Science.gov

Sample records for micro aerial vehicles

  1. MEMS Based Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  2. Flexible micro flow sensor for micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-04-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  3. Extreme Agility Micro Aerial Vehicle - Control of Hovering Maneuvers for a Mini-Aerial Vehicle with an Onboard Autopilot System

    DTIC Science & Technology

    2011-02-01

    Extreme Agility Micro Aerial Vehicle - Control of hovering maneuvers for a mini-aerial vehicle with an onboard autopilot system P.-R. Bilodeau AEREX...Micro Aerial Vehicle - Control of hovering maneuvers for a mini-aerial vehicle with an onboard autopilot system P.-R. Bilodeau AEREX Avionique inc...onboard autopilot. The implementation of the controllers on the onboard autopilot reduced system delays observed from an off board controller

  4. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  5. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  6. Passive stability and actuation of micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Piccoli, Matthew

    Micro Aerial Vehicles (MAVs) have increased in popularity in recent years. The most common platform, the quadrotor, has surpassed other MAVs like traditional helicopters and ornithopters in popularity mainly due to their simplicity. Yet the quadrotor design is a century old and was intended to carry people. We set out to design a MAV that is designed specifically to be a MAV, i.e. a vehicle not intended to carry humans as a payload. With this constraint lifted the vehicle can continuously rotate, which would dizzy a human, can sustain larger forces, which would damage a human, or can take advantage of scaling properties, where it may not work at human scale. Furthermore, we aim for simplicity by removing vehicle controllers and reducing the number of actuators, such that the vehicle can be made cost effective, if not disposable. We begin by studying general equations of motion for hovering MAVs. We search for vehicle configurations that exhibit passive stability, allowing the MAV to operate without a controller or actuators to apply control, ideally a single actuator. The analysis suggests two distinct types of passively stabilized MAVs and we create test vehicles for both. With simple hovering achieved, we concentrate on controlled motion with an emphasis on doing so without adding actuators. We find we can attain three degree of freedom control using separation of time scales with our actuator via low frequency for control in the vertical direction and high frequency for control in the horizontal plane. We explore techniques for achieving high frequency actuator control, which also allow the compensation of motor defects, specifically cogging torque. We combine passive stability with the motion control into two vehicles, UNO and Piccolissimo. UNO, the Underactuated-propeller Naturally-stabilized One-motor vehicle, demonstrates the capabilities of simple vehicles by performing maneuvers like conventional quadrotors. Piccolissimo, Italian for very little

  7. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  8. Time synchronization of consumer cameras on Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2017-01-01

    This article discusses the problem of time registration between navigation and imaging components on Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. Therefore, accurate aerial control plays a major role in efficient reconstruction of the terrain and artifact-free ortophoto generation. A key prerequisite is correct time stamping of images in global time frame as the sensor exterior orientation changes rapidly and its determination by navigation sensors influence the mapping accuracy on the ground. A majority of MAVs is equipped with consumer-grade, non-metric cameras for which the precise time registration with navigation components is not trivial to realize and its performance not easy to assess. In this paper, we study the problematic of synchronization by implementing and evaluating spatio-temporal observation models of aerial control to estimate residual delay of the imaging sensor. Such modeling is possible through inclusion of additional velocity and angular rate observations into the adjustment. This moves the optimization problem from 3D to 4D. The benefit of this approach is verified on real mapping projects using a custom build MAV and an off-the-shelf camera.

  9. Aerial networking communication solutions using Micro Air Vehicle (MAV)

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Shyam; de Graaf, Maurits; Hoekstra, Gerard; Corporaal, Henk; Wijtvliet, Mark; Cuadros Linde, Javier

    2014-10-01

    The application of a Micro Air Vehicle (MAV) for wireless networking is slowly gaining significance in the field of network robotics. Aerial transport of data requires efficient network protocols along with accurate positional adjustment of the MAV to minimize transaction times. In our proof of concept, we develop an Aerial networking protocol for data transfer using the technology of Disruption Tolerant Networks (DTN), a store-and-forward approach for environments that deals with disrupted connectivity. Our results show that close interaction between networking and flight behavior helps in efficient data exchange. Potential applications are in areas where network infrastructure is minimal or unavailable and distances may be large. For example, forwarding video recordings during search and rescue, agriculture, swarm communication, among several others. A practical implementation and validation, as described in this paper, presents the complex dynamics of wireless environments and poses new challenges that are not addressed in earlier work on this topic. Several tests are evaluated in a practical setup to display the networking MAV behavior during such an operation.

  10. Vision-based fast navigation of micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Loianno, Giuseppe; Kumar, Vijay

    2016-05-01

    We address the key challenges for autonomous fast flight for Micro Aerial Vehicles (MAVs) in 3-D, cluttered environments. For complete autonomy, the system must identify the vehicle's state at high rates, using either absolute or relative asynchronous on-board sensor measurements, use these state estimates for feedback control, and plan trajectories to the destination. State estimation requires information from different sensors to be fused, exploiting information from different, possible asynchronous sensors at different rates. In this work, we present techniques in the area of planning, control and visual-inertial state estimation for fast navigation of MAVs. We demonstrate how to solve on-board, on a small computational unit, the pose estimation, control and planning problems for MAVs, using a minimal sensor suite for autonomous navigation composed of a single camera and IMU. Additionally, we show that a consumer electronic device such as a smartphone can alternatively be employed for both sensing and computation. Experimental results validate the proposed techniques. Any consumer, provided with a smartphone, can autonomously drive a quadrotor platform at high speed, without GPS, and concurrently build 3-D maps, using a suitably designed app.

  11. An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles

    DTIC Science & Technology

    2010-10-01

    An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles Ming Hou...Report DRDC Toronto TR 2010-075 October 2010 An Empirical Study on Operator Interface Design for Handheld Devices to...drives the need for a small and light controller which will not hinder a soldier carrying it. This requirement brings an issue of designing an

  12. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  13. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  14. Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis

    2002-01-01

    This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.

  15. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter

    2001-01-01

    Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.

  16. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    NASA Astrophysics Data System (ADS)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  17. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  18. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  19. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  20. Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer.

    PubMed

    He, Wei; Yan, Zichen; Sun, Changyin; Chen, Yunan

    2017-10-01

    The research of this paper works out the attitude and position control of the flapping wing micro aerial vehicle (FWMAV). Neural network control with full state and output feedback are designed to deal with uncertainties in this complex nonlinear FWMAV dynamic system and enhance the system robustness. Meanwhile, we design disturbance observers which are exerted into the FWMAV system via feedforward loops to counteract the bad influence of disturbances. Then, a Lyapunov function is proposed to prove the closed-loop system stability and the semi-global uniform ultimate boundedness of all state variables. Finally, a series of simulation results indicate that proposed controllers can track desired trajectories well via selecting appropriate control gains. And the designed controllers possess potential applications in FWMAVs.

  1. Power beaming to a micro aerial vehicle using an active phased array

    NASA Astrophysics Data System (ADS)

    Sawahara, Hironori; Oda, Akinori; Alseny, Diallo; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2010-04-01

    A power beaming system to a Micro Aerial Vehicle (MAV) using 5.8GHz microwaves has been developed. The system consists of three sub-systems; a pointing system, a tracking system, and a receiving system. The MAV is tracked using the phase information of pilot signal. Software retro-directive function has been realized through a PC control and a microwave beam is pointed to the MAV using an active phased array. The beam divergence was about 9deg and the beam steering angle was from -9deg to +9deg. Light-weight flexible rectenna array made of cupper tapes and a thin polyimide film was mounted on a wing of the MAV model, and the electric motor was driven by the received power. The weight per unit reception area was 26mg/cm2.

  2. Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles

    PubMed Central

    Gökçe, Fatih; Üçoluk, Göktürk; Şahin, Erol; Kalkan, Sinan

    2015-01-01

    Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment or on the distance. For this purpose, we test Haar-like features, histogram of gradients (HOG) and local binary patterns (LBP) using cascades of boosted classifiers. Cascaded boosted classifiers allow fast processing by performing detection tests at multiple stages, where only candidates passing earlier simple stages are processed at the preceding more complex stages. We also integrate a distance estimation method with our system utilizing geometric cues with support vector regressors. We evaluated each method on indoor and outdoor videos that are collected in a systematic way and also on videos having motion blur. Our experiments show that, using boosted cascaded classifiers with LBP, near real-time detection and distance estimation of mUAVs are possible in about 60 ms indoors (1032×778 resolution) and 150 ms outdoors (1280×720 resolution) per frame, with a detection rate of 0.96 F-score. However, the cascaded classifiers using Haar-like features lead to better distance estimation since they can position the bounding boxes on mUAVs more accurately. On the other hand, our time analysis yields that the cascaded classifiers using HOG train and run faster than the other algorithms. PMID:26393599

  3. Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles.

    PubMed

    Gökçe, Fatih; Üçoluk, Göktürk; Şahin, Erol; Kalkan, Sinan

    2015-09-18

    Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment or on the distance. For this purpose, we test Haar-like features, histogram of gradients (HOG) and local binary patterns (LBP) using cascades of boosted classifiers. Cascaded boosted classifiers allow fast processing by performing detection tests at multiple stages, where only candidates passing earlier simple stages are processed at the preceding more complex stages. We also integrate a distance estimation method with our system utilizing geometric cues with support vector regressors. We evaluated each method on indoor and outdoor videos that are collected in a systematic way and also on videos having motion blur. Our experiments show that, using boosted cascaded classifiers with LBP, near real-time detection and distance estimation of mUAVs are possible in about 60 ms indoors (1032 × 778 resolution) and 150 ms outdoors (1280 × 720 resolution) per frame, with a detection rate of 0.96 F-score. However, the cascaded classifiers using Haar-like features lead to better distance estimation since they can position the bounding boxes on mUAVs more accurately. On the other hand, our time analysis yields that the cascaded classifiers using HOG train and run faster than the other algorithms.

  4. Modeling and control for heave dynamics of a flexible wing micro aerial vehicle distributed parameter system

    NASA Astrophysics Data System (ADS)

    Kuhn, Lisa M.

    2011-07-01

    In recent years, much research has been motivated by the idea of biologically-inspired flight. It is a conjecture of the United States Air Force that incorporating characteristics of biological flight into air vehicles will significantly improve the maneuverability and performance of modern aircraft. Although there are studies which involve the aerodynamics, structural dynamics, modeling, and control of flexible wing micro aerial vehicles (MAVs), issues of control and vehicular modeling as a whole are largely unexplored. Modeling with such dynamics lends itself to systems of partial differential equations (PDEs) with nonlinearities, and limited control theory is available for such systems. In this work, a multiple component structure consisting of two Euler-Bernoulli beams connected to a rigid mass is used to model the heave dynamics of an aeroelastic wing MAV, which is acted upon by a nonlinear aerodynamic lift force. We seek to employ tools from distributed parameter modeling and linear control theory in an effort to achieve agile flight potential of flexible, morphable wing MAV airframes. Theoretical analysis of the model is conducted, which includes generating solutions to the eigenvalue problem for the system and determining well-posedness and the attainment of a C 0-semigroup for the linearly approximated model. In order to test the model's ability to track to a desired state and to gain insight into optimal morphing trajectories, two control objectives are employed on the model: target state tracking and morphing trajectory over time.

  5. Detection of MAVs (Micro Aerial Vehicles) based on millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Noetel, Denis; Johannes, Winfried; Caris, Michael; Hommes, Alexander; Stanko, Stephan

    2016-10-01

    In this paper we present two system approaches for perimeter surveillance with radar techniques focused on the detection of Micro Aerial Vehicles (MAVs). The main task of such radars is to detect movements of targets such as an individual or a vehicle approaching a facility. The systems typically cover a range of several hundred meters up to several kilometers. In particular, the capability of identifying Remotely Piloted Aircraft Systems (RPAS), which pose a growing threat on critical infrastructure areas, is of great importance nowadays. The low costs, the ease of handling and a considerable payload make them an excellent tool for unwanted surveillance or attacks. Most platforms can be equipped with all kind of sensors or, in the worst case, with destructive devices. A typical MAV is able to take off and land vertically, to hover, and in many cases to fly forward at high speed. Thus, it can reach all kinds of places in short time while the concealed operator of the MAV resides at a remote and riskless place.

  6. Factors influencing efficiency of laser wireless power transmission system for micro unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Hua, Wenshen; Liu, Xun

    2014-12-01

    Micro unmanned aerial vehicle, mostly powered by electricity, plays an important role in many military and civil applications, e.g. military detection, communication relay et al. But restricted endurance ability severely limits its applications. To solve the problem, laser wireless power transmission system is proposed. However, overall efficiency of the system is quite low. This paper describes basic structure of laser wireless power transmission system and its working process. The system consists of two major modules: a high power laser source transmitting energy and a photovoltaic receiver converting optical energy into electricity. Then factors influencing efficiency of the system are analyzed. It suggests that electro-optical efficiency of laser, atmospheric impact on laser beam and photo-electric efficiency of photovoltaic receiver play significant role in overall efficiency of the system. Atmospheric impact on laser beam mostly derived from refraction, absorption, scattering and turbulence effects, leads to drop in energy and quality of laser beam. Efficiency of photovoltaic receiver is affected by photovoltaic materials. In addition, matching degree between intensity distribution of laser beam and layout of photovoltaic receiver also obviously influence efficiency of photovoltaic receiver. Experiment results suggest that under non-uniform laser beam illumination, efficiency of photovoltaic receiver mostly depends on layout of photovoltaic receiver. Through optimizing the layout of photovoltaic receiver based on intensity distribution of laser beam, output power is significantly improved. The analysis may help to take corresponding measures to alleviate negative effects of these factors and improve performance of laser wireless power transmission system.

  7. A neuro-evolutionary approach to control surface segmentation for micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Salichon, Max; Tumer, Kagan

    2013-10-01

    This paper addresses control surface segmentation in micro aerial vehicles (MAVs) by leveraging neuro-evolutionary techniques that allow the control of a higher number of control surfaces. Applying classical control methods to MAVs is a difficult process due to the complexity of the control laws with fast and highly non-linear dynamics. These methods are mostly based on models that are difficult to obtain for dynamic and stochastic environments. Moreover, these problems are exacerbated when both the number of control surfaces increases and the model's accuracy in determining the impact of each control surface decreases. Instead, we focus on neuro-evolutionary techniques that have been successfully applied in many domains with limited models and highly non-linear dynamics. Wind tunnel simulations with Athena Vortex Lattice show that MAV performances are improved in terms of both reduced deflection angles and reduced drag (up to 5%) over a simplified model in two sets of experiments with different objective functions. We also show robustness to actuator failure with desired roll moment values still attained with failed actuators in the system through the neuro-controller.

  8. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  9. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  10. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  11. Flexible Wing Base Micro Aerial Vehicles: Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nechyba, Michael C.; Ettinger, Scott M.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Recently substantial progress has been made towards design building and testifying remotely piloted Micro Air Vehicles (MAVs). This progress in overcoming the aerodynamic obstacles to flight at very small scales has, unfortunately, not been matched by similar progress in autonomous MAV flight. Thus, we propose a robust, vision-based horizon detection algorithm as the first step towards autonomous MAVs. In this paper, we first motivate the use of computer vision for the horizon detection task by examining the flight of birds (biological MAVs) and considering other practical factors. We then describe our vision-based horizon detection algorithm, which has been demonstrated at 30 Hz with over 99.9% correct horizon identification, over terrain that includes roads, buildings large and small, meadows, wooded areas, and a lake. We conclude with some sample horizon detection results and preview a companion paper, where the work discussed here forms the core of a complete autonomous flight stability system.

  12. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  13. Flexible Wing Base Micro Aerial Vehicles: Vision-Guided Flight Stability and Autonomy for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.

  14. Piezo-stack vortex generators for boundary layer control of a delta wing micro-aerial vehicle

    NASA Astrophysics Data System (ADS)

    Mystkowski, Arkadiusz

    2013-11-01

    This paper presents an idea for the control of flow separation over solid surfaces by piezo-stack vortex generators. The vortex generators are small vibrating plates attached to the delta wing surface. A model of the micro-aerial vehicle (MAV) controlled by vortex piezo-generators is presented. The vortex generators are applied to produce the appropriate aerodynamical forces and moments controlling the flight of the aircraft. The efficiency of the vortex generators is proved by the wind tunnel test results. The oscillatory added lift and drag coefficients versus angle of attack are presented. The optimal vortex generator amplitude and frequency are investigated. Boundary layer control (BLC) for delta wing micro-aircraft increases the manoeuvrability and performance of the MAV.

  15. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic

  16. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun

    2013-04-01

    Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.

  17. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles

    DTIC Science & Technology

    2004-02-01

    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office...COVERED - 4. TITLE AND SUBTITLE Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles 5a. CONTRACT...the Defense Science Board Task Force on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles I am pleased to forward the final report of

  18. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application

    PubMed Central

    Ortiz, Alberto; Bonnin-Pascual, Francisco; Garcia-Fidalgo, Emilio; Company-Corcoles, Joan P.

    2016-01-01

    Vessel maintenance requires periodic visual inspection of the hull in order to detect typical defective situations of steel structures such as, among others, coating breakdown and corrosion. These inspections are typically performed by well-trained surveyors at great cost because of the need for providing access means (e.g., scaffolding and/or cherry pickers) that allow the inspector to be at arm’s reach from the structure under inspection. This paper describes a defect detection approach comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access, and a coating breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is discussed in the paper, the success of the inspection process depends not only on the defect detection software but also on a number of assistance functions provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along the different sections of the paper, as well as the classification performance attained. PMID:27983627

  19. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application.

    PubMed

    Ortiz, Alberto; Bonnin-Pascual, Francisco; Garcia-Fidalgo, Emilio; Company-Corcoles, Joan P

    2016-12-14

    Vessel maintenance requires periodic visual inspection of the hull in order to detect typical defective situations of steel structures such as, among others, coating breakdown and corrosion. These inspections are typically performed by well-trained surveyors at great cost because of the need for providing access means (e.g., scaffolding and/or cherry pickers) that allow the inspector to be at arm's reach from the structure under inspection. This paper describes a defect detection approach comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access, and a coating breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is discussed in the paper, the success of the inspection process depends not only on the defect detection software but also on a number of assistance functions provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along the different sections of the paper, as well as the classification performance attained.

  20. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  1. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  2. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  3. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  4. Autonomous Hovering and Landing of a Quad-rotor Micro Aerial Vehicle by Means of on Ground Stereo Vision System

    NASA Astrophysics Data System (ADS)

    Pebrianti, Dwi; Kendoul, Farid; Azrad, Syaril; Wang, Wei; Nonami, Kenzo

    On ground stereo vision system is used for autonomous hovering and landing of a quadrotor Micro Aerial Vehicle (MAV). This kind of system has an advantage to support embedded vision system for autonomous hovering and landing, since an embedded vision system occasionally gives inaccurate distance calculation due to either vibration problem or unknown geometry of the landing target. Color based object tracking by using Continuously Adaptive Mean Shift (CAMSHIFT) algorithm was examined. Nonlinear model of quad-rotor MAV and a PID controller were used for autonomous hovering and landing. The result shows that the Camshift based object tracking algorithm has good performance. Additionally, the comparison between the stereo vision system based and GPS based autonomous hovering of a quad-rotor MAV shows that stereo vision system has better performance. The accuracy of the stereo vision system is about 1 meter in the longitudinal and lateral direction when the quad-rotor flies in 6 meters of altitude. In the same experimental condition, the GPS based system accuracy is about 3 meters. Additionally, experiment on autonomous landing gives a reliable result.

  5. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs) †

    PubMed Central

    Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  6. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated

  7. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  8. Unmanned Aerial Vehicles Master Plan, 1993.

    DTIC Science & Technology

    2007-11-02

    PHOTOGRAPH THIS SHEET AND RETURN To DTIC-FDAC DTIC 70A DOCUMENT PROCESSMING I~ SlEW -, mmllamm LOAN DOCUMENT DEPARTMENT OF DEFENSE UNMANNED AERIAL VEHICLES (UAV...11 B. Program Executive Officer for Cruise Missiles 3 and Unmanned Aerial Vehicles (PEO[CU...69 I ! I I ivI -- UAV 1993 MASTER PLAN U I EXECUTIVE SUMMARY 3 A. OVERVIEW Unmanned Aerial Vehicles (UAVs)* can make significant

  9. Unmanned aerial vehicles in astronomy

    NASA Astrophysics Data System (ADS)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  10. Non-Lethal Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    1993-06-15

    ELEMENT NO. NO. NO. ACCESSION N.- Same as Item Yb 11. TITLE (Include Security Clasiiicotion) "Non- Lethal Unmanned Aerial Vehicles (UAVs)" (U) 12. PERSONAL...NOTATION Non- Lethal Unmanned Aerial Vehicle (UAV) reflects current terminolcgy. Remotely Piloted Vehicle (RPV) and Drone Aircraft are outdated terms...1?. COSAT CODES tS SUBJECT T-RMS (Cont,’we on reverfe if necesary and identi•y by block number) FIELD GROUP SUB-GROUP UAVs Flight Terminal I

  11. A Study of the Effects of Large Scale Gust Generation in a Small Scale Atmospheric Wind Tunnel: Application to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason; Mohseni, Kamran

    2009-11-01

    Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.

  12. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  13. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  14. Unmanned Aerial Vehicles: Replacing the Army’s Comanche Helicopter?

    DTIC Science & Technology

    2007-11-02

    This strategic research project explores the possibility of unmanned aerial vehicles replacing the Comanche Helicopter in its doctrinal missions...capabilities of unmanned aerial vehicles , and analyzes unmanned aerial vehicles capabilities against those aviation critical tasks. This research will...Army’s current helicopters, this analysis reveals that unmanned aerial vehicles can only perform 67% of the reconnaissance critical tasks, 50% of the

  15. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  16. Non-Lethal Unmanned Aerial Vehicles (UVs)

    DTIC Science & Technology

    1993-06-15

    Security Classification) "Non- Lethal Unmanned Aerial Vehicles (UAVs)" (U) ERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year...Month,,Oay) 15. PAGE COUNT Final FROM TO 1 1993 June 15 39 16. SUPPLEMENTARY NOTATION Non- Lethal Unmanned Aerial Vehicle (UAV) reflects current...identify by 3lock number) FIELD GROUP SUB-GROUP UAVs Flight Terminal Payload FLIR Infrared 19. ABSTRACT (Continue on reverse if necessary and

  17. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  18. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  19. Unmanned Aerial Vehicles DOD’s Acquisition Efforts.

    DTIC Science & Technology

    2007-11-02

    Unmanned Aerial Vehicles : Hunter System Is Not Appropriate for Navy Fleet Use (GAO/NSIAD-96-2, Dec. 1, 1995). Unmanned Aerial Vehicles : Maneuver...System Schedule Includes Unnecessary Risk (GAO/NSIAD-95-161, Sept. 15, 1995). Unmanned Aerial Vehicles : No More Hunter Systems...Should Be Bought Until Problems are Fixed (GAO/NSIAD-95-52, Mar. 1, 1995). Unmanned Aerial Vehicles : Performance of Short-Range System in Question

  20. Using Unmanned Aerial Vehicles and GPS Receivers

    NASA Technical Reports Server (NTRS)

    Gary, B.

    1995-01-01

    It is proposed that a small fleet of unmanned aerial vehicles (UAVs) be used over a period of years to monitor the rise of pressure surfaces caused by the hypothesized rise in average temperature of the troposphere due to global warming. Global Positioning Satellite System (GPS) receivers would be used for the precise tracking required.

  1. Using Unmanned Aerial Vehicles and GPS Receivers

    NASA Technical Reports Server (NTRS)

    Gary, B.

    1995-01-01

    It is proposed that a small fleet of unmanned aerial vehicles (UAVs) be used over a period of years to monitor the rise of pressure surfaces caused by the hypothesized rise in average temperature of the troposphere due to global warming. Global Positioning Satellite System (GPS) receivers would be used for the precise tracking required.

  2. Unmanned Aerial Vehicle Mishap Taxonomy for Range Safety Reviews

    DTIC Science & Technology

    2016-02-01

    RANGE SAFETY GROUP DOCUMENT 326-16 UNMANNED AERIAL VEHICLE MISHAP TAXONOMY FOR RANGE SAFETY REVIEWS DISTRIBUTION A: APPROVED...DOCUMENT 326-16 UNMANNED AERIAL VEHICLE MISHAP TAXONOMY FOR RANGE SAFETY REVIEWS February 2016 Prepared by Range...intentionally left blank. Unmanned Aerial Vehicle Mishap Taxonomy for Range Safety Reviews, RCC 326-16, February 2016 iii Table of Contents Preface

  3. Radiation surveillance using an unmanned aerial vehicle.

    PubMed

    Pöllänen, Roy; Toivonen, Harri; Peräjärvi, Kari; Karhunen, Tero; Ilander, Tarja; Lehtinen, Jukka; Rintala, Kimmo; Katajainen, Tuure; Niemelä, Jarkko; Juusela, Marko

    2009-02-01

    Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where (137)Cs fallout from the Chernobyl accident is 23-45 kBq m(-2). A 3-GBq (137)Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h(-1) and data acquisition interval of 1s. Respective response for (192)Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 microSv h(-1), which gives for the activity concentration of (131)I less than 1 kB qm(-3). Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2-0.7 m(3)h(-1) at a flight speed of 70 km h(-1) depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as (239)Pu, is of the order of 0.2 Bq m(-3) or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as (137)Cs and (131)I are of the order of 1 Bq m(-3).

  4. Hybrid Aerial/Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron

    2003-01-01

    A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.

  5. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  6. Maximizing feature detection in aerial unmanned aerial vehicle datasets

    NASA Astrophysics Data System (ADS)

    Byrne, Jonathan; Laefer, Debra F.; O'Keeffe, Evan

    2017-04-01

    This paper compares several feature detectors applied to imagery from an unmanned aerial vehicle to find the best detection algorithm when applied to datasets that vary in translation and have little or no image overlap. Metrics of inliers and reconstruction accuracy of feature detectors are considered with respect to three-dimensional reconstruction results. The image matching results are tested experimentally, and an approach to detecting false matches is outlined. Results showed that although the detectors varied in the number of keypoints generated, a large number of inliers does not necessarily translate into more points in the final point cloud reconstruction and that the process of comparing a large quantity of redundant keypoints may outweigh the advantage of having the extra points. The results also showed that despite the development of keypoint detectors and descriptors, none of them consistently demonstrated a substantial improvement in the quality of structure from motion reconstruction when applied to a wide range of disparate urban and rural images.

  7. Unmanned Aerial Vehicles: Background and Issues for Congress

    DTIC Science & Technology

    2003-04-25

    Unmanned Aerial Vehicles (UAVs) have been referred to in many ways: RPV (remotely piloted vehicle), drone, robot plane, and pilotless aircraft. Most...the DoD for UAVs, investments in unmanned aerial vehicles have been increasing every year. Congressional considerations include the proper pace, scope

  8. Unmanned Aerial Vehicles: Background and Issues for Congress

    DTIC Science & Technology

    2005-11-21

    Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31872 Unmanned Aerial Vehicles : Background...00-2005 4. TITLE AND SUBTITLE Unmanned Aerial Vehicles : Background and Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Unmanned Aerial Vehicles : Background and

  9. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  10. Adaptive control of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Nguen, V. F.; Putov, A. V.; Nguen, T. T.

    2017-01-01

    The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.

  11. Delivery of Unmanned Aerial Vehicle Data

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  12. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  13. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  14. Unmanned Aerial Vehicles. Medium Range System Components do not Fit

    DTIC Science & Technology

    1991-03-01

    enemy activities and identification of targets. uAv systems typically include an air vehicle, a Page 1 GAO/NSIAW.91-2 Unmanned Aerial Vehicles 91 4 15 026...the current system’s existing problems. -’-- Page 3 GAO/NSTAD-91-2 Unmanned Aerial Vehicles B-242779 Recommendations We recommend that the Secretary...representative is still not a member of the KIAIzS configuration control board. Page 4 GAO/NSIAD-91-2 Unmanned Aerial Vehicles B-242779 We continue to believe

  15. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  16. Precision wildlife monitoring using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  17. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  18. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  19. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  20. Computational analysis of unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  1. Vibration energy harvesting for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Unmanned aerial vehicles (UAVs) are a critical component of many military operations. Over the last few decades, the evolution of UAVs has given rise to increasingly smaller aircraft. Along with the development of smaller UAVs, termed mini UAVs, has come issues involving the endurance of the aircraft. Endurance in mini UAVs is problematic because of the limited size of the fuel systems that can be incorporated into the aircraft. A large portion of the total mass of many electric powered mini UAVs, for example, is the rechargeable battery power source. Energy harvesting is an attractive technology for mini UAVs because it offers the potential to increase their endurance without adding significant mass or the need to increase the size of the fuel system. This paper investigates the possibility of harvesting vibration and solar energy in a mini UAV. Experimentation has been carried out on a remote controlled (RC) glider aircraft with a 1.8 m wing span. This aircraft was chosen to replicate the current electric mini UAVs used by the military today. The RC glider was modified to include two piezoelectric patches placed at the roots of the wings and a cantilevered piezoelectric beam installed in the fuselage to harvest energy from wing vibrations and rigid body motions of the aircraft, as well as two thin film photovoltaic panels attached to the top of the wings to harvest energy from sunlight. Flight testing has been performed and the power output of the piezoelectric and photovoltaic devices has been examined.

