micelle interior. An alternate method to determine the ASA based on the heat capacity change for micelle formation at 25 degrees C of APO8-12 yielded values for the number of buried carbon atoms (5-12) versus previous estimates (4-8) from analysis of the B parameter.

  5. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers.

    PubMed

    Nasr, A T; Alexander, K; Schreiner, L J; McAuley, K B

    2015-06-21

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation.

  6. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Alexander, K.; Schreiner, L. J.; McAuley, K. B.

    2015-06-01

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation.

  7. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration.

    PubMed

    Huang, H L; Lee, W M

    2001-08-01

    Surfactants can increase the solubility of non-polar compounds, and have been applied in areas such as soil washing and treatment of non-aqueous phase liquids (NAPLs). This investigation explored the feasibility of removing vapor phase polycyclic aromatic hydrocarbon (PAH) from gases using an anionic surfactant. The solubility of vapor phase naphthalene was measured herein using gas chromatograph (GC) with a photon ionization detector (PID). The measurement results indicated that surfactant molecules were not favorable to micelle formation when temperatures increased from 25 degrees C to 50 degrees C. Regardless of whether solutions were quiescent or agitated, equilibrium naphthalene apparent solubility increased linearly with surfactant concentrations exceeding critical micelle concentration (CMC). The pH effects on naphthalene apparent solubility were small. Agitation increased naphthalene apparent solubility and lumped mass transfer coefficients. Furthermore, lumped mass transfer coefficients decreased with increasing surfactant concentration owing to increase in interfacial resistance and viscosity and decreased spherical micelle diffusion coefficients. Finally, the net absorption rate increased because the solubilization effects of micelles exceeded the reduction effects of mass transfer coefficient above the CMC. The enhanced naphthalene apparent solubility from the addition of surfactant can be expressed by an enrichment factor (EF). The EF value of naphthalene for the surfactant solution at 0.1 M with agitation at 270 rpm relative to quiescent water could reach 18.6. This work confirms that anionic surfactant can improve the removal efficiency of hydrophobic organic compound (HOC) from the gas phase.

  8. Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity.

    PubMed

    Mandracchia, Delia; Tripodo, Giuseppe; Trapani, Adriana; Ruggieri, Simona; Annese, Tiziana; Chlapanidas, Theodora; Trapani, Giuseppe; Ribatti, Domenico

    2016-10-10

    Curcumin (CUR) and celecoxib (CLX) are two highly hydrophobic drugs which show bioavailability problems due to their poor aqueous solubility. The aim of this study was to encapsulate each of these drugs in micelles based on biodegradable and amphiphilic polymers to investigate their anti-angiogenesis activity. Here we use an amphiphilic polymer, based on two natural substances from renewable resources (Inulin and Vitamin E, INVITE), as a self-assembling system for the drug delivery of CUR and CLX. By the in vivo assay of chick embryo chorioallantoic membrane (CAM) it was assessed that both INVITE-CUR and INVITE-CLX micelles possess remarkable anti-angiogenic activity, while the INVITE micelles alone resulted intrinsically pro-angiogenic. Furthermore, it has been shown that encapsulation of CUR and CLX in INVITE micelles enhances of several magnitudes the water-solubility of CUR and CLX (14·10(5) and 3·10(2) times for CUR and CLX, respectively). These results may have interesting implications not only in anticancer or diabetic maculopathy therapy based on the anti-angiogenesis strategy but also for regenerative medicine where over-production of new vessels is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Modification to the renneting functionality of casein micelles caused by nonionic surfactants.

    PubMed

    Ion Titapiccolo, G; Corredig, M; Alexander, M

    2010-02-01

    Nonionic emulsifiers of small molecular weight such as polysorbates are widely used in dairy products. Nevertheless, the mechanism of interaction between these surfactants and milk proteins is not yet fully understood. This work investigated the effect of Tween 20 on casein micelles by studying the renneting behavior of skim milk in the presence of different amounts of surfactant. The presence of Tween accelerated both the first and second phase of renneting in skim milk. The gel obtained showed a higher elastic modulus than that of a skim milk gel, but also showed similar brittleness. By varying the size of the surfactant (Tween 20 or Tween 80) as well as the colloidal state of the proteins in solution, it was possible to demonstrate that the surfactant did not have a direct effect on the activity of the enzyme, but rather had a direct effect on the casein micelles. The effect of surfactant on the gelation point was reduced by increasing surfactant size. The presence of Tween caused an increase in the size of the micelles without affecting their stability. In addition, Tween did not alter the amount of caseins free in the serum phase. These findings can contribute to improving our ability to custom design final structures in rennet-induced gels, though further studies are needed to fully understand the mechanism at play when casein micelles are enzymatically cleaved in the presence of nonionic surfactants of small molecular weight. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Nanostructure of PEO-polyurethane-PEO triblock copolymer micelles in water.

    PubMed

    Caba, Beth L; Zhang, Qian; Carroll, Matthew R J; Woodward, Robert C; St Pierre, Timothy G; Gilbert, Elliot P; Riffle, Judy S; Davis, Richey M

    2010-04-01

    Novel hydrophilic triblock copolymers which form micelles in aqueous solution were studied by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS) and densitometry. The polymers were symmetric A-B-A block copolymers having two poly(ethylene oxide) (PEO) tail blocks and a polyurethane (PU) center segment that contained pendant carboxylic acids. The aggregation number of the micelles decreased with increasing PEO mass content. When attempting to fit the SANS data it was found that no single model was suitable over the entire range of block lengths and PEO mass concentrations investigated here. For the polymer with the highest aggregation number, the data were fitted with a triblock model consisting of a homogeneous core with a corona of non-interacting Gaussian chains for which only two free parameters were required: the radius of the core and the radius of gyration of the corona. In this case, the core was found to be effectively dry. At lower aggregation numbers, a star polymer model generated significantly better fits, suggesting the absence of any identifiable central core structure. Good agreement was found between the sizes measured by DLS, SANS and theoretical predictions of micelle size from a density distribution theory. These results show that when significant changes in aggregation number occur, the nanostructure of the micelle can change substantially even for polymers that are remarkably similar.

  11. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  12. Complexation of AB+, AB+C, ACB+, and A(B+-stat-C) block copolymer micelles with poly(styrene sulfonate) as models for tunable gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Laaser, Jennifer; Jiang, Yaming; Lohmann, Elise; Reineke, Theresa; Lodge, Timothy

    We investigate the complexation of poly(styrene sulfonate) with micelles with mixed cationic/hydrophilic coronas as models for tunable gene delivery vectors. The micelles are self-assembled from AB+, AB+C, ACB+, and A(B+-stat-C) block polymer architectures, where the hydrophobic A blocks (poly(styrene)) form the micelle cores, and the cationic B blocks (poly(dimethylamino ethyl methacrylate)) and hydrophilic, nonionic C blocks (poly(poly(ethylene glycol) methyl ether methacrylate)) form the coronas. We find that hydrophilic units do not change the colloidal stability of the complexes, and complexes based on all four micelle architectures form broad, multimodal size distributions. While complexes based on the AB+, AB+C, and ACB+polymer architectures are kinetically trapped at low ionic strength, however, those based on the A(B+-stat-C) architecture rapidly rearrange into single-micelle complexes when the linear polyanion is in excess. This suggests that the randomly-placed hydrophilic units break up the ion pairing between the cationic and anionic chains and promote formation of over-charged complexes. Design of the micelle architecture may thus provide a powerful way control the structure and stability of micelle-polyelectrolyte complexes for gene delivery applications.

  13. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance.

    PubMed

    Wang, Feihu; Zhang, Dianrui; Zhang, Qiang; Chen, Yuxuan; Zheng, Dandan; Hao, Leilei; Duan, Cunxian; Jia, Lejiao; Liu, Guangpu; Liu, Yue

    2011-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle for successful cancer chemotherapy. Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) is a key factor contributing to the development of tumor drug resistance. Verapamil (VRP), a P-gp inhibitor, has been reported to be able to reverse completely the resistance caused by P-gp. For optimal synergy, the drug and inhibitor combination may need to be temporally colocalized in the tumor cells. Herein, we investigated the effectiveness of simultaneous and targeted delivery of anticancer drug, paclitaxel (PTX), along with VRP, using DOMC-FA micelles to overcome tumor drug resistance. The floate-functionalized dual agent loaded micelles resulted in the similar cytotoxicity to PTX-loaded micelles/free VRP combination and co-administration of two single-agent loaded micelles, which was higher than that of PTX-loaded micelles. Enhanced therapeutic efficacy of dual agent micelles could be ascribe to increased accumulation of PTX in drug-resistant tumor cells. We suggest that the synergistic effect of folate receptor-mediated internalization and VRP-mediated overcoming MDR could be beneficial in treatment of MDR solid tumors by targeting delivery of micellar PTX into tumor cells. As a result, the difunctional micelle systems is a very promising approach to overcome tumor drug resistance. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Investigation into suitability of geopolymers (illite & metakaolin) for the space environment

    NASA Astrophysics Data System (ADS)

    Cesul, Brandon T.

    The United States has utilized high resolution imaging platforms for national defense since the beginning of the space age. In order to improve the resolution and swath width of imaging satellites, the primary restriction in optical hardware is the mirror size, specifically mirror diameter and mirror mass. This research addresses one of these concerns, reducing the mass of a spacecraft mirror by the use of innovative materials. In contemporary imagery satellites, monolithic glass is the material of choice to produce large aperture mirrors that can survive the space environment. However, material performance requirements for future imaging mission mirrors necessitate a lower areal density than glass with similar if not superior mechanical strength. Additionally, any material chosen must also be able to deal with the unique environment of low earth orbit, namely the near-vacuum conditions, radiation environment and interaction with atomic oxygen. This research focuses on investigation of a class of inorganic polymers known as geopolymers for use in the space environment. Geopolymers are based on aluminosilicate chemistry and have advantages of high specific strength combined with low densities, tailorable coefficients of thermal expansion, and easier curing processes than traditional space qualified epoxies. Geopolymers have a long history for use in terrestrial applications, but empirical data is not available addressing their suitability for the space environment. This research focused on determining whether the geopolymer as a bulk material will respond favorably to environmental conditions as experienced during typical spaceflight operations. Two different formulations of geopolymer were investigated, one based on metakaolin chemistry, and the other based on illite chemistry. Three primary objectives were identified for assessing whether geopolymers could survive the space environment: could the materials be processed to minimize curing shrinkage, characterizing

  15. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    PubMed

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.

  16. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  17. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    SciTech Connect

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M.

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  18. Characterization of phospholipid mixed micelles by translational diffusion.

    PubMed

    Chou, James J; Baber, James L; Bax, Ad

    2004-07-01

    The concentration dependence of the translational self diffusion rate, D (s), has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Phi (Phi\\\\ le 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D (s)= D (o)(1-3.2lambdaPhi) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D (s) at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide (15)N relaxation data.

  19. PLA2-responsive and SPIO-loaded phospholipid micelles

    PubMed Central

    Gao, Qiang; Yan, Lesan; Chiorazzo, Michael; Delikatny, E. James; Tsourkas, Andrew; Cheng, Zhiliang

    2015-01-01

    A PLA2-responsive and superparamagnetic iron oxide (SPIO) nanoparticle-loaded phospholipid micelle was developed. The release of phospholipid-conjugated dye from these micelles was triggered due to phospholipid degradation by phospholipase A2. High relaxivity of the encapsulated SPIO could enable non-invasive magnetic resonance imaging. PMID:26139589

  20. Designing Dendrimers to Offer Micelle-Type Nanocontainers

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The properties of a dendrimer with hydrophobic and hydrophilic substituents on an orthogonal plane is synthesized and studied. The resulting polymer contains one of the substituents in its concave interior and the other at the convex surface and the design promotes micelle-like behavior in polar solvent and inverted micelle arrangement in…

  1. Designing Dendrimers to Offer Micelle-Type Nanocontainers

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The properties of a dendrimer with hydrophobic and hydrophilic substituents on an orthogonal plane is synthesized and studied. The resulting polymer contains one of the substituents in its concave interior and the other at the convex surface and the design promotes micelle-like behavior in polar solvent and inverted micelle arrangement in…

  2. Investigating the Contextual Interference Effect Using Combination Sports Skills in Open and Closed Skill Environments

    PubMed Central

    Cheong, Jadeera P.G.; Lay, Brendan; Razman, Rizal

    2016-01-01

    This study attempted to present conditions that were closer to the real-world setting of team sports. The primary purpose was to examine the effects of blocked, random and game-based training practice schedules on the learning of the field hockey trap, close dribble and push pass that were practiced in combination. The secondary purpose was to investigate the effects of predictability of the environment on the learning of field hockey sport skills according to different practice schedules. A game-based training protocol represented a form of random practice in an unstable environment and was compared against a blocked and a traditional random practice schedule. In general, all groups improved dribble and push accuracy performance during the acquisition phase when assessed in a closed environment. In the retention phase, there were no differences between the three groups. When assessed in an open skills environment, all groups improved their percentage of successful executions for trapping and passing execution, and improved total number of attempts and total number of successful executions for both dribbling and shooting execution. Between-group differences were detected for dribbling execution with the game-based group scoring a higher number of dribbling successes. The CI effect did not emerge when practicing and assessing multiple sport skills in a closed skill environment, even when the skills were practiced in combination. However, when skill assessment was conducted in a real-world situation, there appeared to be some support for the CI effect. Key points The contextual interference effect was not supported when practicing several skills in combination when the sports skills were assessed in a closed skill environment. There appeared to be some support for the contextual interference effect when sports skills were assessed in an open skill environment, which were similar to a real game situation. A game-based training schedule can be used as an alternative

  3. Solvation and Deprotonation Dynamics in Reverse Micelles via Broadband Femtoseond Transient Absorption (BFTA) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cole, Richard

    2009-10-01

    Broadband femtosecond transient absorption (BFTA) spectroscopy is a useful tool in characterizing femtosecond and picosecond physical and chemical dynamics such as solvation, electron transfer, and deprotonation dynamics. This presentation will focus on our most recent results, which utilize BFTA spectroscopy in the ultraviolet-visible (UV-vis) spectral range to probe deprotonation and solvation dynamics in the nanoscopic confinement of reverse micelles. In these studies, pyranine, a `photo-acid', probes both solvation and deprotonation dynamics in reverse micelles formed from cationic (cetyl trimethylammonium bromide, CTAB), anionic (sodium dioctyl sulfosuccinate, AOT), and neutral (polyoxyethylene nonylphenylether, Igepal) surfactants. Dynamic behavior will be discussed in terms of the degree of nanoscopic confinement (micellar size) and the impact of varying interfacial environments.

  4. Determining heat loss into the environment based on comprehensive investigation of boiler performance characteristics

    NASA Astrophysics Data System (ADS)

    Lyubov, V. K.; Malygin, P. V.; Popov, A. N.; Popova, E. I.