  2. Solar-powered unmanned aerial vehicles

    SciTech Connect

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.; Colozza, A.J.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

  3. Visual signature reduction of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhong, Z. W.; Ma, Z. X.; Jayawijayaningtiyas; Ngoh, J. H. H.

    2016-10-01

    With the emergence of unmanned aerial vehicles (UAVs) in multiple tactical defence missions, there was a need for an efficient visual signature suppression system for a more efficient stealth operation. One of our studies experimentally investigated the visual signature reduction of UAVs achieved through an active camouflage system. A prototype was constructed with newly developed operating software, Cloak, to provide active camouflage to the UAV model. The reduction of visual signature was analysed. Tests of the devices mounted on UAVs were conducted in another study. A series of experiments involved testing of the concept as well as the prototype. The experiments were conducted both in the laboratory and under normal environmental conditions. Results showed certain degrees of blending with the sky to create a camouflage effect. A mini-UAV made mostly out of transparent plastic was also designed and fabricated. Because of the transparency of the plastic material, the visibility of this UAV in the air is very small, and therefore the UAV is difficult to be detected. After re-designs and tests, eventually a practical system to reduce the visibility of UAVs viewed by human observers from the ground was developed. The system was evaluated during various outdoor tests. The scene target-to-background lightness contrast and the scene target-to-background colour contrast of the adaptive control system prototype were smaller than 10% at a stand-off viewing distance of 20-50 m.

  4. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  5. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  6. Observing river stages using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  7. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  8. Uncooled infrared development for small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Pitt, Timothy S.; Wood, Sam B.; Waddle, Caleb E.; Edwards, William D.; Yeske, Ben S.

    2010-04-01

    The US Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is developing a micro-uncooled infrared (IR) capability for small unmanned aerial systems (SUAS). In 2007, AMRDEC procured several uncooled microbolometers for lab and field test evaluations, and static tower tests involving specific target sets confirmed initial modeling and simulation predictions. With these promising results, AMRDEC procured two captive flight test (CFT) vehicles and, in 2008, completed numerous captive flights to capture imagery with the micro-uncooled infrared sensors. Several test configurations were used to build a comprehensive data set. These configurations included variations in look-down angles, fields of view (FOV), environments, altitudes, and target scenarios. Data collected during these field tests is also being used to develop human tracking algorithms and image stabilization software by other AMRDEC personnel. Details of these ongoing efforts will be presented in this paper and will include: 1) onboard digital data recording capabilities; 2) analog data links for visual verification of imagery; 3) sensor packaging and design; which include both infrared and visible cameras; 4) field test and data collection results; 5) future plans; 6) potential applications. Finally, AMRDEC has recently acquired a 17 μm pitch detector array. The paper will include plans to test both 17 μm and 25 μm microbolometer technologies simultaneously in a side-by-side captive flight comparison.

  9. Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-01-01

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217

  10. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.

    PubMed

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-11-18

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.

  11. Vehicle detection of parking lot with different resolution aerial images

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Lu, Yufeng; Zhou, Guoqing; Liu, Yalan; Li, Xiaowen; Chen, Jinxi; Li, Jiang

    2014-11-01

    Vehicle detection is a very important task for intelligent transportation system. In this paper, a method with mathematical morphology and template matching is presented to detect the crowded vehicles of parking lot with high resolution aerial image. Our experimental results with high resolution aerial image showed that the graded image, with the spatial resolution of 1×1ft, could greatly reduce the calculation time, but with the same accuracy as the original image with the spatial resolution of 0.5×0.5ft .

  12. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  13. Micro-unmanned aerodynamic vehicle

    SciTech Connect

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  14. Neural dynamic optimization for autonomous aerial vehicle trajectory design

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Verma, Ajay; Mayer, Richard J.

    2007-04-01

    Online aerial vehicle trajectory design and reshaping are crucial for a class of autonomous aerial vehicles such as reusable launch vehicles in order to achieve flexibility in real-time flying operations. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. The inputs include the control parameters and current system states that include velocity and position coordinates of the vehicle. The outputs are the new system states. An ideal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP and the control parameters will be used by the MIMO to generate new system states. By such a formulation, an NDO model approximates the time-varying optimal feedback solution.

  15. MicroFlyers and Aerial Robots. Missions and Design Criteria

    DTIC Science & Technology

    2000-04-01

    to "intelligent dust" up to gate. Aerial Robots, can navigate with the aid of vehicles in the size range of small radio- controlled various standards...the Earth can be resolved for any vehicle attitude by using three redundant magnetom- For an autonomous vehicle to be navigationally ro- eters in an...accurate high bandwidth feedback for an rate gyroscopes (to measure rate of change of ve- autonomous control system to direct the dynamic en- locity), and

  16. Design and Monte Carlo Analysis of an Unmanned Aerial Vehicle

    DTIC Science & Technology

    1993-12-01

    performance of a nonlinear multiple input , multiple output ( MIMO ) modeled air vehicle, such as an unmanned aerial vehicle (UAV), it is nec- essary to...surfaces. The fourth element, St, was measured throttle input as a percentage of total thrust available. The output vector y was the set of the mea- sured... outputs and inputs , are posi- tive semidefinite and positive definite respectively. The Linear Quadratic Regula- tor (LQR) problem is to find the state

  17. Dead Slow: Unmanned Aerial Vehicles Loitering in Battlespace

    ERIC Educational Resources Information Center

    Blackmore, Tim

    2005-01-01

    Unmanned (or Uninhabited) Aerial Vehicles are a key part of the American military's so-called revolution in military affairs (RMA) as practiced over Iraq. They are also part of the drive to shift agency away from humans and toward machines. This article considers the ways in which humans have, in calling on high technologies to distance them from…

  18. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    NASA Astrophysics Data System (ADS)

    Eid, B. M.; Chebil, J.; Albatsh, F.; Faris, W. F.

    2013-12-01

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment.

  19. High throughput phenotyping using an unmanned aerial vehicle

    USDA-ARS?s Scientific Manuscript database

    Field trials are expensive and labor-intensive to carry out. Strategies to maximize data collection from these trials will improve research efficiencies. We have purchased a small unmanned aerial vehicle (AEV) to collect digital images from field plots. The AEV is remote-controlled and can be guided...

  20. Dead Slow: Unmanned Aerial Vehicles Loitering in Battlespace

    ERIC Educational Resources Information Center

    Blackmore, Tim

    2005-01-01

    Unmanned (or Uninhabited) Aerial Vehicles are a key part of the American military's so-called revolution in military affairs (RMA) as practiced over Iraq. They are also part of the drive to shift agency away from humans and toward machines. This article considers the ways in which humans have, in calling on high technologies to distance them from…

  1. Unmanned Aerial Vehicles in Perspective: Effects, Capabilities, and Technologies. Volume 0: Executive Summary and Annotated Briefing

    DTIC Science & Technology

    2003-07-01

    UNCLASSIFIED UNCLASSIFIED United States Air Force Scientific Advisory Board Report on Unmanned Aerial Vehicles in Perspective...UNCLASSIFIED This report is a product of the United States Air Force Scientific Advisory Board Committee on Unmanned Aerial Vehicles in...iii UNCLASSIFIED United States Air Force Scientific Advisory Board Report on Unmanned Aerial Vehicles in Perspective: Effects

  2. Indoor Navigation for Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-08-13

    resulted in the choice of a coaxial helicopter for the sensor platform. The coaxial helicopter has a pair of counter-rotating blades , making the vehicle...more compact since no tail rotor is required for yaw control. The bottom set of blades has cyclic control for maneuvering, while the upper set of... blades has a Bell stabilizer (sometimes called a flybar) to counteract vehicle pitch and roll, providing some attitude stability. Several manufacturers

  3. Aerial surveillance vehicles augment security at shipping ports

    NASA Astrophysics Data System (ADS)

    Huck, Robert C.; Al Akkoumi, Muhammad K.; Cheng, Samuel; Sluss, James J., Jr.; Landers, Thomas L.

    2008-10-01

    With the ever present threat to commerce, both politically and economically, technological innovations provide a means to secure the transportation infrastructure that will allow efficient and uninterrupted freight-flow operations for trade. Currently, freight coming into United States ports is "spot checked" upon arrival and stored in a container yard while awaiting the next mode of transportation. For the most part, only fences and security patrols protect these container storage yards. To augment these measures, the authors propose the use of aerial surveillance vehicles equipped with video cameras and wireless video downlinks to provide a birds-eye view of port facilities to security control centers and security patrols on the ground. The initial investigation described in this paper demonstrates the use of unmanned aerial surveillance vehicles as a viable method for providing video surveillance of container storage yards. This research provides the foundation for a follow-on project to use autonomous aerial surveillance vehicles coordinated with autonomous ground surveillance vehicles for enhanced port security applications.

  4. Navigation Technologies for Micro-Aerial Vehicles

    DTIC Science & Technology

    2012-11-01

    MaxSonar www.maxbotix.com Parallax PING www.parallax.com 1D range max. range : 2 cm to 10 m working principle: time taken for sound to travel from an...Inspired Mobile Robot using Binaural Ultrasonic Sensors", IEEE/RSJ Intl Conf on Intell Robots and Syst, 5769-5774. Minguez et al. (2004), "Divide and

  5. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  6. Vision-Based Tracking for Unmanned Aerial Vehicles

    DTIC Science & Technology

    2006-01-01

    Unmanned Aerial Vehicles Authors: V. K. Chitrakaran, D. M. Dawson, H. Kannan, and M. Feemster Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

  7. Unmanned Aerial Logistics Vehicles: A Concept Worth Pursuing?

    DTIC Science & Technology

    2006-05-31

    jumped out of, through an evolution of complex training drones for use in targeting. During the Korean War era, Army-driven unmanned reconnaissance aerial...systems. Hybrid systems could be researched for potential benefits of implementation, including “ Dragonfly . . . the canard rotor wing (CRW) concept...www.uavforum. com/vehicles/production/cl327.htm; Internet; accessed 15 November 2002. UAV Forum. Dragonfly . [article on line]; available from http

  8. Future Capabilities and Roles of Uninhabited Combat Aerial Vehicles (UCAV)

    DTIC Science & Technology

    2007-11-02

    http://www.darpa.mil/j-ucas/j-ucas.htm> [8 May 2004]. John W. Flade. “Teaching a New Dog Old Trick: Replacing Man with Artificial Intelligence in...Combat Aircraft.” USAWC Strategy Research Project. U.S. Army War College, Carlisle Barracks, PA 01 April 2000. David Glade . “Unmanned Aerial Vehicles... John P. Jumper. “Statement of

  9. Visibility-constrained routing of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Buck, Keith R.; Gassner, Richard R.; Poore, Aubrey B.; Yan, Xin

    1999-07-01

    Standard vehicle routing problems have been studied for decades in fields such as transportation, manufacturing, and commodity distribution. In this work, we proposed a variation of these problems that arise in routing Unmanned Aerial Vehicles (UAV's) in the presence of terrain obscuration. Specifically, the UAV must visit a location from which the object on the ground in mountainous regions can be viewed without actually flying over the object. Numerical results are presented for near optimal and real time algorithms which have been developed using Lagrangian relaxation techniques. Directions for future work that include priorities, time windows, and routing multiple UAV's with periodic and dynamic changes in the object locations are discussed.

  10. Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Oh, Hyondong; Kim, Seungkeun; Shin, Hyo-Sang; Tsourdos, Antonios; White, Brian A.

    2014-12-01

    This paper proposes a behaviour recognition methodology for ground vehicles moving within road traffic using unmanned aerial vehicles in order to identify suspicious or abnormal behaviour. With the target information acquired by unmanned aerial vehicles and estimated by filtering techniques, ground vehicle behaviour is first classified into representative driving modes, and then a string pattern matching theory is applied to detect suspicious behaviours in the driving mode history. Furthermore, a fuzzy decision-making process is developed to systematically exploit all available information obtained from a complex environment and confirm the characteristic of behaviour, while considering spatiotemporal environment factors as well as several aspects of behaviours. To verify the feasibility and benefits of the proposed approach, numerical simulations on moving ground vehicles are performed using realistic car trajectory data from an off-the-shelf traffic simulation software.

  11. Wall Climbing Micro Ground Vehicle (MGV)

    DTIC Science & Technology

    2013-09-01

    Wall Climbing Micro Ground Vehicle (MGV) by Ian Bryant, Howard Carpenter, Asha Hall, and Mark Bundy ARL-TR-6628 September 2013...Destroy this report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Aberdeen Proving Ground , MD 21005...ARL-TR-6628 September 2013 Wall Climbing Micro Ground Vehicle (MGV) Ian Bryant, Howard Carpenter, Asha Hall, and Mark Bundy Vehicle

  12. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  13. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  14. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    PubMed

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  15. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles

    PubMed Central

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time. PMID:28033385

  16. Cost-Based Analysis of Unmanned Aerial Vehicles/Unmanned Aerial Systems in Filling the Role of Logistical Support

    DTIC Science & Technology

    2014-12-01

    thesis conducts a comparative cost analysis for using unmanned aerial vehicles ( UAVs )/unmanned aerial systems (UASs) for logistical resupply purposes...COST-BASED ANALYSIS OF UAVS AND TRADITIONAL LOGISTIC RESOURCES...the DOD, and previous reports that conduct a similar, cost-based analysis that can provide useful insights for this study’s analysis . B. UAVS

  17. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  18. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  19. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  20. Unmanned aerial vehicle based agile optical beam steering system

    NASA Astrophysics Data System (ADS)

    DeSandre, Lewis F.; Bennett, Harold E.; Hyman, Howard

    1995-04-01

    This paper addresses the potential augmentation of a quasi-stationary Unmanned Aerial Vehicle with a highly agile beam steering optical system. In addition to the primary application of relaying laser power from a ground station to low earth orbit satellites, applications include (1) precision tracking and ranging at distances of a few hundred kilometers, (2) covert communications to distances of 80 km utilizing only a modulable corner cube at the receiving end and (3) pollution detection and control and (4) continuous meteorological analysis of high altitude wind, CO2 content, liquid water content, ice particle effective radius, effective drop size, optical depth and density, turbulence structure and emissivity profile.

  1. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  2. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  3. Small thermal optics design for UAV (unmanned aerial vehicle) system

    NASA Astrophysics Data System (ADS)

    Lee, Sun Kyu; Na, Jun Hee; Yoon, Chang Jun; Oh, Seung Eun; Choi, Joongkyu; Pyo, Hyo Jin

    2010-08-01

    Now, Military demands focused attention on small and light-weight system development. Above all, UAV(Unmanned Aerial Vehicle) is necessary to reduce weight of equipments. Therefore, we invest some expense in many years so that it might design more light optical system for UAV. Consequently, we can build new miniaturization and light-weight system. The most important thing is the system using just two motors for continuous zoom(x3 ~ x20), NUC(nonuniformity correction), Narcissus, Athermalization, and auto-focus functions. An MTF (modulation transfer function) and a detection range are also satisfied by the demands. We use CODE V and NVTherm program for design and analysis.

  4. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  5. Use of unmanned aerial vehicles for medical product transport.

    PubMed

    Thiels, Cornelius A; Aho, Johnathon M; Zietlow, Scott P; Jenkins, Donald H

    2015-01-01

    Advances in technology and decreasing costs have led to an increased use of unmanned aerial vehicles (UAVs) by the military and civilian sectors. The use of UAVs in commerce is restricted by US Federal Aviation Administration (FAA) regulations, but the FAA is drafting new regulations that are expected to expand commercial applications. Currently, the transportation of medical goods in times of critical need is limited to wheeled motor vehicles and manned aircraft, options that can be costly and slow. This article explores the demand for, feasibility of, and risks associated with the use of UAVs to deliver medical products, including blood derivatives and pharmaceuticals, to hospitals, mass casualty scenes, and offshore vessels in times of critical demand. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  6. New applications for autonomous aerial vehicles in coastal oceanographic research

    NASA Astrophysics Data System (ADS)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B. M.

    2016-02-01

    We describe the use of small, autonomous aerial vehicles (AAVs) for two applications to improve observations of the coastal ocean. Two types of aerial vehicles are used in these applications: small, fixed-wing airplanes and quad-rotor vehicles constructed in our laboratory. A key characteristic of these vehicles is their ability to accurately follow prescribed flight trajectories. The first application is a new method using AAVs for antenna pattern measurements (APMs) of high frequency (HF), oceanographic radars. HF radar is arguably the best observational approach for mapping coastal surface currents. Accurate surface current measurements by HF radar require APMs and these are typically made from small vessels carrying radio transponders in arcs around individual radar sites. This is costly because it requires sea-going technicians, a vessel, and other equipment for small boat operations. Adverse sea conditions often limit small vessels in conducting APMs. AAVs can conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. The AAVs carry small radio-frequency signal sources designed and fabricated in our laboratory. AAV-based patterns extend farther shoreward through the surf zone. This increases the range of bearings over which APMs are determined. Use of AAVs also allows more frequent APMs. The second application is water sample collection by AAVs for calibrating time series obtained from newly available pH sensors. Influx of low pH waters into subtidal and intertidal habitats is an emerging threat to coastal ecosystems. Acquisition of bottle samples for calibrating these sensors is important for accurate pH measurement. We have developed a lightweight sampling bottle as a payload for quad-rotor AAVs to collect water samples near moored pH sensors. The use of quad-rotor AAVs allows collection of numerous samples during sensor deployments so the effects of sensor drift and bio-fouling can be quantified.

  7. Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems

    USDA-ARS?s Scientific Manuscript database

    Aerial photography from unmanned aerial vehicles (UAVs) bridges the gap between ground-based observations and remotely sensed imagery from aerial and satellite platforms. UAVs can be deployed quickly and repeatedly, are less costly and safer than piloted aircraft, and can obtain very high-resolution...

  8. Real time target allocation in cooperative unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kudleppanavar, Ganesh

    The prolific development of Unmanned Aerial Vehicles (UAV's) in recent years has the potential to provide tremendous advantages in military, commercial and law enforcement applications. While safety and performance take precedence in the development lifecycle, autonomous operations and, in particular, cooperative missions have the ability to significantly enhance the usability of these vehicles. The success of cooperative missions relies on the optimal allocation of targets while taking into consideration the resource limitation of each vehicle. The task allocation process can be centralized or decentralized. This effort presents the development of a real time target allocation algorithm that considers available stored energy in each vehicle while minimizing the communication between each UAV. The algorithm utilizes a nearest neighbor search algorithm to locate new targets with respect to existing targets. Simulations show that this novel algorithm compares favorably to the mixed integer linear programming method, which is computationally more expensive. The implementation of this algorithm on Arduino and Xbee wireless modules shows the capability of the algorithm to execute efficiently on hardware with minimum computation complexity.

  9. Formation Flying for Satellites and Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.

  10. Pilot’s Handbook for the Flexible Wing Aerial Utility Vehicle XV-8A

    DTIC Science & Technology

    1964-03-01

    H. Kredit , January 1964, 144, pages AD B252433, Pilot’s Handbook for ’he Flexible Wing Aerial Utility Vehicle XV-8A, Match 1964, 52 pp AD B200629...H. Kredit , Feb. 1965, 100 pages .- AD 460405. XV-8A Flexible Wing Aerial Utility Vehicle. Final Report. Feb. 1965, 113 page- -AD 431128, Operational

  11. Iraq: Weapons of Mass Destruction (WMD) Capable Missiles and Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2003-03-03

    Missiles and Unmanned Aerial Vehicles (UAVs) Andrew Feickert Analyst in National Defense Foreign Affairs, Defense, and Trade Division Summary This...Weapons of Mass Destruction (WMD) Capable Missiles and Unmanned Aerial Vehicles (UAVs) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  12. Applying Lessons Learned from Space Safety to Unmanned Aerial Vehicle Risk Assessments

    NASA Astrophysics Data System (ADS)

    Devoid, Wayne E.

    2013-09-01

    This paper will examine the application of current orbital launch risk methodology to assessing risk for unmanned aerial vehicle flights over populated areas. Major differences, such as the added complexity of lifting bodies, accounting for pilots-in-the-loop, and the complexity of using current population data to estimate risk for unmanned aerial vehicles, will be highlighted.

  13. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  14. Development and prospect of unmanned aerial vehicles for agricultural production management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  15. Fiber optic strain monitor for an uninhabited aerial vehicle

    NASA Astrophysics Data System (ADS)

    Owens, Thomas; Pesavento, Philip; Ice, Robert; Knudsen, Steven; Harrison, Mary Ann

    2006-03-01

    The Institute for Scientific Research (ISR) and the Naval Research Laboratory (NRL) will build and operate portable real-time fiber Bragg grating interrogator systems for monitoring strain in ISR's Multi-Modal Sensor (MMS) uninhabited aerial vehicle (UAV). ISR's UAV is constructed of fiberglass composites with aluminum stiffeners. The cargo bay and on-board electronics are intended to accommodate a variety of compact sensors. Because of the small size of the UAV, weight and volume are restricted, necessitating considerable redesign of laboratory interrogators to meet UAV constraints. NRL will be supplying a multiplexed interrogator for monitoring structural response rates in the UAV up to about 2 kHz, while ISR will develop an optical frequency domain reflectometer (OFDR) for measuring lower frequency response of large numbers of gratings below about 100 Hz. The OFDR system will test a special differencing technique to separate strain induced signals from environmentally induced signals. A National Instruments CompactRIO system with a 3 million gate FPGA and a 200 MHz Pentium processor is being used for real-time data acquisition and onboard signal analysis. The CompactRIO system weighs about 1.6 kg, measures 18cm x 9cm x 9cm, consumes less than 5 W of power, and withstands over 50g of shock. Lithium polymer batteries will be used to power the system for flight times up to about one hour in the present configuration. While the near-term objective of this project is to overcome the challenges of applying fiber-optic strain monitors to aerial vehicles, the longer-term objective is to develop a system for detecting damage in aerial vehicles using chaotic attractor based methods. One of the key issues in damage detection by this means revolves around the ability to use the chaotic excitation of the airframe from random aerodynamic vortices to detect the onset of composite degradation. There is evidence that attractor based methods applied to these ambient chaotic

  16. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  17. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    PubMed

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  18. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  19. A new robust control for minirotorcraft unmanned aerial vehicles.

    PubMed

    Mokhtari, M Rida; Cherki, Brahim

    2015-05-01

    This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology.

    PubMed

    Fornace, Kimberly M; Drakeley, Chris J; William, Timothy; Espino, Fe; Cox, Jonathan

    2014-11-01

    The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Efremov, Denis; Sitnikova, Vera; Ulanovsky, Alexey; Popovicheva, Olga

    The perspectives of the development of methods and facilities based on UAV for atmospheric investigations are considered. Some aspects of these methods applications are discussed. Developments of the experimental samples of UAV onboard equipment for measurements of atmospheric parameters carried out in Central Aerological Observatory are presented. Hardware system for the UAV is developed. The results of measurements of the spatial distributions of the thermodynamic parameters and the concentrations of some gas species onboard of remotely piloted and unmanned aerial vehicles obtained in field tests are presented. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes , etc.

  2. Detection of unmanned aerial vehicles using a visible camera system.

    PubMed

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  3. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    PubMed

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  4. Development of the unmanned aerial vehicle flight recorder

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech; Kwasniewski, Daniel

    2014-11-01

    This work presents a telemetric flight recorder which can be used in unmanned aerial vehicles. The device can store GPS position and altitude, measured with the use of pressure sensor HP03M, a flying platform. The most important subassembly of the recorder is an M2M family device H24 modem developed by Telit company. The modem interface communicates with the use of UART interface and AT commands. The autonomic work is provided by a microcontroller which is master component of the recorder. The ATmega 664P-AU from AVR family microcontrollers developed by Atmel is used. The functionality of the measurement system was developed in such a way that a GSM module can send current position to the base station on demand. In the paper the general description of the device and achieved results of tests are presented.

  5. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    McGill, P. R.; Reisenbichler, K. R.; Etchemendy, S. A.; Dawe, T. C.; Hobson, B. W.

    2011-06-01

    Ship-based observations of free-drifting icebergs are hindered by the dangers of calving ice. To improve the efficacy and safety of these studies, new unmanned aerial vehicles (UAVs) were developed and then deployed in the Southern Ocean. These inexpensive UAVs were launched and recovered from a ship by scientific personal with a few weeks of flight training. The UAVs sent real-time video back to the ship, allowing researchers to observe conditions in regions of the icebergs not visible from the ship. In addition, the UAVs dropped newly developed global positioning system (GPS) tracking tags, permitting researchers to record the precise position of the icebergs over time. The position reports received from the tags show that the motion of free-drifting icebergs changes rapidly and is a complex combination of both translation and rotation.

  6. Distributed Actuation and Sensing on an Uninhabited Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Barnwell, William Garrard

    2003-01-01

    An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). The UAV is modified to serve as a flying, controls research, testbed. This effector/sensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.

  7. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  8. Low Cost Surveying Using AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Pérez, M.; Agüera, F.; Carvajal, F.

    2013-08-01

    Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV) system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM). The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37-111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps homogeneous. The flight

  9. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.

    PubMed

    Hodgson, Amanda; Peel, David; Kelly, Natalie

    2017-06-01

    Aerial surveys are conducted for various fauna to assess abundance, distribution, and habitat use over large spatial scales. They are traditionally conducted using light aircraft with observers recording sightings in real time. Unmanned Aerial Vehicles (UAVs) offer an alternative with many potential advantages, including eliminating human risk. To be effective, this emerging platform needs to provide detection rates of animals comparable to traditional methods. UAVs can also acquire new types of information, and this new data requires a reevaluation of traditional analyses used in aerial surveys; including estimating the probability of detecting animals. We conducted 17 replicate UAV surveys of humpback whales (Megaptera novaeangliae) while simultaneously obtaining a 'census' of the population from land-based observations, to assess UAV detection probability. The ScanEagle UAV, carrying a digital SLR camera, continuously captured images (with 75% overlap) along transects covering the visual range of land-based observers. We also used ScanEagle to conduct focal follows of whale pods (n = 12, mean duration = 40 min), to assess a new method of estimating availability. A comparison of the whale detections from the UAV to the land-based census provided an estimated UAV detection probability of 0.33 (CV = 0.25; incorporating both availability and perception biases), which was not affected by environmental covariates (Beaufort sea state, glare, and cloud cover). According to our focal follows, the mean availability was 0.63 (CV = 0.37), with pods including mother/calf pairs having a higher availability (0.86, CV = 0.20) than those without (0.59, CV = 0.38). The follows also revealed (and provided a potential correction for) a downward bias in group size estimates from the UAV surveys, which resulted from asynchronous diving within whale pods, and a relatively short observation window of 9 s. We have shown that UAVs are an effective alternative to

  10. Evaluating Novel Threats to the Homeland. Unmanned Aerial Vehicles and Cruise Missiles

    DTIC Science & Technology

    2008-01-01

    occurred in other terrorist Internet forums (“Al-Qaeda Online : Under- standing Jihadist Internet Infrastructure,” 2006). Other analysts have cited...radiological (CBR) agents or nuclear devices, could be used as payloads in direct-attack modes. Indirect or “challenge response,” in which the aerial...progress or threatening behavior (e.g., penetrating restricted airspace with an aerial vehicle). Aerial dispersal of weapon agents include use of

  11. Routing and Allocation of Unmanned Aerial Vehicles with Communication Considerations

    NASA Astrophysics Data System (ADS)

    Sabo, Chelsea

    Cooperative Unmanned Aerial Vehicles (UAV) teams are anticipated to provide much needed support for human intelligence, measurement and signature intelligence, signals intelligence, imagery intelligence, and open source intelligence through algorithms, software, and automation. Therefore, it is necessary to have autonomous algorithms that route multiple UAVs effectively and efficiently throughout missions and that these are realizable in the real-world given the associated uncertainties. Current routing strategies ignore communication constraints altogether. In reality, communication can be restricted by bandwidth, line-of-sight, maximum communication ranges, or a need for uninterrupted transmission. Generating autonomous algorithms that work effectively around these communication constraints is key for the future of UAV surveillance applications. In this work, both current and new routing strategies for UAVS are analyzed to determine how communications impact efficiency of information return. It is shown that under certain communication conditions, a new approach on routing can be more efficient than typically adopted strategies. This new approach defines and presents a new formulation based on a minimum delivery latency objective function. The problem is formulated such that information is not considered delivered until it is returned back to a high-bandwidth connection (depot) which is common when communication is restricted. The size of the region is shown to be dependent upon distance between requests, UAV bandwidth, UAV velocity, and data size, but it was shown that for large-sized data, long distances, and low bandwidth, it is generally better to route UAVs with this new minimum latency objective. With the added decision of when to deliver information to a high-bandwidth connection, an already computationally complex problem grows even faster. Because of scaling issues, a heuristic algorithm was developed that was constructed by analyzing the optimal

  12. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  13. Thermal soaring flight of birds and unmanned aerial vehicles.