    2015-08-01

    A refined procedure for determining heat loss into the environment from heat-generating installations is presented that takes into account the state of their lining and heat insulation quality. The fraction of radiative component in the total amount of heat loss through the outer surfaces is determined. The results from experimental investigations of the thermal engineering and environmental performance characteristics of a foreign hot-water boiler in firing wood pellets are presented. A conclusion is drawn about the possibility of using such hot-water boilers for supplying heat to low-rise buildings, especially for the conditions of the North-Arctic region. The results from a thermal engineering investigation of wood pellets and furnace residue carried out on installations of a thermal analysis laboratory are presented together with the grain-size composition of fuel and indicators characterizing the mechanical strength of wood pellets. The velocity fields, flue gas flow rates, and soot particle concentrations are determined using the external filtration methods, and the composition of combustion products is investigated using a gas analyzer. The graphs of variation with time of boiler external surface temperature from the moment of achieving the nominal mode of operation and heat loss into the environment for stationary boilers are presented.

  5. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  6. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo

    PubMed Central

    Xia, Hai-jian; Zhang, Zhen-hai; Jin, Xin; Hu, Qin; Chen, Xiao-yun; Jia, Xiao-bin

    2013-01-01

    Mixed micelles are widely used to increase solubility and bioavailability of poorly soluble drugs. One promising antitumor drug candidate is 20(S)-protopanaxadiol (PPD), although its clinical application is limited by low water solubility and poor bioavailability after oral administration. In this study, we developed mixed micelles consisting of PPD–phospholipid complexes and Labrasol® and evaluated their potential for oral PPD absorption. Micelles were prepared using a solvent-evaporation method, and their physicochemical properties, including particle size, zeta potential, morphology, crystal type, drug loading, drug entrapment efficiency, and solubility, were characterized. Furthermore, in vitro release was investigated using the dialysis method, and transport and bioavailability of the mixed micelles were investigated through a Caco-2 cell monolayer and in vivo absorption studies performed in rats. Compared with the solubility of free PPD (3 μg/mL), the solubility of PPD in the prepared mixed micelles was 192.41 ± 1.13 μg/mL in water at room temperature. The in vitro release profiles showed a significant difference between the more rapid release of free PPD and the slower and more sustained release of the mixed micelles. At the end of a 4-hour transport study using Caco-2 cells, the apical-to-basolateral apparent permeability coefficients (Papp) increased from (1.12 ± 0.21) × 106 cm/s to (1.78 ± 0.16) × 106 cm/s, while the basolateral-to-apical Papp decreased from (2.42 ± 0.16) × 106 cm/s to (2.12 ± 0.32) × 106. In this pharmacokinetic study, compared with the bioavailability of free PPD (area under the curve [AUC]0–∞), the bioavailability of PPD from the micelles (AUC0–∞) increased by approximately 216.36%. These results suggest that novel mixed micelles can significantly increase solubility, enhance absorption, and improve bioavailability. Thus, these prepared micelles might be potential carriers for oral PPD delivery in antitumor

  7. Configurations of the amphiphilic molecules in micelles

    SciTech Connect

    Dill, K.A.

    1982-04-29

    Several theoretic models aim to account for the properties of micelles in terms of the configurations of the constituent amphiphilic chain molecules. Recent /sup 13/C NMR measurement of one property of the configuration distribution of the the hydrocarbon chain segments allows critical evaluation of these theories. It is concluded that the interphase and singly-bent chain theories, which fully account for chain continuity and for intermolecular constraints imposed by hydrophobic and steric forces, give a more satisfactory description of micellar molecular organization than models in which chains are ordered and radially aligned, or in which they have the complete disorder characteristic of an amorphous hydrocarbon liquid.

  8. Encapsulation of flavodoxin in reverse micelles.

    PubMed

    Andrade, S; Kamenskaya, E O; Levashov, A V; Moura, J J

    1997-05-29

    The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

  9. Investigating attentional tunneling through a flexible experimentation environment and eye tracking

    NASA Astrophysics Data System (ADS)

    Moehlenbrink, Christoph; Peinecke, Niklas; Papenfuß, Anne; Manske, Peer; Wies, Matthias

    2011-06-01

    Although attentional tunneling as a phenomenon is at least known since the late 1970ies, it is still an area of high research interest, since it bears connections to current and future applications in head-up and head-down displays. For example, it is still not fully answered to what degree highly dynamic scenarios influence the pilot's ability to keep up with routine tasks, and vice versa, when and whether dynamic scene changes stay unnoticed under high workload. In order to further investigate attentional tunneling a generic experimentation environment was set up. The core of the environment is DLR's flexible sensor simulation suite (F3S). This simulation software can be installed on specialized simulation platforms, for example a Vision Station, as well as on standard workstations and can be tuned to a simple view simulation with different levels of realism. It allows for a full and dynamic control of experimental scenarios, for example possible changes in the environment. For larger scenarios several platforms can be coupled to enable the investigation of team situations. As one of its key features the set-up includes a full eye-tracking solution that is further capable of recording dynamic areas of interest. Within a first experiment with a student sample F3S was used as a simple view simulation combined with synthetic approach scenarios. Subjects were asked to detect changes whilst flying highway-in-the-sky approaches with a head-up display. At the same time eye gaze positions where tracked. This novel approach to the investigation of attentional tunneling can prove that an environmental change, even though visually perceived, is not necessarily cognitively processed at the same time.

  10. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.

    PubMed Central

    de Foresta, B; Gallay, J; Sopkova, J; Champeil, P; Vincent, M

    1999-01-01

    The fluorescence properties of tryptophan octyl ester (TOE), a hydrophobic model of Trp in proteins, were investigated in various mixed micelles of dodecylmaltoside (DM) and 7,8-dibromododecyl beta-maltoside (BrDM) or 10,11-dibromoundecanoyl beta-maltoside (BrUM). This study focuses on the mechanism via which these brominated detergents quench the fluorescence of TOE in a micellar system. The experiments were performed at a pH at which TOE is uncharged and almost completely bound to detergent micelles. TOE binding was monitored by its enhanced fluorescence in pure DM micelles or its quenched fluorescence in pure BrUM or BrDM micelles. In DM/BrUM and DM/BrDM mixed micelles, the fluorescence intensity of TOE decreased, as a nonlinear function of the molar fraction of brominated detergent, to almost zero in pure brominated detergent. The indole moiety of TOE is therefore highly accessible to the bromine atoms located on the detergent alkyl chain because quenching by bromines occurs by direct contact with the fluorophore. TOE is simultaneously poorly accessible to iodide (I(-)), a water-soluble collisional quencher. TOE time-resolved fluorescence intensity decay is heterogeneous in pure DM micelles, with four lifetimes (from 0.2 to 4.4 ns) at the maximum emission wavelength. Such heterogeneity may arise from dipolar relaxation processes in a motionally restricted medium, as suggested by the time-dependent (nanoseconds) red shift (11 nm) of the TOE emission spectrum, and from the existence of various TOE conformations. Time-resolved quenching experiments for TOE in mixed micelles showed that the excited-state lifetime values decreased only slightly with increases in the proportion of BrDM or BrUM. In contrast, the relative amplitude of the component with the longest lifetime decreased significantly relative to that of the short-lived species. This is consistent with a mainly static mechanism for the quenching of TOE by brominated detergents. Molecular modeling of TOE

  11. Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk.

    PubMed

    Xia, Zongqi; White, Charles C; Owen, Emily K; Von Korff, Alina; Clarkson, Sarah R; McCabe, Cristin A; Cimpean, Maria; Winn, Phoebe A; Hoesing, Ashley; Steele, Sonya U; Cortese, Irene C M; Chitnis, Tanuja; Weiner, Howard L; Reich, Daniel S; Chibnik, Lori B; De Jager, Philip L

    2016-02-01

    The Genes and Environment in Multiple Sclerosis project establishes a platform to investigate the events leading to multiple sclerosis (MS) in at-risk individuals. It has recruited 2,632 first-degree relatives from across the USA. Using an integrated genetic and environmental risk score, we identified subjects with twice the MS risk when compared to the average family member, and we report an initial incidence rate in these subjects that is 30 times greater than that of sporadic MS. We discuss the feasibility of large-scale studies of asymptomatic at-risk subjects that leverage modern tools of subject recruitment to execute collaborative projects.

  12. RF Bonding Investigation: The Effects of a Space Environment on Coatings

    NASA Technical Reports Server (NTRS)

    Krome, Mark E.; Clark, Tony L.

    1999-01-01

    Coatings are commonly used in the aerospace industry for corrosion control of metals. The impedance of these coatings can reduce the effectiveness of EMI filters. This paper documents the effects of a space environment on a variety of coatings applied to electrical bonding surfaces. Nickel plating, anodizing, and chemical conversion coatings of alodine and iridite are investigated. The test fixture is designed to simulate a feed-through filter in a metal chassis. The filter insertion loss will be shown as a function of frequency and coating.

  13. Nanoscale arrangement of diblock copolymer micelles with Au nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Hwan; Lim, Yirang; Kim, Sehee; Kim, Sung-Soo; Sohn, Byeong-Hyeok

    2014-11-01

    We fabricated a single-layered film consisting of spherical micelles of diblock copolymers and one-dimensional Au nanorods that were surface modified with the same polymer as the corona block of the copolymers. When the diameters of micelles were larger than the lengths of the nanorods, spherical micelles arranged in a hexagonal configuration surrounded by nanorods with their long axes perpendicular to the radial direction of the micelles. This arrangement provided selective organization of the Au nanorods and Ag nanoparticles which were selectively synthesized within the cores of the copolymer micelles. Thus, position-selective arrangement of Au nanorods and Ag nanoparticles was demonstrated at the nanometer scale such that a homogenous distribution of two different nanomaterials over a large area without aggregation was achieved.

  14. A novel temperature-responsive micelle for enhancing combination therapy

    PubMed Central

    Peng, Cheng-Liang; Chen, Yuan-I; Liu, Hung-Jen; Lee, Pei-Chi; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-01-01

    A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects. PMID:27524894

  15. Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems.

    PubMed

    Repin, Nikolay; Scanlon, Martin G; Fulcher, R Gary

    2012-07-01

    Enrichment of colloidal dairy systems with dietary fibre frequently causes quality defects because of phase separation. We investigate phase separation in skimmed milk enriched with Glucagel (a commercial product made from barley that is predominantly comprised of the polysaccharide β-glucan). The driving force for phase separation was depletion flocculation of casein micelles in the presence of molecules of the polysaccharide. Depending on the volume fraction of casein micelles and the concentration of Glucagel, the stable system phase separated either as a transient gel or as a sedimented system. The rate at which phase separation progressed also depended on the volume fraction of casein micelles and the concentration of Glucagel. To confirm the role of depletion flocculation in the phase separation process, enzymatic reduction in the molecular weight of β-glucan was shown to limit the range of attraction between micelles and allow the stable phase to exist at a higher β-glucan concentration for any given volume fraction of casein micelles. These phase diagrams will be useful to dairy product manufacturers striving to improve the nutrient profile of their products while avoiding product quality impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Effects of the water content on the growth rate of AgCl nanoparticles in a reversed micelle system.

    PubMed

    Kimijima, Ken'ichi; Sugimoto, Tadao

    2005-06-15

    The effects of water content on the growth rate and the final particle size of AgCl nanoparticles in a reversed micelle (RM) system of polyoxyethylene (6) nonylphenyl ether (NP-6)/water/cyclohexane were investigated using a double-jet technique, in which RM solutions of AgNO(3) and KCl were added concurrently to a RM solution containing the excess concentration of chloride ion. As a result, the particle growth rate and the final particle size at a constant Rw ( identical with[water]/[surfactant]) below 5 were found to be in excellent agreement with our theoretical prediction based on a dynamic Ostwald ripening mechanism governed by the overall solubility of the solid and the diffusivity of the reversed micelles, whereas the final particle size was far beyond the size of the water pool of a reversed micelle. Thus, the dramatic reduction of the particle size in the RM system can be explained by the drastic reduction of the overall solubility of the solid and the small diffusivity of the bulky reversed micelles as a carrier of silver ion, and not by the size of the water pool of a reversed micelle as conventionally explained. Some additional contribution of a coagulation process was also suggested in a high Rw range above 5. Significant coagulation of AgCl particles was observed in a RM system with AOT in place of NP-6 even under the standard conditions for the NP-6 system.

  17. Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Himelblau, Harry

    2000-01-01

    The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.

  18. Precipitate-Coacervate Transformation in Polyelectrolyte-Mixed Micelle Systems.

    PubMed

    Comert, Fatih; Nguyen, Duy; Rushanan, Marguerite; Milas, Peker; Xu, Amy Y; Dubin, Paul L

    2017-05-04

    The polycation/anionic-nonionic mixed micelle, poly(diallyldimethylammonium chloride)-sodium dodecyl sulfate/Triton X-100 (PDADMAC-SDS/TX100), is a model polyelectrolyte-colloid system in that the micellar mole fraction of SDS (Y) controls the micelle surface charge density, thus modulating the polyelectrolyte-colloid interaction. The exquisite temperature dependence of this system provides an important additional variable, controlling both liquid-liquid (L-L) and liquid-solid (L-S) phase separation, both of which are driven by the entropy of small ion release. In order to elucidate these transitions, we applied high-precision turbidimetry (±0.1 %), isothermal titration calorimetry, and epifluorescence microscopy which demonstrates preservation of micelle structure under all conditions. The L-S region at large Y including precipitation displays a remarkable linear, inverse Y-dependence of the L-S transition temperature Ts. In sharp contrast, the critical temperature for L-L coacervation Tφ, shows nearly symmetrical effects of positive and negative deviations in Y from the point of soluble complex neutrality, which is controlled in solution by the micelle charge and the number of micelles bound per polymer chain n (Zcomplex = Zpolymer + nZmicelle). In solid-like states, n no longer signifies the number of micelles bound per polymer chain, since the proximity of micelles inverts the host-guest relationship with each micelle binding multiple PE chains. This intimate binding goes hand-in-hand with the entropy of release of micelle-localized charge-compensating ions whose concentration depends on Y. These ions need not be released in L-L coacervation, but during L-S transition their displacement by PE accounts for the inverse dependence of Ts on micelle charge, Y.

  19. Combined experimental and computational investigation of sterile air flows in surgical environments

    NASA Astrophysics Data System (ADS)

    McNeill, James; Hertzberg, Jean; Zhai, Zhiqiang

    2010-11-01

    Surgical environments in hospitals utilize downward, low-turbulence, sterile air flow across the patient to inhibit transmission of infectious diseases to the surgical site. Full-scale laboratory experiments using particle image velocimetry were conducted to investigate the air distribution above the patient area. Computational fluid dynamics models were developed to further investigate the air distribution within the operating room in order to determine the impact of ventilation design of airborne infectious disease pathways. Both Reynolds-averaged Navier-Stokes equations and large eddy simulation techniques are currently being used in the computational modeling to study the effect of turbulence modeling on the indoor air distribution. CFD models are being calibrated based on the experimental data and will be used to study the probability of infectious particles entering the sterile region of the room.

  20. Field investigation and analysis of buried pipelines under various seismic environments. Technical report

    SciTech Connect

    Wang, L.R.L.