    PubMed

    Akos, Zsuzsa; Nagy, Máté; Leven, Severin; Vicsek, Tamás

    2010-12-01

    Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and unmanned aerial vehicles (UAVs). The solution is to make use of the so-called thermals, which are localized, warmer regions in the atmosphere moving upward with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more efficiently is an important possibility for autonomous UAVs as well. Successful control strategies have been developed recently for UAVs in simulations and in real applications. This paper first presents an overview of our knowledge of the soaring flight and strategy of birds, followed by a discussion of control strategies that have been developed for soaring UAVs both in simulations and applications on real platforms. To improve the accuracy of the simulation of thermal exploitation strategies we propose a method to take into account the effect of turbulence. Finally, we propose a new GPS-independent control strategy for exploiting thermal updrafts.

  14. Lightweight photovoltaic module development for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Lamp, T.R.

    1998-07-01

    Lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Terrestrial crystalline silicon solar cell and module technologies are being applied to minimize module cost, with modifications to improve module specific power (W/kg) and power density (W/m{sup 2}). New module processes are being developed for assembling standard thickness (320 mm) and thin (125 mm) solar cells, thin (50 to 100 mm) encapsulant films, and thin (25 mm) cover films. In comparison, typical terrestrial modules use 300 to 400 mm thick solar cells, 460 mm thick encapsulants, and 3.2 mm thick glass covers. The use of thin, lightweight materials allows the fabrication of modules with specific powers ranging from 120 to 200 W/kg, depending on cell thickness and efficiency, compared to 15 W/kg or less for conventional terrestrial modules. High efficiency designs based on ultra-thin (5 mm) GaAs cells have also been developed, with the potential for achieving substantially higher specific powers. Initial design, development, and module assembly work is completed. Prototype modules were fabricated in sizes up to 45 cm x 99 cm. Module materials and processes are being evaluated through accelerated environmental testing, including thermal cycling, humidity-freeze cycling, mechanical cycling, and exposure to UV and visible light.

  15. Crack identification for rigid pavements using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  16. Applications of unmanned aerial vehicles in intertidal reef monitoring.

    PubMed

    Murfitt, Sarah L; Allan, Blake M; Bellgrove, Alecia; Rattray, Alex; Young, Mary A; Ierodiaconou, Daniel

    2017-08-31

    Monitoring of intertidal reefs is traditionally undertaken by on-ground survey methods which have assisted in understanding these complex habitats; however, often only a small spatial footprint of the reef is observed. Recent developments in unmanned aerial vehicles (UAVs) provide new opportunities for monitoring broad scale coastal ecosystems through the ability to capture centimetre resolution imagery and topographic data not possible with conventional approaches. This study compares UAV remote sensing of intertidal reefs to traditional on-ground monitoring surveys, and investigates the role of UAV derived geomorphological variables in explaining observed intertidal algal and invertebrate assemblages. A multirotor UAV was used to capture <1 cm resolution data from intertidal reefs, with on-ground quadrat surveys of intertidal biotic data for comparison. UAV surveys provided reliable estimates of dominant canopy-forming algae, however, understorey species were obscured and often underestimated. UAV derived geomorphic variables showed elevation and distance to seaward reef edge explained 19.7% and 15.9% of the variation in algal and invertebrate assemblage structure respectively. The findings of this study demonstrate benefits of low-cost UAVs for intertidal monitoring through rapid data collection, full coverage census, identification of dominant canopy habitat and generation of geomorphic derivatives for explaining biological variation.

  17. Detecting Changes in Terrain Using Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Hines, Glenn D.; Logan, Michael J.

    2005-01-01

    In recent years, small unmanned aerial vehicles (UAVs) have been used for more than the thrill they bring to model airplane enthusiasts. Their flexibility and low cost have made them a viable option for low-altitude reconnaissance. In a recent effort, we acquired video data from a small UAV during several passes over the same flight path. The objective of the exercise was to determine if objects had been added to the terrain along the flight path between flight passes. Several issues accrue to this simple-sounding problem: (1) lighting variations may cause false detection of objects because of changes in shadow orientation and strength between passes; (2) variations in the flight path due to wind-speed, and heading change may cause misalignment of gross features making the task of detecting changes between the frames very difficult; and (3) changes in the aircraft orientation and altitude lead to a change in size of the features from frame-to-frame making a comparison difficult. In this paper, we discuss our efforts to perform this change detection, and the lessons that we learned from this exercise.

  18. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  19. Detecting Changes in Terrain Using Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Hines, Glenn D.; Logan, Michael J.

    2005-01-01

    In recent years, small unmanned aerial vehicles (UAVs) have been used for more than the thrill they bring to model airplane enthusiasts. Their flexibility and low cost have made them a viable option for low-altitude reconnaissance. In a recent effort, we acquired video data from a small UAV during several passes over the same flight path. The objective of the exercise was to determine if objects had been added to the terrain along the flight path between flight passes. Several issues accrue to this simple-sounding problem: (1) lighting variations may cause false detection of objects because of changes in shadow orientation and strength between passes; (2) variations in the flight path due to wind-speed, and heading change may cause misalignment of gross features making the task of detecting changes between the frames very difficult; and (3) changes in the aircraft orientation and altitude lead to a change in size of the features from frame-to-frame making a comparison difficult. In this paper, we discuss our efforts to perform this change detection, and the lessons that we learned from this exercise.

  20. Tracking of atmospheric release of pollution using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Šmídl, Václav; Hofman, Radek

    2013-03-01

    Tracking of an atmospheric release of pollution is usually based on measurements provided by stationary networks, occasionally complemented with deployment of mobile sensors. In this paper, we extend the existing concept to the case where the sensors are carried onboard of unmanned aerial vehicles (UAVs). The decision theoretic framework is used to design an unsupervised algorithm that navigates the UAVs to minimize the selected loss function. A particle filter with a problem-tailored proposal function was used as the underlying data assimilation procedure. A range of simulated twin experiments was performed on the problem of tracking an accidental release of radiation from a nuclear power plant in realistic settings. The main uncertainty was in the released activity and in parametric bias of the numerical weather forecast. It was shown that the UAVs can complement the existing stationary network to improve the accuracy of data assimilation. Moreover, two autonomously navigated UAVs alone were shown to provide assimilation results comparable to those obtained using the stationary network with more than thirty sensors.

  1. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  2. An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

    NASA Astrophysics Data System (ADS)

    Li, J. M.; Yan, D. M.; Wang, G.; Zhang, L.

    2014-03-01

    The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale Invariant Feature Transform (SIFT) features are invariant to image scaling, rotation and translation. However, the main drawback of a SIFT algorithm is its significant memory consumption and low computational speed, particularly in the case of high-resolution imagery. In this study, in order to overcome these drawbacks, we have analysed the construction of the scale-space in the SIFT algorithm and selected new parameters to construct the SIFT scale-space to improve the memory consumption and computational speed for the processing of UAV imagery. Here, we propose a restriction on the number of octaves and levels for Gaussian image pyramids. Our experiment shows that the proposed algorithm effectively reduces memory consumption and significantly improves the operational efficiency of the feature point extraction and matching under the premise of maintaining the precision of the extracted feature points.

  3. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  4. Helmet-mounted displays for unmanned aerial vehicle control

    NASA Astrophysics Data System (ADS)

    Morphew, M. Ephimia; Shively, Jay R.; Casey, Daniel

    2004-09-01

    An experiment was performed to assess the effect of using a Helmet Mounted Display (HMD) versus a conventional computer monitor and joystick to perform an Unmanned Aerial Vehicle (UAV) sensor operator target search task. Eight subjects were evaluated on objective performance measures including their target detection accuracy and responses, in addition to subjective measures including workload, fatigue, situational awareness, and simulator sickness in both experimental conditions. Subjects were flown through a virtual world and asked to identify objects as targets, non-targets, or distractors. Results for objective measures indicated no difference in the operators' ability to accurately classify targets and non-targets. The subjects' ability to place the cursor on a target of interset (targeting accuracy), was, however, significantly better in the computer monitor condition than the HMD. The distance at which subjects could classify an object's identity was also significantly better in the computer monitor condition. Subjective measures showed no overall differences for sel-reported fatigue, workload, and situational awareness. A significant disadvantage, however, was found for the HMD with respect to self-reported nausea, disorientation, and oculomotor strain. Results are discussed in terms of their implications for the incorporation of HMDs into UAV ground control station operations.

  5. Study of Micro-Sized Technology, Micro Air Vehicles, and Design of a Payload Carrying Flapping Wing Micro Air Vehicle

    DTIC Science & Technology

    2006-03-01

    performed by large, expensive, high-performance piloted aircraft . More recently, Unmanned Aerial Vehicles (UAVs) have taken over numerous battlefield...piloted military aircraft . Their reduced size has numerous benefits. Secondly, UAVs are stealthier than their manned counterparts, using the same... aircraft also require less logistical support than full size piloted jets. Today’s piloted military aircraft are equipped with numerous sensor

  6. Design and Evaluation of a Digital Flight Control System for the FROG Unmanned Aerial Vehicle

    DTIC Science & Technology

    2001-09-01

    DIGITAL FLIGHT CONTROL SYSTEM FOR THE FROG UNMANNED AERIAL VEHICLE by Christopher H. Flood September 2001 Thesis Advisor: Isaac I. Kaminer...Subtitle Design and Evaluation of a Digital Flight Control System for the FROG Unmanned Aerial Vehicle Contract Number Grant Number Program Element...REPORT TYPE AND DATES COVERED Aeronautical Engineers Thesis 4. TITLE AND SUBTITLE: Design and Evaluation of a Digital Flight Control System for

  7. Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles

    NASA Astrophysics Data System (ADS)

    Cowlagi, Raghvendra V.

    Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption

  8. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE TESTING THESIS Nathanael J...FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE TESTING THESIS Presented to the Faculty Department of Aeronautics and Astronautics...March 2011 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GA/ENY/11-M14 FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE

  9. Algorithm for unmanned aerial vehicle aerial different-source image matching

    NASA Astrophysics Data System (ADS)

    Zuo, Yujia; Liu, Jinghong; Yang, Mingyu; Wang, Xuan; Sun, Mingchao

    2016-12-01

    The fusion between visible and infrared images captured by unmanned aerial vehicles (UAVs), both complementary to each other, can improve the reliability of target detection and recognition and other tasks. The images captured by UAV are featured by high dynamics and complex air-ground target background. Pixel-level matching should be conducted for the two different-source images, prior to their fusion. Therefore, an improved matching algorithm has been proposed that combines the improved Shi-Tomasi algorithm with the shape context (SC)-based algorithm. First, the Shi-Tomasi algorithm is employed to conduct feature-point detection in the scale space. The tangential direction of the edge contour where the feature-point lies is taken as its main direction, so as to guarantee the algorithm's rotational invariance. Then, this paper conducts the block description for the extracted feature-point within the n×n neighborhood of its edge contour to obtain its descriptors. Finally, a fast library for approximate nearest neighbors matching algorithm is adopted to match all the feature-points. And the experimental results show that, in the scene where the shape of the main target is clear, the algorithm can achieve better matching and registration results for infrared and visible images that have been transformed through rotation, translation, or zooming.

  10. Infrared microsensor payload for miniature unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Joseph; Meyer, William H.; Laband, Stan; Terre, William A.; Petrovich, Peter; Swanson, Kyle; Sundra, Carrie; Sener, Ward; Wilmott, Jay

    2003-09-01

    Miniature unmanned aerial vehicles (UAVs) are a category of aircraft small enough to be transported, launched, operated, and retrieved by a crew of one or two. The concept is not new, having been in limited use by the U.S. military over the past fifteen years, but interest in potential applications is growing as size and cost of the vehicles come down. An application that is particularly significant to the military and law-enforcement agencies is remote reconnaissance, with one or more onboard sensors transmitting data back to the operator(s) in real time. Typically, a miniature UAV is capable of flying a pre-programmed route autonomously, with manual override as an option. At the conclusion of the mission, the vehicle returns for landing, after which it can be quickly disassembled and stowed until its next use. Thermal imaging extends the utility of miniature UAVs to operations in complete darkness and limited visibility, but historically thermal imagers have been too large and heavy for this application. That changed in 1999 with the introduction of Indigo System's AlphaTM camera, which established a new class of thermal imaging product termed the infrared "microsensor". Substantially smaller and lighter than any other infrared imaging product available at the time, AlphaTMwas the first camera that could be readily packaged into the nose of a miniature UAV. Its low power consumption was also a key enabling feature. Building upon the success of AlphaTM, Indigo then took the microsensor class a step further with its OmegaTM camera, which broke all the records established by AlphaTM for small size, weight, and power. OmegaTM has been successfully integrated into several miniature UAVs, including AeroVironment's Pointer and Raven, as well as the Snake Eye UAV manufactured by BAI Aerosystems. Aspects of the OmegaTM design that have led to its utility on these and other platforms are described, and future prospects for even smaller microsensors are discussed.

  11. Vehicle Recognition in Aerial LIDAR Point Cloud Based on Dynamic Time Warping

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Vosselman, G.; Oude Elberink, S. J.

    2017-09-01

    A two-step vehicle recognition method from an aerial Lidar point cloud is proposed in this paper. First, the Lidar point cloud is segmented using the region-growing algorithm with vehicle size limitation. Then the vehicle is recognized according to the profile shape based on dynamic time warping. The proposed method can detect vehicles parking under trees in an urban scene, and classifies the vehicles into different classes. The vehicle location, orientation, parking direction and size can also be determined. The experimental result based on a real urban Lidar point cloud shows that the proposed method can correctly recognize 95.1 % of vehicles.

  12. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    NASA Astrophysics Data System (ADS)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  13. Estimating snow depth in real time using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Witek, Matylda; Spallek, Waldemar; Szymanowski, Mariusz

    2016-04-01

    In frame of the project no. LIDER/012/223/L-5/13/NCBR/2014, financed by the National Centre for Research and Development of Poland, we elaborated a fully automated approach for estimating snow depth in real time in the field. The procedure uses oblique aerial photographs taken by the unmanned aerial vehicle (UAV). The geotagged images of snow-covered terrain are processed by the Structure-from-Motion (SfM) method which is used to produce a non-georeferenced dense point cloud. The workflow includes the enhanced RunSFM procedure (keypoint detection using the scale-invariant feature transform known as SIFT, image matching, bundling using the Bundler, executing the multi-view stereo PMVS and CMVS2 software) which is preceded by multicore image resizing. The dense point cloud is subsequently automatically georeferenced using the GRASS software, and the ground control points are borrowed from positions of image centres acquired from the UAV-mounted GPS receiver. Finally, the digital surface model (DSM) is produced which - to improve the accuracy of georeferencing - is shifted using a vector obtained through precise geodetic GPS observation of a single ground control point (GCP) placed on the Laboratory for Unmanned Observations of Earth (mobile lab established at the University of Wroclaw, Poland). The DSM includes snow cover and its difference with the corresponding snow-free DSM or digital terrain model (DTM), following the concept of the digital elevation model of differences (DOD), produces a map of snow depth. Since the final result depends on the snow-free model, two experiments are carried out. Firstly, we show the performance of the entire procedure when the snow-free model reveals a very high resolution (3 cm/px) and is produced using the UAV-taken photographs and the precise GCPs measured by the geodetic GPS receiver. Secondly, we perform a similar exercise but the 1-metre resolution light detection and ranging (LIDAR) DSM or DTM serves as the snow-free model

  14. Cooperative surveillance and pursuit using unmanned aerial vehicles and unattended ground sensors.

    PubMed

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-13

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios.

  15. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    PubMed Central

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-01

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168

  16. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  17. Measurements from an aerial vehicle: a new tool for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-12-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air." Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  18. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  19. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses

    PubMed Central

    Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) ‘Patriot’, Zoysia matrella (Zm) ‘Zeon’ and Paspalum vaginatum (Pv) ‘Salam’. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option. PMID:27341674

  20. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.

    PubMed

    Caturegli, Lisa; Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Zoysia matrella (Zm) 'Zeon' and Paspalum vaginatum (Pv) 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option.

  1. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  2. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Technical Reports Server (NTRS)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  3. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  4. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  5. Design, fabrication & performance analysis of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Salam, M. A.; Afsar, M. R.; Huda, M. N.; Mahmud, T.

    2016-07-01

    An Unmanned Aerial Vehicle was designed, analyzed and fabricated to meet design requirements and perform the entire mission for an international aircraft design competition. The goal was to have a balanced design possessing, good demonstrated flight handling qualities, practical and affordable manufacturing requirements while providing a high vehicle performance. The UAV had to complete total three missions named ferry flight (1st mission), maximum load mission (2nd mission) and emergency medical mission (3rd mission). The requirement of ferry flight mission was to fly as many as laps as possible within 4 minutes. The maximum load mission consists of flying 3 laps while carrying two wooden blocks which simulate cargo. The requirement of emergency medical mission was complete 3 laps as soon as possible while carrying two attendances and two patients. A careful analysis revealed lowest rated aircraft cost (RAC) as the primary design objective. So, the challenge was to build an aircraft with minimum RAC that can fly fast, fly with maximum payload, and fly fast with all the possible configurations. The aircraft design was reached by first generating numerous design concepts capable of completing the mission requirements. In conceptual design phase, Figure of Merit (FOM) analysis was carried out to select initial aircraft configuration, propulsion, empennage and landing gear. After completion of the conceptual design, preliminary design was carried out. The preliminary design iterations had a low wing loading, high lift coefficient, and a high thrust to weight ratio. To make the aircraft capable of Rough Field Taxi; springs were added in the landing gears for absorbing shock. An airfoil shaped fuselage was designed to allowed sufficient space for payload and generate less drag to make the aircraft fly fast. The final design was a high wing monoplane with conventional tail, single tractor propulsion system and a tail dragger landing gear. Payload was stored in

  6. Structural design and fabrication techniques of composite unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  7. Uncertainty management for aerial vehicles: Coordination, deconfliction, and disturbance rejection

    NASA Astrophysics Data System (ADS)

    Panyakeow, Prachya

    The presented dissertation aims to develop control algorithms that deal with three types of uncertainties managements. First, we examine the situation when unmanned aerial vehicles (UAVs) fly through uncertain environments that contain both stationary and moving obstacles. Moreover, a guarantee of collision avoidance is necessary when UAVs operate in close proximity of each other. Second, we look at the communication uncertainty among the network of cooperative UAVs and the efforts to establish and maintain the connectivity throughout their entire missions. Third, we explore the scenario when the aircraft flies through wind gust. The introduction of an appropriate control scheme to actively alleviate the gust loads can result into weight reduction and consequently lower the fuel cost. In the first part of this dissertation, we develop a deconfliction algorithm that guarantees collision avoidance between a pair of constant speed unicycle-type UAVs as well as convergence to the desired destination for each UAV in presence of static obstacles. We use a combination of navigation and swirling functions to direct the unicycle vehicles along the planned trajectories while avoiding inter-vehicle collisions. The main feature of our contribution is proposing means of designing a deconfliction algorithm for unicycle vehicles that more closely capture the dynamics of constant speed UAVs as opposed to double integrator models. Specifically, we consider the issue of UAV turn-rate constraints and proceed to explore the selection of key algorithmic parameters in order to minimize undesirable trajectories and overshoots induced by the avoidance algorithm. The avoidance and convergence analysis of the proposed algorithm is then performed for two cooperative UAVs and simulation results are provided to support the viability of the proposed framework for more general mission scenarios. For the uncertainty of the UAV network, we provides two approaches to establish connectivity among a

  8. Nonlinear dynamics of biomimetic micro air vehicles

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Kong, J.

    2008-02-01

    Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force.

  9. A Heterogeneous Sensing System-Based Method for Unmanned Aerial Vehicle Indoor Positioning.

    PubMed

    Wang, Can; Li, Kang; Liang, Guoyuan; Chen, Haoyao; Huang, Sheng; Wu, Xinyu

    2017-08-10

    The indoor environment has brought new challenges for micro Unmanned Aerial Vehicles (UAVs) in terms of their being able to execute tasks with high positioning accuracy. Conventional positioning methods based on GPS are unreliable, although certain circumstances of limited space make it possible to apply new technologies. In this paper, we propose a novel indoor self-positioning system of UAV based on a heterogeneous sensing system, which integrates data from a structured light scanner, ultra-wideband (UWB), and an inertial navigation system (INS). We made the structured light scanner, which is composed of a low-cost structured light and camera, ourselves to improve the positioning accuracy at a specified area. We applied adaptive Kalman filtering to fuse the data from the INS and UWB while the vehicle was moving, as well as Gauss filtering to fuse the data from the UWB and the structured light scanner in a hovering state. The results of our simulations and experiments demonstrate that the proposed strategy significantly improves positioning accuracy in motion and also in the hovering state, as compared to using a single sensor.

  10. A Heterogeneous Sensing System-Based Method for Unmanned Aerial Vehicle Indoor Positioning †

    PubMed Central

    Li, Kang; Liang, Guoyuan; Huang, Sheng; Wu, Xinyu

    2017-01-01

    The indoor environment has brought new challenges for micro Unmanned Aerial Vehicles (UAVs) in terms of their being able to execute tasks with high positioning accuracy. Conventional positioning methods based on GPS are unreliable, although certain circumstances of limited space make it possible to apply new technologies. In this paper, we propose a novel indoor self-positioning system of UAV based on a heterogeneous sensing system, which integrates data from a structured light scanner, ultra-wideband (UWB), and an inertial navigation system (INS). We made the structured light scanner, which is composed of a low-cost structured light and camera, ourselves to improve the positioning accuracy at a specified area. We applied adaptive Kalman filtering to fuse the data from the INS and UWB while the vehicle was moving, as well as Gauss filtering to fuse the data from the UWB and the structured light scanner in a hovering state. The results of our simulations and experiments demonstrate that the proposed strategy significantly improves positioning accuracy in motion and also in the hovering state, as compared to using a single sensor. PMID:28796184

  11. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots.

    PubMed

    Lelong, Camille C D; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-05-26

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships.

  12. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots

    PubMed Central

    Lelong, Camille C. D.; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-01-01

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships. PMID:27879893

  13. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  14. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  15. Vehicle detection from very-high-resolution (VHR) aerial imagery using attribute belief propagation (ABP)

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Li, Ying; Zhang, Li; Huang, Yuchun

    2016-10-01

    With the popularity of very-high-resolution (VHR) aerial imagery, the shape, color, and context attribute of vehicles are better characterized. Due to the various road surroundings and imaging conditions, vehicle attributes could be adversely affected so that vehicle is mistakenly detected or missed. This paper is motivated to robustly extract the rich attribute feature for detecting the vehicles of VHR imagery under different scenarios. Based on the hierarchical component tree of vehicle context, attribute belief propagation (ABP) is proposed to detect salient vehicles from the statistical perspective. With the Max-tree data structure, the multi-level component tree around the road network is efficiently created. The spatial relationship between vehicle and its belonging context is established with the belief definition of vehicle attribute. To effectively correct single-level belief error, the inter-level belief linkages enforce consistency of belief assignment between corresponding components at different levels. ABP starts from an initial set of vehicle belief calculated by vehicle attribute, and then iterates through each component by applying inter-level belief passing until convergence. The optimal value of vehicle belief of each component is obtained via minimizing its belief function iteratively. The proposed algorithm is tested on a diverse set of VHR imagery acquired in the city and inter-city areas of the West and South China. Experimental results show that the proposed algorithm can detect vehicle efficiently and suppress the erroneous effectively. The proposed ABP framework is promising to robustly classify the vehicles from VHR Aerial imagery.

  16. The development of an autonomous gust insensitive unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Pisano, William James

    The study of a small Unmanned Aerial Vehicle (UAV) that is designed towards eventual operation in harsh storm-like conditions is presented. Investigation of the aircraft equations of motion shows that the selection of certain aerodynamic derivatives has a significant effect on the gust response of a small unmanned aircraft. Analytical comparison of this newly formulated Autonomous Gust Insensitive Aircraft (AGIA) to a conventionally designed aircraft shows a significant reduction in undesirable roll motion caused by gusts. A simulation is presented showing that the AGIA is capable of operating in more extreme environments than a conventional aircraft, and puts less strain on the control system components in both extreme and calm environments. The role that aircraft size plays in gust response is also studied. Pilot instinct dictates that smaller aircraft are more difficult to fly in windy environments than larger ones. This phenomenon is investigated using an analytic approach, providing insight into why smaller aircraft are indeed more difficult to fly in more challenging environments. As an aircraft gets smaller, its natural aerodynamic modes and response get faster. In an ideal system, this does not limit small aircraft to poor performance (in fact it will be shown that idealized small aircraft theoretically perform better than their larger counterparts). A more realistic system is presented that includes not only aerodynamics, but also realistic sensor and actuator dynamics. It is shown that these additional dynamics become a limiting factor in control system performance, and thus limit the closed-loop flight performance of small aircraft in turbulent environments. It is shown that the AGIA design approach plays a more significant role the as an aircraft gets smaller. To provide experimental validation of the gust insensitive theory presented herein, a representative small conventional aircraft was built alongside a similar aircraft that incorporated the AGIA

  17. Terrain mapping and control of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kang, Yeonsik

    In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input

  18. Using Unmanned Aerial Vehicles for monitoring glacial moulins

    NASA Astrophysics Data System (ADS)

    Santagata, Tommaso

    2016-04-01

    The exploration of cavities on glaciers has always represented a fascinating activity that attracts scientists and researchers since many decades. Several explorations performed by speleologists and scientists since 1985 on the Gorner Gletscher (Mount Rosa group, SW Switzerland) have allowed to survey more than 40 endoglacial caves and some marginal tunnels of this glacier, which is the most interesting in the Alps for its supraglacial and englacial pseudo-karst forms. In recent years, the study of these caves has led to the distinction of two morphological and genetic types: marginal tunnels, that generally forms at the contact between ice and lateral moraine, and swallow holes (moulins) which are vertical shafts where a supraglacial stream sinks into the ice. During the first International glacier-caving camp organized in October 2014 as part of the project "Inside the glaciers" which had the main objective to explore the cavities of this glacier and to study the cryo-karstic processes that lead to the formation of deep shafts, an unmanned aerial vehicle (UAV) equipped with camera and GPS system was used for the first time to perform photogrammetric surveys on three different areas. This technique allowed to derive detailed 3D models with very high resolution and accuracy of the entrance of the main moulins and other interesting parts of this glacier. Thanks to the acquisition of geo-referenced images and post-processing the acquired data (i.e. motion corrections), with the realized 3D point clouds and mesh models it was possible to obtain geo-referenced ortophoto and digital surface models which have been used to calculate contour lines and calculate the difference of position of the same moulins detected during the last years expeditions. Moreover, the data acquired have allowed to perform other different type of surface analysis and obtain an excellent photographic database that will surely be useful for further comparisons in future, proving the importance of

  19. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  20. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  1. New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

    2001-01-01

    A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

  2. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  3. Unmanned Aerial Vehicle Operational Test and Evaluation Lessons Learned

    DTIC Science & Technology

    2003-12-01

    from which command and control of the Air Vehicle (AV) may be affected. Air Vehicle Air Vehicle 10Kw 2Kw GCS2 GDT2 10Kw 2Kw GCS1 Launcher 2Kw...and either could assume control of the TUAV recovery at a moment’s notice. Air Vehicle GCS2 GDT2 10Kw 2Kw GCS1 GDT1 PGCS AG TALS TALS PGDT 2Kw 2Kw

  4. Efficient pedestrian detection from aerial vehicles with object proposals and deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2016-05-01

    As Unmanned Aerial Systems grow in numbers, pedestrian detection from aerial platforms is becoming a topic of increasing importance. By providing greater contextual information and a reduced potential for occlusion, the aerial vantage point provided by Unmanned Aerial Systems is highly advantageous for many surveillance applications, such as target detection, tracking, and action recognition. However, due to the greater distance between the camera and scene, targets of interest in aerial imagery are generally smaller and have less detail. Deep Convolutional Neural Networks (CNN's) have demonstrated excellent object classification performance and in this paper we adopt them to the problem of pedestrian detection from aerial platforms. We train a CNN with five layers consisting of three convolution-pooling layers and two fully connected layers. We also address the computational inefficiencies of the sliding window method for object detection. In the sliding window configuration, a very large number of candidate patches are generated from each frame, while only a small number of them contain pedestrians. We utilize the Edge Box object proposal generation method to screen candidate patches based on an "objectness" criterion, so that only regions that are likely to contain objects are processed. This method significantly reduces the number of image patches processed by the neural network and makes our classification method very efficient. The resulting two-stage system is a good candidate for real-time implementation onboard modern aerial vehicles. Furthermore, testing on three datasets confirmed that our system offers high detection accuracy for terrestrial pedestrian detection in aerial imagery.

  5. The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography.

    PubMed

    Finn, Anthony; Rogers, Kevin

    2015-08-01

    A technique for remotely monitoring the near-surface air temperature and wind fields up to altitudes of 1 km is presented and examined. The technique proposes the measurement of sound spectra emitted by the engine of a small unmanned aerial vehicle using sensors located on the aircraft and the ground. By relating projected and observed Doppler shifts in frequency and converting them into effective sound speed values, two- and three-dimensional spatially varying atmospheric temperature and wind velocity fields may be reconstructed using tomography. The feasibility and usefulness of the technique relative to existing unmanned aerial vehicle-based meteorological techniques using simulation and trials is examined.

  6. Unmanned Aerial Vehicles (UAVs): a new tool in counterterrorism operations?

    NASA Astrophysics Data System (ADS)

    Dörtbudak, Mehmet F.