    1982-08-01

    A research project is proposed in which the behavior of oil, water, sewer, and gas pipelines under various seismic environments, including seismic shaking and large ground deformation would be investigated. It is suggested that the investigation be conducted in the Beijing and Tangshan areas. Three major hazards to underground pipelines are identified: the effect of wave propagation; ground rupture and differential movement along fault lines; and soil liquefaction induced by ground shaking. Ruptures or severe distortions of the pipe are most often associated with fault movements, landslides, or ground squeeze associated with fault zones. A model is presented to evaluate the general longitudinal responses of buried pipelines, both segmented and continuous, subjected to ground shakings and vibrations. The results of these tests will be used to develop aseismic codes for buried pipelines.

  1. NMR study of the influence of n-alkanol co-surfactants on reverse micelles in quaternary microemulsions of cetyltrimethylammonium bromide (CTAB).

    PubMed

    Mills, Amanda J; Britton, Melanie M

    2017-05-01

    The effects of different n-alkanol co-surfactants on the size, shape, composition and dynamics of reverse micelles (RMs) in cetyltrimethylammonium bromide (CTAB)/n-alkanol/n-hexane/water and CTAB/n-alkanol/n-pentane/water microemulsions were investigated using T2 relaxation and pulsed gradient stimulated echo nuclear magnetic resonance (NMR) measurements and molecular modelling. NMR T2 relaxation times and diffusion coefficients were determined for the surfactant and co-surfactant in these CTAB quaternary reverse microemulsions, for a range of medium chain length alcohol co-surfactants, from 1-butanol to 1-heptanol. These data revealed a slight RM size dependency on co-surfactant chain length, with RM sizes tending to decrease with increasing alcohol chain length. Molecular modelling of CTAB/n-alkanol/n-hexane/water RMs suggested a variation in RM shape with co-surfactant chain length, where those formed with pentanol were found to be least spherical and those formed with heptanol the most spherical. The NMR data also revealed differences in the behaviour of the micellar structures in the CTAB/n-pentanol/n-hexane/water reverse microemulsion, compared with the other reverse microemulsions in this study, where CTAB was found to be distributed between two environments, which then combined to form larger micelles. The origins of these differences remain unclear. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface

    PubMed Central

    Ahn, Hee-Chul; Jurani, Nenad; Macura, Slobodan; Markley, John L.

    2008-01-01

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH···OC<) hydrogen bonds directly by the detection of h3JNC′ couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins. PMID:16569017

  3. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.

    PubMed

    Ahn, Hee-Chul; Juranić, Nenad; Macura, Slobodan; Markley, John L

    2006-04-05

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) (variant of crambin containing Pro22 and Leu25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH...OC<) hydrogen bonds directly by the detection of (h3)J(NC)' couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins.

  4. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at

  5. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  6. The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins.

    PubMed Central

    McIntyre, J C; Hundley, P; Behnke, W D

    1987-01-01

    Fluorescence techniques have been employed to study the interaction of porcine and equine colipase with pure taurodeoxycholate and mixed micelles. Nitrotyrosine-55 of porcine colipase is obtained by modification with tetranitromethane (low excess, in the presence of taurodeoxycholate) of the protein followed by gel filtration and ion-exchange chromatography. Verification of the residue modified was obtained by h.p.l.c. peptide purification and sequence analysis. Reduction and quantitative reaction with dansyl chloride yields a fluorescent derivative that is twice as active in conjunction with lipase as is native colipase and that exhibits a strong emission band at 550 nm. Addition of micellar concentrations of taurodeoxycholate causes a 4.3-fold increase in the emission maximum as well as a 70 nm blue shift to 480 nm. Inclusion of oleic acid to form a mixed micelle reduces these spectral effects. Scatchard analysis of the data yield a Kd of 6.8 X 10(-4) M and a single colipase-binding site for taurodeoxycholate micelles. The data, by analogy to a phospholipase system, are consistent with a direct insertion of dansyl-NH-tyrosine-55 into the micelle. The presence of a single tryptophan residue (Trp-52) in equine colipase provides an intrinsic fluorescent probe for studying protein-micelle interaction. The emission maximum of horse colipase at 345 nm indicates a solvent-accessible tryptophan residue which becomes less so on binding of micelles. A blue shift of 8 nm and a 2-fold increase in amplitude is indicative of a more hydrophobic environment for tryptophan induced by taurodeoxycholate micelles. There is also a decrease in KSV for acrylamide quenching in the presence of micelles, which further supports a loss of solvent accessibility. The most dramatic pH effects are observed with KI quenching, and may indicate the presence of negative charges near Trp-52. PMID:3663193

  7. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs.

    PubMed

    Tabatabaei Rezaei, Seyed Jamal; Abandansari, Hamid Sadeghi; Nabid, Mohammad Reza; Niknejad, Hassan

    2014-07-01

    Novel unimolecular micelles from amphiphilic hyperbranched block copolymer H40-poly(ε-caprolactone)-b-poly(acrylic acid)-b'-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate (i.e., H40-PCL-b-PAA-b'-MPEG/PEG-FA (HCAE-FA)) as new multifunctional nanocarriers to pH-induced accelerated release and tumor-targeted delivery of poorly water-soluble anticancer drugs were developed. The hydrophobic core of the unimolecular micelle was hyperbranched polyester (H40-poly(ε-caprolactone) (H40-PCL)). The inner hydrophilic layer was composed of PAA segments, while the outer hydrophilic shell was composed of PEG segments. This copolymer formed unimolecular micelles in the aqueous solution with a mean particle size of 33 nm, as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). To study the feasibility of micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, paclitaxel (PTX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 10.35 wt.%. In vitro release studies demonstrated that the drug-loaded delivery system is relatively stable at physiologic conditions but susceptible to acidic environments which would trigger the release of encapsulated drugs. Flow cytometry and fluorescent microscope studies revealed that the cellular binding of the FA-conjugated micelles against HeLa cells was higher than that of the neat micelles (without FA). The in vitro cytotoxicity studies showed that the PTX transported by these micelles was higher than that by the commercial PTX formulation Tarvexol®. All of these results show that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Spectral and electrochemical studies of bis(diimine)copper(II) complexes in anionic, cationic and nonionic micelles.

    PubMed

    Anitha, N; Balamurugan, R; Palaniandavar, M

    2011-10-15

    The spectral and redox behavior of bis(diimine)copper(II) complexes, where diimine is bipyridine, 1,10-phenanthroline, 4-methyl-1,10-phenanthroline, 5-methyl-1,10-phenanthroline, 5-nitro-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline and dipyrido-[3,2-d:2',3'-f]-quinoxaline, are significantly different in aqueous and in aqueous SDS, CTAB and Triton X-100 micellar solutions. The (1)H NMR spectral study in aqueous (D(2)O) and aqueous micelles reveals that the Cu(II) complexes interact more strongly with SDS than with CTAB and Triton X-100 micelles and at sites on SDS micelles different from those on the latter. Ligand Field spectral studies reveal that the complexes exist as the dicationic aquated species [Cu(diimine)(2)(H(2)O)(2)](2+), which interacts strongly with the anionic SDS micelles through columbic forces. However, they exist as [Cu(diimine)(2)(H(2)O)Cl](+) and/or [Cu(diimine)(2)H(2)] located in the hydrophobic microenvironments in Triton X-100 and CTAB micelles. The attainment of reversibility of the redox systems in the micellar microenvironments is remarkable and this illustrates that the Cu(II) and Cu(I) species undergo stereochemical changes suitable for reversible electron-transfer. The remarkable differences in spectral and electrochemical properties of Cu(II) complexes in aqueous and aqueous micellar solutions illustrate that the complexes are nestled largely within the micellar environments and imply that the accessibilities of the complexes to electron-transfer are different and are dependent on the nature of micelles as well as the nature and hydrophobicity of the diimine ligands. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Influence of the hydrophilic head size and hydrophobic tail length of surfactants on the ability of micelles to stabilize citral.