    2015-05-01

    Terrorism is not a new phenomenon to the world, yet it remains difficult to define and counter. Countering terrorism requires several measures that must be taken simultaneously; however, counterterrorism strategies of many countries mostly depend on military measures. In the aftermath of the 2001 terrorist attack on the Twin Towers of the World Trade Center, the United States (U.S.) has started and led the campaign of Global War on Terrorism. They have invaded Afghanistan and Iraq and have encountered insurgencies run by terrorist organizations, such as al-Qaeda and its affiliates. The U.S. made the utilization of Air and Space Power very intensively during these operations. In order to implement operations; Intelligence, Surveillance, and Reconnaissance (ISR) assets were used to collect the necessary information. Before the successful insertion of a small number of U.S. Special Operation Force (SOF) teams into Afghanistan, the U.S. Air Force attacked al-Qaeda and Taliban's targets such as infrastructure, airfields, ground forces, command-control facilities etc. As soon as the U.S. troops got on the ground and started to marshal to Kabul, the Air Force supported them by attacking jointly determined targets. The Air Force continued to carry out the missions and played a significant role to achieve the objective of operation during all the time. This is not the only example of utilization of Air and Space Power in counterterrorism and counterinsurgency operations. All around the world, many countries have also made the utilization of Air Power in different missions ranging from ISR to attacking. Thinking that terrorism has a psychological dimension and losing a pilot during operations may result in decreasing the population support to operations, Unmanned Aerial Vehicles (UAVs) started to be used by practitioners and took priority over other assets. Although UAVs have been on the theatre for a long time used for ISR mission in conventional conflicts, with the advent

  7. Measuring orthometric water heights from lightweight Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Olesen, Daniel; Jakobsen, Jakob; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2016-04-01

    A better quantitative understanding of hydrologic processes requires better observations of hydrological variables, such as surface water area, water surface level, its slope and its temporal change. However, ground-based measurements of water heights are restricted to the in-situ measuring stations. Hence, the objective of remote sensing hydrology is to retrieve these hydraulic variables from spaceborne and airborne platforms. The forthcoming Surface Water and Ocean Topography (SWOT) satellite mission will be able to acquire water heights with an expected accuracy of 10 centimeters for rivers that are at least 100 m wide. Nevertheless, spaceborne missions will always face the limitations of: i) a low spatial resolution which makes it difficult to separate water from interfering surrounding areas and a tracking of the terrestrial water bodies not able to detect water heights in small rivers or lakes; ii) a limited temporal resolution which limits the ability to determine rapid temporal changes, especially during extremes. Unmanned Aerial Vehicles (UAVs) are one technology able to fill the gap between spaceborne and ground-based observations, ensuring 1) high spatial resolution; 2) tracking of the water bodies better than any satellite technology; 3) timing of the sampling which only depends on the operator 4) flexibility of the payload. Hence, this study focused on categorizing and testing sensors capable of measuring the range between the UAV and the water surface. The orthometric height of the water surface is then retrieved by subtracting the height above water measured by the sensors from the altitude above sea level retrieved by the onboard GPS. The following sensors were tested: a) a radar, b) a sonar c) a laser digital-camera based prototype developed at Technical University of Denmark. The tested sensors comply with the weight constraint of small UAVs (around 1.5 kg). The sensors were evaluated in terms of accuracy, maximum ranging distance and beam

  8. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  9. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  10. Control and navigation system for a fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhai, Ruiyong; Zhou, Zhaoying; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2014-03-01

    This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV) with low-cost micro-electro-mechanical system (MEMS) sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID) control was adopted for stabilization and attitude control. The three-dimensional (3D) trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  11. Research of aerial camera focal pane micro-displacement measurement system based on Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Shu-juan; Zhao, Yu-liang; Li, Shu-jun

    2014-09-01

    The aerial camera focal plane in the correct position is critical to the imaging quality. In order to adjust the aerial camera focal plane displacement caused in the process of maintenance, a new micro-displacement measuring system of aerial camera focal plane in view of the Michelson interferometer has been designed in this paper, which is based on the phase modulation principle, and uses the interference effect to realize the focal plane of the micro-displacement measurement. The system takes He-Ne laser as the light source, uses the Michelson interference mechanism to produce interference fringes, changes with the motion of the aerial camera focal plane interference fringes periodically, and records the periodicity of the change of the interference fringes to obtain the aerial camera plane displacement; Taking linear CCD and its driving system as the interference fringes picking up tool, relying on the frequency conversion and differentiating system, the system determines the moving direction of the focal plane. After data collecting, filtering, amplifying, threshold comparing, counting, CCD video signals of the interference fringes are sent into the computer processed automatically, and output the focal plane micro displacement results. As a result, the focal plane micro displacement can be measured automatically by this system. This system uses linear CCD as the interference fringes picking up tool, greatly improving the counting accuracy and eliminated the artificial counting error almost, improving the measurement accuracy of the system. The results of the experiments demonstrate that: the aerial camera focal plane displacement measurement accuracy is 0.2nm. While tests in the laboratory and flight show that aerial camera focal plane positioning is accurate and can satisfy the requirement of the aerial camera imaging.

  12. Avionics System Development for a Rotary Wing Unmanned Aerial Vehicle.

    DTIC Science & Technology

    1998-06-01

    PAGE Form Approved OMBNo. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response , including...successful Rapid Flight Test Prototyping System (RFTPS) for the development of software for remote computer control of fixed wing Unmanned Aerial...architecture. Flight testing revealed severe vibrations throughout the helicopter. An alternative avionics package of reduced size was constructed to house

  13. Beach monitoring using Unmanned Aerial Vehicles: results of a multi-temporal study

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Rovere, Alessio; Casella, Marco; Pedroncini, Andrea; Ferrari, Marco; Vacchi, Matteo; Firpo, Marco

    2015-04-01

    The application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing. In this study, we show how we applied small Unmanned Aerial Vehicles to the study of topographic changes of a beach in Italy, NW Mediterranean Sea. We surveyed the same stretch of coastline three times in 5 months, obtaining ortophotos and digital elevation models of the beach using a structure from motion approach. We then calculated the difference in beach topography between each time step, and we related topography changes to both human and natural modifications of the beach morphology that can be inferred from aerial photos or wave data. We conclude that small drones have the potential to open new possibilities for beach monitoring studies, and can be successfully employed for multi-temporal monitoring studies at relatively low cost.

  14. Performance Analysis of a Cooperative Search Algorithm for Multiple Unmanned Aerial Vehicles under Limited Communication Conditions

    DTIC Science & Technology

    2006-03-01

    remotely- controlled manned interceptors such as Flagons, Foxbats, and Foxhounds yield a general consensus that drones are considered UAVs [New04...PERFORMANCE ANALYSIS OF A COOPERATIVE SEARCH ALGORITHM FOR MULTIPLE UNMANNED AERIAL VEHICLES UNDER...Force, Department of Defense, or the United States Government. AFIT/GE/ENG/06-44 PERFORMANCE ANALYSIS OF A COOPERATIVE SEARCH ALGORITHM FOR

  15. MQ-8 Vertical Takeoff and Landing Tactical Unmanned Aerial Vehicle Fire Scout (VTUAV)

    DTIC Science & Technology

    2013-12-01

    April 16, 2014 17:46:50 UNCLASSIFIED 11 Track to Budget RDT&E Appn BA PE Navy 1319 07 0305204N Project Name 2768 Tactical...Unmanned Aerial Vehicles/VTUAV (Shared) (Sunk) Notes: PU2768, VTUAV Navy 1319 07 0305231N Project Name 2768 MQ-8 UAV (Shared) Notes

  16. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery

    USDA-ARS?s Scientific Manuscript database

    Imagery acquired with unmanned aerial vehicles (UAVs) has great potential for incorporation into natural resource monitoring protocols due to their ability to be deployed quickly and repeatedly and to fly at low altitudes. While the imagery may have high spatial resolution, the spectral resolution i...

  17. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management

    USDA-ARS?s Scientific Manuscript database

    Rangeland comprises as much as 70% of the Earth’s land surface area. Much of this vast space is in very remote areas that are expensive and often impossible to access on the ground. Unmanned Aerial Vehicles (UAVs) have great potential for rangeland management. UAVs have several advantages over satel...

  18. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring

    USDA-ARS?s Scientific Manuscript database

    In this paper, we examine the potential of using a small unmanned aerial vehicle (UAV) for rangeland inventory, assessment and monitoring. Imagery with 8-cm resolution was acquired over 290 ha in southwestern Idaho. We developed a semi-automated orthorectification procedure suitable for handling lar...

  19. Detection of acoustic, electro-optical and RADAR signatures of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hommes, Alexander; Shoykhetbrod, Alex; Noetel, Denis; Stanko, Stephan; Laurenzis, Martin; Hengy, Sebastien; Christnacher, Frank

    2016-10-01

    We investigated signatures of small unmanned aerial vehicles (UAV) with different sensor technologies ranging from acoustical antennas, passive and active optical imaging devices to small-size FMCW RADAR systems. These sensor technologies have different advantages and drawbacks and can be applied in a complementary sensor network to benefit from their different strengths.

  20. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    USDA-ARS?s Scientific Manuscript database

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  1. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    USDA-ARS?s Scientific Manuscript database

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  2. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  3. Development of a PWM precision spraying controller for unmanned aerial vehicles

    USDA-ARS?s Scientific Manuscript database

    This paper presents a new pulse width modulation (PWM) controller for unmanned aerial vehicle (UAV) precision sprayer for agriculture using a TL494 fix-frequency pulse width modulator together with a data acquisition board and developed software. The PWM controller was implemented through the guidan...

  4. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  5. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining

    PubMed Central

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-01-01

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods. PMID:28208587

  6. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    PubMed

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  7. Coordination Between Unmanned Aerial and Ground Vehicles: A Taxonomy and Optimization Perspective.

    PubMed

    Chen, Jie; Zhang, Xing; Xin, Bin; Fang, Hao

    2016-04-01

    The coordination between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) is a proactive research topic whose great value of application has attracted vast attention. This paper outlines the motivations for studying the cooperative control of UAVs and UGVs, and attempts to make a comprehensive investigation and analysis on recent research in this field. First, a taxonomy for classification of existing unmanned aerial and ground vehicles systems (UAGVSs) is proposed, and a generalized optimization framework is developed to allow the decision-making problems for different types of UAGVSs to be described in a unified way. By following the proposed taxonomy, we show how different types of UAGVSs can be built to realize the goal of a common task, that is target tracking, and how optimization problems can be formulated for a UAGVS to perform specific tasks. This paper presents an optimization perspective to model and analyze different types of UAGVSs, and serves as a guidance and reference for developing UAGVSs.

  8. Advanced vehicle tracking in persistent aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangjian; Cheng, Hui; Sawhney, Harpreet

    2010-04-01

    This paper presents a relational graph based approach to track thousands of vehicles from persistent wide area airborne surveillance (WAAS) videos. Due to the low ground sampling distance and low frame rate, vehicles usually have small size and may travel a long distance between consecutive frames, WAAS videos pose great challenges to correct associate existing tracks with targets. In this paper, we explore road structure information to regulate both object based vertex matching and pair-wise edge matching schemes in a relational graph. The proposed relational graph approach then unifies these two matching schemes into a single cost minimization framework to produce a quadratic optimized association result. The experiments on hours of real WAAS videos demonstrate the relational graph matching framework effectively improves vehicle tracking performance in large scale dense traffic scenarios.

  9. Action cameras and low-cost aerial vehicles in archaeology

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Balletti, C.; Guerra, F.

    2015-05-01

    This research is focused on the analysis of the potential of a close range aerial photogrammetry system, which is accessible both in economic terms and in terms of simplicity of use. In particular the Go Pro Hero3 Black Edition and the Parrot Ar. Drone 2.0 were studied. There are essentially two limitations to the system and they were found for both the instruments used. Indeed, the frames captured by the Go Pro are subject to great distortion and consequently pose numerous calibration problems. On the other hand, the limitation of the system lies in the difficulty of maintaining a flight configuration suitable for photogrammetric purposes in unfavourable environmental conditions. The aim of this research is to analyse how far the limitations highlighted can influence the precision of the survey and consequent quality of the results obtained. To this end, the integrated GoPro and Parrot system was used during a survey campaign on the Altilia archaeological site, in Molise. The data obtained was compared with that gathered by more traditional methods, such as the laser scanner. The system was employed in the field of archaeology because here the question of cost often has a considerable importance and the metric aspect is frequently subordinate to the qualitative and interpretative aspects. Herein one of the products of these systems; the orthophoto will be analysed, which is particularly useful in archaeology, especially in situations such as this dig in which there aren't many structures in elevation present. The system proposed has proven to be an accessible solution for producing an aerial documentation, which adds the excellent quality of the result to metric data for which the precision is known.

  10. Optimum Route Planning and Scheduling for Unmanned Aerial Vehicles

    DTIC Science & Technology

    2008-12-01

    Vehicle Routing Problem, VRP 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...Tasking Order BDA Battle Damage Assessment CVRP Capacitated VRP EO Electro-Optic EW Electronic Warfare FAA Federal Aviation Administration...Suppression Of Enemy Air Defenses LALE Low-Altitude Long Endurance MALE Medium-Altitude Long Endurance MDVRP Multiple Depot VRP MTMCP Multiple

  11. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  12. Towards collaboration between unmanned aerial and ground vehicles for precision agriculture

    NASA Astrophysics Data System (ADS)

    Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat

    2017-05-01

    This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.

  13. Automatic Vehicle Trajectory Extraction for Traffic Analysis from Aerial Video Data

    NASA Astrophysics Data System (ADS)

    Apeltauer, J.; Babinec, A.; Herman, D.; Apeltauer, T.

    2015-03-01

    This paper presents a new approach to simultaneous detection and tracking of vehicles moving through an intersection in aerial images acquired by an unmanned aerial vehicle (UAV). Detailed analysis of spatial and temporal utilization of an intersection is an important step for its design evaluation and further traffic inspection. Traffic flow at intersections is typically very dynamic and requires continuous and accurate monitoring systems. Conventional traffic surveillance relies on a set of fixed cameras or other detectors, requiring a high density of the said devices in order to monitor the intersection in its entirety and to provide data in sufficient quality. Alternatively, a UAV can be converted to a very agile and responsive mobile sensing platform for data collection from such large scenes. However, manual vehicle annotation in aerial images would involve tremendous effort. In this paper, the proposed combination of vehicle detection and tracking aims to tackle the problem of automatic traffic analysis at an intersection from visual data. The presented method has been evaluated in several real-life scenarios.

  14. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  15. An Exploration of Unmanned Aerial Vehicles in the Army’s Future Combat Systems Family of Systems

    DTIC Science & Technology

    2005-12-01

    III Unmanned Aerial Vehicle (CL III UAV) is a multifunction aerial system capable of providing reconnaissance, security/early warning , target...aerial system capable of providing reconnaissance, security/early warning , target acquisition, and designation for the Infantry Company and MCS Platoon...MASINT, SIGINT, and EO/ IR . It is employed within 16 teams of both manned and unmanned robotics sensor platforms as well as unattended systems

  16. Lead-acid batteries in micro-hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  17. 76 FR 61750 - Vehicle-Mounted Elevating and Rotating Work Platforms (Aerial Lifts); Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... Occupational Safety and Health Administration Vehicle-Mounted Elevating and Rotating Work Platforms (Aerial... and Rotating Work Platforms (Aerial Lifts) (29 CFR 1910.67). The purpose of the requirement is to... condition. DATES: Comments must be submitted (postmarked, sent, or received) by December 5,...

  18. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    USDA-ARS?s Scientific Manuscript database

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  19. A procedure for orthorectification of sub-decimeter resolution imagery obtained with an unmanned aerial vehicle (UAV)

    USDA-ARS?s Scientific Manuscript database

    Digital aerial photography acquired with unmanned aerial vehicles (UAVs) has great value for resource management due to the flexibility and relatively low cost for image acquisition, and very high resolution imagery (5 cm) which allows for mapping bare soil and vegetation types, structure and patter...

  20. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  1. Micro Aerial Vehicle (MAV) "Quadrocopter Garmisch 2005"

    DTIC Science & Technology

    2006-03-20

    Quadrocopter overlapping (fig. 7) • Quadrocopter Garmisch 2005 (fig. 8) This helicopter was designed for the 1st US European MAV Competition...rotor-helicopter (fig. 11): • Carbon fiber plastic framework (fig. 21) • 4 propulsion systems (coreless motor, gearbox, carbon rotor) (fig.12...transmitter (fig. 15) • Removable collision protection system ( carbon fiber plastic ring) Report Documentation Page Form ApprovedOMB No. 0704-0188

  2. Collaborative Micro Aerial Vehicle Exploration of Outdoor Environments

    DTIC Science & Technology

    2010-02-01

    PAGE INTENTIONALLY LEFT BLANK 6 List of Figures 1-1 Comparison of overhead satellite imagery of a building with Three Dimensional ( 3D ) model of the...54 3D Three Dimensional...Overhead (b) 3D model Figure 1-1: Comparison of overhead satellite imagery of a building with 3D model of the same building, courtesy of Google Earth™. A

  3. Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study

    DTIC Science & Technology

    2006-11-01

    the TU–121 target drone , a precursor of the modern cruise missile.3 Israel started working with UAVs in the early 1970s. The Israelis began by adding...UAVs since the 1930s, when they were first developed for use as target drones . By the 1970s, UAVs were used for reconnaissance in Vietnam and, in...2006). 8 David, Hewson, Kemp, and Trimble. 9 Ian Kemp, “Controlling Drones at War,” Armada International [Zurich], February/March 2006, 26. 10 Tim

  4. Beam divergence changing mechanism for short-range inter-unmanned aerial vehicle optical communications.

    PubMed

    Heng, Kiang Huat; Zhong, Wen-De; Cheng, Tee Hiang; Liu, Ning; He, Yingjie

    2009-03-10

    The problems associated with using a single fixed beam divergence for short-range inter-unmanned aerial vehicle free-space optical communications are discussed. To overcome the problems, a beam divergence changing mechanism is proposed. Four different methods are then proposed to implement the beam divergence changing mechanism. The performance of these methods is evaluated in terms of transmission distance under adverse weather conditions. The results show that the performance is greatly improved when the beam divergence changing mechanism is used.

  5. Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion

    DTIC Science & Technology

    2007-06-01

    Combat Aerial Vehicle (UCAV) on an aircraft carrier. The Joint Unmanned Combat Air System (J-UCAS) Equivalent Model was used as the test aircraft . An...inner-loop DI controller was developed to control the pitch, roll, and yaw rate dynamics of the aircraft , while an outer-loop DI controller was...possible. First, I would like to thank the members of the AFRL/VACC directorate for their support on the aircraft model, especially Bill Blake, Jacob

  6. Unmanned Aerial Vehicles - The Key to Effective Situational Awareness in Littoral Operations

    DTIC Science & Technology

    2001-04-01

    military crises. Already-deployed amphibious groups would gain adhoc UAV support only if time and ARG location permitted deployment and embarkation of a...distribution unlimited Supplementary Notes Abstract This paper describes the Vital Role Unmanned Aerial Vehicles ( UAV ) should play in providing much...littoral environments. The arguement is made that this UAV surveillance capability must be organic to argimeu units to ensure timely and comprehensive

  7. Impact of Task Load and Gaze on Situation Awareness in Unmanned Aerial Vehicle Control

    DTIC Science & Technology

    2015-05-07

    These results suggest that eye gaze may be a useful predictor of SA within a supervisory control task. Unmanned Aerial Vehicles (UAVs) accounted...Error bars represent the standard error of the mean. Gaze Results The eye tracking analysis focused on the data collected one minute prior...case for eye movement analysis, in Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting (pp. 1650-1654) San Francisco, CA

  8. Design Opportunities and Challenges in the Development of Vertical Lift Planetary Aerial Vehicles

    DTIC Science & Technology

    2000-01-01

    1978. 21. Totah, J.J. and Kinney, D.J. ÒSimulating Conceptual and Developmental AircraftÓ AIAA-98- 4161. 22. Dejarnette , F.R. and Mckay, C.P...1 Design Opportunities and Challenges in the Development of Vertical Lift Planetary Aerial Vehicles Larry A. Young Robert T.N. Chen Edwin W. Aiken...Army/NASA Rotorcraft Division Geoffrey A. Briggs Center for Mars Exploration NASA Ames Research Center Moffett Field, CA Abstract The next few years

  9. Design and Rapid Prototyping of Flight Control and Navigation System for an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2002-03-01

    acquisition and testing before it is finally implemented on the intended airborne computer. The software suite consists of the MATLAB package, Control System ...Toolbox, Simulink, Dials and Gauges Blockset, Real-Time Workshop and the xPC Target operating system . MATLAB and Control System Toolbox provide the...FLIGHT CONTROL AND NAVIGATION SYSTEM FOR AN UNMANNED AERIAL VEHICLE by Bock-Aeng Lim March 2002 Thesis Advisor: Isaac I. Kaminer Co

  10. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  11. Research on water-exit and take-off process for Morphing Unmanned Submersible Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Hu, Jun-hua; Xu, Bao-wei; Feng, Jin-fu; Qi, Duo; Yang, Jian; Wang, Cong

    2017-04-01

    This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.

  12. Gust Mitigation of Micro Air Vehicles Using Passive Articulated Wings

    PubMed Central

    Slegers, Nathan

    2014-01-01

    Birds and insects naturally use passive flexing of their wings to augment their stability in uncertain aerodynamic environments. In a similar manner, micro air vehicle designers have been investigating using wing articulation to take advantage of this phenomenon. The result is a class of articulated micro air vehicles where artificial passive joints are designed into the lifting surfaces. In order to analyze how passive articulation affects performance of micro air vehicles in gusty environments, an efficient 8 degree-of-freedom model is developed. Experimental validation of the proposed mathematical model was accomplished using flight test data of an articulated micro air vehicle obtained from a high resolution indoor tracking facility. Analytical investigation of the gust alleviation properties of the articulated micro air vehicle model was carried out using simulations with varying crosswind gust magnitudes. Simulations show that passive articulation in micro air vehicles can increase their robustness to gusts within a range of joint compliance. It is also shown that if articulation joints are made too compliant that gust mitigation performance is degraded when compared to a rigid system. PMID:24516368

  13. Design and analysis of a gyroscopically controlled micro air vehicle

    NASA Astrophysics Data System (ADS)

    Thorne, Christopher Everett

    Much of the current research on micro air vehicle design relies on aerodynamic forces for attitude control. The aerodynamic environment in which micro air vehicles operate is characterized by a low Reynolds number and is not fully understood, resulting in decreased performance and efficiency when compared to large-scale vehicles. In this work, we propose a new rotary-wing micro air vehicle design that utilizes gyroscopic dynamics for attitude control. Unlike traditional micro air vehicles where attitude control moments are generated by aerodynamic control surfaces, the proposed vehicle will leverage the existing angular momentum of its rotating components to generate gyroscopic moments for controlling attitude. We explore this paradigm in an effort to reduce mechanical complexity that is inherent in blade pitch modulation mechanisms such as the swashplate, and to increase agility and possibly even efficiency when compared to state-of-the-art micro vertical-take-off-and-landing vehicles. The evolution of the mechanical design, including the evaluation of three prototypes that explore the use of gyroscopic attitude control, is presented along with a comprehensive dynamic and aerodynamic model of the third prototype. Two controllers that utilize gyroscopic moments are developed and tested in simulation. In addition, several experiments were performed using a VICON motion tracking system and off-board control. These results will also be presented.

  14. Fault detection and multiclassifier fusion for unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Yan, Weizhong

    2001-03-01

    UAVs demand more accurate fault accommodation for their mission manager and vehicle control system in order to achieve a reliability level that is comparable to that of a pilot aircraft. This paper attempts to apply multi-classifier fusion techniques to achieve the necessary performance of the fault detection function for the Lockheed Martin Skunk Works (LMSW) UAV Mission Manager. Three different classifiers that meet the design requirements of the fault detection of the UAAV are employed. The binary decision outputs from the classifiers are then aggregated using three different classifier fusion schemes, namely, majority vote, weighted majority vote, and Naieve Bayes combination. All of the three schemes are simple and need no retraining. The three fusion schemes (except the majority vote that gives an average performance of the three classifiers) show the classification performance that is better than or equal to that of the best individual. The unavoidable correlation between the classifiers with binary outputs is observed in this study. We conclude that it is the correlation between the classifiers that limits the fusion schemes to achieve an even better performance.

  15. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    NASA Astrophysics Data System (ADS)

    Darwin, N.; Ahmad, A.; Zainon, O.

    2014-02-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power.

  16. An intelligent algorithm for unmanned aerial vehicle surveillance

    NASA Astrophysics Data System (ADS)

    Bhargave, Ashish; Ambrose, Barry; Lin, Freddie; Kazantzidis, Manthos

    2007-04-01

    An intelligent swarm-based guidance and path planning algorithm for the Unmanned Arial Vehicles (UAV) provides the ability to efficiently carry out grid surveillance, taking into account specific UAV constraints such as maximum speed, maximum flight time and battery re-charging intervals to allow for continuous surveillance. The swarm-based flight planning is based on enhancements of distributed computing concepts that have been developed for NASA's launch danger zone protection. The algorithm is a modified version of an ant colony optimization theory describing ant food foraging. Ants initially follow random paths from the nest, but if food is found, the ant deposits a pheromone (modifying the local environment), which influences other ants to travel the same path. Once the food source is exhausted, the pheromone decays naturally, which causes the trail to disappear. When an ant is on an established trail, it may at any time decide to follow a new random path, allowing for new exploration. Using these concepts, in our system for UAV, we use two units, the Rendezvous unit and the Patrol unit. The Rendezvous units will act as pheromone deposit sites keeping a record of trails of interest (extra pheromone that decays over time), and obstacles (no pheromone). The search area is divided into a grid of areas. Each area unit is assigned a pheromone weight. The patrol unit picks an area unit based on a probabilistic formula consisting of parameters like the relative weight of trail intensity, area visibility to the unit, the distance of the patrol unit from the area, and the pheromone decay factor. Simulation of a UAV surveillance system based on the above algorithm showed that it has the ability to perform independently and reliably without human intervention, and the emergent nature of the algorithm has the ability to incorporate important aspects of unmanned surveillance.

  17. Wetland Assessment Using Unmanned Aerial Vehicle (uav) Photogrammetry

    NASA Astrophysics Data System (ADS)

    Boon, M. A.; Greenfield, R.; Tesfamichael, S.

    2016-06-01

    The use of Unmanned Arial Vehicle (UAV) photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs) were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM) computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP's were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE) and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  18. Visualization of ground target designation from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Violette Pierce, Deborah J.; Santapietro, John J.

    1998-08-01

    The common ground station (CGS) receives data from the joint surveillance and target attack radar system aircraft and from other airborne platforms. High-resolution imagery such as that provided by an unmanned airborne vehicle (UAV) carrying an IR and/or synthetic aperture radar (SAR) sensor will be incorporated into an advanced imagery CGS operation. While this level of integration provides a wealth of valuable information, it also increase the complexity of planning, assessment and exploitation which in turn dictates flexible simulation tools for mission rehearsal and operator training. MITRE has developed a ModSAF-driven model for a UAV equipped with a moving target indicator (MTI) radar for wide-area surveillance, and a battlefield combat identification system for positive identification of friendly forces. The imaging functions are performed by integrating the UAV model with visualization software in order to render the sensor's view in real-time. This model forms the basis for a multisensor CGS simulation controls imaging task assignments which taken place when an MTI track is selected for imaging by means of a mouse click entry on an active MTI display. At that time, the UAV is commanded to fly an automatically determined trajectory in order to align MTI display. At that time, the UAV is commanded to fly an automatically determined trajectory in order to align itself for the imaging task. A beam footprint whose position, size and shape is determined by the sensor position, attitude, and field-of-view appears on the display as an indication of the relationship of the image display to the terrain in the operational scenario. A 3D visualization of the designated target area then takes place on a separate display.

  19. Detecting lost persons using the k-mean method applied to aerial photographs taken by unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Stec, Magdalena; Wieczorek, Malgorzata; Slopek, Jacek; Jurecka, Miroslawa

    2016-04-01

    The objective of this work is to discuss the usefulness of the k-mean method in the process of detecting persons on oblique aerial photographs acquired by unmanned aerial vehicles (UAVs). The detection based on the k-mean procedure belongs to one of the modules of a larger Search and Rescue (SAR) system which is being developed at the University of Wroclaw, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The module automatically processes individual geotagged visual-light UAV-taken photographs or their orthorectified versions. Firstly, we separate red (R), green (G) and blue (B) channels, express raster data as numeric matrices and acquire coordinates of centres of images using the exchangeable image file format (EXIF). Subsequently, we divide the matrices into matrices of smaller dimensions, the latter being associated with the size of spatial window which is suitable for discriminating between human and terrain. Each triplet of the smaller matrices (R, G and B) serves as input spatial data for the k-mean classification. We found that, in several configurations of the k-mean parameters, it is possible to distinguish a separate class which characterizes a person. We compare the skills of this approach by performing two experiments, based on UAV-taken RGB photographs and their orthorectified versions. This allows us to verify the hypothesis that the two exercises lead to similar classifications. In addition, we discuss the performance of the approach for dissimilar spatial windows, hence various dimensions of the above-mentioned matrices, and we do so in order to find the one which offers the most adequate classification. The numerical experiment is carried out using the data acquired during a dedicated observational UAV campaign carried out in the Izerskie Mountains (SW Poland).