    PubMed

    Hong, Chi Rac; Park, Sung Joon; Choi, Seung Jun

    2016-07-01

    Surfactant-made micelles can control the rate of chemical degradation of poorly water-soluble food flavors. To evaluate how the molecular structure of surfactant has an influence on the chemical decomposition rate of citral, micelles were prepared with polyoxyethylene alkyl ether-type surfactants that had similar molecular structures but various hydrophilic head sizes and hydrophobic tail lengths. At a critical 20× micelle concentration of surfactant, there was no significant difference in the chemical degradation rate of citral in micelles in neutral pH, regardless of the hydrophilic head size or hydrophobic tail length. In an acidic environment, the degradation rate constant of citral generally increased proportionally with increasing hydrophilic head size of surfactant (0.1563 and 0.2217 for surfactants with 23 and 100 oxyethylene units, respectively) but the length of hydrophobic tail did not affect the citral stability. Also, little difference (0.2217 and 0.2265 for surfactant having 100 oxyethylene units with and without Fe(3+) ) in degradation rate constant of citral between simple micellar solution and micellar solution containing iron suggested that iron ions could not accelerate citral degradation in micelles, regardless of the form of iron (Fe(2+) and Fe(3+) ). This work concludes that although the concentration of surfactant could be relevant, if its concentration could be controlled in the same manner as the critical micelle concentration, then a polyethylene alkyl ether-type surfactant with a small hydrophilic head could more efficiently stabilize citral at an acidic pH. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  11. Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.

    PubMed

    Wesley, Sunil Bala; Maurya, Devendra Prasad; Goyal, Hari Sharan; Negi, Sangeeta

    2013-12-01

    In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance.

  12. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics.

    PubMed

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V; Champeil, Philippe; Lenoir, Guillaume

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  13. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics

    PubMed Central

    Montigny, Cédric; Dieudonné, Thibaud; Orlowski, Stéphane; Vázquez-Ibar, José Luis; Gauron, Carole; Georgin, Dominique; Lund, Sten; le Maire, Marc; Møller, Jesper V.; Champeil, Philippe

    2017-01-01

    Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here

  14. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  15. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  16. Microfiltration of butter serum upon casein micelle destabilization.

    PubMed

    Rombaut, R; Dejonckheere, V; Dewettinck, K

    2006-06-01

    The gross composition of butter serum, the aqueous phase of butter, is comparable to that of buttermilk, except that it has a higher content of material derived from the milk fat globule membrane (MFGM). As such, butter serum is a good source for further purification of MFGM material. The purified fraction could be of interest for its emulsifying and nutritional properties. The effect of sodium citrate and ethanol on the dissociation of butter serum casein micelles, and their effect on casein retention upon tangential microfiltration were investigated. Optimal conditions of casein micelle dissociation were assessed by using an experimental design (response surface full central composite orthogonal design) with temperature and ethanol or sodium citrate concentration as design variables and the Hunter L* value as response variable. For both dissociating agents, a highly significant reduced quadratic model was fit to the data. Microfiltration tests were performed on pure butter serum, and on butter serum in the presence of sodium citrate, under optimal dissociation conditions (50 degrees C, 80 mM). A cellulose acetate membrane with a pore size of 0.15 microm was used. From the filtration curves and fouling coefficients it was clear that the addition of sodium citrate improved the permeation flux, and minimized fouling. All fractions were analyzed for dry matter, protein, lactose, lipid, and polar lipid contents. The protein fraction was further characterized by sodium dodecyl sulfate-PAGE. It was shown that sodium citrate greatly enhanced casein transmission through the membrane, but at the expense of substantial losses of polar lipids.

  17. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.

    PubMed

    McGee, Eamonn; Lang, Terri L

    2002-03-01

    The effects of a Micelle Encapsulator Fire Suppression Agent (F-500, Hazard Control Technologies Inc., Fayetteville, Georgia) on the routine analysis of fire debris samples by Gas Chromatography (GC) were studied. When mixed with water the product can be used in the suppression of Class A and Class B fires. Laboratory tests were performed to determine whether or not the product has any effect on the analysis for ignitable liquids by GC, in particular for gasoline, medium petroleum distillates. and heavy petroleum distillates. Test burns were suppressed using either the micelle encapsulator or water and samples collected from these burns were analyzed. The results of analysis show that use of the micelle encapsulator at a fire scene may affect the chromatographic data obtained from samples collected by the investigator. However, the effect does not prevent the identification of common ignitable liquids in fire debris samples.

  18. Conformations of neurotensin in solution and in membrane environments studied by 2-D NMR spectroscopy.

    PubMed

    Xu, G Y; Deber, C M

    1991-06-01

    Two-dimensional HOHAHA and ROESY nuclear magnetic resonance techniques are used to obtain complete proton resonance assignments and to perform a conformational investigation of the neuropeptide neurotensin (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) in aqueous solution, methanol, and membrane-mimetic [deuterated sodium dodecylsulfate (SDS)] environments. Results suggest the absence of discernible elements of secondary structure in water and methanol. ROESY spectra confirm that Lys-Pro and Arg-Pro peptide bonds are all-trans, but that a significant population of cis Arg-Pro bonds arises in aqueous solution, which increases in the environment of SDS micelles. The conformational ensemble of the peptide is observed to narrow as it becomes bound through its cationic mid-region to SDS micelles, with the accompanying advent of local extended structure. The overall results indicate the inherent conformational flexibility of neurotensin, and emphasize the environmental dependence of conformation in peptides of medium length.

  19. The COURAGE Built Environment Outdoor Checklist: an objective built environment instrument to investigate the impact of the environment on health and disability.

    PubMed

    Quintas, Rui; Raggi, Alberto; Bucciarelli, Paola; Franco, Maria Grazia; Andreotti, Alessandra; Caballero, Francisco Félix; Olaya, Beatriz; Chatterji, Somnath; Galas, Aleksander; Meriläinen-Porras, Satu; Frisoni, Giovanni; Russo, Emanuela; Minicuci, Nadia; Power, Mick; Leonardi, Matilde

    2014-01-01

    A tool to assess the built environment, which takes into account issues of disability, accessibility and the need for data comparable across countries and populations, is much needed. The Collaborative Research on Ageing in Europe (COURAGE) in Europe Built Environment Outdoor Checklist (CBE-OUT) helps us to understand when features of the neighbourhood environment have either a positive or negative impact on the accessibility of neighbourhoods for healthy ageing. The CBE-OUT is composed of 128 items that can be recorded when present in the evaluated environment. Audits were performed in households randomly selected from each cluster of the sample for Finland, Poland and Spain, following precise rules defined by experts. Global scores were computed both section by section and in the overall checklist, rescaling the resulting scores from 0 (negative environment) to 100 (positive). The total number of completed CBE-OUT checklists was 2452 (Finland, 245; Poland, 972; and Spain, 1235). Mean global score for our sample is 49.3, suggesting an environment composed both of facilitating and hindering features. Significant differences were observed in the built environment features of the three countries and in particular between Finland and the other two. The assessment of features of built environment is crucial when thinking about ageing and enhanced participation. The COURAGE in Europe project developed this tool to collect information on built environment in an objective evaluation of environmental features and is a recommended methodology for future studies. The CBE-OUT checklist is an objective evaluation of the built environment and is centred on technical measurement of features present in the environment and has its foundations in the concepts of disability and accessibility operating in the International Classification of Functioning, Disability and Health (ICF) model. The CBE-OUT checklist can be analysed using both the total score and the single section score

  20. Photoluminescence Probes of Aqueous Solutions of Micelles and Related Colloidal Systems

    DTIC Science & Technology

    1989-03-15

    The goals of thi re rch have been (1) to generate knowledge concerning the natu and dynamics of adsorption of surfactants in aqueous solutionnd (2) to...generate innovative and fundamental paradigmii that will allow an understanding of the adsorption at th molecular level. The spectroscopic probe...technique has been e loyed to investigate aqueous solutions of micelles, \\olyeleCtrolytes, cyclodextrins and DNA. In addition, the in ractions of aqueous

  1. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery.

    PubMed

    Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2016-01-01

    Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency.

  2. Nanoprecipitation of polymeric nanoparticle micelles based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), for intracellular delivery applications.

    PubMed

    Salvage, Jonathan P; Thom, Christopher; Lewis, Andrew L; Phillips, Gary J; Lloyd, Andrew W

    2015-03-01

    Biodistribution of nanoparticle-based intracellular delivery systems is mediated primarily by particle size and physicochemical properties. As such, overcoming the rapid removal of these by the reticuloendothelial system remains a significant challenge. To date, a number of copolymer nanoparticle systems based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), displaying biomimetic and pH responsive properties, have been published, however these have been predominately polymersome based, whilst micelle systems have remained relatively unexplored. This study utilised nanoprecipitation to investigate the effects of solvent and buffer choice upon micelle size and polydispersity, and found using methanol produced monodisperse micelles of circa 70 nm diameter, whilst ethanol produced polydisperse systems with nanoparticles of circa 128 nm diameter. The choice of aqueous buffer, dialysis of the systems, extended storage, and exposure to a wide temperature range (5-70 °C) had no significant effect on micelle size, and the systems were highly resistant to dilution, indicating excellent colloidal stability. Optimisation of the nanoprecipitation process, post precipitation, was investigated, and model drugs successfully loaded whilst maintaining system stability. Subsequent in vitro studies suggested that the micelles were of negligible cellular toxicity, and an apparent cellular uptake was observed via confocal laser scanning microscopy. This paper presents the first report of an optimised nanoprecipitation methodology for the formation of MPC-DPA nanoparticle micelles, and in doing so achieved monodisperse systems with the size and physicochemical characteristics seen as desirable for long circulating therapeutic delivery vehicles.

  3. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Ruirui; Su, Shishuai; Hu, Kelei; Shao, Leihou; Deng, Xiongwei; Sheng, Wang; Wu, Yan

    2015-11-01

    In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core-shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo-photothermal therapy for breast cancer.In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has

  4. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B.

    PubMed

    Wang, Ying; Ke, Xiyu; Voo, Zhi Xiang; Yap, Serene Si Ling; Yang, Chuan; Gao, Shujun; Liu, Shaoqiong; Venkataraman, Shrinivas; Obuobi, Sybil Akua Okyerewa; Khara, Jasmeet Singh; Yang, Yi Yan; Ee, Pui Lai Rachel

    2016-12-01

    Amphotericin B (AmB), a poorly soluble and toxic antifungal drug, was encapsulated into polymeric micelles self-assembled from phenylboronic acid-functionalized polycarbonate/PEG (PEG-PBC) and urea-functionalized polycarbonate/PEG (PEG-PUC) diblock copolymers via hydrogen-bonding, boronate ester bond, and/or ionic interactions between the boronic acid group in the micellar core and amine group in AmB. Three micellar formulations were prepared: AmB/B micelles using PEG-PBC, AmB/U micelles using PEG-PUC and AmB/B+U mixed micelles using 1:1molar ratio of PEG-PBC and PEG-PUC. The average particle sizes of the micelles were in the range of 54.4-84.8nm with narrow size distribution and zeta potentials close to neutral. UV-Vis absorption analysis indicated that AmB/B micelles significantly reduced AmB aggregation status due to the interactions between AmB and the micellar core, while Fungizone® and AmB/U micelles had no effect. AmB/B+U mixed micelles exerted an intermediate effect. Both AmB/B micelles and AmB/B+U mixed micelles showed sustained drug release, with 48.6±2.1% and 59.2±1.8% AmB released respectively after 24hunder sink conditions, while AmB/U micelles displayed a burst release profile. All AmB-loaded micelles showed comparable antifungal activity to free AmB or Fungizone®, while AmB/B micelles and AmB/B+U mixed micelles were much less hemolytic than other formulations. Histological examination showed that AmB/B and AmB/B+U micelles led to a significantly lower number of apoptotic cells in the kidneys compared to Fungizone®, suggesting reduced nephrotoxicity of the micellar formulations in vivo. These phenylboronic acid-functionalized polymeric micelle systems are promising drug carriers for AmB to reduce non-specific toxicities without compromise in antifungal activity. There is a pressing need for a novel and cost-effective delivery system to reduce the toxicity induced by the antifungal agent, amphotericin B (AmB). In this study, phenylboronic acid

  5. Simvastatin prodrug micelles target fracture and improve healing.

    PubMed

    Jia, Zhenshan; Zhang, Yijia; Chen, Yen Hsun; Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V; Purdue, P Edward; Goldring, Steven R; Daluiski, Aaron; Wang, Dong

    2015-02-28

    Simvastatin (SIM), a widely used anti-lipidemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug's hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles' therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing.

  6. Structural properties of CHAPS micelles, studied by molecular dynamics simulations.

    PubMed

    Herrera, Fernando E; Garay, A Sergio; Rodrigues, Daniel E

    2014-04-10

    Detergents are essential tools to study biological membranes, and they are frequently used to solubilize lipids and integral membrane proteins. Particularly the nondenaturing zwitterionic detergent usually named CHAPS was designed for membrane biochemistry and integrates the characteristics of the sulfobetaine-type detergents and bile salts. Despite the available experimental data little is known about the molecular structure of its micelles. In this work, molecular dynamics simulations were performed to study the aggregation in micelles of several numbers of CHAPS (≤ 18) starting from a homogeneous water dilution. The force field parameters to describe the interactions of the molecule were developed and validated. After 50 ns of simulation almost all the systems result in the formation of stable micelles. The molecular shape (gyration radii, volume, surface) and the molecular structure (RDF, salt bridges, H-bonds, SAS) of the micelles were characterized. It was found that the main interactions that lead to the stability of the micelles are the electrostatic ones among the polar groups of the tails and the OH's from the ring moiety. Unlike micelles of other compounds, CHAPS show a grainlike heterogeneity with hydrophobic micropockets. The results are in complete agreement with the available experimental information from NMR, TEM, and SAXS studies, allowing the modeling of the molecular structure of CHAPS micelles. Finally, we hope that the new force field parameters for this detergent will be a significant contribution to the knowledge of such an interesting molecule.

  7. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant

    SciTech Connect

    Sun, S.; Inskeep, W.P.; Boyd, S.A. |

    1994-12-31

    The solubility enhancement of nonionic organic compounds (NOCs) by surfactants may represent an important tool in chemical and biological remediation of contaminated soils. In aqueous systems, the presence of dissolved surfactant emulsions or micelles may enhance the solubility of NOCs by acting as a hydrophobic partitioning phase for the NOCs. However, most environmental remediation efforts involve soil-water or sediment-water systems, where surfactant molecules may also interact with the solid phase. An understanding of the effect of surfactants on the sorption and distribution of NOCs in soil or sediment environments will provide an essential basis for utilizing surfactants in environmental remediation. In this study, the authors examined the effect of a micelle-forming surfactant (Triton X-100) on the sorption of 2,2{prime},4,4{prime},5,5{prime}-PCB, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p{prime}-DDT) and 1,2,4-trichlorobenzene (1,2,4-TCB). A conceptual model, which accurately describes the functional dependence of K* on Triton X-100 concentration, was developed based on the partition coefficients of these NOCs by soil, soil-surfactant, surfactant monomer and surfactant micelle phases. This model can be further modified to provide quantitative prediction of K* of a given NOC at different surfactant concentrations.

  8. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs.