  20. A fault-tolerant control architecture for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Drozeski, Graham R.

    Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised

  1. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio

    2014-12-01

    We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.

  2. Using advanced manufacturing to produce unmanned aerial vehicles: a feasibility study

    NASA Astrophysics Data System (ADS)

    Easter, Steven; Turman, Jonathan; Sheffler, David; Balazs, Michael; Rotner, Jonathan

    2013-05-01

    This paper reports on a feasibility study to explore the impact of advanced manufacturing on the production and maintenance of a 3D printed, unmanned aerial vehicle (UAV) in theatre. Specifically, this report focuses on fused deposition modeling (FDM), the selective deposition of a molten thermoplastic. FDM is already a forward deployed technology, primarily used for printing custom tools and replacement parts. The authors ask if it is feasible to expand the printers' capacity to produce aerial platforms; the reduction in logistics and labor could significantly decrease costs per unit and enable far more platform customization and specialized deployment scenarios than are available in existing aircraft. The University of Virginia and The MITRE Corporation designed and built a prototype, 3D printed UAV for use as an aerial sensor platform. This report • Discusses the printed aerial platform, summarizes the design process, and compares printing methods • Describes the benefits and limitations to selecting FDM printers as the technology both for deployment as well as UAV design • Concludes with the current state and future expectations for FDM printing technologies relevant to UAV production. Our findings suggest that although 3D printing is not yet entirely field-ready, many of its advantages can already be realized.

  3. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels.

  4. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  5. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  6. Vision-Based Unmanned Aerial Vehicle Navigation Using Geo-Referenced Information

    NASA Astrophysics Data System (ADS)

    Conte, Gianpaolo; Doherty, Patrick

    2009-12-01

    This paper investigates the possibility of augmenting an Unmanned Aerial Vehicle (UAV) navigation system with a passive video camera in order to cope with long-term GPS outages. The paper proposes a vision-based navigation architecture which combines inertial sensors, visual odometry, and registration of the on-board video to a geo-referenced aerial image. The vision-aided navigation system developed is capable of providing high-rate and drift-free state estimation for UAV autonomous navigation without the GPS system. Due to the use of image-to-map registration for absolute position calculation, drift-free position performance depends on the structural characteristics of the terrain. Experimental evaluation of the approach based on offline flight data is provided. In addition the architecture proposed has been implemented on-board an experimental UAV helicopter platform and tested during vision-based autonomous flights.

  7. Enhancing the Extended Awareness Capability of the ESG: Integrating Shotspotter and Cursor on Target Technologies with Unmanned Aerial Vehicles to Enhance the Mission Capability of the ESG

    DTIC Science & Technology

    2005-06-01

    EXTENDED AWARENESS CAPABILITY OF THE ESG: INTEGRATING SHOTSPOTTER AND CURSOR ON TARGET TECHNOLOGIES WITH UNMANNED AERIAL VEHICLES TO ENHANCE THE MISSION...Awareness Capability of the ESG: Integrating Shotspotter and Cursor on Target Technologies with Unmanned Aerial Vehicles to Enhance the Mission...Cursor on Target, CoT, Expeditionary Strike Group, ESG, Unmanned Aerial Vehicles , UAV 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  8. Unmanned Aerial Vehicle (UAV) associated DTM quality evaluation and hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Jen; Chen, Shao-Der; Chao, Yu-Jui; Chiang, Yi-Lin; Chang, Kuo-Jen

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Concerning to the catastrophic landslides, the key information of landslide, including range of landslide, volume estimation and the subsequent evolution are important when analyzing the triggering mechanism, hazard assessment and mitigation. Thus, the morphological analysis gives a general overview for the landslides and been considered as one of the most fundamental information. We try to integrate several technologies, especially by Unmanned Aerial Vehicle (UAV) and multi-spectral camera, to decipher the consequence and the potential hazard, and the social impact. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. Benefited of the advancing of informatics, remote-sensing and electric technologies, the Unmanned Aerial Vehicle (UAV) photogrammetry mas been improve significantly. The study tries to integrate several methods, including, 1) Remote-sensing images gathered by Unmanned Aerial Vehicle (UAV) and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS and Ground LiDAR field in-site geoinfomatics measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAV and aerial photos; 5) Discrete element method should be applied to understand the geomaterial composing the slope failure, for predicting earthquake-induced and rainfall-induced landslides displacement. First at all, we evaluate the Microdrones MD4-1000 UAV airphotos derived Digital Terrain Model (DTM). The ground resolution of the DSM point cloud of could be as high as 10 cm. By integrated 4 ground control point within an area of 56 hectares, compared with LiDAR DSM and filed RTK-GPS surveying, the mean error is as low as 6cm with a standard deviation of 17cm. The quality of the

  9. Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Bartel, Celia; Kaharkar, Anish; Shaid, Tesheen

    2012-04-01

    In this paper we present a novel Navigation and Guidance System (NGS) for Unmanned Aerial Vehicles (UAVs) based on Vision Based Navigation (VBN) and other avionics sensors. The main objective of our research is to design a lowcost and low-weight/volume NGS capable of providing the required level of performance in all flight phases of modern small- to medium-size UAVs, with a special focus on automated precision approach and landing, where VBN techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we address the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors and also the use of Aircraft Dynamics Models (ADMs) to provide additional information suitable to compensate for the shortcomings of VBN sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the platform in real-time. Two different integrated navigation system architectures are implemented. The first uses VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes is performed in a significant portion of the Aerosonde UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture

  10. Method of measuring speed of LOS for optics-electricity system of unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Li, Hong-guang; Ji, Ming; Zhao, Miyang; Zhang, Tingting; Jia, Tao

    2016-10-01

    In order to resolve issue of azimuth framework stability of optics-electricity system for unmanned aerial vehicle depressing, reason of azimuth platform stability depressing and noise caused by secant compensation was analyzed, which work in big pitching angle with tradition mode of measuring speed. Stabilization controlling method with big pitching angle is designed in which azimuth platform install azimuth and roll gyro which was apeaked mutual, and azimuth angle velocity of line of sight was calculated. In the end, simulate experiment validate that, azimuth platform stability controlling performance of two axes platform with big pitching angle was advanced, and influence of gyro noise on controlling performance was depressed.

  11. Modeling and optimization of multiple unmanned aerial vehicles system architecture alternatives.

    PubMed

    Qin, Dongliang; Li, Zhifei; Yang, Feng; Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios.

  12. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  13. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  14. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  15. Distributed output-feedback formation tracking control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    He, Lei; Sun, Xiuxia; Lin, Yan

    2016-12-01

    This paper considers the output-feedback formation problem of tracking a desired trajectory for a group of networked unmanned aerial vehicles (UAVs). By introducing a state observer, the controller for the non-holonomic UAV model can be designed without linear and angular velocities measurements. The formation robustness can be improved by applying the virtual structure and synchronising the path parameters. It is proved that, with the proposed control strategy, all the closed-loop signals are bounded and the formation tracking errors asymptotically converge to zero. Simulation results are given to illustrate the effectiveness of the proposed control strategy.

  16. Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    PubMed Central

    Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328

  17. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  18. Time-critical cooperative path-following control of multiple unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Xargay Mata, Enric

    This thesis addresses the problem of steering a fleet of unmanned aerial vehicles (UAVs) along desired 3D spatial paths while meeting stringent relative temporal constraints. A representative example is the challenging mission scenario where the UAVs are tasked to cooperatively execute collision-free maneuvers and arrive at their final destinations at the same time, or at different times so as to meet a desired inter-vehicle schedule. In the proposed framework, the UAVs are assigned nominal spatial paths and speed profiles along those, and then the vehicles are requested to execute cooperative path following, rather than "open-loop" trajectory-tracking maneuvers. This strategy yields robust behavior against external disturbances by allowing the UAVs to negotiate their speeds along the paths in response to information exchanged over a supporting inter-vehicle communications network. The proposed approach addresses explicitly the situation where each vehicle transmits coordination-relevant information to only a subset of the other vehicles, as determined by the time-varying communications topology. Furthermore, the thesis considers the case where the graph that captures the underlying communications topology is disconnected during some interval of time or even fails to be connected at all times. Conditions are given under which the complete time-critical cooperative path-following closed-loop system is stable and yields convergence of a conveniently defined cooperation error to a neighborhood of the origin. The thesis also derives lower bounds on the convergence rate of the coordination dynamics as a function of the quality of service of the supporting network, and proposes a coordination algorithm to improve the rate of convergence of the coordination dynamics in low-connectivity scenarios. Moreover, motivated by the exchange of information over networks with finite-rate communication links, the effect of quantization on vehicle coordination is also analyzed

  19. Biologically Inspired Micro-Flight Research

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  20. Conceptual Design of a Vertical Takeoff and Landing Unmanned Aerial Vehicle with 24-HR Endurance

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.

    2010-01-01

    This paper describes a conceptual design study for a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) that is able to carry a 25-lb science payload for 24 hr and is able to land and take off at elevations as high as 15,000 ft without human intervention. In addition to the science payload, this vehicle must be able to carry a satellite communication system, and the vehicle must be able to be transported in a standard full-size pickup truck and assembled by only two operators. This project started with a brainstorming phase to devise possible vehicle configurations that might satisfy the requirements. A down select was performed to select a near-term solution and two advanced vehicle concepts that are better suited to the intent of the mission. Sensitivity analyses were also performed on the requirements and the technology levels to obtain a better understanding of the design space. This study found that within the study assumptions the mission is feasible; the selected concepts are recommended for further development.

  1. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Ro, Kapseong

    2006-05-01

    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  2. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.

    PubMed

    Ditmer, Mark A; Vincent, John B; Werden, Leland K; Tanner, Jessie C; Laske, Timothy G; Iaizzo, Paul A; Garshelis, David L; Fieberg, John R

    2015-08-31

    Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Carvajal, F.; Agüera, F.; Pérez, M.

    2011-09-01

    Most of the works of civil engineering, and some others applications, need to be designed using a basic cartography with a suitable scale to the accuracy and extension of the plot.The Unmanned Aerial Vehicle (UAV) Photogrammetry covers the gap between classical manned aerial photogrammetry and hand- made surveying techniques because it works in the close-range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives. The aim of this work is developing of an accurate and low-cost method to characterize landslides located on the size of a road. It was applied at the kilometric point 339 belonging to the A92 dual carriageway, in the Abla municipal term, province of Almeria, Spain. A photogrammetric project was carried out from a set of images taken from an md4-200 Microdrones with an on-board calibrated camera 12 Megapixels Pentax Optio A40. The flight was previously planned to cover the whole extension of the embankment with three passes composed of 18 photos each one. All the images were taken with the vertical axe and it was registered 85% and 60% longitudinal and transversal overlaps respectively. The accuracy of the products, with planimetric and altimetric errors of 0.049 and 0.108m repectively, lets to take measurements of the landslide and projecting preventive and palliative actuations.

  4. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    PubMed

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  5. Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kressel, I.; Dorfman, B.; Botsev, Y.; Handelman, A.; Balter, J.; Pillai, A. C. R.; Prasad, M. H.; Gupta, N.; Joseph, A. M.; Sundaram, R.; Tur, M.

    2015-07-01

    This paper presents the design and flight validation of an embedded fiber Bragg gratings (FBG) based structural health monitoring (SHM) system for the Indian unmanned aerial vehicle (UAV), Nishant. The embedding of the sensors was integrated with the manufacturing process, taking into account the trimming of parts and assembly considerations. Reliable flight data were recorded on board the vehicle and analyzed so that deviations from normal structural behaviors could be identified, evaluated and tracked. Based on the data obtained, it was possible to track both the loads and vibration signatures by direct sensors’ cross correlation using principal component analysis (PCA) and artificial neural networks (ANNs). Sensor placement combined with proper ground calibration, enabled the distinction between strain and temperature readings. The start of a minor local structural temporary instability was identified during landing, proving the value of such continuous structural airworthy assessment for UAV structures.

  6. Transition aerodynamics for 20-percent-scale VTOL unmanned aerial vehicle

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Paulson, John W., Jr.

    1993-01-01

    An investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to establish a transition data base for an unmanned aerial vehicle utilizing a powered-lift ejector system and to evaluate alterations to the ejector system for improved vehicle performance. The model used in this investigation was a 20-percent-scale, blended-body, arrow-wing configuration with integrated twin rectangular ejectors. The test was conducted from hover through transition conditions with variations in angle of attack, angle of sideslip, free-stream dynamic pressure, nozzle pressure ratio, and model ground height. Force and moment data along with extensive surface pressure data were obtained. A laser velocimeter technique for measuring inlet flow velocities was demonstrated at a single flow condition, and also a low order panel method was successfully used to numerically simulate the ejector inlet flow.

  7. Particle swarm optimization method for the control of a fleet of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Belkadi, A.; Ciarletta, L.; Theilliol, D.

    2015-11-01

    This paper concerns a control approach of a fleet of Unmanned Aerial Vehicles (UAV) based on virtual leader. Among others, optimization methods are used to develop the virtual leader control approach, particularly the particle swarm optimization method (PSO). The goal is to find optimal positions at each instant of each UAV to guarantee the best performance of a given task by minimizing a predefined objective function. The UAVs are able to organize themselves on a 2D plane in a predefined architecture, following a mission led by a virtual leader and simultaneously avoiding collisions between various vehicles of the group. The global proposed method is independent from the model or the control of a particular UAV. The method is tested in simulation on a group of UAVs whose model is treated as a double integrator. Test results for the different cases are presented.

  8. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  9. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  10. The effective use of unmanned aerial vehicles for local law enforcement

    NASA Astrophysics Data System (ADS)

    Gasque, Leighton

    This qualitative study was done to interview local law enforcement in Murfreesboro, Tennessee to determine if unmanned aerial vehicles could increase the safety of policy officers. Many police officers face dangerous scenarios on a daily basis; however, officers must also perform non-criminal related responsibilities that could put them in hazardous situations. UAVs have multiple capabilities that can decrease the number of hazards in an emergency situation whether it is environmental, traffic related, criminal activity, or investigations. Officers were interviewed to find whether or not unmanned aerial vehicles (UAV) could be useful manpower on the police force. The study was also used to find whether or not officers foresee UAVs being used in law enforcement. The study revealed that UAVs could be used to add useful manpower to law enforcement based on the capabilities a UAV may have. Police officers cannot confirm whether or not they would be able to use a UAV until further research is conducted to examine the relation of costs to usage.

  11. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    NASA Astrophysics Data System (ADS)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  12. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent

  13. Optimization of the choice of unmanned aerial vehicles used to monitor the implementation of selected construction projects

    NASA Astrophysics Data System (ADS)

    Skorupka, Dariusz; Duchaczek, Artur; Waniewska, Agnieszka; Kowacka, Magdalena

    2017-07-01

    Due to their properties unmanned aerial vehicles have huge number of possibilities for application in construction engineering. The nature and extent of construction works performedmakes the decision to purchase the right equipment significant for the possibility for its further use while monitoring the implementation of these works. Technical factors, such as the accuracy and quality of the applied measurement instruments are especially important when monitoring the realization of construction projects. The paper presents the optimization of the choice of unmanned aerial vehicles using the Bellinger method. The decision-making analysis takes into account criteria that are particularly crucial by virtue of the range of monitoring of ongoing construction works.

  14. Validation of Vehicle Candidate Areas in Aerial Images Using Color Co-Occurrence Histograms

    NASA Astrophysics Data System (ADS)

    Leister, W.; Tuermer, S.; Reinartz, P.; Hoffmann, K. H.; Stilla, U.

    2013-10-01

    Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and realtime mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery is a common application. However, many approaches focus on the target object only. As an extension to previously developed car detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false positive detections, such as vegetation or road markings, can be excluded successfully.

  15. Cooperative unmanned aerial vehicle (UAV) search in dynamic environments using stochastic methods

    NASA Astrophysics Data System (ADS)

    Flint, Matthew D.

    Within this dissertation, the problem of the control of the decentralized path planning decision processes of multiple cooperating autonomous aerial vehicles engaged in search of an uncertain environment is considered. The environment is modeled in a probabilistic fashion, such that both a priori and dynamic information about it can be incorporated. The components of the environment include both target information and threat information. Using the information about the environment, a computationally feasible decision process is formulated that can decide; in a near optimal fashion, which path a searching vehicle should take, using a dynamic programming algorithm with a limited look ahead horizon, with the possibility to extend the horizon using Approximate Dynamic Programming. A planning vehicle trust take into account the effects of its (local) actions on meeting global goals. This is accomplished using a passive and predictive cooperation scheme among the vehicles. Lastly, a flexible simulator has been developed, using sound simulation analysis methods, to simulate a UAV search team, which can be used to create statistically valid results demonstrating the effectiveness of the model and solution methods.

  16. Multi-disciplinary design optimization of subsonic fixed-wing unmanned aerial vehicles projected through 2025

    NASA Astrophysics Data System (ADS)

    Gundlach, John Frederick, IV

    Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: (1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, (2) UAV systems mass properties definition, (3) wing structural weight methods, (4) self-optimizing flight performance model, (5) automated geometry algorithms, and (6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. All three UAV families show significant design gross weight reductions as technology improves. The overall technology synergy experienced 10--11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and

  17. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    PubMed

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  18. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Shim, Hyunchul

    The Berkeley Unmanned Aerial Vehicle (UAV) research aims to design, implement, and analyze a group of autonomous intelligent UAVs and UGVs (Unmanned Ground Vehicles). The goal of this dissertation is to provide a comprehensive procedural methodology to design, implement, and test rotorcraft-based unmanned aerial vehicles (RUAVs). We choose the rotorcraft as the base platform for our aerial agents because it offers ideal maneuverability for our target scenarios such as the pursuit-evasion game. Aided by many enabling technologies such as lightweight and powerful computers, high-accuracy navigation sensors and communication devices, it is now possible to construct RUAVs capable of precise navigation and intelligent behavior by the decentralized onboard control system. Building a fully functioning RUAV requires a deep understanding of aeronautics, control theory and computer science as well as a tremendous effort for implementation. These two aspects are often inseparable and therefore equally highlighted throughout this research. The problem of multiple vehicle coordination is approached through the notion of a hierarchical system. The idea behind the proposed architecture is to build a hierarchical multiple-layer system that gradually decomposes the abstract mission objectives into the physical quantities of control input. Each RUAV incorporated into this system performs the given tasks and reports the results through the hierarchical communication channel back to the higher-level coordinator. In our research, we provide a theoretical and practical approach to build a number of RUAVs based on commercially available navigation sensors, computer systems, and radio-controlled helicopters. For the controller design, the dynamic model of the helicopter is first built. The helicopter exhibits a very complicated multi-input multi-output, nonlinear, time-varying and coupled dynamics, which is exposed to severe exogenous disturbances. This poses considerable difficulties for

  19. Use of 3D laser radar for navigation of unmanned aerial and ground vehicles in urban and indoor environments

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Venable, Don; Smearcheck, Mark

    2007-04-01

    changes. These "delta" position and attitudes are then used calibrate the IMU. Note, that the IMU is not only required to form the point cloud of the environment expressed in the navigation frame, but also to perform association of the features from one flash Ladar frame to the next. This paper will discuss the performance of the proposed 3D imaging sensor feature extraction, position change estimator and attitude change estimator using both simulator data and data collected from a moving platform in an indoor environment. The former consists of data from a simulated IMU and flash Ladar installed on an aerial vehicle for various trajectories through an urban environment. The latter consists of measurements from a CSEM Swissranger 3D imaging sensor and a MicroStrain low-cost IMU. Data was collected on a manually operated aerial vehicle inside the Ohio University School of Electrical Engineering and Computer Science building.

  20. Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    DTIC Science & Technology

    2004-03-01

    Entomopter and robofly. For a more complete list of current research projects in Micro Air Vehicles see [40]. The Entomopter Project is a multi- mode ...understanding. At the lowest level, individual sensor nodes collect data from different sensing modalities (i.e. modes ). Initial data processing is...in event driven mode executes local (and generates remote) event occurrences, thus progressing a local clock (local virtual time, LVT) • Each LPi (SEi

  1. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  2. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  3. A Two-Echelon Cooperated Routing Problem for a Ground Vehicle and Its Carried Unmanned Aerial Vehicle

    PubMed Central

    Luo, Zhihao; Liu, Zhong; Shi, Jianmai

    2017-01-01

    In this paper, a two-echelon cooperated routing problem for the ground vehicle (GV) and its carried unmanned aerial vehicle (UAV) is investigated, where the GV travels on the road network and its UAV travels in areas beyond the road to visit a number of targets unreached by the GV. In contrast to the classical two-echelon routing problem, the UAV has to launch and land on the GV frequently to change or charge its battery while the GV is moving on the road network. A new 0–1 integer programming model is developed to formulate the problem, where the constraints on the spatial and temporal cooperation of GV and UAV routes are included. Two heuristics are proposed to solve the model: the first heuristic (H1) constructs a complete tour for all targets and splits it by GV routes, while the second heuristic (H2) constructs the GV tour and assigns UAV flights to it. Random instances with six different sizes (25–200 targets, 12–80 rendezvous nodes) are used to test the algorithms. Computational results show that H1 performs slightly better than H2, while H2 uses less time and is more stable. PMID:28513552

  4. A Two-Echelon Cooperated Routing Problem for a Ground Vehicle and Its Carried Unmanned Aerial Vehicle.

    PubMed

    Luo, Zhihao; Liu, Zhong; Shi, Jianmai

    2017-05-17

    In this paper, a two-echelon cooperated routing problem for the ground vehicle (GV) and its carried unmanned aerial vehicle (UAV) is investigated, where the GV travels on the road network and its UAV travels in areas beyond the road to visit a number of targets unreached by the GV. In contrast to the classical two-echelon routing problem, the UAV has to launch and land on the GV frequently to change or charge its battery while the GV is moving on the road network. A new 0-1 integer programming model is developed to formulate the problem, where the constraints on the spatial and temporal cooperation of GV and UAV routes are included. Two heuristics are proposed to solve the model: the first heuristic (H1) constructs a complete tour for all targets and splits it by GV routes, while the second heuristic (H2) constructs the GV tour and assigns UAV flights to it. Random instances with six different sizes (25-200 targets, 12-80 rendezvous nodes) are used to test the algorithms. Computational results show that H1 performs slightly better than H2, while H2 uses less time and is more stable.

  5. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  6. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    PubMed

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest.

  7. Towards digital terrain modeling with unmanned aerial vehicles and SfM point clouds

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Masselink, Rens; Keesstra, Saskia

    2015-04-01

    Unmanned Aerial Vehicles (UAVs) are excellent tools for the acquisition of very high-resolution digital surface models using low altitude aerial photography and photogrammetric, 'Structure-from-Motion' (SfM), processing. Terrain reconstructions are produced by interpolating ground points after removal of non-ground points. While extremely detailed in non-vegetated areas, UAV point clouds are less suitable for terrain reconstructions of vegetated areas due to the inability of aerial photography to penetrate through vegetation for collecting ground points. This hinders for example detailed modeling of sediment transport on hillslopes towards vegetated lower areas and channels with riparian vegetation. We propose complementing UAV SfM point cloud data with alternative data sources to fill in the data gaps in vegetated areas. Firstly, SfM point clouds are classified into ground and non-ground points based on both color values and neighborhood statistics. Secondly, non-ground points are removed and data gaps are complemented with external data points. Thirdly, the combined point cloud is interpolated into a digital terrain model (DTM) using the natural neighbor interpolation technique. We demonstrate the methodology with three scenarios of terrain reconstructions in two study areas in North and Southeast Spain: i.e. a linear slope below sparsely distributed trees without the need of supplementary data points (1), and a gully with riparian vegetation combined with 5 m LiDAR data (2) or with manually measured dGPS data points (3). While the spatial resolution is significantly less below vegetated areas compared to non-vegetated areas, the results suggest significant improvements of the reconstructed topography, making the DTM more useful for soil erosion studies and sediment modeling.

  8. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

    PubMed

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-07-13

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  9. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    PubMed Central

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-01-01

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path. PMID:26184213

  10. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  11. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  12. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  13. Evaluation of unmanned aerial vehicles (UAVs) for detection of cattle in the Cattle Fever Tick Permanent Quarantine Zone

    USDA-ARS?s Scientific Manuscript database

    An unmanned aerial vehicle was used to capture videos of cattle in pastures to determine the efficiency of this technology for use by Mounted Inspectors in the Permanent Quarantine zone (PQZ) of the Cattle Fever Tick Eradication Program in south Texas along the U.S.-Mexico Border. These videos were ...

  14. Use of an unmanned aerial vehicle-mounted video camera to assess feeding behavior of Raramuri Criollo cows

    USDA-ARS?s Scientific Manuscript database

    We determined the feasibility of using unmanned aerial vehicle (UAV) video monitoring to predict intake of discrete food items of rangeland-raised Raramuri Criollo non-nursing beef cows. Thirty-five cows were released into a 405-m2 rectangular dry lot, either in pairs (pilot tests) or individually (...

  15. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest

    Treesearch

    Midhun Mohan; Carlos Alberto Silva; Carine Klauberg; Prahlad Jat; Glenn Catts; Adrian Cardil; Andrew Thomas Hudak; Mahendra Dia

    2017-01-01

    Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM)...

  16. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  17. Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture

    USDA-ARS?s Scientific Manuscript database

    An Unmanned Aerial Vehicle (UAV) can be remotely controlled or fly autonomously based on pre-programmed flight plans or more complex dynamic automation systems. In agriculture, UAVs have been used for pest control and remote sensing. The objective of this research was to develop a UAV system to en...

  18. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  19. Design of an air sampler for a small unmanned aerial vehicle.

    PubMed

    Peräjärvi, K; Lehtinen, J; Pöllänen, R; Toivonen, H

    2008-01-01

    In the aftermath of a nuclear accident or malevolent act, it is of paramount importance to have the capability to monitor airborne radioactive substances by collecting air samples. For potentially dangerous missions, the Radiation and Nuclear Safety Authority of Finland (STUK) has developed an air sampler to be used on a small unmanned aerial vehicle. When a Petrianov or Fluoropore filter is used in the sampler and the air velocity is 71 km h(-1), the air flow rate through the filter is 0.73 m(3) h(-1) or 0.23 m(3) h(-1), respectively. The present article introduces the developed air sampler using fluid dynamic simulations and wind tunnel data. The operation of the system was validated by collecting airborne radioactive aerosols from air.

  20. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.

    PubMed

    Hodgson, Jarrod C; Koh, Lian Pin

    2016-05-23

    The use of unmanned aerial vehicles (UAVs), colloquially referred to as 'drones', for biological field research is increasing [1-3]. Small, civilian UAVs are providing a viable, economical tool for ecology researchers and environmental managers. UAVs are particularly useful for wildlife observation and monitoring as they can produce systematic data of high spatial and temporal resolution [4]. However, this new technology could also have undesirable and unforeseen impacts on wildlife, the risks of which we currently have little understanding [5-7]. There is a need for a code of best practice in the use of UAVs to mitigate or alleviate these risks, which we begin to develop here. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    PubMed

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance.

  2. Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography.

    PubMed

    Rogers, Kevin J; Finn, Anthony

    2017-02-01

    Acoustic atmospheric tomography calculates temperature and wind velocity fields in a slice or volume of atmosphere based on travel time estimates between strategically located sources and receivers. The technique discussed in this paper uses the natural acoustic signature of an unmanned aerial vehicle as it overflies an array of microphones on the ground. The sound emitted by the aircraft is recorded on-board and by the ground microphones. The group velocities of the intersecting sound rays are then derived by comparing these measurements. Tomographic inversion is used to estimate the temperature and wind fields from the group velocity measurements. This paper describes a technique for deriving travel time (and hence group velocity) with an accuracy of 0.1% using these assets. This is shown to be sufficient to obtain highly plausible tomographic inversion results that correlate well with independent SODAR measurements.

  3. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    PubMed

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements.

    PubMed

    Jabbari Asl, Hamed; Yoon, Jungwon

    2016-11-01

    In this paper, an image-based visual servo controller is designed for an unmanned aerial vehicle. The main objective is to use flow of image features as the velocity cue to compensate for the low quality of linear velocity information obtained from accelerometers. Nonlinear observers are designed to estimate this flow. The proposed controller is bounded, which can help to keep the target points in the field of view of the camera. The main advantages over the previous full dynamic observer-based methods are that, the controller is robust with respect to unknown image depth, and also no yaw information is required. The complete stability analysis is presented and asymptotic convergence of the error signals is guaranteed. Simulation results show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning.

    PubMed

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.

  7. Design of a radiation surveillance unit for an unmanned aerial vehicle.

    PubMed

    Kurvinen, K; Smolander, P; Pöllänen, R; Kuukankorpi, S; Kettunen, M; Lyytinen, J

    2005-01-01

    This paper describes a prototype of a compact environmental radiation surveillance instrument designed for a Ranger unmanned aerial vehicle. The instrument, which can be used for tracking a radioactive plume, mapping fallout and searching for point sources, consists of three different detector types (GM, NaI(Tl) and CZT) and an air sampling unit. In addition to the standard electronics for data acquisition, the system contains an onboard computer, a GPS receiver and environmental sensors, all enclosed in a single housing manufactured of fiberglass-reinforced composite material. The data collected during the flight is transmitted in real-time to the ground station via a TETRA radio network. The radiation surveillance unit is an independent module and as such can be used in, for example, airplanes, helicopters and cars.

  8. An arm wearable haptic interface for impact sensing on unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul

    2017-04-01

    In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.

  9. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  10. Simulation study of unmanned aerial vehicle communication networks addressing bandwidth disruptions

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Ge, Linqiang; Yu, Wei; Chen, Genshe; Pham, Khanh; Blasch, Erik; Shen, Dan; Lu, Chao

    2014-06-01

    To date, Unmanned Aerial Vehicles (UAVs) have been widely used for numerous applications. UAVs can directly connect to ground stations or satellites to transfer data. Multiple UAVs can communicate and cooperate with each other and then construct an ad-hoc network. Multi-UAV systems have the potential to provide reliable and timely services for end users in addition to satellite networks. In this paper, we conduct a simulation study for evaluating the network performance of multi-UAV systems and satellite networks using the ns-2 networking simulation tool. Our simulation results show that UAV communication networks can achieve better network performance than satellite networks and with a lower cost and increased timeliness. We also investigate security resiliency of UAV networks. As a case study, we simulate false data injection attacks against UAV communication networks in ns-2 and demonstrate the impact of false data injection attacks on network performance.

  11. Optimal Beamforming and Performance Analysis of Wireless Relay Networks with Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Ouyang, Jian; Lin, Min

    2015-03-01

    In this paper, we investigate a wireless communication system employing a multi-antenna unmanned aerial vehicle (UAV) as the relay to improve the connectivity between the base station (BS) and the receive node (RN), where the BS-UAV link undergoes the correlated Rician fading while the UAV-RN link follows the correlated Rayleigh fading with large scale path loss. By assuming that the amplify-and-forward (AF) protocol is adopted at UAV, we first propose an optimal beamforming (BF) scheme to maximize the mutual information of the UAV-assisted dual-hop relay network, by calculating the BF weight vectors and the power allocation coefficient. Then, we derive the analytical expressions for the outage probability (OP) and the ergodic capacity (EC) of the relay network to evaluate the system performance conveniently. Finally, computer simulation results are provided to demonstrate the validity and efficiency of the proposed scheme as well as the performance analysis.

  12. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    NASA Astrophysics Data System (ADS)

    Xi, Wenfei; Shi, Zhengtao; Li, Dongsheng

    2017-07-01

    Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV), this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  13. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    SciTech Connect

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

  14. Design of a GaAs/Ge Solar Array for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  15. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    SciTech Connect

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  16. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect

    Scheiman, D.A.; Colozza, A.J.; Brinker, D.J.; Bents, D.J.

    1994-12-31

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  17. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect

    Scheiman, D.A.; Brinker, D.J.; Bents, D.J.; Colozza, A.J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  18. Multiple simultaneous specification attitude control of a mini flying-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Markin, Shael

    The Multiple Simultaneous Specification controller design method is an elegant means of designing a single controller to satisfy multiple convex closed loop performance specifications. In this thesis, the method is used to design pitch and roll attitude controllers for a Zagi flying-wing unmanned aerial vehicle from Procerus Technologies. A linear model of the aircraft is developed, in which the lateral and longitudinal motions of the aircraft are decoupled. The controllers are designed for this decoupled state space model. Linear simulations are performed in Simulink, and all performance specifications are satisfied by the closed loop system. Nonlinear, hardware-in-the-loop simulations are carried out using the aircraft, on-board computer, and ground station software. Flight tests are also executed to test the performance of the designed controllers. The closed loop aircraft behaviour is generally as expected, however the desired performance specifications are not strictly met in the nonlinear simulations or in the flight tests.

  19. Research on the processing technology of low-altitude unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  20. Uninhabited Aerial Vehicles and Structure from Motion: A fresh approach to photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, Paul R.

    Three-dimensional mapping and modeling can contribute to knowledge about the real world. Techniques are largely driven by available technology and typically involve expensive equipment and expert skill. Recent advances have led to low-cost remotely sensed data collection and generation of 3D terrain models using Uninhabited Aerial Vehicles (UAV) and Structure from Motion (SfM) processing software. This research presents a low-cost alternative to 3D mapping by pairing UAV collection methods with three SfM processing techniques. Surface models are generated from the same image set captured from a low-cost UAV coupled with a digital camera. Accuracy of resulting models identifies strengths and weaknesses of each technique. Analysis of different slope ranges investigates the divide at which surfaces generated become less reliable. This research provides a deeper understanding of the strengths and limitations of emerging technologies used together in a fresh approach to photogrammetry.

  1. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  2. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  3. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; hide

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  4. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  5. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  6. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  7. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  8. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams.

    PubMed

    Jin, Yan; Liao, Yan; Minai, Ali A; Polycarpou, Marios M

    2006-06-01

    This paper considers a heterogeneous team of cooperating unmanned aerial vehicles (UAVs) drawn from several distinct classes and engaged in a search and action mission over a spatially extended battlefield with targets of several types. During the mission, the UAVs seek to confirm and verifiably destroy suspected targets and discover, confirm, and verifiably destroy unknown targets. The locations of some (or all) targets are unknown a priori, requiring them to be located using cooperative search. In addition, the tasks to be performed at each target location by the team of cooperative UAVs need to be coordinated. The tasks must, therefore, be allocated to UAVs in real time as they arise, while ensuring that appropriate vehicles are assigned to each task. Each class of UAVs has its own sensing and attack capabilities, so the need for appropriate assignment is paramount. In this paper, an extensive dynamic model that captures the stochastic nature of the cooperative search and task assignment problems is developed, and algorithms for achieving a high level of performance are designed. The paper focuses on investigating the value of predictive task assignment as a function of the number of unknown targets and number of UAVs. In particular, it is shown that there is a tradeoff between search and task response in the context of prediction. Based on the results, a hybrid algorithm for switching the use of prediction is proposed, which balances the search and task response. The performance of the proposed algorithms is evaluated through Monte Carlo simulations.

  9. Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Queen, Steven M.; Sanner, Kurt Gregory

    2011-01-01

    One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.

  10. Cost and effectiveness analysis on unmanned aerial vehicle (UAV) use at border security

    NASA Astrophysics Data System (ADS)

    Yilmaz, Bahadır.

    2013-06-01

    Drones and Remotely Piloted Vehicles are types of Unmanned Aerial Vehicles. UAVs began to be used with the war of Vietnam, they had a great interest when Israel used them in Bekaa Valley Operations of 1982. UAVs have been used by different countries with different aims with the help of emerging technology and investments. In this article, in the context of areas of UAV usage in national security, benefits and disadvantages of UAVs are put forward. Particularly, it has been evaluated on the basis of cost-effectiveness by focusing the use of UAV in the border security. UAVs have been studied by taking cost analysis, procurement and operational costs into consideration. Analysis of effectiveness has been done with illegal passages of people and drugs from flight times of UAVs. Although the procurement cost of the medium-level UAVs is low, its operational costs are high. For this reason, the idea of less costly alternative systems have been revealed for the border security. As the costs are reduced to acceptable level involving national security and border security in future with high-technology products in their structure, it will continue to be used in an increasing proportion.

  11. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  12. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  13. Fuzzy distributed cooperative tracking for a swarm of unmanned aerial vehicles with heterogeneous goals

    NASA Astrophysics Data System (ADS)

    Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher

    2016-12-01

    This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.

  14. Estimation of the Concentration from a Gaseous Moving Source Using Collaborating Sensing Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Egorova, Tatiana; Demetriou, Michael A.; Gatsonis, Nikolaos A.

    2012-11-01

    This work considers the estimation of the concentration field caused by a moving gaseous source. A model-based estimation scheme incorporates the vehicle dynamics in the estimation scheme in order to arrive at a guidance control law that is dictated by the performance of the estimator. The model-based estimation scheme provides on-line estimates of the concentration field and of the proximity of the moving source. The process state estimate is realized through the use of multiple sensing aerial vehicles (SAVs) that have collaborating capabilities. Each SAV implements its own model-based estimator using its own sensor measurements and shares its estimate with the remaining SAVs. The advantage of the collaborating scheme is the faster convergence of the process state estimate. Computational results demonstrate the advantage of the SAV collaboration in estimating the process state and the proximity of the moving source. Air Force Office of Scientific Research, Dynamics and Control Program, grant FA9550-12-1-0114.

  15. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Hirasawa, Naohiko; the Ant-Plane Group

    As part of the Ant-Plane project for summertime scientific research and logistics in the coastal region of Antarctica, we developed six types of small autonomous UAVs (unmanned aerial vehicles, similar to drones; we term these vehicles ‘Ant-Planes’) based on four types of airframe. In test flights, Ant-Plane 2 cruised within 20 m accuracy along a straight course during calm weather at Sakurajima Volcano, Kyushu, Japan. During a period of strong winds (22 m/s) at Mt. Chokai, Akita Prefecture, Japan, Ant-Plane 2 maintained its course during a straight flight but deviated when turning leeward. An onboard 3-axis magneto-resistant magnetometer (400 g) recorded variations in the magnetic field to an accuracy of 10 nT during periods of calm wind, but strong magnetic noise was observed during high winds, especially head winds. Ant-Plane 4-1 achieved a continuous flight of 500 km, with a maximum flight altitude of 5690 m. The Ant-Plane can be used for various types of Antarctic research as a basic platform for airborne surveys, but further development of the techniques employed in takeoff and landing are required, as well as ready adjustment of the engine and the development of small onboard instruments with greater reliability.

  16. Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kiruthika

    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.

  17. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  18. Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage

    NASA Astrophysics Data System (ADS)

    Fan, Jiankun

    An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. Its flight is controlled either autonomously by computers onboard the vehicle, or remotely by a pilot on the ground, or by another vehicle. In recent years, UAVs have been used more commonly than prior years. The example includes areo-camera where a high speed camera was attached to a UAV which can be used as an airborne camera to obtain aerial video. It also could be used for detecting events on ground for tasks such as surveillance and monitoring which is a common task during wars. Similarly UAVs can be used for relaying communication signal during scenarios when regular communication infrastructure is destroyed. The objective of this thesis is motivated from such civilian operations such as search and rescue or wildfire detection and monitoring. One scenario is that of search and rescue where UAV's objective is to geo-locate a person in a given area. The task is carried out with the help of a camera whose live feed is provided to search and rescue personnel. For this objective, the UAV needs to carry out scanning of the entire area in the shortest time. The aim of this thesis to develop algorithms to enable a UAV to scan an area in optimal time, a problem referred to as "Coverage Control" in literature. The thesis focuses on a special kind of UAVs called "quadrotor" that is propelled with the help of four rotors. The overall objective of this thesis is achieved via solving two problems. The first problem is to develop a dynamic control model of quadrtor. In this thesis, a proportional-integral-derivative controller (PID) based feedback control system is developed and implemented on MATLAB's Simulink. The PID controller helps track any given trajectory. The second problem is to design a trajectory that will fulfill the mission. The planed trajectory should make sure the quadrotor will scan the whole area without missing any part to make sure that the quadrotor will find the lost

  19. Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Jagadish, Chirag

    Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between

  20. Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Gao, Chen

    Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of

  1. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  2. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  3. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  4. Integrating Terrestrial LIDAR with Point Clouds Created from Unmanned Aerial Vehicle Imagery

    NASA Astrophysics Data System (ADS)

    Leslar, M.

    2015-08-01

    Using unmanned aerial vehicles (UAV) for the purposes of conducting high-accuracy aerial surveying has become a hot topic over the last year. One of the most promising means of conducting such a survey involves integrating a high-resolution non-metric digital camera with the UAV and using the principals of digital photogrammetry to produce high-density colorized point clouds. Through the use of stereo imagery, precise and accurate horizontal positioning information can be produced without the need for integration with any type of inertial navigation system (INS). Of course, some form of ground control is needed to achieve this result. Terrestrial LiDAR, either static or mobile, provides the solution. Points extracted from Terrestrial LiDAR can be used as control in the digital photogrammetry solution required by the UAV. In return, the UAV is an affordable solution for filling in the shadows and occlusions typically experienced by Terrestrial LiDAR. In this paper, the accuracies of points derived from a commercially available UAV solution will be examined and compared to the accuracies achievable by a commercially available LIDAR solution. It was found that the LiDAR system produced a point cloud that was twice as accurate as the point cloud produced by the UAV's photogrammetric solution. Both solutions gave results within a few centimetres of the control field. In addition the about of planar dispersion on the vertical wall surfaces in the UAV point cloud was found to be multiple times greater than that from the horizontal ground based UAV points or the LiDAR data.

  5. D Modelling and Accuracy Assessment of Granite Quarry Using Unmmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    González-Aguilera, D.; Fernández-Hernández, J.; Mancera-Taboada, J.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B.; Gozalo-Sanz, I.; Arias-Perez, B.

    2012-07-01

    The unmanned aerial vehicles (UAVs) are automated systems whose main characteristic is that can be remotely piloted. This property is especially interesting in those civil engineering works in which the accuracy of the model is not reachable by common aerial or satellite systems, there is a difficult accessibility to the infrastructure due to location and geometry aspects, and the economic resources are limited. This paper aims to show the research, development and application of a UAV that will generate georeferenced spatial information at low cost, high quality, and high availability. In particular, a 3D modelling and accuracy assessment of granite quarry using UAV is applied. With regard to the image-based modelling pipeline, an automatic approach supported by open source tools is performed. The process encloses the well-known image-based modelling steps: calibration, extraction and matching of features; relative and absolute orientation of images and point cloud and surface generation. Beside this, an assessment of the final model accuracy is carried out by means of terrestrial laser scanner (TLS), imaging total station (ITS) and global navigation satellite system (GNSS) in order to ensure its validity. This step follows a twofold approach: (i) firstly, using singular check points to provide a dimensional control of the model and (ii) secondly, analyzing the level of agreement between the realitybased 3D model obtained from UAV and the generated with TLS. The main goal is to establish and validate an image-based modelling workflow using UAV technology which can be applied in the surveying and monitoring of different quarries.

  6. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    Remote sensing has been identified as a key technology to allow near real-time detection and diagnosis of crop status at the field level. Although satellite based remote sensing techniques have already proven to be relevant for many requirements of crop inventory and monitoring, they might lack flexibility to support anomaly detection at specific moments over the growing season. Imagery taken from unmanned aerial vehicles (UAV) are shown to be an effective alternative platform for crop monitoring, given their potential of high spatial and temporal resolution, and their high flexibility in image acquisition programming. In addition, several studies have shown that an increased spectral resolution as available from hyperspectral systems provide the opportunity to estimate biophysical properties like leaf-area-index (LAI), chlorophyll and leaf water content with improved accuracies. To investigate the opportunities of unmanned aerial vehicles (UAV) in operational crop monitoring, we have developed a light-weight hyperspectral mapping system (< 2 kg) suitable to be mounted on small UAVs. Its composed of an octocopter UAV-platform with a pushbroom spectrometer consisting of a spectrograph, an industrial camera functioning as frame grabber, storage device, and computer, a separate INS and finally a photogrammetric camera. The system is able to produce georeferenced and georectified hyperspectral data cubes in the 400-1000 nm spectral range at 10-50 cm resolution. The system is tested in a fertilization experiment for a potato crop on a 12 ha experimental field in the South of the Netherlands. In the experiment UAV-based hyperspectral images were acquired on a weekly basis together with field data on chlorophyll as indicator for the nitrogen situation of the crop and leaf area index (LAI) as indicator for biomass status. Initially, the quality aspects of the developed light-weight hyperspectral mapping system will presented with regard to its radiometric and geometric

  7. Reynolds Number Effects on Thrust Coefficients and PIV for Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2012-03-09

    16 Figure 6. AeroVironment Nano Hummingbird [Keennon 2012] ................................................ 17 Figure 7. Berkeley Micro ...Keennon, M., Klingebiel, K., Won, H., Andriukov, A., “Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle,” AIAA 2012...REYNOLDS NUMBER EFFECTS ON THRUST COEFFICIENTS AND PIV FOR FLAPPING WING MICRO AIR VEHICLES

  8. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  9. Overview of recent endeavors on personal aerial vehicles: A focus on the US and Europe led research activities

    NASA Astrophysics Data System (ADS)

    Liu, Yaolong; Kreimeier, Michael; Stumpf, Eike; Zhou, Yaoming; Liu, Hu

    2017-05-01

    Personal aerial vehicles, an innovative transport mode to bridge the niche between scheduled airliners and ground transport, are seen by aviation researchers and engineers as a solution to provide fast urban on-demand mobility. This paper reviews recent research efforts on the personal aerial vehicle (PAV), with a focus on the US and Europe led research activities. As an extension of the programmatic level overview, several enabling technologies, such as vertical/short take-off and landing (V/STOL), automation, distributed electric propulsion, which might promote the deployment of PAVs, are introduced and discussed. Despite the dramatic innovation in PAV concept development and related technologies, some challenging issues remain, especially safety, infrastructure and public acceptance. As such, further efforts by many stakeholders are required to enable the real implementation and application of PAVs.

  10. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  11. Projection moire interferometry measurements of micro air vehicle wings

    NASA Astrophysics Data System (ADS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-11-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat's wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  12. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  13. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  14. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-03-26

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  15. Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks

    NASA Astrophysics Data System (ADS)

    Srinivasan K, Venkatesh

    As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.

  16. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research

    PubMed Central

    Shi, Yeyin; Thomasson, J. Alex; Murray, Seth C.; Pugh, N. Ace; Rooney, William L.; Shafian, Sanaz; Rajan, Nithya; Rouze, Gregory; Morgan, Cristine L. S.; Neely, Haly L.; Rana, Aman; Bagavathiannan, Muthu V.; Henrickson, James; Bowden, Ezekiel; Valasek, John; Olsenholler, Jeff; Bishop, Michael P.; Sheridan, Ryan; Putman, Eric B.; Popescu, Sorin; Burks, Travis; Cope, Dale; Ibrahim, Amir; McCutchen, Billy F.; Baltensperger, David D.; Avant, Robert V.; Vidrine, Misty; Yang, Chenghai

    2016-01-01

    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1—the summer 2015 and winter 2016 growing seasons–of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project’s goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first

  17. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.

    PubMed

    Donmez, Birsen; Cummings, M L; Graham, Hudson D

    2009-10-01

    This article is an investigation of the effectiveness of sonifications, which are continuous auditory alerts mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. UAV supervisory control requires monitoring a UAV across multiple tasks (e.g., course maintenance) via a predominantly visual display, which currently is supported with discrete auditory alerts. Sonification has been shown to enhance monitoring performance in domains such as anesthesiology by allowing an operator to immediately determine an entity's (e.g., patient) current and projected states, and is a promising alternative to discrete alerts in UAV control. However, minimal research compares sonification to discrete alerts, and no research assesses the effectiveness of sonification for monitoring multiple entities (e.g., multiple UAVs). The authors conducted an experiment with 39 military personnel, using a simulated setup. Participants controlled single and multiple UAVs and received sonifications or discrete alerts based on UAV course deviations and late target arrivals. Regardless of the number of UAVs supervised, the course deviation sonification resulted in reactions to course deviations that were 1.9 s faster, a 19% enhancement, compared with discrete alerts. However, course deviation sonifications interfered with the effectiveness of discrete late arrival alerts in general and with operator responses to late arrivals when supervising multiple vehicles. Sonifications can outperform discrete alerts when designed to aid operators to predict future states of monitored tasks. However, sonifications may mask other auditory alerts and interfere with other monitoring tasks that require divided attention. This research has implications for supervisory control display design.

  18. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research.

    PubMed

    Shi, Yeyin; Thomasson, J Alex; Murray, Seth C; Pugh, N Ace; Rooney, William L; Shafian, Sanaz; Rajan, Nithya; Rouze, Gregory; Morgan, Cristine L S; Neely, Haly L; Rana, Aman; Bagavathiannan, Muthu V; Henrickson, James; Bowden, Ezekiel; Valasek, John; Olsenholler, Jeff; Bishop, Michael P; Sheridan, Ryan; Putman, Eric B; Popescu, Sorin; Burks, Travis; Cope, Dale; Ibrahim, Amir; McCutchen, Billy F; Baltensperger, David D; Avant, Robert V; Vidrine, Misty; Yang, Chenghai

    2016-01-01

    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and

  19. Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations

    NASA Astrophysics Data System (ADS)

    Adams, J. A.; Wernke, S.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Maw­chu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.

  20. Design of a nonlinear robust controller for a complete unmanned aerial vehicle mission

    NASA Astrophysics Data System (ADS)

    Sadraey, Mohammad Hashem

    Unmanned Aerial Vehicle (UAV) flight control systems must be capable of delivering the required performance while handling nonlinearities and uncertainties in the vehicle model, the atmosphere, and ambient wind. These factors necessitate the development of nonlinear flight control system design methods that can handle large nonlinearities and uncertainties. Variable approaches to the linear control of UAVs have been discussed in the recent literature. However, the development of a nonlinear robust autopilot has not been addressed to any significant degree. The development of a nonlinear autopilot based on robust control methods will be discussed in this dissertation. In this design technique, the nonlinear UAV model is not linearized. The control law is designed using the Hinfinity technique. This dissertation presents the results of an exploratory study to examine robust autopilot nonlinear design methods for the UAV and compare this new approach with existing PID, LQR, and linear Hinfinity techniques. Since the method must then be verified, its flight simulation will be done using MATLAB/SIMULINK. Verification, validation and robustness tests are documented at the end of this dissertation. The airplane examined is called the Hawkeye. It was designed and built by KU students in the fall of 2004. It is a small, 14 foot wingspan, remotely controlled airplane made from composite materials with a maximum takeoff weight of 90 lbs. It will be used in the future as a small UAV for research programs at KU. The mission includes take-off, climb, cruise, a one and a half circle accomplished in a level turn, and a return back to its original airfield accomplished by cruising back, descending, and completing an approach and landing. After take-off, the airplane is required to climb to 1,000 ft altitude, and then it travels 5,000 ft over the ground into the target area. It will then take some photos of that target using its camera. The complete mission for the UAV lasts about

  1. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  2. Development of tilt-rotor unmanned aerial vehicle (UAV): material selection and structural analysis on wing design

    NASA Astrophysics Data System (ADS)

    Saharudin, M. F.

    2016-10-01

    This paper presents the design of a tilting rotor unmanned aerial vehicle (UAV), evaluation of flight loads based on the standard requirement, structural analysis to determine stress and sizing of the wing, and flight test of the UAV. The main objective is to perform structural analysis to size the UAV's wing section. The analysis shows that the structure design of the wing is safe to be used.

  3. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    PubMed

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  4. InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hamledari, Hesam

    In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.

  5. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  6. Obstacle regions extraction method for unmanned aerial vehicles based on space-time tensor descriptor

    NASA Astrophysics Data System (ADS)

    Wu, Zhenglong; Li, Jie; Guan, Zhenyu; Yang, Huan

    2016-09-01

    Obstacle avoidance is an important and challenging task for the autonomous flight of unmanned aerial vehicles. Obstacle regions extraction from image sequences is a critical prerequisite in obstacle avoidance. We propose an obstacle regions extraction method based on space-time tensor descriptor. In our method, first, the space-time tensor descriptor is defined and a criterion function based on the descriptor of extracting space-time interest points (STIPs) is designed. Then a self-adaptive clustering of STIPs approach is presented to locate the possible obstacle regions. Finally, an improved level set algorithm is applied with the result of clustering to extract the obstacle regions. We demonstrate the experiments of obstacle regions extraction by our method on image sequences. Sequences are captured in indoor simulative obstacle avoidance environments and outdoor real flight obstacle avoidance environments. Experimental results validate that our method can effectively complete extraction and segmentation of obstacle region with captured images. Compared with the state-of-the-art methods, our method performs well to extract the contours of obstacle regions on the whole and significantly improves segmentation speed.

  7. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  8. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    PubMed Central

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  9. Simultaneous observations of aerosol–cloud–albedo interactions with three stacked unmanned aerial vehicles

    PubMed Central

    Roberts, G. C.; Ramana, M. V.; Corrigan, C.; Kim, D.; Ramanathan, V.

    2008-01-01

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as −60 W m−2 per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol–cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol–cloud–albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds. PMID:18499803

  10. Adaptive aerostructures: the first decade of flight on uninhabited aerial vehicles

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.

    2004-07-01

    Although many subscale aircraft regularly fly with adaptive materials in sensors and small components in secondary subsystems, only a handful have flown with adaptive aerostructures as flight critical, enabling components. This paper reviews several families of adaptive aerostructures which have enabled or significantly enhanced flightworthy uninhabited aerial vehicles (UAVs), including rotary and fixed wing aircraft, missiles and munitions. More than 40 adaptive aerostructures programs which have had a direct connection to flight test and/or production UAVs, ranging from hover through hypersonic, sea-level to exo-stratospheric are examined. Adaptive material type, design Mach range, test methods, aircraft configuration and performance of each of the designs are presented. An historical analysis shows the evolution of flightworthy adaptive aerostructures from the earliest staggering flights in 1994 to modern adaptive UAVs supporting live-fire exercises in harsh military environments. Because there are profound differences between bench test, wind tunnel test, flight test and military grade flightworthy adaptive aerostructures, some of the most mature industrial design and fabrication techniques in use today will be outlined. The paper concludes with an example of the useful load and performance expansions which are seen on an industrial, military-grade UAV through the use of properly designed, flight-hardened adaptive aerostructures.

  11. Quaternion-based nonlinear trajectory tracking control of a quadrotor unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zha, Changliu; Ding, Xilun; Yu, Yushu; Wang, Xueqiang

    2017-01-01

    At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°C, which limits the maneuverability of the UAV. To overcome this problem, based on the quaternion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized.

  12. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-07-12

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

  13. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  14. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring

    PubMed Central

    Trasviña-Moreno, Carlos A.; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-01-01

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario. PMID:28245587

  15. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    DOE PAGES

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; ...

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less

  16. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

    PubMed Central

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-01-01

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815

  17. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    PubMed Central

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-01

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819

  18. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle.

    PubMed

    Al-Naji, Ali; Perera, Asanka G; Chahl, Javaan

    2017-08-08

    Remote physiological measurement might be very useful for biomedical diagnostics and monitoring. This study presents an efficient method for remotely measuring heart rate and respiratory rate from video captured by a hovering unmanned aerial vehicle (UVA). The proposed method estimates heart rate and respiratory rate based on the acquired signals obtained from video-photoplethysmography that are synchronous with cardiorespiratory activity. Since the PPG signal is highly affected by the noise variations (illumination variations, subject's motions and camera movement), we have used advanced signal processing techniques, including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and canonical correlation analysis (CCA) to remove noise under these assumptions. To evaluate the performance and effectiveness of the proposed method, a set of experiments were performed on 15 healthy volunteers in a front-facing position involving motion resulting from both the subject and the UAV under different scenarios and different lighting conditions. The experimental results demonstrated that the proposed system with and without the magnification process achieves robust and accurate readings and have significant correlations compared to a standard pulse oximeter and Piezo respiratory belt. Also, the squared correlation coefficient, root mean square error, and mean error rate yielded by the proposed method with and without the magnification process were significantly better than the state-of-the-art methodologies, including independent component analysis (ICA) and principal component analysis (PCA).

  19. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident.

    PubMed

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Yamashiki, Y; Scott, T B

    2016-01-01

    On the 12th of March 2011, The Great Tōhoku Earthquake occurred 70 km off the eastern coast of Japan, generating a large 14 m high tsunami. The ensuing catalogue of events over the succeeding 12 d resulted in the release of considerable quantities of radioactive material into the environment. Important to the large-scale remediation of the affected areas is the accurate and high spatial resolution characterisation of contamination, including the verification of decontaminated areas. To enable this, a low altitude unmanned aerial vehicle equipped with a lightweight gamma-spectrometer and height normalisation system was used to produce sub-meter resolution maps of contamination. This system provided a valuable method to examine both contaminated and remediated areas rapidly, whilst greatly reducing the dose received by the operator, typically in localities formerly inaccessible to ground-based survey methods. The characterisation of three sites within Fukushima Prefecture is presented; one remediated (and a site of much previous attention), one un-remediated and a third having been subjected to an alternative method to reduce emitted radiation dose. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.

    PubMed

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-03-03

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.