    PubMed

    Zhang, Shan; Xu, Jianbin; Chen, Heng; Song, Zhangfa; Wu, Yalan; Dai, Xingyi; Kong, Jie

    2017-03-01

    In this contribution, amphiphilic star copolymers (H40-star-PCL-a-PEG) with an H40 hyperbranched polyester core and poly(ε-caprolactone)-a-poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring-opening polymerization and a copper (I)-catalyzed alkyne-azide cycloaddition click reaction. The acid-cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid-cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid-cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  9. EFFECT OF ULTRA-HIGH PRESSURE HOMOGENIZATION ON THE INTERACTION BETWEEN BOVINE CASEIN MICELLES AND RITONAVIR

    PubMed Central

    Corzo-Martínez, M.; Mohan, M.; Dunlap, J.; Harte, F.

    2014-01-01

    Purpose The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). Methods Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. Results Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. Conclusions Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications. PMID:25270571

  10. A Simple Dual-pH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery.

    PubMed

    Mao, Jie; Li, Yang; Wu, Tong; Yuan, Conghui; Zeng, Birong; Xu, Yiting; Dai, Lizong

    2016-07-13

    To precisely deliver drug molecules at a targeted site and in a controllable manner, there has been great interest in designing a synergistical drug delivery system that can achieve both surface charge-conversion and controlled release of a drug in response to different stimuli. Here we outline a simple method to construct an intelligent drug carrier, which can respond to two different pH values, therefore achieving charge conversion and chemical-bond-cleavage-induced drug release in a stepwise fashion. This drug carrier comes from the self-assembly of a block copolymer-DOX conjugate synthesized through a Schiff base reaction between poly(2-(diisopropylamino)ethyl methacrylate-b-poly(4-formylphenyl methacrylate-co-polyethylene glycol monomethyl ether methacrylate) (PDPA-b-P(FPMA-co-OEGMA)) and DOX. The surface charge of the BCP-DOX micelles reversed from negative to positive when encountering a weakly acidic environment due to the protonation of PDPA segments. In vitro cellular uptake measurement shows that the cellular uptake and internalization of the BCP-DOX micelles can be significantly enhanced at pH ∼ 6.5. Moreover, this drug carrier exhibits a pH-dependent drug release owing to the cleavage of the imine bond at pH < 5.5. With this dual-pH responsive feature, these micelles may have the ability to precisely deliver DOX to the cancer cells.

  11. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M

    2016-09-01

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.

  12. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    NASA Astrophysics Data System (ADS)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  13. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations.

    PubMed

    van Os, Jim; Rutten, Bart P; Myin-Germeys, Inez; Delespaul, Philippe; Viechtbauer, Wolfgang; van Zelst, Catherine; Bruggeman, Richard; Reininghaus, Ulrich; Morgan, Craig; Murray, Robin M; Di Forti, Marta; McGuire, Philip; Valmaggia, Lucia R; Kempton, Matthew J; Gayer-Anderson, Charlotte; Hubbard, Kathryn; Beards, Stephanie; Stilo, Simona A; Onyejiaka, Adanna; Bourque, Francois; Modinos, Gemma; Tognin, Stefania; Calem, Maria; O'Donovan, Michael C; Owen, Michael J; Holmans, Peter; Williams, Nigel; Craddock, Nicholas; Richards, Alexander; Humphreys, Isla; Meyer-Lindenberg, Andreas; Leweke, F Markus; Tost, Heike; Akdeniz, Ceren; Rohleder, Cathrin; Bumb, J Malte; Schwarz, Emanuel; Alptekin, Köksal; Üçok, Alp; Saka, Meram Can; Atbaşoğlu, E Cem; Gülöksüz, Sinan; Gumus-Akay, Guvem; Cihan, Burçin; Karadağ, Hasan; Soygür, Haldan; Cankurtaran, Eylem Şahin; Ulusoy, Semra; Akdede, Berna; Binbay, Tolga; Ayer, Ahmet; Noyan, Handan; Karadayı, Gülşah; Akturan, Elçin; Ulaş, Halis; Arango, Celso; Parellada, Mara; Bernardo, Miguel; Sanjuán, Julio; Bobes, Julio; Arrojo, Manuel; Santos, Jose Luis; Cuadrado, Pedro; Rodríguez Solano, José Juan; Carracedo, Angel; García Bernardo, Enrique; Roldán, Laura; López, Gonzalo; Cabrera, Bibiana; Cruz, Sabrina; Díaz Mesa, Eva Ma; Pouso, María; Jiménez, Estela; Sánchez, Teresa; Rapado, Marta; González, Emiliano; Martínez, Covadonga; Sánchez, Emilio; Olmeda, Ma Soledad; de Haan, Lieuwe; Velthorst, Eva; van der Gaag, Mark; Selten, Jean-Paul; van Dam, Daniella; van der Ven, Elsje; van der Meer, Floor; Messchaert, Elles; Kraan, Tamar; Burger, Nadine; Leboyer, Marion; Szoke, Andrei; Schürhoff, Franck; Llorca, Pierre-Michel; Jamain, Stéphane; Tortelli, Andrea; Frijda, Flora; Vilain, Jeanne; Galliot, Anne-Marie; Baudin, Grégoire; Ferchiou, Aziz; Richard, Jean-Romain; Bulzacka, Ewa; Charpeaud, Thomas; Tronche, Anne-Marie; De Hert, Marc; van Winkel, Ruud; Decoster, Jeroen; Derom, Catherine; Thiery, Evert; Stefanis, Nikos C; Sachs, Gabriele; Aschauer, Harald; Lasser, Iris; Winklbaur, Bernadette; Schlögelhofer, Monika; Riecher-Rössler, Anita; Borgwardt, Stefan; Walter, Anna; Harrisberger, Fabienne; Smieskova, Renata; Rapp, Charlotte; Ittig, Sarah; Soguel-dit-Piquard, Fabienne; Studerus, Erich; Klosterkötter, Joachim; Ruhrmann, Stephan; Paruch, Julia; Julkowski, Dominika; Hilboll, Desiree; Sham, Pak C; Cherny, Stacey S; Chen, Eric Y H; Campbell, Desmond D; Li, Miaoxin; Romeo-Casabona, Carlos María; Emaldi Cirión, Aitziber; Urruela Mora, Asier; Jones, Peter; Kirkbride, James; Cannon, Mary; Rujescu, Dan; Tarricone, Ilaria; Berardi, Domenico; Bonora, Elena; Seri, Marco; Marcacci, Thomas; Chiri, Luigi; Chierzi, Federico; Storbini, Viviana; Braca, Mauro; Minenna, Maria Gabriella; Donegani, Ivonne; Fioritti, Angelo; La Barbera, Daniele; La Cascia, Caterina Erika; Mulè, Alice; Sideli, Lucia; Sartorio, Rachele; Ferraro, Laura; Tripoli, Giada; Seminerio, Fabio; Marinaro, Anna Maria; McGorry, Patrick; Nelson, Barnaby; Amminger, G Paul; Pantelis, Christos; Menezes, Paulo R; Del-Ben, Cristina M; Gallo Tenan, Silvia H; Shuhama, Rosana; Ruggeri, Mirella; Tosato, Sarah; Lasalvia, Antonio; Bonetto, Chiara; Ira, Elisa; Nordentoft, Merete; Krebs, Marie-Odile; Barrantes-Vidal, Neus; Cristóbal, Paula; Kwapil, Thomas R; Brietzke, Elisa; Bressan, Rodrigo A; Gadelha, Ary; Maric, Nadja P; Andric, Sanja; Mihaljevic, Marina; Mirjanic, Tijana

    2014-07-01

    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotype. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations

    PubMed Central

    2014-01-01

    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi–c