  1. Telesurgery via Unmanned Aerial Vehicle (UAV) with a field deployable surgical robot.

    PubMed

    Lum, Mitchell J H; Rosen, Jacob; King, Hawkeye; Friedman, Diana C W; Donlin, Gina; Sankaranarayanan, Ganesh; Harnett, Brett; Huffman, Lynn; Doarn, Charles; Broderick, Timothy; Hannaford, Blake

    2007-01-01

    Robotically assisted surgery stands to further revolutionize the medical field and provide patients with more effective healthcare. Most robotically assisted surgeries are teleoperated from the surgeon console to the patient where both ends of the system are located in the operating room. The challenge of surgical teleoperation across a long distance was already demonstrated through a wired communication network in 2001. New development has shifted towards deploying a surgical robot system in mobile settings and/or extreme environments such as the battlefield or natural disaster areas with surgeons operating wirelessly. As a collaborator in the HAPs/MRT (High Altitude Platform/Mobile Robotic Telesurgery) project, The University of Washington surgical robot was deployed in the desert of Simi Valley, CA for telesurgery experiments on an inanimate model via wireless communication through an Unmanned Aerial Vehicle (UAV). The surgical tasks were performed telerobotically with a maximum time delay between the surgeon's console (master) and the surgical robot (slave) of 20 ms for the robotic control signals and 200 ms for the video stream. This was our first experiment in the area of Mobile Robotic Telesurgery (MRT). The creation and initial testing of a deployable surgical robot system will facilitate growth in this area eventually leading to future systems saving human lives in disaster areas, on the battlefield or in other remote environments.

  2. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-08-12

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

  3. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.

    PubMed

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-12-25

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  4. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    PubMed

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R² = 0.340, root-mean-square error (RMSE) = 81.89 g·m(-2), and relative error of 14.1%). The improvement of multiple regressions to the R² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  5. Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities

    DOE PAGES

    Solodov, Alexander; Williams, Adam; Al Hanaei, Sara; ...

    2017-04-18

    Unmanned aerial vehicles (UAV) are among the major growing technologies that have many beneficial applications, yet they can also pose a significant threat. Recently, several incidents occurred with UAVs violating privacy of the public and security of sensitive facilities, including several nuclear power plants in France. The threat of UAVs to the security of nuclear facilities is of great importance and is the focus of this work. This paper presents an overview of UAV technology and classification, as well as its applications and potential threats. We show several examples of recent security incidents involving UAVs in France, USA, and Unitedmore » Arab Emirates. Further, the potential threats to nuclear facilities and measures to prevent them are evaluated. The importance of measures for detection, delay, and response (neutralization) of UAVs at nuclear facilities are discussed. An overview of existing technologies along with their strength and weaknesses are shown. Finally, the results of a gap analysis in existing approaches and technologies is presented in the form of potential technological and procedural areas for research and development. Furthermore based on this analysis, directions for future work in the field can be devised and prioritized.« less

  6. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  7. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  8. Using Large Scale Particle Image Velocimetry with Unmanned Aerial Vehicle to Measure Surface Flow Fields

    NASA Astrophysics Data System (ADS)

    Ko, T. Y.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Large Scale Particle Image Velocimetry (LSPIV) is a nonintrusive measurement technology. It requires fewer operators and less time than other intrusive methods. While using the LSPIV methods to measure surface flow fields, a camera is usually installed on a fixed position of river sides to record the flow conditions. However, it leads to image distortion and error of image processing. This study attempts to apply an unmanned aerial vehicle (UAV) with a camera to record the images of the water surface. It is expected to improve the orthogonality of the recording images. The tracing particles of image velocimetry used the ripples and foams on the water surface. Then, the LSPIV was used to analyze the spatially information of flow fields. The results showed the flow velocities determined by the LSPIV was close to the velocities measured by the velocimetry. It was showed that using LSPIV with UAV to measure water surface flow fields is a feasible, accurate and safe flow measuring method. It is expected to apply in future study, such as habitat survey and hydraulic characteristic.

  9. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  10. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhang, Dechen; Zhu, Dandi; Shi, Qianyun; Gu, Jian; Ai, Yong

    2015-10-01

    Currently various types of aircraft booming and maturing, however, their long-time navigational capability should be improved urgently. This paper aims at studying laser power beaming, which includes the technology of high-efficient photoelectric conversion and APT(acquiring, pointing and tracking) technology, to provide power for flying UAV(unmanned aerial vehicles) and improve their flight endurance. The experiment of testing different types of solar cells under various conditions has been done to choose the solar cell which has the highest photoelectric conversion rate and find its most sensitive wavelength. In addition, the charge management module has been chose on the base of the characteristics of lithium batteries. Besides, a laser APT system was designed and set up, at the same time FSM (Fast Scan Mirror) control program and digital image processing program were used to control the system. The success of the indoor experiment of scan-tracking and charging for the moving UAV model via laser proves that this system is workable. And in this experiment, the photoelectric conversion rate of the whole system is up to 17.55%.

  11. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  12. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  13. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  14. AKSED: adaptive knowledge-based system for event detection using collaborative unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Wang, X. Sean; Lee, Byung Suk; Sadjadi, Firooz

    2006-05-01

    Advances in sensor technology and image processing have made it possible to equip unmanned aerial vehicles (UAVs) with economical, high-resolution, energy-efficient sensors. Despite the improvements, current UAVs lack autonomous and collaborative operation capabilities, due to limited bandwidth and limited on-board image processing abilities. The situation, however, is changing. In the next generation of UAVs, much image processing can be carried out onboard and communication bandwidth problem will improve. More importantly, with more processing power, collaborative operations among a team of autonomous UAVs can provide more intelligent event detection capabilities. In this paper, we present ideas for developing a system enabling target recognitions by collaborative operations of autonomous UAVs. UAVs are configured in three stages: manufacturing, mission planning, and deployment. Different sets of information are needed at different stages, and the resulting outcome is an optimized event detection code deployed onto a UAV. The envisioned system architecture and the contemplated methodology, together with problems to be addressed, are presented.

  15. Vibration control of a camera mount system for an unmanned aerial vehicle using piezostack actuators

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Han, Young-Min; Choi, Seung-Bok

    2011-08-01

    This work proposes an active mount for the camera systems of unmanned aerial vehicles (UAV) in order to control unwanted vibrations. An active actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is directly connected to the inertial mass. After evaluating the actuating force of the actuator, it is combined with the rubber element of the mount, whose natural frequency is determined based on the measured vibration characteristics of UAV. Based on the governing equations of motion of the active camera mount, a robust sliding mode controller (SMC) is then formulated with consideration of parameter uncertainties and hysteresis behavior of the actuator. Subsequently, vibration control performances of the proposed active mount are experimentally evaluated in the time and frequency domains. In addition, a full camera mount system of UAVs that is supported by four active mounts is considered and its vibration control performance is evaluated in the frequency domain using a hardware-in-the-loop simulation (HILS) method.

  16. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Eun; Kim, Yujong; Kim, Yongmin; Kim, Kibeom; Lee, Jin Hee; Lee, Dae Hyung; Kim, Yeongcheon; Shin, Seock Jae; Kim, Dong-Min; Kim, Sung-Yug; Kim, Taegyu; Yoon, Chang Won; Nam, Suk Woo

    2014-05-01

    An advanced ammonia borane (AB)-based H2 power-pack is designed to continually drive an unmanned aerial vehicle (UAV) for 57 min using a 200-We polymer electrolyte membrane fuel cell (PEMFC). In a flight test with the UAV platform integrated with the developed power-pack, pure hydrogen with an average flow rate of 3.8 L(H2) min-1 is generated by autothermal H2-release from AB with tetraethylene glycol dimethylether (T4EGDE) as a promoter. During take-off, a hybridized power management system (PMS) consisting of the fuel cell and an auxiliary lithium-ion battery supplies 500 We at full power simultaneously, while the fuel cell alone provides 150-200 We and further recharges the auxiliary battery upon cruising. Gaseous byproducts identified by in situ Fourier transform infrared (FT-IR) spectroscopy during AB dehydrogenation are sequestrated using a mixed absorbent in an H2 purification system. In addition, a real-time monitoring system is employed to determine the remaining filter capacity of the purifier at a ground control system for rapidly responding unpredictable circumstances during flight. Separate experiments are conducted to screen potential materials and methods for enhancing filter capacity in the current H2 refining system. A prospective reactor concept for long-term fuel cell applications is proposed based on the results.

  17. On parallel hybrid-electric propulsion system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hung, J. Y.; Gonzalez, L. F.

    2012-05-01

    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  18. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  19. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin

    In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.

  20. Monitoring of Open-pit mining using geomorphometry and Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Chen, Jianping; Sofia, Giulia; Lai, Zili; Huang, Haozhong; Tarolli, Paolo

    2017-04-01

    Mining activities have a significant impact on the Earth's surface, and open-pit mines are the most evident landscape signatures of the mining operations. Despite the importance of such human impacts, an open challenge for the Earth Science community is to explore a fast, accurate and low-cost method to monitor changes in open-pit mining. The main goal of this work is to develop such a methodology. In this study, we used an Unmanned Aerial Vehicle(UAV) to collect two series of photographs(August 2014 and October 2016). Through the structure from motion (SfM) photogrammetric techniques, the images were used to generate high-resolution Digital Surface Models (DSMs). DSMs were co-registered by seven ground control points, and the accuracy of the co-registration was checked and corrected by comparing non-change areas. Finally, two kinds of landscape metric were used to detect the changes: (1) the Slope Local Length of Auto-Correlation (SLLAC)(Sofia et al., 2014), which allows to estimate the surface covered by open-pit mining by using a simple empirical model; (2) the DSM of Difference (DoD) , which calculated the changes between two DSMs on a cells-by-cells basis, to accurately estimate the volumetric changes. The results underline the effectiveness of the UAV survey techniques and adopted landscape metrics. This study has demonstrated a robust and rapid workflow to dynamic monitor the open-pit mine and support sustainable environmental planning.

  1. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  2. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    NASA Astrophysics Data System (ADS)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  3. Low-cost, quantitative assessment of highway bridges through the use of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ellenberg, Andrew; Kontsos, Antonios; Moon, Franklin; Bartoli, Ivan

    2016-04-01

    Many envision that in the near future the application of Unmanned Aerial Vehicles (UAVs) will impact the civil engineering industry. Use of UAVs is currently experiencing tremendous growth, primarily in military and homeland security applications. It is only a matter of time until UAVs will be widely accepted as platforms for implementing monitoring/surveillance and inspection in other fields. Most UAVs already have payloads as well as hardware/software capabilities to incorporate a number of non-contact remote sensors, such as high resolution cameras, multi-spectral imaging systems, and laser ranging systems (LIDARs). Of critical importance to realizing the potential of UAVs within the infrastructure realm is to establish how (and the extent to which) such information may be used to inform preservation and renewal decisions. Achieving this will depend both on our ability to quantify information from images (through, for example, optical metrology techniques) and to fuse data from the array of non-contact sensing systems. Through a series of applications to both laboratory-scale and field implementations on operating infrastructure, this paper will present and evaluate (through comparison with conventional approaches) various image processing and data fusion strategies tailored specifically for the assessment of highway bridges. Example scenarios that guided this study include the assessment of delaminations within reinforced concrete bridge decks, the quantification of the deterioration of steel coatings, assessment of the functionality of movement mechanisms, and the estimation of live load responses (inclusive of both strain and displacement).

  4. Obtaining Potential Virtual Temperature Profiles, Entrainment Fluxes, and Spectra from Mini Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Dias, N. L.; Gonçalves, J. E.; Freire, L. S.; Hasegawa, T.; Malheiros, A. L.

    2012-10-01

    We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane's ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent -5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.

  5. The Potential of Light Laser Scanners Developed for Unmanned Aerial Vehicles - The Review and Accuracy

    NASA Astrophysics Data System (ADS)

    Pilarska, M.; Ostrowski, W.; Bakuła, K.; Górski, K.; Kurczyński, Z.

    2016-10-01

    Modern photogrammetry and remote sensing have found small Unmanned Aerial Vehicles (UAVs) to be a valuable source of data in various branches of science and industry (e.g., agriculture, cultural heritage). Recently, the growing role of laser scanning in the application of UAVs has also been observed. Laser scanners dedicated to UAVs consist of four basic components: a laser scanner (LiDAR), an Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and an on-board computer. The producers of the system provide users with detailed descriptions of the accuracies separately for each component. However, the final measurement accuracy is not given. This paper reviews state-of-the-art of laser scanners developed specifically for use on a UAV, presenting an overview of several constructions that are available nowadays. The second part of the paper is focussed on analysing the influence of the sensor accuracies on the final measurement accuracy. Mathematical models developed for Airborne Laser Scanning (ALS) accuracy analyses are used to estimate the theoretical accuracies of different scanners with conditions typical for UAV missions. Finally, the theoretical results derived from the mathematical simulations are compared with an experimental use case.

  6. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  7. State transformation-based dynamic visual servoing for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Lynch, Alan F.

    2016-05-01

    In this paper, we propose a visual servoing control for a quadrotor unmanned aerial vehicle (UAV) which is based on a state transformation technique. The UAV is equipped with a single downwards facing camera, and the motion control objective is the regulation of relative displacement and yaw to a stationary visual target located on the ground. The state transformation is defined by a system of partial differential equations (PDEs) which eliminate roll and pitch rate dependence in the transformed image feature kinematics. A method for computing the general solutions of these PDEs is given, and we show a particular solution reduces to an established virtual camera approach. We treat point and line cases and introduce image moment features defined in the virtual camera image plane. Robustness of the control design is improved by accounting for attitude measurement bias, and uncertainty in thrust gain, mass, and image feature depth. The asymptotic stability of the closed-loop is proven. The method is based on a simple proportional-integral-derivative (PID) structure which can be readily implemented on-board. Experimental results show improved performance relative to previous work.

  8. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  9. Steering a simulated unmanned aerial vehicle using a head-slaved camera and HMD

    NASA Astrophysics Data System (ADS)

    de Vries, Sjoerd C.; Padmos, Pieter

    1997-06-01

    Military use of unmanned aerial vehicles (UAVs) is gaining importance. Video cameras in these devices are often operated with joysticks and their image is displayed on a CRT. In this experiment, the simulated camera of a simulated UAV was slaved to the operator's head movements and displayed using a helmet mounted display (HMD). The task involved maneuvering a UAV along a winding course marked by tress. The influence of several parameters of the set-up on a set of flight handling characteristics was assessed. To enable variation of FOV and to study the effect of the HMD optics, a simulated HMD consisting of a head slaved window, was projected on a screen. One of the FOVs, generated in this way, corresponded with the FOV of the real HMD, enabling a comparison. The results show that the simulated HMD yields a significantly better performance that the real HMD. Performance with a FOV of 17 degrees is significantly lower than with 34 or 57 degrees. An image lag of 50 ms, typical of pan-and-tilt servo motor systems, has a small but significant influence on steering accuracy. Monocular and stereoscopic presentation did not result in significant performance differences.

  10. Use of satellite image for constructing the unmanned aerial vehicle image matching framework

    NASA Astrophysics Data System (ADS)

    Sun, Yanwei; Li, Hao; Sun, Li

    2017-01-01

    Although unmanned aerial vehicles (UAV) can provide images with high resolution in a portable and easy way, the matching algorithms such as scale-invariant feature transform and speeded-up robust features (SURF) are often time-consuming. To reduce the time of image matching processes, a fast and low-cost method is proposed for constructing the UAV image matching framework using a satellite image. In this context, the satellite image is used as the base map of UAV images. To find the matching points between UAV and satellite images, a simplified version of SURF is designed to detect interest points. The simplified version of the SURF method uses only one octave of scale spaces to build filter response maps, and each octave is subdivided into four levels of scale spaces. Meanwhile, template matching is used to remove incorrectly matched points. The experimental results show that the method of this paper is robust and can deal with images acquired by small-sized UAVs without a position and orientation system. The method can calculate the rough overlap regions, which are then employed to narrow down the searching space. This will improve the speed of matching greatly, especially for an unordered database of images.

  11. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    NASA Astrophysics Data System (ADS)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  12. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  13. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    PubMed Central

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-01-01

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145

  14. Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles.

    PubMed

    Roberts, G C; Ramana, M V; Corrigan, C; Kim, D; Ramanathan, V

    2008-05-27

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds.

  15. Mobile Stereo-Mapper a Portable Kit for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.; Lee, R.

    2011-09-01

    A low-cost portable light-weight mobile stereo-mapping system (MSMS) is under development in the GeoICT Lab, Geomatics Engineering program at York University. The MSMS is designed for remote operation on board unmanned aerial vehicles (UAV) for navigation and rapid collection of 3D spatial data. Pose estimation of the camera sensors is based on single frequency RTK-GPS, loosely coupled in a Kalman filter with MEMS-based IMU. The attitude and heading reference system (AHRS) calculates orientation from the gyro data, aided by accelerometer and magnetometer data to compensate for gyro drift. Two low-cost consumer digital cameras are calibrated and time-synchronized with the GPS/IMU to provide direct georeferenced stereo vision, while a video camera is used for navigation. Object coordinates are determined using rigorous photogrammetric solutions supported by direct georefencing algorithms for accurate pose estimation of the camera sensors. Before the MSMS is considered operational its sensor components and the integrated system itself has to undergo a rigorous calibration process to determine systematic errors and biases and to determine the relative geometry of the sensors. In this paper, the methods and results for system calibration, including camera, boresight and leverarm calibrations are presented. An overall accuracy assessment of the calibrated system is given using a 3D test field.

  16. Convolutional Neural Network-based Vision Systems for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Verbickas, Rytis

    Obstacle detection and avoidance for unmanned aerial vehicles (UAVs) is a challenging task, requiring processing speed and accuracy. Although a number of sensor solutions are available for this task, optical sensors are particularly suited being cheap, light-weight and long range. Stereoscopic systems with 2 cameras can be calibrated and used to perform localization of detected features in 3D space, allowing a model of the environment in front of the UAV to be constructed. Stereoscopic methods can, however, be computationally intensive and prone to mismatches which further increases the computational burden of a potential system. This thesis proposes a new approach to horizon detection based on convolutional neural networks (CNNs) and uses knowledge of the sky, ground and horizon to simplify the search for potential obstacles to the horizon and sky region of an image. An edge feature based approach followed by stereo correspondence is then applied to detect and triangulate the location of potential obstacles, producing a 3D model as the system output which can be used by an obstacle avoidance algorithm to navigate the UAV.

  17. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  18. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    PubMed

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  19. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    NASA Technical Reports Server (NTRS)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  20. Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kang, Keeryun

    This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. The flight test evaluations were extended to the benchmark tests for 3D avoidance

  1. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; von Aulock, F.; Lavallée, Y.; Hornby, A. J.; Kennedy, B.; Lamb, O. D.; Kendrick, J. E.

    2016-12-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of the active vent of Caliente and the flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These models can be used to constrain topographical changes and distribution of ballistics via cloud comparisons. The preliminary data of aerial images and videos of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, with a later, separate, and more ash-laden burst occurring from an off-centre fracture. - A comparison of the point clouds before and after a degassing explosion shows minor subsidence of the dome surface and the formation of several small craters at the main venting locations. - The lava flow fronts did not advance more than a few meters between May and December 2015. - Damming of river valleys by the lava flows has established new stream channels that have modified established pathways for the recurring lahars, one of the major

  2. Scaling forest phenology from trees to the landscape using an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Klosterman, S.; Melaas, E. K.; Martinez, A.; Richardson, A. D.

    2013-12-01

    Vegetation phenology monitoring has yielded a decades-long archive documenting the impacts of global change on the biosphere. However, the coarse spatial resolution of remote sensing obscures the organismic level processes driving phenology, while point measurements on the ground limit the extent of observation. Unmanned aerial vehicles (UAVs) enable low altitude remote sensing at higher spatial and temporal resolution than available from space borne platforms, and have the potential to elucidate the links between organism scale processes and landscape scale analyses of terrestrial phenology. This project demonstrates the use of a low cost multirotor UAV, equipped with a consumer grade digital camera, for observation of deciduous forest phenology and comparison to ground- and tower-based data as well as remote sensing. The UAV was flown approximately every five days during the spring green-up period in 2013, to obtain aerial photography over an area encompassing a 250m resolution MODIS (Moderate Resolution Imaging Spectroradiometer) pixel at Harvard Forest in central Massachusetts, USA. The imagery was georeferenced and tree crowns were identified using a detailed species map of the study area. Image processing routines were used to extract canopy 'greenness' time series, which were used to calculate phenology transition dates corresponding to early, middle, and late stages of spring green-up for the dominant canopy trees. Aggregated species level phenology estimates from the UAV data, including the mean and variance of phenology transition dates within species in the study area, were compared to model predictions based on visual assessment of a smaller sample size of individual trees, indicating the extent to which limited ground observations represent the larger landscape. At an intermediate scale, the UAV data was compared to data from repeat digital photography, integrating over larger portions of canopy within and near the study area, as a validation step and

  3. Challenges in collecting hyperspectral imagery of coastal waters using Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    English, D. C.; Herwitz, S.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Yates, K. K.; Ramsewak, D.

    2013-12-01

    Airborne multi-band remote sensing is an important tool for many aquatic applications; and the increased spectral information from hyperspectral sensors may increase the utility of coastal surveys. Recent technological advances allow Unmanned Aerial Vehicles (UAVs) to be used as alternatives or complements to manned aircraft or in situ observing platforms, and promise significant advantages for field studies. These include the ability to conduct programmed flight plans, prolonged and coordinated surveys, and agile flight operations under difficult conditions such as measurements made at low altitudes. Hyperspectral imagery collected from UAVs should allow the increased differentiation of water column or shallow benthic communities at relatively small spatial scales. However, the analysis of hyperspectral imagery from airborne platforms over shallow coastal waters differs from that used for terrestrial or oligotrophic ocean color imagery, and the operational constraints and considerations for the collection of such imagery from autonomous platforms also differ from terrestrial surveys using manned aircraft. Multispectral and hyperspectral imagery of shallow seagrass and coral environments in the Florida Keys were collected with various sensor systems mounted on manned and unmanned aircrafts in May 2012, October 2012, and May 2013. The imaging systems deployed on UAVs included NovaSol's Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK), a Tetracam multispectral imaging system, and the Sunflower hyperspectal imager from Galileo Group, Inc. The UAVs carrying these systems were Xtreme Aerial Concepts' Vision-II Rotorcraft UAV, MLB Company's Bat-4 UAV, and NASA's SIERRA UAV, respectively. Additionally, the Galileo Group's manned aircraft also surveyed the areas with their AISA Eagle hyperspectral imaging system. For both manned and autonomous flights, cloud cover and sun glint (solar and viewing angles) were dominant constraints on retrieval of quantitatively

  4. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    NASA Astrophysics Data System (ADS)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  5. First Experiences Using Small Unmanned Aerial Vehicles for Volcano Observation in the Visible Range

    NASA Astrophysics Data System (ADS)

    Buschmann, M.; Krüger, L.; Bange, J.

    2007-05-01

    Many of the most active volcanoes in the world are located in Middle and South America. While permanently installed sensors for seismicity give reliable supervision of volcanic activities, they lack the possibility to determine occurrence and extent of surface activities. Both from the point of science and civil protection, visible documentation of activities is of great interest. While satellites and manned aircraft already offer many possibilities, they also have disadvantages like delayed or poor image data availability or high costs. The Institute of Aerospace Systems of the Technical University of Braunschweig, in collaboration with the spin-off company Mavionics, developed a family of extremely small and lightweight Unmanned Aerial Vehicles (UAV), with the smallest aircraft weighting only 550~g (19~ounces) at a wing span of 50 cm (20~inch). These aircraft are operating completely automatically, controlled by a highly miniaturized autopilot system. Flight mission is defined by a list of GPS waypoints using a conventional notebook. While in radio range, current position and status of the aircraft is displayed on the notebook and waypoints can easily be changed by the user. However, when radio connection is not available, the aircraft operates on its on, completing the flight mission automatically. This greatly increases the operating range of the system. Especially for the purpose of volcano observation in South America, the aircraft Carolo~P330 was developed, weighting 5~kg (11~pounds) at a wing span of 3.3~m ( 11~ft). The whole system can be easily carried by car and the electric propulsion system avoids handling of flammable liquids. The batteries can be recharged in the field. Carolo~P330 has an endurance of up to 90~minutes at a flight speed of 25~m/s, giving it a maximum range of 67 km (41~miles). It was especially designed to operate under harsh conditions. The payload is a digital still camera, which delivers aerial images with a resolution of up to 8

  6. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty

    PubMed Central

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications. PMID:27835670

  7. Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.

    2013-12-01

    After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel

  8. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles

    PubMed Central

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926

  9. Tracking Forest and Open Area Effects on Snow Accumulation by Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lendzioch, T.; Langhammer, J.; Jenicek, M.

    2016-06-01

    Airborne digital photogrammetry is undergoing a renaissance. The availability of low-cost Unmanned Aerial Vehicle (UAV) platforms well adopted for digital photography and progress in software development now gives rise to apply this technique to different areas of research. Especially in determining snow depth spatial distributions, where repetitive mapping of cryosphere dynamics is crucial. Here, we introduce UAV-based digital photogrammetry as a rapid and robust approach for evaluating snow accumulation over small local areas (e.g., dead forest, open areas) and to reveal impacts related to changes in forest and snowpack. Due to the advancement of the technique, snow depth of selected study areas such as of healthy forest, disturbed forest, succession, dead forest, and of open areas can be estimated at a 1 cm spatial resolution. The approach is performed in two steps: 1) developing a high resolution Digital Elevation Model during snow-free and 2) during snow-covered conditions. By substracting these two models the snow depth can be accurately retrieved and volumetric changes of snow depth distribution can be achieved. This is a first proof-of-concept study combining snow depth determination and Leaf Area Index (LAI) retrieval to monitor the impact of forest canopy metrics on snow accumulation in coniferous forest within the Šumava National Park, Czech Republic. Both, downward-looking UAV images and upward-looking LAI-2200 canopy analyser measurements were applied to reveal the LAI, controlling interception and transmitting radiation. For the performance of downward-looking images the snow background instead of the sky fraction was used. In contrast to the classical determination of LAI by hemispherical photography or by LAI plant canopy analyser, our approach will also test the accuracy of LAI measurements by UAV that are taken simultaneously during the snow cover mapping campaigns. Since the LAI parameter is important for snowpack modelling, this method presents

  10. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.

    PubMed

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

  11. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.

    PubMed

    Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao

    2017-01-01

    Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  12. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  13. Ice melt estimation using Unmanned Aerial Vehicle (UAV) of Ponkar Glacier, Manang, Nepal

    NASA Astrophysics Data System (ADS)

    Kayastha, R. B.; Armstrong, R. L.

    2016-12-01

    Assessing ice melt under debris to better understand glacier melt spatially and the ice melt contribution in river discharge is physically challenging. Remote sensing techniques are best to incorporate such glaciological studies in an inaccessible region like the Himalayas. In this study, Unmanned Aerial Vehicle (UAV), a DJI Phantom Quad Copter and ablation stakes are used and surveyed over the lower ablation region of the Ponkar Glacier (3881 m asl), Manang in the Nepalese Himalayas in March and July 2016 to estimate the glacier ice melt. The temporal data from the UAV are processed to an Orthomosiacs image to create a high resolution Digital Elevation Model (DEM of 2 cm) by the surface from motion (SfM) technique. Three ablation stakes are installed to compare the melt estimation from UAV. The change in surface elevation in the two survey periods corresponds to the ice melt beneath the debris. The ice melt under the debris thickness of 11 and 20 cm on the lower ablation region of the Ponkar Glacier from 20 March to 5 July 2016 are 94 cm and 68 cm (0.88 to 0.64 cm day-1), respectively derived from two DEMs prepared based on two UAV surveys on those dates. Similarly, the ice melt observed on the installed ablation stakes on the above debris thickness are 101 cm and 69 cm (0.95 and 0.65 cm day-1), respectively for the same observation period. These melt rates are very similar to what we found in Langtang Valley, Rasuwa and Phu Valley in Manang. The observation is continuing and a fixed wind UAV will be used for survey in near future so that the whole glacier can be covered. Such a remote sensing technique with high resolution DEM has great potential to quantify the temporal and spatial ice melt of the Himalayan glaciers.

  14. Aerodynamic analysis and simulation of a twin-tail tilt-duct unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Abdollahi, Cyrus

    The tilt-duct vertical takeoff and landing (VTOL) concept has been around since the early 1960s; however, to date the design has never passed the research phase and development phase. Nearly 50 years later, American Dynamics Flight Systems (ADFS) is developing the AD-150, a 2,250lb weight class unmanned aerial vehicle (UAV) configured with rotating ducts on each wingtip. Unlike its predecessor, the Doak VZ-4, the AD-150 features a V tail and wing sweep -- both of which affect the aerodynamic behavior of the aircraft. Because no aircraft of this type has been built and tested, vital aerodynamic research was conducted on the bare airframe behavior (without wingtip ducts). Two weeks of static and dynamic testing were performed on a 3/10th scale model at the University of Maryland's 7' x 10' low speed wind tunnel to facilitate the construction of a nonlinear flight simulator. A total of 70 dynamic tests were performed to obtain damping parameter estimates using the ordinary least squares methodology. Validation, based on agreement between static and dynamic estimates of the pitch and yaw stiffness terms, showed an average percent error of 14.0% and 39.6%, respectively. These inconsistencies were attributed to: large dynamic displacements not encountered during static testing, regressor collinearity, and, while not conclusively proven, differences in static and dynamic boundary layer development. Overall, the damping estimates were consistent and repeatable, with low scatter over a 95% confidence interval. Finally, a basic open loop simulation was executed to demonstrate the instability of the aircraft. As a result, it is recommended that future work be performed to determine trim points and linear models for controls development.

  15. Small Unmanned Aerial Vehicles in coastal areas: lessons learned from applications in Liguria, NW Mediterranean.

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Casella, E.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L. A.; Vacchi, M.; Ferrari, M.; Firpo, M.

    2014-12-01

    In 2013 we started to apply small UAVs to the study of coastal areas in Liguria, NW Mediterranean Sea. In this region monitoring coastal evolution and the impact of sea storms is a primary administrative need, as a large part of the economic income derives from summer tourism. In two years, we accumulated almost 200 hours of flight with two different UAVs, a professional-grade Mikrokopter Okto and a consumer-grade Phantom DJI. We used photogrammetric and orthorectification techniques to obtain Digital Elevation Models (DEMs) and orthophotos of different beaches in the region. Data from UAVs allowed us to answer several questions. What is the accuracy of DEMs obtained from UAVs in low-relief areas such as beaches? What are the problems encountered in the photogrammetric procedure near the shoreline? Are the results obtained with consumer-grade UAVs comparable to those obtained with professional-grade ones? Aside from these technical questions, we used the data obtained from UAVs for different local studies aimed at giving management tools to the local administrations. We used the cloudpoint obtained from DEMs and the orthophotos to set up a runup modelling chain, to detect short-term changes in the coastal zone, and to give a first estimate of the debris deposited on the beach after a major storm. As stated by Watts et al., 2012 (Remote Sensing 4, 1671-1692) the application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing, and has the potential to revolutionize the study of geomorphology. Surely, UAVs opened new research perspectives for our group, which has been actively working on coastal changes in Liguria for almost 25 years.

  16. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  17. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  18. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    PubMed

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  19. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    PubMed Central

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe

    2017-01-01

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788

  20. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  1. Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Barnes, J. W.; McKay, C. P.; Lemke, L.; Beyer, R. A.; Radebaugh, J.; Adamkovics, M.; Atkinson, D. H.; Burr, D. M.; Colaprete, T.; Foch, R.; Le Mouélic, S.; Merrison, J.; Mitchell, J.; Rodriguez, S.; Schaller, E.

    2010-10-01

    Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance - is a small (120 kg), nuclear-powered Titan airplane in the Discovery/New Frontiers class based on the concept of Lemke (2008 IPPW). The scientific goals of the mission are designed around the unique flexibility offered by an airborne platform: to explore Titan's diversity of surface landforms, processes, and compositions, as well as to study and measure the atmospheric circulation, aerosols, and humidity. AVIATR would address and surpass many of the science goals of hot-air balloons in Titan flagship studies. The strawman instrument payload is narrowly focused on the stated scientific objectives. The optical remote sensing suite comprises three instruments - an off-nadir high-resolution 2-micron camera, a horizon-looking 5-micron imager, and a 1-6 micron pushbroom near-infrared spectrometer. The in situ instruments include atmospheric structure, a methane humidity sensor, and a raindrop detector. An airplane has operational advantages over a balloon. Its piloted nature allows a go-to capability to image locations of interest in real time, thereby allowing for directed exploration of many features of primary geologic interest: Titan's sand dunes, mountains, craters, channels, and lakes. Subsequent imaging can capture changes in these features during the primary mission. AVIATR can fly predesigned routes, building up large context mosaics of areas of interest before swooping down to low altitude to acquire high-resolution images at 30-cm spatial sampling, similar to that of HiRISE at Mars. The elevation flexibility of the airplane allows us to acquire atmospheric profiles as a function of altitude at any desired location. Although limited by the direct-to-Earth downlink bandwidth, the total scientific data return from AVIATR will be >40 times that returned from Huygens. To maximize the science per bit, novel data storage and downlink techniques will be employed, including lossy compression

  2. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Perks, Matthew T.; Russell, Andrew J.; Large, Andrew R. G.

    2016-10-01

    Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s-1. Analysis of these vectors provides a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s-1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s-1), and within-channel velocities (±0.16 m s-1), illustrating the consistency of the approach.

  3. Design and implementation of modern control algorithms for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hafez, Ahmed Taimour

    Recently, Unmanned Aerial Vehicles (UAVs) have attracted a great deal of attention in academic, civilian and military communities as prospective solutions to a wide variety of applications. The use of cooperative UAVs has received growing interest in the last decade and this provides an opportunity for new operational paradigms. As applications of UAVs continue to grow in complexity, the trend of using multiple cooperative UAVs to perform these applications rises in order to increase the overall effectiveness and robustness. There is a need for generating suitable control techniques that allow for the real-time implementation of control algorithms for different missions and tactics executed by a group of cooperative UAVs. In this thesis, we investigate possible control patterns and associated algorithms for controlling a group of autonomous UAVs in real-time to perform various tactics. This research proposes new control approaches to solve the dynamic encirclement, tactic switching and formation problems for a group of cooperative UAVs in simulation and real-time. Firstly, a combination of Feedback Linearization (FL) and decentralized Linear Model Predictive Control (LMPC) is used to solve the dynamic encirclement problem. Secondly, a combination of decentralized LMPC and fuzzy logic control is used to solve the problem of tactic switching for a group of cooperative UAVs. Finally, a decentralized Learning Based Model Predictive Control (LBMPC) is used to solve the problem of formation for a group of cooperative UAVs in simulation. We show through simulations and validate through experiments that the proposed control policies succeed to control a group of cooperative UAVs to achieve the desired requirements and control objectives for different tactics. These proposed control policies provide reliable and effective control techniques for multiple cooperative UAV systems.

  4. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    SciTech Connect

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  5. The Generation of Building Floor Plans Using Portable and Unmanned Aerial Vehicle Mapping Systems

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chen, Y. L.; Chiang, K. W.; Lai, Y. C.

    2016-06-01

    Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS) applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS) and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV) platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  6. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  7. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  8. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren

    2016-11-01

    Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.

  9. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.; Ahmad, A.; Akib, W. A. A. W. M.; Mohd, W. M. N. W.

    2014-02-01

    This paper discusses a rapid production of slope mapping using multi-rotor unmanned aerial vehicle (UAV). The objective of this study is to determine the accuracy of the photogrammetric results based on novel method of multi-rotor UAV images as well as to analyze the slope error distribution that are obtained from the UAV images. This study only concentrates on multi-rotor UAV which also known as Hexacopter. An operator can control the speed of multi-rotor UAV during flight mission. Several ground control points and checkpoints were established using Real Time Kinematic Global Positioning System (RTK- GPS) at the slope area. Ground control points were used in exterior orientation during image processing in sequence to transform image coordinates into local coordinate system. Checkpoints were established at the slope area for accuracy assessment. A digital camera, Sony NEX-5N was used for image acquisition of slope area from UAV platforms. The digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. All acquired images went through photogrammetric processing including interior orientation, exterior orientation and bundle adjustment using photogrammetric software. Photogrammetric results such as digital elevation model, and digital orthophoto including slope map were assessed. UAV is able to acquire data within short period of time with low budget compared to the previous methods such as satellite images and airborne laser scanner. Analysis on slope analysis and error distribution analysis are discussed in this paper to determine the quality of slope map in the area of interest. In summary, multi-rotor UAV is suited in slope mapping studies.

  10. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    PubMed Central

    Yang, Guijun; Liu, Jiangang; Zhao, Chunjiang; Li, Zhenhong; Huang, Yanbo; Yu, Haiyang; Xu, Bo; Yang, Xiaodong; Zhu, Dongmei; Zhang, Xiaoyan; Zhang, Ruyang; Feng, Haikuan; Zhao, Xiaoqing; Li, Zhenhai; Li, Heli; Yang, Hao

    2017-01-01

    Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping. PMID:28713402

  11. Visual scan patterns during simulated control of an uninhabited aerial vehicle (UAV).

    PubMed

    Tvaryanas, Anthony P

    2004-06-01

    This study investigated pilots' visual scan patterns on an uninhabited aerial vehicle (UAV) flight display that used moving textbox symbology to emulate vertical moving pointers for the primary flight instruments. Eye tracking measurements were recorded for five instrument-rated pilots. Dwell frequencies and mean dwell times were calculated for each instrument. The efficiency of instrument information presentation was evaluated based on mean dwell times and dwell histograms. The heading indicator, a strict digital readout, was used as the reference for pair-wise comparison with the moving textbox instruments. Instrument dwell frequencies differed significantly (p < 0.005, alpha = 0.006) with the attitude indicator being the most frequently scanned instrument followed by the vertical speed indicator, then the airspeed, heading, and altitude indicators. There was no difference in mean dwell times (p = 0.04-0.79, alpha = 0.008) or dwell histograms between the heading indicator and the primary moving textbox instruments. Pilot scan behavior was not significantly affected (p > 0.17) by workload. Also, subjects and historical controls did not differ (p > 0.30) in their frequency of engine instrument dwells. The dwell frequencies for the primary flight instruments, particularly the vertical speed indicator, differed from those reported for more traditional aircraft. The moving textboxes required visual fixations that were typical of quantitative instruments, which is a cognitively inefficient way to present information. Pilots failed to increase engine instrument dwells in the absence of non-visual cues of engine performance, making them potentially vulnerable to missing early changes in engine performance.

  12. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2017-05-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.

  13. Stream Restoration Monitoring Utilizing an Unmanned Aerial Vehicle, Teton Creek, Idaho

    NASA Astrophysics Data System (ADS)

    Stegman, T.

    2014-12-01

    Stream restoration is a growing field in fluvial geomorphology. As demands on water resources increase the need for sustainable and healthy waterways becomes even more essential. This research investigates how an unmanned aerial vehicle (UAV) can be utilized for data collection necessary in stream restoration design and evaluation. UAV's offer an inexpensive method to collect information on channel geometry and map grain size distributions of the bed material. This data is critical in hydraulic flow modeling and engineering plans needed to create a restoration design, as well as evaluate if an implemented project has met its goals. This research utilized a UAV and structure-from-motion photogrammetry to monitor a recent stream restoration project designed to reduce erosion on a 1.9 km reach of Teton Creek in Eastern Idaho. A digital elevation model of difference was created from an as-built field survey and a UAV derived terrain model to identify areas of erosion and deposition in the restoration reach. The data has shown relatively small areas of channel instability in the restoration reach, and has also identified sections which may require additional restoration activities in Teton Creek. The grain size distribution of Teton Creek was also mapped utilizing a UAV and digital photosieving techniques, for use in sediment transport equations in the restoration reach. Data collected quickly and inexpensively from a UAV is valuable to river managers to monitor restoration work. This research identifies the methods and materials needed for river managers to conduct UAV surveys of streams for use in restoration design and monitoring.

  14. Using small unmanned aerial vehicle for instream habitat evaluation and modelling

    NASA Astrophysics Data System (ADS)

    Astegiano, Luca; Vezza, Paolo; Comoglio, Claudio; Lingua, Andrea; Spairani, Michele

    2015-04-01

    Recent advances in digital image collection and processing have led to the increased use of unmanned aerial vehicles (UAV) for river research and management. In this paper, we assess the capabilities of a small UAV to characterize physical habitat for fish in three river stretches of North-Western Italy. The main aim of the study was identifying the advantages and challenges of this technology for environmental river management, in the context of the increasing river exploitation for hydropower production. The UAV used to acquire overlapping images was a small quadcopter with a two different high-resolution (non-metric) cameras (Nikon J1™ and Go-Pro Hero 3 Black Edition™). The quadcopter was preprogrammed to fly set waypoints using a small tablet PC. With the acquired imagery, we constructed a 5-cm resolution orthomosaic image and a digital surface model (DSM). The two products were used to map the distribution of aquatic and riparian habitat features, i.e., wetted area, morphological unit distributions, bathymetry, water surface gradient, substrates and grain sizes, shelters and cover for fish. The study assessed the quality of collected data and used such information to identify key reach-scale metrics and important aspects of fluvial morphology and aquatic habitat. The potential and limitations of using UAV for physical habitat survey were evaluated and the collected data were used to initialize and run common habitat simulation tools (MesoHABSIM). Several advantages of using UAV-based imagery were found, including low cost procedures, high resolution and efficiency in data collection. However, some challenges were identified for bathymetry extraction (vegetation obstructions, white waters, turbidity) and grain size assessment (preprocessing of data and automatic object detection). The application domain and possible limitation for instream habitat mapping were defined and will be used as a reference for future studies. Ongoing activities include the

  15. Design and analysis of multifunctional structures for embedded electronics in unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kothari, Rushabh M.

    chosen as a part of passive heat transfer device due to their durability and excellent thermal conductivities. The multifunctional system consisting of all above components is modeled for unmanned aerial vehicle (UAV) at subsonic air speeds to demonstrate the validity of the design.

  16. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  17. An Unmanned Aerial Vehicle-Mounted Cold Mist Spray of Permethrin and Tetramethylfluthrin Targeting Aedes albopictus in China.

    PubMed

    Li, Chun-Xiao; Zhang, Ying-Mei; Dong, Yan-De; Zhou, Ming-Hao; Zhang, Heng-Duan; Chen, Hong-Na; Tian, Ye; Yang, Wei-Fang; Wu, Xiao-Qun; Chu, Hong-Liang; Zhao, Tong-Yan

    2016-03-01

    Aedes albopictus is the primary vector of dengue fever and dengue hemorrhagic fever in China. Although there are previous studies on the application of adulticides to control this species, the application methods have either been back-pack or vehicle-mounted systems. However, many sites are too large to be effectively treated with back-pack sprayers, and the lack of roads restricts the use of vehicle-mounted sprayers. This paper provides the first study of using unmanned aerial vehicles to conduct cold mist sprays on Ae. albopictus habitats. A spray containing 4% permethrin and 1% tetramethylfluthrin was applied at an effective application rate of 9.0 mg/m(2). This method reduced Ae. albopictus populations by more than 90%. The results indicate this novel spray system is a powerful method to achieve a rapid decline of mosquito population in Ae. albopictus habitats in China.

  18. Virtual flight simulation of a dual rotor micro air vehicle

    NASA Astrophysics Data System (ADS)

    Cai, Hongming

    2015-02-01

    In this paper, a new computational method is developed based on computational fluid dynamics (CFD) coupled with rigid body dynamics (RBD) and flight control law in an in-house programmed source code. The CFD solver is established based on momentum source method, preconditioning method, lower-upper symmetric Gauss-Seidel iteration method, and moving overset grid method. Two-equation shear-stress transport k - ω turbulence model is employed to close the governing equations. Third-order Adams prediction-correction method is used to couple CFD and RBD in the inner iteration. The wing-rock motion of the delta wing is simulated to validate the capability of the computational method for virtual flight simulation. Finally, the developed computational method is employed to simulate the longitudinal virtual flight of a dual rotor micro air vehicle (MAV). Results show that the computational method can simulate the virtual flight of the dual rotor MAV.

  19. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  20. Integration of an Autopilot for a Micro Air Vehicle

    NASA Technical Reports Server (NTRS)

    Platanitis, George; Shkarayev, Sergey

    2005-01-01

    Two autopilots providing autonomous flight capabilities are presented herein. The first is the Pico-Pilot, demonstrated for the 12-inch size class of micro air vehicles. The second is the MicroPilot MP2028(sup g), where its integration into a 36-inch Zagi airframe (tailless, elevons only configuration) is investigated and is the main focus of the report. Analytical methods, which include the use of the Advanced Aircraft Analysis software from DARCorp, were used to determine the stability and control derivatives, which were then validated through wind tunnel experiments. From the aerodynamic data, the linear, perturbed equations of motion from steady-state flight conditions may be cast in terms of these derivatives. Using these linear equations, transfer functions for the control and navigation systems were developed and feedback control laws based on Proportional, Integral, and Derivative (PID) control design were developed to control the aircraft. The PID gains may then be programmed into the autopilot software and uploaded to the microprocessor of the autopilot. The Pico-Pilot system was flight tested and shown to be successful in navigating a 12-inch MAV through a course defined by a number of waypoints with a high degree of accuracy, and in 20 mph winds. The system, though, showed problems with control authority in the roll and pitch motion of the aircraft: causing oscillations in these directions, but the aircraft maintained its heading while following the prescribed course. Flight tests were performed in remote control mode to evaluate handling, adjust trim, and test data logging for the Zagi with integrated MP2028(sup g). Ground testing was performed to test GPS acquisition, data logging, and control response in autonomous mode. Technical difficulties and integration limitations with the autopilot prevented fully autonomous flight from taking place, but the integration methodologies developed for this autopilot are, in general, applicable for unmanned air

  1. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  2. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  3. Aerial vehicle navigation over unknown terrain environments using inertial measurements and dual airborne laser scanners or flash ladar

    NASA Astrophysics Data System (ADS)

    Vadlamani, Ananth K.; Uijt de Haag, Maarten

    2007-04-01

    A precise navigation system for uninhabited or inhabited aerial vehicles is discussed in this paper. The navigational capability of an aerial vehicle must be robust and not easily influenced by external factors. Nowadays, many navigation systems rely somehow on the Global Positioning System (GPS), wherein the GPS signals may be rendered unusable due to unintentional interference caused by atmospheric effects, interference from communication equipment, as well as intentional jamming. The navigation method discussed in this paper integrates measurements from an Inertial Measurement Unit (IMU) with measurements from either two airborne laser scanners (ALS) or an airborne Flash LADAR (AFL) to provide autonomous navigational capability and a reliable alternative to GPS. The proposed system has applications in unknown or partially known terrain environments or it may also be used for autonomous landing systems in Lunar or Martian environments. Two approaches are described in this paper, one approach uses Dual Airborne Laser Scanners (DALS) (one pointing forward, the other pointing aft) and the other approach uses an AFL. Advantages and disadvantages of both approaches are discussed. The proposed navigation system uses strapdown IMU measurements to estimate the aerial vehicle position and attitude and to geo-reference the laser sensor data. It then uses the maps created from both the fore and aftpointing scanning LADARS or the consecutive Flash LADAR range-images to estimate systematic IMU errors such as position and velocity drifts. The proposed navigation algorithm is evaluated using flight test data from Ohio University's DC3 aircraft and synthesized ALS and AFL measurements. Initial results are observed to achieve meter level accuracies in the system's position drift performance.

  4. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  5. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  6. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  7. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non

  8. A Possibility of the Aeromagnetic Survey by a Small Unmanned Aerial Vehicles, Ant-Plane

    NASA Astrophysics Data System (ADS)

    Funaki, M.

    2004-12-01

    Magnetic surveys by helicopters and airplanes are a useful technique to estimate the geological structure under the ice sheets in Antarctica. However, it is not easy to employ this due to the transportation of the planes, logistic supports, security, and financial problems. Members of Ant-Plane Project have investigated the unmanned aerial vehicles (UAV, Ant-Plane) for the solution of the problems. Recently the aeromagnetic survey is verified by a model airplane navigated by GPS and a magneto-resistant (MR) magnetometer. The airplane (Ant-Plane) consists of 2m wing length, 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 15kg including 2 litter fuels, the MR magnetometer, a video camera and an emergency parachute. The speed is 130 km/h and maximum height is 2000m. The magnetometer system consists of a 3- component MR magnetometer, GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, number of satellite and time are recorded in every second during 3 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown heading of the plane. November 2003 we succeeded the magnetic survey by the Ant-Plane at the slope of Sakurajima Volcano, Kyushu, Japan. The plane rotated 9 times along the programmed route of about 4x1 km, total flight distance of 80 km, keeping the altitude of 700 m. Consequently we obtained almost similar field variation on the route. The maximum deviation of each course was less than 100 m. Therefore, we concluded that the aeromagnetic survey in the relatively large anomaly areas can be performed by Ant-Plane with the MR magnetometer system. Finally the plane flew up 1400m with a video camera to take the photo of active volcano Sakurajima (1117m). It succeeded to take photos of craters through steam from the volcano.

  9. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Lavallée, Yan; Hornby, Adrian J.; Lamb, Oliver D.; Andrews, Benjamin J.; Kendrick, Jackie E.

    2016-04-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of A.) The active vent of Caliente and B.) The flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These were supported by still frames from the video recording. Video footage of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: A.) - A new breach opened on the east side of the crater rim, possibly during the collapse in November 2015. - The active lava dome is now almost completely covered with ash, only leaving the largest blocks and faults exposed in times without gas venting - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, rather than arcuate or ring faults, with a later, separate, and more ash-laden burst occurring from an off-centre fracture, however, other explosions during the observation period were seen to persist along the ring fault system observed on the lava dome since at least 2007 - suggesting a diversification of explosive activity. B.) - The lava flow fronts did

  10. Aerosol, cloud, and radiometric measurements with small autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Corrigan, C.; Ramana, M.; Nguyen, H.

    2005-12-01

    The AUAV (autonomous unmanned aerial vehicle) project is a part of the Atmospheric Brown Clouds project. It has been designed to allow for routine vertical profile measurements of aerosols and clouds using AUAVs above ground-based observatories in the Indo-Pacific Ocean region. The current scientific payloads consist of optical particle counters, condensation particle counters, cloud droplet probes, aethelometers, upward and downward facing pyranometers, and temperature-relative humidity sensors. Aerosol, cloud and radiometric instruments have been miniaturized with a total payload weight and power less than 5 kg and 50 W, respectively. Demonstration flights at the Yuma Proving Grounds, AZ show the potential for small AUAVs in atmospheric studies. The flights were performed on two aircraft, which flew autonomously up to 3000 m above sea level (asl) along programmed flight tracks. The aircraft flew in stacked formation for part of the flights. Once the aircraft were stacked (550 and 2100 m asl), the projected distances were less than 50 m - which translates to less than a 1.5 sec latency between the aircraft. Vertical profiles show a constant 8 K km-1 lapse rate and increasing relative humidity with altitude. At 2000 m asl (1600 m above ground level), an aerosol layer is evident in the total aerosol concentration profile (NCN = 2000 cm-3); relative humidity also increased by 10% in this layer. No such increase in 0.3 μm aerosol (NOPC) is visible at 2000 m asl, suggesting transport from an urban center. Back trajectories indicate air masses originated from south and west across central Baja California, Mexico. Aerosol concentrations are fairly constant at 1000 cm-3 throughout the profile indicating a well-mixed boundary layer. Spikes in aerosol concentrations are a result of sampling the aircrafts' exhaust. The vertical profiles show that spikes occurred at levels where the aircraft maintained level, repeating holding patterns. The cloud droplet probe was flown

  11. Multispectral data processing from unmanned aerial vehicles: application in precision agriculture using different sensors and platforms

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Bozzi, Carlo Alberto; Mancini, Adriano; Tassetti, Anna Nora; Karel, Wilfried; Pfeifer, Norbert

    2017-04-01

    Unmanned aerial vehicles (UAVs) in combination with consumer grade cameras have become standard tools for photogrammetric applications and surveying. The recent generation of multispectral, cost-efficient and lightweight cameras has fostered a breakthrough in the practical application of UAVs for precision agriculture. For this application, multispectral cameras typically use Green, Red, Red-Edge (RE) and Near Infrared (NIR) wavebands to capture both visible and invisible images of crops and vegetation. These bands are very effective for deriving characteristics like soil productivity, plant health and overall growth. However, the quality of results is affected by the sensor architecture, the spatial and spectral resolutions, the pattern of image collection, and the processing of the multispectral images. In particular, collecting data with multiple sensors requires an accurate spatial co-registration of the various UAV image datasets. Multispectral processed data in precision agriculture are mainly presented as orthorectified mosaics used to export information maps and vegetation indices. This work aims to investigate the acquisition parameters and processing approaches of this new type of image data in order to generate orthoimages using different sensors and UAV platforms. Within our experimental area we placed a grid of artificial targets, whose position was determined with differential global positioning system (dGPS) measurements. Targets were used as ground control points to georeference the images and as checkpoints to verify the accuracy of the georeferenced mosaics. The primary aim is to present a method for the spatial co-registration of visible, Red-Edge, and NIR image sets. To demonstrate the applicability and accuracy of our methodology, multi-sensor datasets were collected over the same area and approximately at the same time using the fixed-wing UAV senseFly "eBee". The images were acquired with the camera Canon S110 RGB, the multispectral cameras

  12. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  13. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  14. Spatial distribution of water stress and evapotranspiration estimates using an unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Rauneker, P.; Lischeid, G.

    2012-04-01

    The estimation of spatial distribution of evapotranspiration poses a particular challenge in quantitative hydrology. Conventional methods provide punctual measurements of evapotranspiration rates which may be transformed into aggregated mean values by extrapolation or the application of empirical models. The influence of spatial structures (heterogeneity of the landscape) in relevant small spatial scales is captured insufficiently by these methods. Modern optical remote sensors aboard an unmanned aerial vehicle (UAV) provide the basis for the generation of high spatial resolution data. Spectral data in the optical, near infrared and thermal infrared domain will be used as input into a surface energy balance (SEB) model to produce evapotranspiration maps. The spectral properties of vegetation are of particular importance for the calculation, since plants are the link between soil and atmosphere and thus have major impact on evapotranspiration rates of land surfaces. First estimates of plant status and indicators of transpiration behavior will be obtained by applying and combining water stress parameters of different wavelengths. As opposed to satellite data, time-series of self-determined spatial and temporal resolution may be created by varying flight altitude and turnaround times. Thus it is possible to analyze the influence of landscape structures, as well as the chronological development of the observed parameters. Located at the interface between hydrology and remote sensing this work utilizes an innovative remote sensing platform to gain distributed spectral information. This information will be used to visualize evapotranspiration patterns in hydrological heterogeneous areas. Particular attention will be paid to the analysis of transition zones of varying water supply and under the influence of selected environmental parameters (e.g. soil moisture, depth of GW-table). To reach that goal it is essential to generate a robust processing chain, involving all

  15. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.

    PubMed

    Claesson, A; Fredman, D; Svensson, L; Ringh, M; Hollenberg, J; Nordberg, P; Rosenqvist, M; Djarv, T; Österberg, S; Lennartsson, J; Ban, Y

    2016-10-12

    The use of an automated external defibrillator (AED) prior to EMS arrival can increase 30-day survival in out-of-hospital cardiac arrest (OHCA) significantly. Drones or unmanned aerial vehicles (UAV) can fly with high velocity and potentially transport devices such as AEDs to the site of OHCAs. The aim of this explorative study was to investigate the feasibility of a drone system in decreasing response time and delivering an AED. Data of Global Positioning System (GPS) coordinates from historical OHCA in Stockholm County was used in a model using a Geographic Information System (GIS) to find suitable placements and visualize response times for the use of an AED equipped drone. Two different geographical models, urban and rural, were calculated using a multi-criteria evaluation (MCE) model. Test-flights with an AED were performed on these locations in rural areas. In total, based on 3,165 retrospective OHCAs in Stockholm County between 2006-2013, twenty locations were identified for the potential placement of a drone. In a GIS-simulated model of urban OHCA, the drone arrived before EMS in 32 % of cases, and the mean amount of time saved was 1.5 min. In rural OHCA the drone arrived before EMS in 93 % of cases with a mean amount of time saved of 19 min. In these rural locations during (n = 13) test flights, latch-release of the AED from low altitude (3-4 m) or landing the drone on flat ground were the safest ways to deliver an AED to the bystander and were superior to parachute release. The difference in response time for EMS between urban and rural areas is substantial, as is the possible amount of time saved using this UAV-system. However, yet another technical device needs to fit into the chain of survival. We know nothing of how productive or even counterproductive this system might be in clinical reality. To use drones in rural areas to deliver an AED in OHCA may be safe and feasible. Suitable placement of drone systems can be designed by using GIS models

  16. Vision-based state estimation for uninhabited aerial vehicles using the coplanarity constraint

    NASA Astrophysics Data System (ADS)

    Webb, Thomas Philip

    2007-12-01

    We developed and evaluated a vision-based state estimation algorithm for uninhabited aerial vehicles (UAVs) using the implicit extended Kalman filter (IEKF) and the coplanarity constraint (also known as the epipolar or essential constraint). The coplanarity constraint, a well-known property in the structure from motion (SFM) field, has advantages for this application in that the feature point locations in three dimensional space do not have to be known and tracked and that feature points can be discarded and acquired as necessary. This reduces the computational load which is important for real time applications such as aircraft control. Advantages of the IEKF are that, in principle, the current estimate uses all previous information, not just the current observations, and that the estimate will propagate forward in an orderly fashion in the case of interrupted or reduced measurements. The dynamics of the aircraft are included in the process model which improves the observability of the states and resolves the SFM scale factor ambiguity. The algorithm was implemented in a numerical simulation and exhibited divergence problems in the presence of measurement noise. These effects were particularly evident in the velocity estimates. The problems were eliminated by zeroing out the small velocity dependent terms in the measurement matrix. The algorithm was exercised in a Monte Carlo fashion and found to be robust to errors in the process model and to measurement noise. Sensitivities to filter and focal plane implementation parameters including camera depression angle, field of view, measurement interval, and feature point location and number were also assessed. The modified estimator was then employed in a closed loop UAV simulation to provide feedback to a simple autopilot. The simulation demonstrated that the state estimates provided were sufficiently accurate to allow control of the UAV through successful waypoint navigation. This simulation used feature points

  17. Assessment of Urban Aerial Taxi with Cryogenic Components under Design Environment for Novel Vertical Lift Vehicles (DELIVER)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2017-01-01

    Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASAs Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.

  18. Assessment of Urban Aerial Taxi with Cryogenic Components Under Design Environment for Novel Vertical Lift Vehicles (DELIVER)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher

    2017-01-01

    Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASA's Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.

  19. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles