NASA Astrophysics Data System (ADS)
Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai
2017-01-01
TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (<5 at%). The adhesive strengths of all the micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.
Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy
NASA Astrophysics Data System (ADS)
Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu
2013-11-01
Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.
[Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].
Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui
2013-10-01
To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
Automation of the micro-arc oxidation process
NASA Astrophysics Data System (ADS)
Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.
2017-11-01
At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.
Yu, Sirong; Yang, Xizhen; Yang, Long; Liu, Yaohui; Yu, Yingjie
2007-11-01
A novel technique for preparing the Ca- and P-containing ceramic coating on Ti-6Al-4V alloy by micro-arc oxidation (MAO) was developed successfully in this paper. In the new technique, Ti alloy first was micro-arc oxidated in P-containing electrolyte, and then it was micro-arc oxidated in Ca-containing electrolyte. This technique can avoid the undesired chemical reaction between Ca-containing salt and P-containing salt in electrolyte. The surface morphologies, composition, and phases of MAO coatings were studied by means of SEM, EDS, and XRD. The results show that the P- and Ca-containing coating on Ti-6Al-4V alloy contains Ti, TiO(2) (rutile), alpha-Ca(PO(3))(2), CaTiO(3), and AlTi(3). There are many small and uniform pores in the coating. Most of these pores are coterminous. The microhardness of the coating is 720 HV and higher than that of Ti-6Al-4V alloy (220 HV). The coating is more wear-resistant than Ti-6Al-4V alloy under the lubricant of the artificial saliva and not easy to desquamate from the substrate of Ti-6Al-4V alloy.
Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui
2011-01-01
To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.
Study of Scanning Micro-arc Oxidation and Coating Development
NASA Astrophysics Data System (ADS)
Xia, Lingqin; Han, Jianmin; Domblesky, Joseph P.; Yang, Zhiyong; Li, Weijing
2017-11-01
Micro-arc oxidation (MAO) continues to be the focus of numerous investigations, whereas relatively few studies have considered scanning micro-arc oxidation (SMAO). In the present work, an experimental study was performed using stationary and moving electrodes to investigate coating development in SMAO and discern the effect of key process parameters. Examination of oxide deposits made on A356 aluminum show that coating thickness and growth rate are inversely related to inter-electrode spacing and travel speed. An evaluation of SMAO deposits made by stationary and moving nozzles revealed that coating thickness profiles follow a Gaussian distribution due to the electrolyte flow field in the impingement zone. Hardness surveys and scanning electron microscope analysis of SMAO coatings revealed that micro-hardness distributions and cross-sectional morphology are similar to MAO for a stationary nozzle but that a denser outer layer develops when a moving nozzle is used. This is attributed to a high density of discharge occurring in micropores of the oxide film and remelting which results from the moving electrolyte column. Analysis of voltage-current characteristic curves shows that the resistance of the electrolyte column is essentially linear over the range considered and results indicate that it can be modeled as a variable length resistor. While further testing is needed, results confirm that SMAO is suitable for coating large, planar parts and for repairing worn surfaces.
Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H
2017-02-01
The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.
Santiago-Medina, Pricilla; Sundaram, Paul A.; Diffoot-Carlo, Nanette
2014-01-01
The adhesion and proliferation of human fetal osteoblasts, hFOB 1.19, on micro arc oxidized (MAO) gamma titanium aluminide (γTiAl) surfaces were examined in vitro. Cells were seeded on MAO treated γTiAl disks and incubated for 3 days at 33.5°C and subsequently for 7 days at 39.5°C. Samples were then analyzed by Scanning Electron Microscopy (SEM) and the Alkaline Phosphatase Assay (ALP) to evaluate cell adhesion and differentiation, respectively. Similar Ti-6Al-4V alloy samples were used for comparison. Untreated γTiAl and Ti-6Al-4V disks, to study the effect of micro arc oxidation and glass coverslips as cell growth controls were also incubated concurrently. The ALP Assay results, at 10 days post seeding, showed significant differences in cell differentiation, with p values < 0.05 between MAO γTiAl and MAO Ti-6Al-4V with respect to the corresponding untreated alloys. While SEM images showed that hFOB 1.19 cells adhered and proliferated on all MAO and untreated surfaces, as well as on glass coverslips at 10 days post seeding, cell differentiation, determined by the ALP assay, was significantly higher for the MAO alloys. PMID:24577944
NASA Astrophysics Data System (ADS)
Wang, Jun-Hua; Wang, Jin; Lu, Yan; Du, Mao-Hua; Han, Fu-Zhu
2015-01-01
The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti-6Al-4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle.
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
NASA Astrophysics Data System (ADS)
Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian
2018-05-01
Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.
Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P
2014-08-01
The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, G. P.; Song, R. G.
2018-02-01
Micro-arc oxidation (MAO) ceramic coatings were prepared in silicate-based electrolyte on 7075 aluminum alloy. The effects of current density on microstructure and properties of the MAO coatings were studied by scanning electron microscopy (SEM), stereoscopic microscopy, x-ray diffraction (XRD), electrochemical tests as well as tribological and wear tests. The results showed that the current density plays an important role in affecting the quality of the MAO coatings. XRD results showed that the α-Al2O3 phase first increased then decreased with increasing the current density, which matched well with the micro-hardness test and the wearing test results. On the other hand, the coalescent strength measurements revealed that the coating prepared at the current density of 12 A dm-2 is of the highest adhesion force. The potentiodynamic polarization test proved that the coating obtained under 10 A dm-2 exhibits the best corrosion resistance, which is directly related to the morphology of coating.
NASA Astrophysics Data System (ADS)
Wang, Xuefei; Zhu, Zongtao; Li, Yuanxing; Chen, Hui
2018-03-01
The micro-arc oxidation coatings of 6N01 aluminum alloy produced under different control modes of the electrolyte temperature are discussed in detail. Compared to those coated by a thermostatically controlled treatment, the coatings had different surface characterizations when they were coated without controlling the electrolyte temperature, particularly after treatment involving boiling electrolytes. Scanning electron microscopy and confocal laser scanning microscopy were used to observe the morphology of the coatings. Energy-dispersive spectrometry and x-ray diffractometer were used to characterize their elemental and crystalline phase compositions. The results indicate that the treatment without a controlled electrolyte temperature ultimately led to a thicker and rougher film with a respectably thick inner barrier film, a lower content of γ-Al2O3 and better corrosion resistance.
NASA Astrophysics Data System (ADS)
Sun, Guanhong; He, Xiaodong; Jiang, Jiuxing; Sun, Yue; Zhong, Yesheng
2013-02-01
To increase the wear resistance of polymer matrix composites, alumina coatings were deposited on polymer substrates by a two-step method combining plasma spraying and micro-arc oxidation. The microstructures and phase compositions of the processed coatings were investigated for different treatment times. Uniformly distributed pores were found in addition to the presence of various coral-like structures and floccules on the surface of the coatings. The presence of α-Al2O3 and γ-Al2O3 phases was identified by XRD. The distribution of alumina was analyzed by EDS and is discussed. The maximum bond strength of the coatings was found to be 5.89 MPa. There was little thermal damage in the polymer substrates after the coatings were produced.
Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy
NASA Astrophysics Data System (ADS)
Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao
2012-12-01
Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.
NASA Astrophysics Data System (ADS)
Wang, Cuicui; Wang, Feng; Han, Yong
2016-01-01
In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.
Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin
2017-08-01
NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.
NASA Astrophysics Data System (ADS)
Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat
2015-03-01
Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.
Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW
2018-03-01
Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.
NASA Astrophysics Data System (ADS)
Seyfoori, A.; Mirdamadi, Sh.; Khavandi, A.; Raufi, Z. Seyed
2012-11-01
Degradation behavior of coated magnesium alloys is among most prominent factors for their biomedical applications. In this study, bio-corrosion behavior of micro-arc oxidized magnesium AZ31 alloys formed in silicate and phosphate baths was investigated in r-SBF medium. For this purpose polarization behavior and open circuit profile of the coated samples were achieved by electrochemical and immersion tests, respectively. Moreover, the morphology and composition of the coatings were evaluated before and after immersion test using scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The results showed that the phosphate film had better corrosion resistance and greater thickness than silicate film and, in turn, the lesser degradability in SBF solution, so that Ca2+ and PO43- containing compounds were more abundant on silicate film than phosphate film. Moreover phosphate film had greater surface roughness and lesser hydrophilic nature.
Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke
2015-01-01
Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635
Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.
Xia, Y H; Zhang, B P; Lu, C X; Geng, L
2013-12-01
In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.
NASA Astrophysics Data System (ADS)
Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping
2013-01-01
Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.
NASA Astrophysics Data System (ADS)
Feng, Z. J.; Zeng, C. L.
Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.
Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua
2018-03-01
The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy.
Golshirazi, A; Kharaziha, M; Golozar, M A
2017-07-01
The aim of this study was to combine micro-arc oxidation (MAO) and self-assembly technique to improve corrosion resistivity of AZ91 alloy. While a silicate-fluoride electrolyte was adopted for MAO treatment, polyethylenimine (PEI)/kappa carrageenan (KC) self-assembly coating was applied as the second coating layer. Resulted demonstrated the formation of forsterite-fluoride containing MAO coating on AZ91 alloy depending on the voltage and time of anodizing process. Addition of the second PEI/KC coating layer on MAO treated sample effectively enhanced the adhesive strength of MAO coated sample due to filling the pores with polymers and increase in the mechanical interlocking of coating to the substrate. Moreover, the corrosion evaluation considered by potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that double layered PEI/KC:MAO coating presented superior resistance to corrosion attack. It is envisioned that the proposed double layered PEI/KC:MAO coating could be useful for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.
2018-01-01
Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying
2014-02-01
Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.
Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors
NASA Astrophysics Data System (ADS)
Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.
2014-12-01
The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351 will be presented
dos Santos, Amanda; Araujo, Joyce R; Landi, Sandra M; Kuznetsov, Alexei; Granjeiro, José M; de Sena, Lidia Ágata; Achete, Carlos Alberto
2014-07-01
In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.
He, Ye; Zhang, Yangyang; Shen, Xinkun; Tao, Bailong; Liu, Ju; Yuan, Zhang; Cai, Kaiyong
2018-05-31
Bacterial infection commonly occurs in clinical settings when the procedure involves a medical implant. Thus, the fabrication of antimicrobial medical materials has attracted much attention in recent years. To improve the antibacterial properties of titanium (Ti)-based biomedical materials, surface microporous structures, with antimicrobial peptide coatings, were employed in this study. Native Ti substrates were endowed with a certain level of antibacterial activity after treatment with the micro-arc oxidation (MAO). A multilayer consisting of polydopamine, cationic antimicrobial peptides LL-37, and phospholipid (POPC) was coated onto MAO substrates, leading to antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The combination of polydopamine-LL-37-POPC was found to alleviate the burst release of LL-37 in the initial phase. This multilayer coated onto microporous Ti substrates also showed favorable cytocompatibility to both mesenchymal stem cells (MSCs) and osteoblasts. These findings illustrate a novel strategy for the development of antibacterial Ti-based implants. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong
2010-02-01
A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.
NASA Astrophysics Data System (ADS)
Lin, Xiao; Yang, Xiaoming; Tan, Lili; Li, Mei; Wang, Xin; Zhang, Yu; Yang, Ke; Hu, Zhuangqi; Qiu, Jianhong
2014-01-01
Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.
Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time
NASA Astrophysics Data System (ADS)
Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.
2011-05-01
Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.
Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Cruz, Nilson Cristino da; Mesquita, Marcelo Ferraz; Takoudis, Christos; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo
2016-07-01
Dental implants, inserted into the oral cavity, are subjected to a synergistic interaction of wear and corrosion (tribocorrosion), which may lead to implant failures. The objective of this study was to investigate the tribocorrosion behavior of Ti oxide films produced by micro-arc oxidation (MAO) under oral environment simulation. MAO was conducted under different conditions as electrolyte composition: Ca/P (0.3M/0.02M or 0.1M/0.03M) incorporated with/without Ag (0.62g/L) or Si (0.04M); and treatment duration (5 and 10min). Non-coated and sandblasted samples were used as controls. The surfaces morphology, topography and chemical composition were assessed to understand surface properties. ANOVA and Tukey׳s HSD tests were used (α=0.05). Biofunctional porous oxide layers were obtained. Higher Ca/P produced larger porous and harder coatings when compared to non-coated group (p<0.001), due to the presence of rutile crystalline structure. The total mass loss (Kwc), which includes mass loss due to wear (Kw) and that due to corrosion (Kc) were determined. The dominant wear regime was found for higher Ca/P groups (Kc/Kw≈0.05) and a mechanism of wear-corrosion for controls and lower Ca/P groups (Kc/Kw≈0.11). The group treated for 10min and enriched with Ag presented the lowest Kwc (p<0.05). Overall, MAO process was able to produce biofunctional oxide films with improved surface features, working as tribocorrosion resistant surfaces. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M
2015-09-01
Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.
Zhang, Lan; Zhu, Shaoyu; Han, Yong; Xiao, Chengzhang; Tang, Wu
2014-10-01
A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia
2016-01-01
A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.
Li, Ying; Li, Chaozhong; Hu, Dan; Li, Zhengxian; Xi, Zhengping
2017-01-01
Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition. The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm. The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. The main phase composition of the coatings was anatase and rutile TiO2, amorphous form of SiO2 and MnO2. The infrared emissivity value of the coatings strongly depended on KMnO4 concentration, the coating formed at the concentration of 0.8 g/L KMnO4 reached the highest and an average of up to 0.87 was observed. PMID:29137192
Improved biological performance of magnesium by micro-arc oxidation
Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.
2014-01-01
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917
Water and the oxidation state of subduction zone magmas.
Kelley, Katherine A; Cottrell, Elizabeth
2009-07-31
Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.
From Tomography to Material Properties of Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael
2017-01-01
A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.
Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.
Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera
2015-10-02
One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (p<0.001). Both bleaching techniques reduced enamel micro-hardness, although the reduction is much less significant with the GaAlAs laser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.
NASA Astrophysics Data System (ADS)
Chien, Chi-Sheng; Hung, Yu-Chien; Hong, Ting-Fu; Wu, Chung-Chun; Kuo, Tsung-Yuan; Lee, Tzer-Min; Liao, Tze-Yuan; Lin, Huan-Chang; Chuang, Cheng-Hsin
2017-03-01
Fluorapatite (FA) has better chemical and thermal stability than hydroxyapatite (HA), and has thus attracted significant interest for biomaterial applications in recent years. In this study, porous bioceramic layers were prepared on pure titanium surfaces using a micro-arc oxidation (MAO) technique with an applied voltage of 450 V and an oxidation time of 5 min. The MAO process was performed using three different electrolyte solutions containing calcium fluoride (CaF2), calcium acetate monohydrate (Ca(CH3COO)2·H2O), and sodium phosphate monobasic dihydrate (NaH2PO4·2H2O) mixed in ratios of 0:2:1, 1:1:1, and 2:0:1, respectively. The surface morphology, composition, micro-hardness, porosity, and biological properties of the various MAO coatings were examined and compared. The results showed that as the CaF2/Ca(CH3COO)2·H2O ratio increased, the elemental composition of the MAO coating transformed from HA, A-TiO2 (Anatase) and R-TiO2 (Rutile); to A-TiO2, R-TiO2, and a small amount of HA; and finally A-TiO2, R-TiO2, CaF2, TiP2O5, and FA. The change in elemental composition was accompanied by a higher micro-hardness and a lower porosity. The coatings exhibited a similar in vitro bioactivity performance during immersion in simulated body fluid for 7-28 days. Furthermore, for in initial in vitro biocompatibility tests performed for 24 h using Dulbecco's Modified Eagle Medium (DMEM) supplement containing 10%Fetal bovine serum, the attachment and spreading of osteoblast-like osteosarcoma MG63 cells were found to increase slightly with an increasing CaF2/Ca(CH3COO)2·H2O ratio. In general, the results presented in this study show that all three MAO coatings possess a certain degree of in vitro bioactivity and biocompatibility.
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.
2015-01-01
Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.F.; Herfurth, G.
1998-11-01
Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at {minus} 20 C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effectmore » of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO{sub 2}, {gamma} Al{sub 2}O{sub 3}, or MnO. Al{sub 2}O{sub 3} as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 {micro}m in diameter. The combination of more oxide inclusions greater than 1 {micro}m and less acicular ferrite is considered to be the explanation for the lower Charpy values.« less
Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation
NASA Astrophysics Data System (ADS)
Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi
2016-03-01
Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.
The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium
Zhou, Lei; Guo, Zehong; Rong, Mingdeng; Liu, Xiangning; Lai, Chunhua; Ding, Xianglong
2013-01-01
Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation. PMID:23861853
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.
2016-04-01
Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.
NASA Astrophysics Data System (ADS)
Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng
2015-08-01
An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.
Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Long; Jiang, Bailing; Ge, Yanfeng
2013-05-21
Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on themore » surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.« less
Min, Yi; Ma, Jing-Zhi; Shen, Ya; Cheung, Gary Shun-Pan; Gao, Yuan
2016-11-01
The aim of this study was to investigate the clinical negotiation of various apical anatomic features of the mandibular first molars in a Chinese population using micro-computed tomography (micro-CT). A total of 152 mandibular first molars were scanned with micro-CT at 30 µm resolution. The apical 5 mm of root canal (ARC) was reconstructed three dimensionally and classified. Subsequently, the access cavity was prepared with the ARC anatomy blinded to the operator. The ARC was negotiated with a size 10 K file with or without precurve. Information on the ability to obtain a reproducible glide path was recorded. The anatomical classification of ARC was Type I with 68.45% in mandibular first molars. The negotiation result of ARC with Category i was 387 canals (74.00%). With a bent negotiating file, 96 canals were negotiated, including 88 reproducible glide paths (Category ii) and 8 irregular glide paths (Category iii). About 7.65% canals could not be negotiated with patency successfully (Category iv). The statistical analyze shown the anatomic feature of ARC had effect on the negotiation of ARC (p < 0.05). In conclusion, ARC anatomic variations had a strong potential impact on the negotiation. The category of negotiation in ARC would be helpful in the using of NiTi rotary instruments. Negotiation of ARC to the working length with patency should be careful and skillful because of the complexities of ARC. SCANNING 38:819-824, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Khlusov, Igor; Litvinova, Larisa; Shupletsova, Valeria; Khaziakhmatova, Olga; Melashchenko, Elena; Yurova, Kristina; Leitsin, Vladimir; Khlusova, Marina; Pichugin, Vladimir; Sharkeev, Yurii
2018-02-28
The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm³) with a bilateral rough ( R a = 2.2-3.7 μm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO₂ nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC ( R a = 2.2-3.7 μm) on the survival of Jurkat T cells (Spearman's coefficient r s = -0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase ( r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO₂ implants in cancer patients.
Khlusov, Igor; Shupletsova, Valeria; Khaziakhmatova, Olga; Melashchenko, Elena; Yurova, Kristina; Khlusova, Marina; Pichugin, Vladimir; Sharkeev, Yurii
2018-01-01
The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm3) with a bilateral rough (Ra = 2.2–3.7 μm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO2 nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC (Ra = 2.2–3.7 μm) on the survival of Jurkat T cells (Spearman’s coefficient rs = −0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase (r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO2 implants in cancer patients. PMID:29495627
Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan
2018-01-01
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo, quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation. PMID:29375677
Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan
2018-01-01
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean 'pin thickness', bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo , quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.
2007-03-01
Cushman, Infoscitex Corporation, 303 Bear Hill Road, Waltham, MA 02451 Aluminum and titanium alloys are used as replacements for steel in gear...assess the susceptibility of selected substrates to wear. Initial testing utilized M50 steel rings as the counter surface to uncoated aluminum and...were recorded and plotted over the 4500 cycles, as shown in the right of Figure 3, depicting results of the best performing test substrate, M50 Steel
Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu
2015-12-01
Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. Copyright © 2015. Published by Elsevier Ltd.
Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling
2016-10-01
The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao
2016-02-01
A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.
Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G
2013-09-01
Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.
2014-12-01
Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for the volcanic chain will enable along-arc variations in magmatic processes in Sumatra to be assessed more thoroughly, providing fundamental insights into the evolution of not only Kerinci, but magma genesis in Sumatra in general. Keywords: Sunda Arc, andesite, arc volcanism, petrogenesis.
Microscopic observations of osteoblast growth on micro-arc oxidized β titanium
NASA Astrophysics Data System (ADS)
Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang
2013-02-01
Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.
Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites
NASA Astrophysics Data System (ADS)
Chiu, Dereck
A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.
Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.
Forget, N L; Murdock, S A; Juniper, S K
2010-12-01
Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. © 2010 Blackwell Publishing Ltd.
Yuan, Xiaohui; Tan, Fei; Xu, Haitao; Zhang, Shaojun; Qu, Fuzhen; Liu, Jie
2017-07-01
The aim of this study is to investigate the effects of different electrolytes on the titanium-porcelain bond strength after micro-arc oxidation (MAO) treatment. Three electrolytes at the same concentration were used as MAO reaction solutions: Na 2 SiO 3 , KF, and MgSiF 6 . Blasting treatment was chosen as a control. After MAO treatment in each electrolyte, the titanium-porcelain bond strengths were measured by the three-point bending test, as described in ISO 9693. The morphologies and elemental compositions of the MAO coating on the titanium substrate were evaluated by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The interface between the titanium and porcelain was also observed by SEM and EDS. The MAO coatings created in different electrolytes exhibited completely different morphologies and compositions. The bond strengths of the Na 2 SiO 3 and MgSiF 6 groups were significantly higher than those of the other groups (p<0.05). Additionally, the titanium-porcelain interfaces were compact in the former two groups, whereas pores and cracks were visible at the interfaces in the other groups. These results indicate that MAO treatment with an appropriate electrolyte could be an effective method to increase the titanium-porcelain bonding strength. According to ISO 9693, titanium-porcelain restorations subjected to MAO treatment with an appropriate electrolyte could be appropriate for clinical use. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Ruizhen; Lin, Naiming; Zhou, Peng; Zou, Jiaojuan; Han, Pengju; Wang, Zhihua; Tang, Bin
2018-04-01
Because of its excellent corrosion resistance, high specific strength and high tensile strength, TC4 titanium alloys used as petroleum tubes have received wide interest from material engineers after many technical investigations and estimations. However, because of its low surface hardness values, high coefficient of friction and poor wear resistance, the TC4 alloy is seldom adopted in tribological-related engineering components. In this work, micro-arc oxidation (MAO) coatings were fabricated on TC4 alloys in NaAlO2 and (NaPO3)6 electrolytes with and without ultrasonic assistance. The microstructural characterizations of the produced MAO coatings were investigated. Comparative estimations of electrochemical corrosion in CO2-saturated simulated oilfield brine and tribological behaviours on MAO coatings and TC4 alloys were conducted. The results showed that the introduction of ultrasound increased the thickness of the MAO coatings. The thickness increased by 34% and 15% in the NaAlO2 and (NaPO3)6 electrolytes, respectively. There was no significant discrepancy in phase constitutions when the MAO processes were conducted with and without ultrasonic assistance. Both MAO coatings obtained with and without ultrasonic assistance were found to improve the corrosion and wear resistance of the TC4 alloy. MAO treatments made it possible to ensure the working surface of a TC4 alloy with an enhanced surface performance for oil and gas exploitation applications.
Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy
NASA Astrophysics Data System (ADS)
Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.
2007-03-01
Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.
Hybrid calcium phosphate coatings for implants
NASA Astrophysics Data System (ADS)
Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.
2016-08-01
Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
Interaction Between the Celestial and the Terrestrial Reference Frames
NASA Technical Reports Server (NTRS)
Gordon, David; MacMillan, Dan; Bolotin, Sergei; Le Bail, Karine; Gipson, John; Ma, Chopo
2010-01-01
Effects of International Celestial Reference Frame (ICRF2) on the Terrestrial Reference Frames (TRF), CRF and EOP's, The ICRF2 became official on Jan. 1, 2010. It includes positions of 3414 compact radio astronomical sources observed with VLBI, a fivefold increase from the first ICRF. Numerous new VLBI models were used and the most unstable sources were treated as arc parameters to avoid distortions of the frame. The ICRF2 has a noise floor of 40 micro-arc-seconds and an axis stability of 10 micro-arc-seconds. It was aligned with the ICRS using 138 stable sources common to ICRF2 and ICRF-Ext2. Maintenance of ICRF2 is to be made using 295 defining sources chosen for their historical positional stability, minimal source structure, and sky distribution. Their stability and their more uniform sky distribution eliminate the two largest weaknesses of ICRF I. The switchover to ICRF2 has some small effects on the TRF, CRF and Earth Orientation Parameters (EOP). A CRF based on ICRF2 shows a relative rotation of 40 micro-arc-seconds, mostly about the Y-axis. Small shifts are also seen in the EOP's, the largest being 11 micro-arc-seconds in X-pole. Some small but insignificant differences are also seen in the TRF. These results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.
2017-05-01
This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.
NASA Astrophysics Data System (ADS)
Han, Y.; Chen, D. H.; Zhang, L.
2008-08-01
Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.
Yan, Jun; Sun, Ji-Feng; Chu, Paul K; Han, Yong; Zhang, Yu-Mei
2013-09-01
Strontium-containing hydroxyapatites (Sr-HA) combine the desirable bone regenerative properties of hydroxyapatites (HA) with anabolic and anti-catabolic effects of strontium cations. In the present work, a series of Sr(y)HA [Sr(y)Ca(10-y)(PO4)6(OH)2; y = 0, 0.5, 1, 2] coatings on titanium are produced by micro-arc oxidation (MAO), and the effects of the in vivo osseointegration ability of the coatings are investigated by using a rabbit model. All samples are subjected to biomechanical, surface elemental, micro-CT and histological analysis after 4 and 12 weeks of healing. The obtained results show that the MAO-formed coatings exhibit a microporous network structure composed of Sr(y)HA/Sr(y)HA-Sr(x)Ca(1-x)TiO3/Sr(x)Ca(1-x)TiO3-TiO2 multilayers, in which the outer Sr(y)HA and intermediate Sr(y)HA-Sr(x)Ca(1-x)TiO3 layers have a nanocrystalline structure. All Sr-HA coated implants induce marked improvements in the behavior of bone formation, quantity and quality of bone tissue around the implants than the control HA implant and in particular, the 20%Sr-HA coating promotes early bone formation as identified by polyfluorochrome sequential labeling. The bone-to-implant contact is increased by 46% (p < 0.05) and the pull-out strength is increased by 103% over the HA group (p < 0.01). Extensive areas of mineralized tissue densely deposit on the 20%Sr-HA coating after biomechanical testing, and the greatest improvement of bone microarchitecture are observed around the 20%Sr-HA implant. The identified biological parameters successfully demonstrate the osteoconductivity of 20%Sr-HA surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The study demonstrates the immense potential of 20%Sr-HA coatings in dental and orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Borner, A.; Swaminathan-Gopalan, K.; Stephani, Kelly; Poovathingal, S.; Murray, V. J.; Minton, T. K.; Panerai, F.; Mansour, N. N.
2017-01-01
A collaborative effort between the University of Illinois at Urbana-Champaign (UIUC), NASA Ames Research Center (ARC) and Montana State University (MSU) succeeded at developing a new finite-rate carbon oxidation model from molecular beam scattering experiments on vitreous carbon (VC). We now aim to use the direct simulation Monte Carlo (DSMC) code SPARTA to apply the model to each fiber of the porous fibrous Thermal Protection Systems (TPS) material FiberForm (FF). The detailed micro-structure of FF was obtained from X-ray micro-tomography and then used in DSMC. Both experiments and simulations show that the CO/O products ratio increased at all temperatures from VC to FF. We postulate this is due to the larger number of collisions an O atom encounters inside the porous FF material compared to the flat surface of VC. For the simulations, we particularly focused on the lowest and highest temperatures studied experimentally, 1023 K and 1823 K, and found good agreement between the finite-rate DSMC simulations and experiments.
Hybrid Calcium Phosphate Coatings for Titanium Implants
NASA Astrophysics Data System (ADS)
Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.
2017-01-01
Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.
Toda, Kei; Hato, Yuki; Ohira, Shin-ichi; Namihira, Takao
2007-11-05
In this paper, novel microsystems for gas analysis and gas generation are described. The same microchannel devices covered with a gas permeable membrane were used for both the gas collection and the gas generation. For the first time, a dual liquid flow system was utilized in a micro-gas analysis system. Even though micropumps are utilized in the dual line microsystem, a good baseline was obtained in the NO2 measurement with Griess-Saltzman chemistry. The system was developed for on-site measurements in medical treatment; the treatment is of respiratory disease syndrome by NO inhalation and the monitoring is of the product NO and the harmful byproduct NO2. The system was also applied to mobile atmospheric monitoring. Chemical NO generation using the microchannel device was investigated for safe NO inhalation as an alternative to a NO generator based on pulsed arc discharge.
NASA Astrophysics Data System (ADS)
Tang, M.; Erdman, M.; Eldridge, G.; Lee, C. T.
2017-12-01
Arc lavas are generally more oxidized than mid-ocean-ridge basalts, but how arc lavas acquire their oxidized signatures remains poorly understood. Iron oxidation state in melts have been used to suggest that fluids released from subducted slab may oxidize the sub-arc mantle and produce oxidized arc magmas from the source (e.g., Carmichael, 1991; Kelley and Cottrell), but redox-sensitive trace element and Fe isotope signatures of basalts also suggest that oxidation may happen during magma differentiation (e.g., Dauphas et al., 2009; Lee et al., 2005, 2010). One potential problem, however, is that all of these studies, represent indirect constraints on the primary, pre-erupted magma oxidation state. Here, we examine the Eu systematics of primitive, deep-seated (>45-80 km) arc cumulates, which provide the most direct constraint on arc magmas before they rise into the crust. The ratio of Eu2+/Eu3+ is a function of fo2, temperature and composition. Eu2+ is more incompatible than Eu3+ except in plagioclase. Combining Eu partitioning in minerals and experimentally calibrated Eu oxybarometer (Burnham et al., 2015) allows the application of mineral Eu anomalies in constraining magma redox conditions. The cumulates are represented by garnet-bearing pyroxenites from Arizona, USA and are arc cumulates. Because they derive from depths > 60 km, plagioclase was never present during their petrogenesis, hence any Eu anomalies reflect the effects of oxygen fugacity. We find that the most primitive cumulates have negative Eu anomalies in garnet and clinopyroxene (Eu/Eu*<1), despite the fact that depths of differentiation were too high to stabilize plagioclase. We further show that garnet and clinopyroxene Eu/Eu* increases with differentiation (decreasing Mg#), consistent with Eu2+ being more incompatible than Eu3+. Based on the Eu oxybarometer calibrated by Burnham et al. (2015), the Eu deficits in the most primitive cumulate (Mg# = 77) suggest crystallization at Dlogfo2 of FMQ-1, similar to that of mid-ocean-ridge basalts. Crystal fractionation modelling shows that the increasing Eu/Eu* in the evolved cumulates require fo2 to increase by at least 2 log units as the fractionated cumulate Mg# decreases from 77 to 53. These observations suggest that the oxidized nature of arc magmas occurs during intracrustal differentiation.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-06-25
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-01-01
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055
Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael
2014-01-01
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
NASA Astrophysics Data System (ADS)
Shokouhfar, M.; Dehghanian, C.; Baradaran, A.
2011-01-01
Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.
Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas
2013-01-01
Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.
NASA Astrophysics Data System (ADS)
Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc
2018-02-01
Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.
Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa
2017-08-01
In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.
Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.
2013-01-01
Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625
Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.
Wang, Jun; Hoang, Tien; Floyd, Evan L; Regens, James L
2017-04-01
Plasma cutting is a metal fabrication process that employs an electrically conductive plasma arc to cut metals. The metal fume emitted from stainless steel plasma cutting may consist of hexavalent chromium (Cr6+), which is a carcinogen, and other toxicants. Overexposure to plasma cutting fume may cause pulmonary toxicity and other health effects. This study was to evaluate the effects of operation parameters (arc current and arc time) on the fume formation rates, Cr6+ and other oxides concentrations, particle size distributions (PSD), and particle morphology. A fume chamber and high-volume pump were used to collect fume produced from cutting ER308L stainless steel plates with arc currents varying between 20 and 50 A. The amount of fume collected on glass fiber filters was gravimetrically determined and normalized to arc time. Cr6+ and other oxides in the fume were analyzed using ion chromatography. PSD of the fume was examined using a scanning mobility particle sizer and an aerodynamic particle sizer for fine and coarse fractions, respectively. The particle morphology was imaged through a transmission electron microscope (TEM). Total fume generation rate increased with arc current and ranged from 16.5 mg min-1 at 20 A to 119.0 mg min-1 at 50 A. Cr6+ emissions (219.8-480.0 µg min-1) from the plasma cutting were higher than welding fume in a previous study. Nitrogen oxides level can be an indicator of oxidation level and Cr6+ formation (R = 0.93). Both PSD measurement and TEM images confirmed a multimodal size distribution. A high concentration of a fine fraction of particles with geometric mean sizes from 96 to 235 nm was observed. Higher arc current yielded more particles, while lower arc current was not able to penetrate the metal plates. Hence, the worker should optimize the arc current to balance cut performance and fume emission. The findings indicated that arc current was the dominant factor in fume emission from plasma cutting. Appropriate ventilation and respiratory protection should be used to reduce workers' exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Oliveira, Fernando G.; Ribeiro, Ana R.; Perez, Geronimo; Archanjo, Bráulio S.; Gouvea, Cristol P.; Araújo, Joyce R.; Campos, Andrea P. C.; Kuznetsov, Alexei; Almeida, Clara M.; Maru, Márcia M.; Achete, Carlos A.; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A.
2015-06-01
The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants. This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro-arc oxidation (MAO). The characterization of morphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties of the surfaces.
NASA Astrophysics Data System (ADS)
Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul
2017-02-01
The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.
Oxidation of boron nitride in an arc heated jet.
NASA Technical Reports Server (NTRS)
Buckley, J. D.
1971-01-01
Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.
Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project
NASA Technical Reports Server (NTRS)
Caraccio, Anne
2015-01-01
As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.
Investigating Discharge Ignition Fundamentals of Micro-Cathode Arc Thrusters
NASA Astrophysics Data System (ADS)
Teel, George Lewis
This dissertation is a compilation of studies of the volatile process that vacuum arcs undergo, known as breakdown. Breakdown is a transfer of electrons from one electrode to another. These electrons typically bombard the electrode surfaces causing secondary electron emission and ionization. This expulsion of ions and electrons then proceed to cause arc discharge, is what most people associate as ``the spark.'' This field-emission to breakdown process induces localized heating, which then causes this explosive ionization to occur. Once plasma is formed, high temperatures and pressures are forced on the surrounding surfaces. This initiation process, the effects of this process, and the manipulation of these effects have all been studied and described in this work. A series of initial observations of the before and after effects of discharge have been made through various equipment such as a Scanning Electron Microscope, Energy Dispersive X-Ray, and Confocal Microscope. Methods to develop a resistance measurement scheme provided a means to characterize the thruster's operation over its lifetime. Further characterization of the plasma plume was done through the use of Langmuir probes. Temperature and density distributions were also measured. An entirely new and miniaturized design of the thrusters were developed and initially tested. Last, a new application for these vacuum arc thrusters was studied for use in an underwater environment. The purpose of this work was to further develop a vacuum arc thruster, known as the Micro-Cathode Arc Thruster (muCAT), which has been developed at the George Washington University's Micro Propulsion and Nanotechnology Lab. The muCAT has been developed over the past decade, and in the last 5 years has gone from simple lab circuitry to space flown hardware. Therefore it is imperative to fully understand every aspect of this technology to achieve precisely what missions require. The results of this dissertation have allowed a new thruster concept to be developed, which is more robust and smaller than previous designed muCAT with erosion control built into the design. A new application for these vacuum arc thrusters has also been tested as underwater propulsion. This research has allowed us to come closer to a more perfected piece of propulsion technology.
Calculation of gas release from DC and AC arc furnaces in a foundry
NASA Astrophysics Data System (ADS)
Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.
2016-12-01
A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.
NASA Astrophysics Data System (ADS)
Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.
2018-01-01
Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.
Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes
Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C
2015-01-01
Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.
Optical arc sensor using energy harvesting power source
NASA Astrophysics Data System (ADS)
Choi, Kyoo Nam; Rho, Hee Hyuk
2016-06-01
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.
Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys
NASA Astrophysics Data System (ADS)
Durocher, J.; Richards, N. L.
2011-10-01
The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.
Low temperature formation of electrode having electrically conductive metal oxide surface
Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping
1998-01-01
A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.
Wan, Fen; Mao, Yinting; Dong, Yangyang; Ju, Lili; Wu, Genfu; Gao, Haichun
2015-01-01
Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before. PMID:25975178
A temperature controller board for the ARC controller
NASA Astrophysics Data System (ADS)
Tulloch, Simon
2016-07-01
A high-performance temperature controller board has been produced for the ARC Generation-3 CCD controller. It contains two 9W temperature servo loops and four temperature input channels and is fully programmable via the ARC API and OWL data acquisition program. PI-loop control is implemented in an on-board micro. Both diode and RTD sensors can be used. Control and telemetry data is sent via the ARC backplane although a USB-2 interface is also available. Further functionality includes hardware timers and high current drivers for external shutters and calibration LEDs, an LCD display, a parallel i/o port, a pressure sensor interface and an uncommitted analogue telemetry input.
Detection of nanoparticles in carbon arc discharge with laser-induced incandescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatom, S.; Bak, J.; Khrabryi, A.
Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less
Detection of nanoparticles in carbon arc discharge with laser-induced incandescence
Yatom, S.; Bak, J.; Khrabryi, A.; ...
2017-02-20
Laser-induced incandescence measurements were conducted in the carbon arc discharge, used for synthesis of carbon nanostructures. The results reveal two spatial regions occupied by dominant populations of carbon particles with different sizes. Close to the axis of the arc, large micron size particles dominate the incandescence signal. In the arc periphery, the dominant population of nanoparticles has diameter of 20 nm. Using a heat transfer model between the gas, arc plasma and the particles, it is shown that such a drastic difference in the particle sizes can be explained by evaporation of the micron-scale particles which move across the arcmore » plasma towards the arc periphery. It is also hypothesized that mass evaporated from the micro particles contributes to the carbon feedstock for the formation of nanostructures. (C) 2017 Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Astrophysics Data System (ADS)
Tang, Hui; Han, Yu; Wu, Tao; Tao, Wei; Jian, Xian; Wu, Yunfeng; Xu, Fangjun
2017-04-01
In this study, hydroxyapatite-containing coatings were prepared by microarc oxidation on AZ31 magnesium alloy surface to improve its biodegradation performance. Five applied voltages were chosen to prepare the MAO coatings. The results demonstrate that the number of micropores in the films increases but their dimensions decrease after higher voltage is applied. As the surface roughness of the MAO coatings increases with the applied voltage, the wettability of the coatings improves continuously. The MAO coatings were mainly composed of magnesium oxide (MgO) and hydroxyapatite. The amount of hydroxyapatite phase increased with increasing voltage that was applied. The bonding strength became slightly weaker after a higher voltage was applied. But the bonding strengths of all the coatings were consistently higher than 37 MPa, which met the requirement of implant biomaterials. All coatings exhibited higher corrosion resistances and lower hydrogen evolution rate than the bare AZ31 Mg substrate, implying that the degradation rate of the AZ31 Mg alloy was enhanced by the hydroxyapatite-containing coatings. The results indicate that the present treatment of applying hydroxyapatite-containing coatings is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.
Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.
Evaluation and monitoring of UVR in Shield Metal ARC Welding processing.
Peng, Chiung-yu; Liu, Hung-hsin; Chang, Cheng-ping; Shieh, Jeng-yueh; Lan, Cheng-hang
2007-08-01
This study established a comprehensive approach to monitoring UVR magnitude from Shield Metal Arc Welding (SMAW) processing and quantified the effective exposure based on measured data. The irradiances from welding UVR were calculated with biological effective parameter (Slambda) for human exposure assessment. The spectral weighting function for UVR measurement and evaluation followed the American Conference of Governmental Industrial Hygienists (ACGIH) guidelines. Arc welding processing scatters bright light with UVR emission over the full UV spectrum (UVA, UVB, and UVC). The worst case of effective irradiance from a 50 cm distance arc spot with a 200 A electric current and an electrode E6011 (4 mm) is 311.0 microW cm(-2) and has the maximum allowance time (Tmax) of 9.6 s. Distance is an important factor affecting the irradiance intensity. The worst case of the effective irradiance values from arc welding at 100, 200, and 300 cm distances are 76.2, 16.6, and 12.1 microW cm(-2) with Tmax of 39.4, 180.7, and 247.9 s, respectively. Protective materials (glove and mask) were demonstrated to protect workers from hazardous UVR exposure. From this study, the methodology of UVR monitoring in SMAW processing was developed and established. It is recommended that welders should be fitted with appropriate protective materials for protection from UVR emission hazards.
Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC
NASA Astrophysics Data System (ADS)
Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration
2016-09-01
Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.
Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.
Su, Yanjie; Zhang, Jing; Zhang, Liling; Zhang, Yafei
2013-02-01
Direct current (DC) arc discharge method gives high temperature in a short time, which has been widely used to prepare carbon nanotubes. We use this simple approach to synthesize metal oxide nanostructures (MgO, SnO2) without any catalyst. Different morphologies (nanowires, nanobelts, nanocubes, and nanodisks) of metal oxide nanostructures can be controllably synthesized by changing the content of air in buffer gas. The growth mechanisms for these nanostructures are discussed in detail. Oxygen partial pressure is supposed to be one of the most important key factors. The methodology might be used to synthesize similar nanostructures of other functional oxide materials and non-oxide materials.
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
Optical arc sensor using energy harvesting power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less
Laser Assisted Micro Wire GMAW and Droplet Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.
2002-03-01
Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less
The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas
NASA Astrophysics Data System (ADS)
Luffi, P. I.; Lee, C.
2012-12-01
It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and amphibole-melt Kd(Fe-Mg) values may be too low to account for CA trends observed in thick continental arcs. Hence, depths of crystallization do not appear to influence the CA/TH index directly. We speculate that typical island arcs are dominantly tholeiitic because here crustal assimilation is inhibited and magma throughput is enhanced by extensional tectonic regimes. In contrast, the dominantly calc-alkaline nature of thicker continental arcs may be the consequence of efficient assimilation of oxidized crustal materials in a compressional environment restraining magma throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
Internal and surface phenomena in metal combustion
NASA Technical Reports Server (NTRS)
Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.
1995-01-01
Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.
Chamizo-Ampudia, Alejandro; Sanz-Luque, Emanuel; Llamas, Ángel; Ocaña-Calahorro, Francisco; Mariscal, Vicente; Carreras, Alfonso; Barroso, Juan B; Galván, Aurora; Fernández, Emilio
2016-10-01
Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it. © 2016 John Wiley & Sons Ltd.
Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants
NASA Astrophysics Data System (ADS)
Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong
2018-03-01
In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.
Numerical assessment of bureau of mines electric arc melter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, S.; Hawkes, G.; Nguyen, H.D.
1994-12-31
An electric arc melter used for the waste treatment process at Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM) has been numerically studied. The arc melter is being used for vitrification of thermally oxidized, buried, transuranic (TRU) contaminated wastes by INEL in conjunction with the USBM as a part of the Buried Waste Integrated Demonstration project. The purpose of this study is to numerically investigate the performance of the laboratory-scale arc melter simulating the USBM arc melter. Initial results of modeling the full-scale USBM arc melter are also reported in this paper.
NASA Astrophysics Data System (ADS)
Li, Ji-Lei; Gao, Jun; Klemd, Reiner; John, Timm; Wang, Xin-Shui
2016-09-01
The oxidized nature of the sub-arc mantle and hence arc magmas is generally interpreted as a result of the migration of subduction-related oxidizing fluids or melts from the descending slab into the mantle wedge. This is of particular importance seeing that the oxidization state of sub-arc magmas seems to play a key role in the formations of arc-related ore deposits. However, direct constraints on the redox state of subducted oceanic crust are sparse. Here, we provide a detailed petrological investigation on sulfide- and oxide-bearing eclogites, blueschists, micaschists, eclogite-facies and retrograde veins from the Akeyazi high-pressure (HP) terrane (NW China) in order to gain insight into the redox processes recorded in a subducting oceanic slab. Sulfides in these rocks are mainly pyrite and minor pyrrhotite, chalcopyrite, bornite, molybdenite, sphalerite and chalcocite, including exsolution textures of bornite-chalcopyrite intergrowth. Magnetite, ilmenite and pyrite occur as inclusions in garnet, whereas sulfides are dominant in the matrix. Large pyrite grains in the matrix contain inclusions of garnet, omphacite and other HP index minerals. However, magnetite replacing pyrite textures are commonly observed in the retrograded samples. The eclogite-facies and retrograde veins display two fluid events, which are characterized by an early sulfide-bearing and a later magnetite-bearing mineral assemblage, respectively. Textural and petrological evidences show that the sulfides were mainly formed during HP metamorphism. Mineral assemblage transitions reveal that the relative oxygen fugacity of subducted oceanic crust decreases slightly with increasing depths. However, according to oxygen mass balance calculations, based on the oxygen molar quantities ( nO2), the redox conditions remain constant during HP metamorphism. At shallow levels (<60 km) in the subduction channel, interaction with oxidized fluid seems to have caused an increase of the oxygen fugacity and the oxidation state of exhuming HP rocks. This study suggests that oxygen components are not released in significant amounts during HP metamorphism of subducted oceanic crust and, thus, cannot be responsible for oxidizing the mantle wedge and increasing the oxidation state of sub-arc mantle melts.
Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys are recently found important in the field of bone repairing for their ideal mechanical performance and excellent biocompatibility. Micro-arc oxidation (MAO) is a simple, controllable and efficient electrochemistry method that can prepare protective ceramic coatings on magnesium alloys. The properties of the MAO coating, such as thickness, microstructure, roughness and composition, can easily be controlled by adjusting the voltage, current density, duration or the electrolyte concentration. In this work, MAO coatings are prepared on ZK61 magnesium alloy at different voltages. The structure characteristics and element distributions of the coating are investigated by XRD, TEM, SEM and EPMA. The MAO samples are immersed in SBF for 7, 14 and 28 days respectively. The corrosion behaviors of the samples in SBF were also investigated by potentiodynamic polarization curves. The corrosion products were characterized by EDS and FT-IR. The MAO coated ZK61 alloy samples showed excellent corrosion resistance and bioactivity. The MAO method demonstrates a great potential in the preparation of degradable and bioactive orthopedic magnesium-based implants.
Physical and reliability issues in MEMS microrelays with gold contacts
NASA Astrophysics Data System (ADS)
Lafontan, Xavier; Pressecq, Francis; Perez, Guy; Dufaza, Christian; Karam, Jean Michel
2001-10-01
This paper presents the work we have done on micro-relays with gold micro-contacts in MUMPs. Firstly, the theoretical physical principles of MEMS micro-relay are described. This study is divided in two parts: the micro-contact and the micro-actuator. The micro-contact part deals with resistance of constriction, contact area, adhesion, arcing and wear. Whereas the micro-actuator part describes general principles, contact force, restoring force and actuator reliability. Then, in a second part, an innovative electrostatic relay design in MUMPs is presented. The concept, the implementation and the final realization are discussed. Then, in the third part, characterization results are reported. This part particularly focuses on the micro-contact study. Conduction mode, contact area, mechanical and thermal deformation, and adhesion energies are presented.
NASA Astrophysics Data System (ADS)
Yandong, Yu; Shuzhen, Kuang; Jie, Li
2015-09-01
The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.
The ArcB Leucine Zipper Domain Is Required for Proper ArcB Signaling
Nuñez Oreza, Luis Alberto; Alvarez, Adrián F.; Arias-Olguín, Imilla I.; Torres Larios, Alfredo; Georgellis, Dimitris
2012-01-01
The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70–121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. PMID:22666479
The Sulfur Cycle at Subduction Zones
NASA Astrophysics Data System (ADS)
de Moor, M. J.; Fischer, T. P.; Sharp, Z. D.
2013-12-01
We present sulfur (S) isotope data for magmatic gases emitted along the Central American (CA) Arc (oxidizing conditions ΔQFM ~+ 1.5) and at the East African Rift (reduced conditions ΔQFM ~0). The results are interpreted through mass balance calculations to characterize the S cycle through subduction zones with implications for the redox conditions of arc magmas. Voluminous gas emissions from Masaya, an open vent basaltic volcano in Nicaragua, represent >20% of the SO2 flux from the CA arc [1]. Samples from the Masaya plume have S isotope compositions of + 4.8 × 0.4 ‰ [2]. Degassing fractionation modeling and assessment of differentiation processes in this oxidized volcano suggest that this value is close to that of the source composition. High T gas samples from other CA volcanoes (Momotombo, Cerro Negro, Poas, Turrialba) range from + 3 ‰ (Cerro Negro) to + 7 ‰ (Poas; [3]). The high δ34S values are attributed to recycling of subducted oxidized sulfur (sulfate ~ + 20 ‰) through the CA arc. The δ34S values of the more reduced samples from East African Rift volcanoes, Erta Ale - 0.5 × 0.6 ‰ [3] and Oldoinyo Lengai -0.7 ‰ to + 1.2 ‰) are far lower and are probably sourced directly from ambient mantle. The subduction of oxidized material at arcs presents a likely explanation for the oxidized nature of arc magmas relative to magmas from spreading centers. We observe no distinguishable change in melt fO2 with S degassing and attribute these differences to tectonic setting. Monte Carlo modeling suggests that subducted crust (sediments, altered oceanic crust, and serpentinized lithospheric mantle) delivers ~7.7 × 2.2 x 1010 mols of S with δ34S of -1.5 × 2.3‰ per year into the subduction zone. The total S output from the arc is estimated to be 3.4 × 1.1 x 1010 mols/yr with a δ34S value similar to that of Masaya gas (+5 × 0.5 ‰). Considering δ34S values for ambient upper mantle (0 ‰ [4]) and slab-derived fluids (+14 ‰ [5]) allows calculation of the flux of S released from slab into the mantle wedge. Based on these constraints, we calculate that 1.2 × 0.4 x 1010 mols of S/yr is released from the slab. If slab-derived S is in the S6+ oxidation state, this flux is enough to oxidize the entire mantle wedge to the Fe3+/Fe2+ observed in typical arc rocks in ~ 20 million years. [1] Hilton et al. (2002) Noble Gases in Geochemistry and Cosmochemistry. pp. 319-370 [2] de Moor et al., (in review) G-cubed [3] Rowe (1994) Chem. Geol., 236:303-322 [4] Sakai et al. (1984) J. Petrol., 52: 1307-1331 [5] Alt et al. (2012) Earth Plan. Sci. Lett., 327: 50-60
What Causes Care Coordination Problems? A Case for Microanalysis
Zachary, Wayne; Maulitz, Russell Charles; Zachary, Drew A.
2016-01-01
Introduction: Care coordination (CC) is an important fulcrum for pursuing a range of health care goals. Current research and policy analyses have focused on aggregated data rather than on understanding what happens within individual cases. At the case level, CC emerges as a complex network of communications among providers over time, crossing and recrossing many organizational boundaries. Micro-level analysis is needed to understand where and how CC fails, as well as to identify best practices and root causes of problems. Coordination Process Diagramming: Coordination Process Diagramming (CPD) is a new framework for representing and analyzing CC arcs at the micro level, separating an arc into its participants and roles, communication structure, organizational structures, and transitions of care, all on a common time line. Conclusion: Comparative CPD analysis across a sample of CC arcs identifies common CC problems and potential root causes, showing the potential value of the framework. The analyses also suggest intervention strategies that could be applied to attack the root causes of CC problems, including organizational changes, education and training, and additional health information technology development. PMID:27563685
Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong
2017-01-01
Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian
2018-05-01
Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.
NASA Astrophysics Data System (ADS)
Sanibondi, Paolo
2015-09-01
Fume formation during arc welding has been modelled using a stochastic approach taking into account iron oxidation reactions. The model includes the nucleation and condensation of Fe and FeO vapours, the reaction of gaseous O2 and O on the nanoparticle surface, the coagulation of the nanoparticles including a sintering time as a function of temperature and composition, assuming chemical equilibrium for species in the gaseous phase. Results suggest that fumes generated in gas metal arc welding with oxidizing shielding mixtures are composed of aggregates of primary particles that are nucleated from gas-phase FeO and further oxidized to Fe3O4 and Fe2O3 in the liquid and solid phase, respectively. The composition of the fumes at the end of the formation process depends on the relative initial concentration of Fe and O2 species in the gas mixture and on the diameter of the primary particles that compose the aggregates: as the oxidation reactions are driven by deposition of oxygen on nanoparticle surface, the oxidation of larger particles is slower than that of smaller particles because of their lower surface to volume ratio. Solid-state diffusion is limiting the oxidation process at temperatures lower than 1500 K, inducing the formation of not fully oxidized particles composed of Fe3O4.
Manganese oxide micro-supercapacitors with ultra-high areal capacitance
NASA Astrophysics Data System (ADS)
Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See
2013-05-01
A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a
Involvement of nitric oxide in lipopolysaccharide induced anorexia.
Riediger, Thomas; Cordani, Caroline; Potes, Catarina Soares; Lutz, Thomas A
2010-11-01
Treatment with the bacterial endotoxin lipopolysaccharide (LPS) is a commonly used model to induce disease-related anorexia. Following LPS treatment inducible nitric oxide synthase (iNOS) is expressed in the hypothalamic arcuate nucleus (ARC), where nitric oxide (NO) inhibits orexigenic neurons. Intracellular STAT signaling is triggered by inflammatory stimuli and has been linked to the transcriptional regulation of iNOS. We evaluated whether pharmacological blockade of iNOS by the specific inhibitor 1400W attenuates LPS-induced anorexia. Furthermore, we hypothesized that the tolerance to the anorectic effect occurring after repeated LPS treatment is paralleled by a blunted STAT3 phosphorylation in the ARC. Rats treated with a subcutaneous injection of 1400W (10 mg/kg) showed an attenuated anorectic LPS response relative to control rats receiving only LPS (100 µg/kg; i.p.). Similarly, iNOS blockade attenuated LPS-induced adipsia, hyperthermia, inactivity and the concomitant drop in energy expenditure. While single LPS treatment increased STAT3 phosphorylation in the ARC, rats treated repeatedly with LPS showed no anorectic response and also no STAT3 phosphorylation in the ARC after the second and third LPS injections, respectively. Hence, pSTAT3 signaling in the ARC might be part of the intracellular cascades translating pro-inflammatory stimuli into suppression of food intake. The current findings substantiate a role of iNOS dependent NO formation in disease-related anorexia. Copyright © 2010 Elsevier Inc. All rights reserved.
Method for processing aluminum spent potliner in a graphite electrode ARC furnace
O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.
2002-12-24
A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.
Alvarez, Adrián F.; Rodriguez, Claudia
2013-01-01
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about −41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated. PMID:23645604
Inert-Gas Diffuser For Plasma Or Arc Welding
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.
1994-01-01
Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.
Wang, Yong; Li, Fei; Zhang, Guowei; Kang, Lihua; Qin, Bai; Guan, Huaijin
2015-01-01
Oxidative stress and DNA damage contribute to the pathogenesis of age-related cataract (ARC). Most oxidative DNA lesions are repaired via the base excision repair (BER) proteins including 8-oxoguanine DNA glycosylase 1 (OGG1). This study examined DNA methylation of CpG islands upstream of OGG1 and their relation to the gene expression in lens cortex from ARC patients. The clinical case-control study consisted of 15 cortical type of ARC patients and 15 age-matched non-ARC controls who received transparent lens extraction due to vitreoretinal diseases. OGG1 expression in lens cortex was analyzed by qRT-PCR and Western blot. The localization and the proportion of cells positive for OGG1 were determined by immunofluorescence. Bisulfite-sequencing PCR (BSP) was performed to evaluate the methylation status of CpG islands near OGG1 in DNA extracted from lens cortex. To test relationship between the methylation and the expression of the gene of interest, 5-Aza-2'-deoxycytidine (5-Aza-dC) was used to induce demethylation of cultured human lens epithelium B-3 (HLE B-3). To test the role of OGG1 in the repair of cellular damage, HLE B-3 was transfected with OGG1 vector, followed by ultraviolet radiation b (UVB) exposure to induce apoptosis. The mRNA and protein levels of OGG1 were significantly reduced in the lens cortex of ARC. Immunofluorescence showed that the proportion of OGG1-positive cells decreased significantly in ARC cortex in comparison with the control. The CpG island in first exon of OGG1 displayed hypermethylation in the DNA extracted from the lens cortex of ARC. Treatment of HLEB-3 cells with 5-Aza-dC upregulated OGG1 expression. UVB-induced apoptosis was attenuated after transfection with OGG1. A reduced OGG1 expression was correlated with hypermethylation of a CpG island of OGG1 in lens cortex of ARC. The role of epigenetic change in OGG1 gene in the susceptibility to oxidative stress induced cortical ARC is warranted to further study.
Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan
2014-10-01
We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Controls on the iron isotopic composition of global arc magmas
NASA Astrophysics Data System (ADS)
Foden, John; Sossi, Paolo A.; Nebel, Oliver
2018-07-01
We determined the iron isotope composition of 130 mafic lavas from 15 arcs worldwide with the hypothesis that the results would reflect the relatively high oxidation state of arc magmas. Although this expectation was not realized, this Fe isotope data set reveals important insights into the geodynamic controls and style of the melting regimes in the sub-arc mantle. Samples are from oceanic arcs from the circum-Pacific, the Indonesian Sunda-Banda islands, Scotia and the Lesser Antilles as well as from the eastern Pacific Cascades. Their mean δ57Fe value is +0.075 ± 0.05‰, significantly lighter than MORB (+0.15 ± 0.03‰). Western Pacific arcs extend to very light δ57Fe (Kamchatka = -0.11 ± 0.04‰). This is contrary to expectation, because Fe isotope fractionation factors (Sossi et al., 2016, 2012) and the incompatibility of ferric versus ferrous iron during mantle melting, predict that melts of more oxidized sources will be enriched in heavy Fe isotopes. Subducted oxidation capacity flux may correlate with hydrous fluid release from the slab. If so, a positive correlation between each arc's thermal parameter (ϕ) and δ57Fe is predicted. On the contrary, the sampled arcs mostly contribute to a negative array with the ϕ value. High ϕ arcs, largely in the western Pacific, have primary magmas with lower δ57Fe values than the low ϕ, eastern Pacific arcs. Arcs with MORB-like Sr-, Nd- and Pb-isotopes, show a large range of δ57Fe from heavy MORB-like values (Scotia or the Cascades) to very light values (Kamchatka, Tonga). Although all basalts with light δ57Fe values have MORB-like Pb-, Nd- and Sr-isotope ratios some, particularly those from eastern Indonesia, have heavier δ57Fe and higher Pb- and Sr- and lower Nd-isotope ratios reflecting sediment contamination of the mantle wedge. Because basalts with MORB-like radiogenic isotopes range all the way from heavy to light δ57Fe values this trend is process-, not source composition-driven. Neither the slab-derived influx of fluids with light iron or sediment-derived melts with heavier iron can drive the iron isotopic shifts. The trend to light iron isotopes is partly the result of repeated, hydrous flux-driven, fO2-buffered, melting of initially normal-DMM-like mantle. However the most negative δ57Fe must also reflect re-melting of sources that have experienced prior diffusive (disequilibrium) stripping of heavy Fe isotopes due to rapid melt extraction and metasomatism. Data from intra-arc to back-arc rifts in the western Pacific show that these arc signatures are rapidly dispersed by influx of DMM or OIB mantle once intra- and back-arc rifting and slab rollback gains momentum. We suggest that the characteristic light arc signatures only form when the source is lodged under arcs where sub-arc mantle undergoes corner flow forming an isolated roll. This process of heavy iron depletion is most efficient in the high ϕ arcs of the western Pacific and least prevalent in the low ϕ arcs of the eastern Pacific where δ57Fe values are MORB-like. This implies that there is a fundamental change in character of sub-arc mantle melting between east and west Pacific, percolative and fluid fluxed in the west and diapiric and decompressional in the east.
Hafnium influence on the microstructure of FeCrAl alloys
NASA Astrophysics Data System (ADS)
Geanta, V.; Voiculescu, I.; Stanciu, E.-M.
2016-06-01
Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.
NASA Astrophysics Data System (ADS)
Siva Prasad, M.; Ashfaq, M.; Kishore Babu, N.; Sreekanth, A.; Sivaprasad, K.; Muthupandi, V.
2017-05-01
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.
Yuan, M J; Zhang, S J; Liu, J; Tan, F
2018-02-09
Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( P< 0.05), and the bond strength of 20 g/L MgSiF(6) group was significantly higher than those of the other groups ( P< 0.05). Besides, the interfaces between titanium and porcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.
Sun, F Q; Li, M Q; Peng, S H; Zhang, H M; Liu, M; Qu, X Y
2018-06-09
Objective: To investigate the antibacterial property and biological activity of Ti dental implant with antimicrobial peptide Pac-525 coatings, and to study the effect of peptide Pac-525 coatings on Porphyromonas gingivalis 's antibacterial performance and osteoblast proliferation and adhesion. Methods: After ultrasonic micro arc oxidation, alkali treatment and silane treatment, forty-five pure titanium specimens were exposed to antibacterial peptide Pac-525 in different concentration (0.25, 0.50, 0.75 g/L). The titanium specimens in the control group were only treated with ultrasonic micro arc oxidation, alkali treatment and silane treatment. The morphologies of coatings were observed by scanning electron microscope (SEM), and the element changes were detected by energy spectrum analyzer. Orange acridine-ethidium bromide double staining was used to detect the average percentage of live bacteria and biofilm thickness, after the specimens in each group and Porphyromonas gingivalis were co-cultured for 72 hours. Cell counting Kit-8 method and immunofluorescence staining were used to test the proliferation of osteoblasts, the number and growth morphologies of adherent cells, respectively. Results: SEM and energy spectrum analysis showed that the Pac-525 particles loaded on the surface of the coating, and the C and N elements in the Pac-525 coating group were significantly more than those in the control group. The average percentage of living bacteria in the control group, 0.25, 0.50 and 0.75 g/L antimicrobial peptides were 0.58%, 0.45%, 0.34% and 0.28%, respectively, and the difference between each group was statistically significant ( P< 0.05). The biofilm thickness of Porphyromonas gingivalis in 0.50 and 0.75 g/L antibacterial peptide group were (98.3±1.2) and (94.5±2.5) μm respectively, which were significantly less than those in control group and 0.25 g/L antibacterial peptide group [(117.6±1.5) and (118.0±1.3) μm] ( P< 0.05), respectively. The number of bone cell adhesion and proliferation of all antimicrobial peptides were significantly greater than those in the control group ( P< 0.05), and the cells stretched better. Conclusions: The antibacterial peptide coating of titanium implants could inhibit the formation of bacterial biofilm. It had good antibacterial properties and could promote the adhesion and proliferation of osteoblasts.
MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate
NASA Astrophysics Data System (ADS)
Abbasi, S.; Golestani-Fard, F.; Rezaie, H. R.; Mirhosseini, S. M. M.
2012-11-01
In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by increasing the electrolyte concentration, especially by addition of more Calcium Acetate (CA) to electrolyte, the thickness of HAp layer would rise, consequently. However, the influence of coating time on thickness of obtained coatings would be more considerable than electrolyte concentration. High specific area coatings with nest morphology were obtained in Electrolyte containing 5 g/L β-Glycero Phosphate (β-GP) and 5 g/L CA. Increasing coating duration time in this kind of coatings would cause deduction of the nesting in their structure.
Li, Ying; Hu, Dan; Xi, Zhengping
2018-01-01
Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used to characterize the phase composition, microstructure and chemical compositions of the coatings. The infrared emissivity of the coatings was measured at 50 °C in a wavelength range of 8–20 µm. The microstructural observations all revealed the typical porousstructures. Moreover, adecline in roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6 increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly attributed to the defect microstructure and the optimal role of ZrO2. PMID:29414841
Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel
2005-07-21
The smooth comproportionation reaction of the U(VI) and U(III) complexes UO2(OTf)2 and U(OTf)3, afforded the hexanuclear U(IV) oxide cluster [U6(micro3-O)8(micro2-OTf)8(py)8], a rare example of a metal oxide with a M6(micro3-O)8 core.
Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process
NASA Astrophysics Data System (ADS)
Ghosh, P. K.; Kumar, Ravindra
2015-02-01
Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.
Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment
NASA Astrophysics Data System (ADS)
Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan
2016-09-01
Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.
1982-06-04
cutaway Rockwell International Space Shuttle Main Engines: Powerhead (Left side - fuel preburner, fuel trubopump - Center - Main Combustion Chamber, nozzle forward manifold - Right side - oxidizer preburner, oxidizer turbopump, preburner boost pump)
3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology
NASA Astrophysics Data System (ADS)
Chen, Weilin; Yang, Tao; Yang, Ruixin
2017-07-01
Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.
NASA Astrophysics Data System (ADS)
Iacovino, K.; Till, C. B.
2017-12-01
It is widely observed that arc magmas are the most oxidized magmas on Earth. One frequently cited explanation calls on the flux of aqueous fluid from the highly oxidized down-going slab to catalyze sub-arc mantle melting and impose a highly oxidized redox signature on the mantle wedge. Fluid inclusions from sub-arc mantle xenoliths provide evidence that "slab fluids" may be highly oxidizing (fO2 QFM+1.5; Brandon & Draper, 1996; Frost and Ballhaus, 1998), but for decades, determination of the precise reactive mechanism potentially responsible for the transfer of O2 from slab to mantle has been elusive. Pure H2O has been shown to have insufficient oxidizing capacity to affect mantle redox, but H2O-rich fluids may facilitate the mobilization of Fe3+ or other multivalent cations and/or O2 transfer via the reduction of sulfate, particularly if such fluids are hypersaline. Here we present the first results from experiments designed to investigate fluid-mediated element transfer, including redox reactions, at the slab-mantle interface. These data include the first direct measurements of the intrinsic oxygen fugacity of fluids released during slab dehydration using sliding binary alloy redox sensors. Experiments were performed on natural Fe3+-bearing antigorite serpentinite at 1-2 GPa and 800°C in a piston cylinder at Arizona State University, analogous to conditions in a subducting slab and sufficient to cause the breakdown of starting material into forsteritic olivine, Mg-rich clinopyroxene, magnetite, and aqueous fluid. Experimental time series allow for the detection of (and correction for) any buffering effect on the sample by the experimental assembly. Initial results indicate that the dehydration of sulfur-free antigorite serpentinite can generate fluids with fO2 several orders of magnitude above that of MORB mantle and similar to those observed in natural sub-arc fluid inclusions. Careful measurements of the chemistry of fluid and solid run products will elucidate the redox exchange reaction responsible for these fluid characteristics. These data suggest the dehydration of slab serpentine and the derivative fluid may play an important role in controlling the redox of arc magmas and the sub-arc mantle.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Coating with overlay metallic-cermet alloy systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
New Caledonia a classic example of an arc continent collision
NASA Astrophysics Data System (ADS)
Aitchison, J.
2011-12-01
The SW Pacific island of New Caledonia presents a classic example of an arc-continent collision. This event occurred in the Late Eocene when elements of an intra-oceanic island arc system, the Loyalty-D'Entrecasteaux arc, which stretched SSE from near Papua New Guinea east of New Caledonia to offshore New Zealand, collided with micro-continental fragments that had rifted off eastern Gondwana (Australia) in the late Cretaceous. Intervening Late Cretaceous to Paleogene oceanic crust of the South Loyalty Basin was eliminated through eastward subduction beneath this west-facing intra-oceanic island arc. As with many arc-continent collisions elsewhere collision was accompanied by ophiolite emplacement. The erosional remnants of which are extensive in New Caledonia. Collision led to subduction flip, followed by extensive rollback in front of the newly established east-facing Vitiaz arc. Post-collisional magmatism occurred after slab break-off and is represented by small-scale granitoid intrusions. Additional important features of New Caledonia include the presence of a regionally extensive UHP metamorphic terrain consisting of blueschists and eclogites that formed during the subduction process and were rapidly exhumed as a result of the collision Not only was collision and associated orogeny short-lived this collision system has not been overprinted by any major subsequent collision. New Caledonia thus provides an exceptional location for the study of processes related to arc-continent collision in general.
Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin
2018-06-15
Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING
The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...
Emissions of chromium (VI) from arc welding.
Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris
2007-02-01
The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.
Selective dry etching of silicon containing anti-reflective coating
NASA Astrophysics Data System (ADS)
Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok
2018-03-01
Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.
Student Measurements of Double Star STF 747AB
NASA Astrophysics Data System (ADS)
Bateman, Grace; Funk, Benjamin; Gillette, Travis; Rhoades, Breauna; Rhoades, Mark; Schlosser, Ruth; Sharpe, Scott; Thompson, Leone
2017-04-01
Data gathered from a 22-Inch Newtonian Alt/Az telescope and a Celestron Micro Guide eyepiece were used to measure the double star STF 747AB. Students from Apple Valley High School determined the separation to be 39.97 arc sec and the position angle to be 227.91 degrees. The students also used data from the digitized sky survey and determined a separation of 39.99 arc sec and a position angle of 225 degrees. The research was semi-independent from the Vanguard Double Star Workshop 2016 in Apple Valley, California.
NASA Astrophysics Data System (ADS)
Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won
2012-07-01
The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.
The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny
NASA Astrophysics Data System (ADS)
Richards, Jeremy P.
2015-09-01
Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation state. These sulfides may retain some highly siderophile elements in the source, but are unlikely to be sufficiently voluminous to significantly affect the budget of more modestly sulfide-compatible and more abundant elements such as Cu and Mo. These primary magmas can therefore be considered to be largely Cu-Mo-undepleted, although highly siderophile elements such as Au and platinum group elements (PGE) may be depleted unless no sulfides remain in the source. The latter condition seems unlikely during active subduction because of the continuous flux of fresh sulfur from the slab, but may occur during post-subduction re-melting (leading to potentially Au-rich post-subduction porphyry and alkalic-type epithermal systems). Lower crustal differentiation of main-stage arc magmas results in some loss of Cu to residual or cumulate sulfides, but again the amount appears to be minor, and does not drastically reduce the Cu content of derivative intermediate-composition melts. Fractionation and devolatilization affect the oxidation state of the magma in competing ways, but, while crystallization and segregation of Fe3 +-rich magnetite can cause reduction in reduced to moderately oxidized evolved magmas, this effect appears to be outweighed by the oxidative effects of degassing reduced or weakly oxidized gaseous species such as H2, H2S, and SIVO2, and preferential solvation and removal of Fe2 + in saline hydrothermal fluids. Consequently, most arc magmatic suites show slight increases in oxidation state during differentiation, reaching typical values of ΔFMQ = + 1 to + 2. This oxidation state is significant, because it corresponds to the transition from dissolved sulfide to sulfate dominance in magmas. It has been shown that Cu and Au solubilities in silicate magma increase up to this level (ΔFMQ ≈ + 1), but while Cu solubility continues to increase at higher oxidation states, Au shows a precipitous drop as sulfide, which solvates Au in the melt, is converted to sulfate. This may explain the somewhat restricted distribution of Au-rich porphyry Cu deposits, but the general association of porphyry Cu deposits with relatively oxidized magmas. Exsolution of a saline, high temperature aqueous fluid enables metals to partition from the magma into a highly mobile volatile phase. Sulfur also partitions strongly into this fluid phase, predominantly as SO2 at ΔFMQ = + 1 to + 2. However, as the fluid cools below 400 °C, SIVO2 disproportionates to form reduced H2S- II and oxidized H2SVIO4. The H2S bonds with metals in solution to precipitate as Cu- and Mo-sulfides, while the H2SO4 (and HCl) generates progressively acidic wallrock alteration (phyllic, argillic, advanced argillic). Gold may precipitate with early Cu/Mo-sulfides, but some may also stay in solution as bisulfide complexes, eventually reaching the epithermal environment. Thus, three components, [S], [H2O], and fO2 work together throughout subduction and arc magmatic processes to transport chalcophile and siderophile metals from the mantle into the upper crust, where they may be concentrated by hydrothermal processes to form ore deposits. These processes are far from 100% efficient, and metals (especially highly siderophile elements such as Au and PGE) may be left behind at various stages of the passage of arc magmas through the lithosphere, where they may form potentially metalliferous source rocks for partial melts and subsequent magmatic-hydrothermal ore deposits generated during later tectonomagmatic events.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Zhang, Zhenchao
2017-12-01
In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).
Acrolein oxidizes the cytosolic and mitochondrial thioredoxins in human endothelial cells.
Szadkowski, Adam; Myers, Charles R
2008-01-14
Acrolein is a reactive aldehyde that is a widespread environmental pollutant and can be generated endogenously from lipid peroxidation. The thioredoxin (Trx) system in endothelial cells plays a major role in the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, cells maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. In human microvascular endothelial cells, Trx1 was more sensitive than Trx2 to oxidation by acrolein. A 30-min exposure to 2.5 microM acrolein caused partial oxidation of Trx1 but not Trx2. The active site dithiol of Trx1 was essentially completely oxidized by 5 microM acrolein whereas 12.5 microM was required for complete oxidation of Trx2. Partial recovery of the Trx1 redox status was observed over a 4h acrolein-free recovery period, with increases in the reduced form and decreases in the fully oxidized form. For cells treated with 2.5 or 5 microM acrolein the recovery did not require protein synthesis, whereas protein synthesis was required for the return of reduced Trx1 in cells treated with 12.5 microM acrolein. Pretreatment of cells with N-acetylcysteine (NAC) resulted in partial protection of Trx1 from oxidation by acrolein. In cells treated with acrolein for 30 min, followed by a 14- to 16-h acrolein-free period, small but significant cytotoxic effects were observed with 2.5 microM acrolein whereas all cells were adversely affected by >or= 12.5 microM. NAC pretreatment significantly decreased the percentage of stressed cells subsequently exposed to 5 or 12.5 microM acrolein. Given the critical role of the thioredoxins in cell survival, the ability of acrolein to oxidize both thioredoxins should be taken into account for a thorough understanding of its cytotoxic effects.
NASA Astrophysics Data System (ADS)
Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong
2018-03-01
The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.
Finneran, James J; Dear, Randall; Carder, Donald A; Ridgway, Sam H
2003-09-01
A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-01-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-03-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.
Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.
1989-01-01
The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, andmore » increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.« less
Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.
2000-01-01
This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.
NASA Astrophysics Data System (ADS)
Gubin, V.; Firsov, A.
2018-03-01
As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Fan, E-mail: zf5016@126.com; Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080; Tan, Xinran
An autocollimation (AC) setup with ultra-high resolution and stability for micro-angle measurement is presented. The telephoto objective, which is characterized in long focal length at a compact structure size, and the optical enlargement unit, which can magnify the image displacement to improve its measurement resolution and accuracy, are used to obtain an ultra-high measurement resolution of the AC. The common-path beam drift compensation is used to suppress the drift of measurement results, which is evident in the high-resolution AC, thus to obtain a high measurement stability. Experimental results indicate that an effective resolution of better than 0.0005 arc sec (2.42more » nrad) over a measurement range of ±30 arc sec and a 2-h stability of 0.0061 arc sec (29.57 nrad) can be achieved.« less
Improving a scissor-action couch for conformal arc radiotherapy and radiosurgery.
Li, Kaile; Yu, Cedric X; Ma, Lijun
2004-01-01
We have developed a method to improve the setup accuracy of a Varian Clinac 6/100 couch for delivering conformal arc therapy using a tertiary micro multileaf collimator (MLC) system. Several immobilization devices have been developed to improve the mechanical stability and isocenter alignment of the couch: turn-knob harnesses, double-track alignment plates, and a drop-in rod that attaches the couch to the concrete floor. These add-on components minimize the intercomponent motion of the couch's scissor elevator, which allows consistent treatment setup. The accuracy of our isocenter couch alignment is an improvement over the above devices, within 1 mm of their accuracy. The couch has been used with over 15 patients and with over 50 modulated conformal arc treatment deliveries at our institution.
Exposure assessment of aluminum arc welding radiation.
Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong
2007-10-01
The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.
NASA Astrophysics Data System (ADS)
Windom, Bret C.
Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high vacuum sliding. Resonance Raman effects were observed when an excitation wavelength of 632.8 nm was used. Raman spectroscopy was carried out on amorphous MoS2 while its temperature was increased to track the thermally induced oxidation of the MoS2 surface. In addition, other forms of MoS2 were investigated through Raman spectroscopy in which key distinctions between spectra were made. The second technique employed was atomic emission spectroscopy (AES) used to measure constituent species present in arcs created during electrical sliding contacts. Spectra indicated the presence of copper and zinc in the arcs created between copper fiber bundled brushes and a copper rotor. Atomic emission was used to measure the arc duration with a photo-multiplier tube (PMT) while the collected spectra were processed to assess arc temperature. The results suggest arcing in high-current electrical sliding contacts may be at least partially responsible for the high asymmetrical wear measured during tribology tests.
Surface preparation effects on GTA weld shape in JBK-75 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.D.; Robertson, A.M.; Heiple, C.R.
1993-02-01
The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen themore » surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.« less
Zhang, Rui; Wang, Xiaoxiang; Zhou, Lei; Liu, Zhu; Crump, Doug
2018-05-15
Sulfate radical (SO 4 .- )-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO 4 .- -induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (G pollutant ) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO 4 .- . Results indicated that the external oxygen molecule increased G pollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO 4 .- -induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of G pollutant and ΔE of the SO 4 .- -induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of G pollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO 4 .- , and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nedielko, Maksym; Hamamda, Smail; Alekseev, Olexander; Chornii, Vitalii; Dashevskii, Mykola; Lazarenko, Maksym; Kovalov, Kostiantyn; Nedilko, Sergii G; Tkachov, Sergii; Revo, Sergiy; Scherbatskyi, Vasyl
2017-12-01
The set of composite materials that consist of micro/nanocellulose and complex K 2 Eu(MoO 4 )(PO 4 ) luminescent oxide particles was prepared. The composites were studied by means of scanning electron microscopy, XRD analysis, dilatometry, differential scanning calorimetry and thermogravimetric analysis, and dielectric and luminescence spectroscopy.Dependencies of density, crystallinity, relative extension, thermal extension coefficient, dielectric relaxation parameters, intensity and shape of photoluminescence bands on temperature, and content of oxide component were studied. The structure of the composite without oxide is formed by grains of nearly 5-50 μm in size (crystallinity is about ~56%). Structure of the micro/nanocellulose samples which contain oxide particles is similar, but the cellulose grains are deformed by oxide particles. Dependencies of the abovementioned properties on temperature and oxide content were analyzed together with data on the size distribution of oxide particles for the samples for various oxide and molecules of water concentrations.
Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.
2018-03-01
This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.
NASA Astrophysics Data System (ADS)
Tashiro, Shinichi; Tanaka, Manabu
An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.
Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts
NASA Astrophysics Data System (ADS)
Shi, Xiaohong; Jin, Xiuxiu; Yan, Ningning; Yang, Li
2017-11-01
To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.
Oxidation Microstructure Studies of Reinforced Carbon/Carbon
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Curry, Donald M.
2006-01-01
Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.
Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)
NASA Astrophysics Data System (ADS)
Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat
2014-01-01
Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.
NASA Astrophysics Data System (ADS)
Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.
2014-03-01
Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.
Lu, Ping; Cao, Lu; Liu, Yin; Xu, Xinhua; Wu, Xiangfeng
2011-01-01
Magnesium alloys may potentially be applied as biodegradable metallic materials in cardiovascular stent. However, the high corrosion rate hinders its clinical application. In this study, a new approach was adopted to control the corrosion rate by fabricating a biocompatible micro-arc oxidation/poly-L-lactic acid (MAO/PLLA) composite coating on the magnesium alloy WE42 substrate and the biocompatibility of the modified samples was investigated. The scanning electronic microscope (SEM) images were used to demonstrate the morphology of the samples before and after being submerged in hanks solution for 4 weeks. The degradation was evaluated through the magnesium ions release rate and electrochemical impedance spectroscopy (EIS) test. The biocompatibility of the samples was demonstrated by coagulation time and hemolysis behavior. The result shows that the poly-L-lactic acid (PLLA) effectively improved the corrosion resistance by sealing the microcracks and microholes on the surface of the MAO coating. The modified samples had good compatibility. © 2010 Wiley Periodicals, Inc.
High-throughput PBPK and Microdosimetry: Cell-level Exposures in a Virtual Tissue Context (WC9)
Toxicokinetic (TK) models can determine whether chemical exposures produce potentially hazardous tissue concentrations. Tissue microdosimetry TK models relate whole-body chemical exposures to cell-scale concentrations. As a proof of concept, we approximated the micro-anatomic arc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tommasini, R.; Bailey, C.; Bradley, D. K.
High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV,more » of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.« less
NASA Astrophysics Data System (ADS)
Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.
2017-05-01
High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.
Tommasini, R.; Bailey, C.; Bradley, D. K.; ...
2017-05-09
High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV,more » of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.« less
Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.
2011-01-01
This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.
Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper
NASA Astrophysics Data System (ADS)
Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan
2018-06-01
Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.
Study on mechanical and microstructure behavior of submerged arc welding flux using red mud
NASA Astrophysics Data System (ADS)
Dewangan, Rishi; Pandey, Pankaj K.; Upadhyay, Renu
2018-05-01
This paper emphasis on utilization of Red Mud for preparing submerged arc welding flux and study its mechanical and microstructure behavior. Among the six fluxes prepared in the laboratory, Flux no. 1 (basicity 1.106) found to be best due to its running performance, micro hardness and Brinell hardness. The hardness value (HV) of the fluxes was varying from 165.70 to 217.15 at a load of 1000gm respectively. From the micrograph of welded metal, acicular ferrite found to be optimum which helps in increasing the ductility and hardness of the welded material.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1977-01-01
The effects of simulated multiple reentry into the earth's atmosphere on the mechanical properties of several high temperature metallic sheet materials were evaluated. The materials included five tin-gage (nominally 0.025- or 0.037-cm) oxide dispersion strengthened (ODS) alloys and two thin-gage (nominally 0.037-cm) superalloys. Multiple reentry conditions were simulated through cyclic Plasma Arc Tunnel (PAT) exposure. PAT exposure generally consisted of 100 cycles of 600 second duration at 1255, 1366, or 1477 K in a Mach 4.6 airstream with an impact pressure of nominally 800 N/m2. PAT exposure generally produced a uniform oxide scale, oxide pits or intergranular oxidation, Kirkendall porosity, and alloy depletion zones except for the aluminum-containing ODS alloys. Only a uniform oxide scale was formed on the aluminum-containing ODS alloys. PAT exposure did not significantly affect the mechanical properties of the thin-gage (nominally 0.025- or 0.037-cm) alloys evaluated. Thus it appears that the microstructural changes produced by Plasma Arc Tunnel exposure has little influence on mechanical properties.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
Buckling analysis of planar compression micro-springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Sui, Li; Shi, Gengchen
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less
Mahfouz, Mohamedain M; Zhou, Sherry Q; Kummerow, Fred A
2009-11-01
Low-density lipoprotein (LDL) was isolated from human plasma and oxidized by 5microM copper sulfate for 4h at 37 degrees C in the absence and presence of 1, 3, 5, 10, or 20microM of curcumin. LDL oxidized in the absence of curcumin (oxLDL) showed an increased levels of conjugated dienes, lipid peroxides (TBARS) and lysolecithin (lysoPC) and a significant loss of polyunsaturated fatty acids (PUFA). LDL oxidized with 5microM copper sulfate in the presence of curcumin caused a significant decrease of conjugated diene, lipid peroxides, lysoPC and significant increase of PUFA compared to oxLDL. These changes were dose dependent and reached a maximum at 5microM curcumin. Incubation of human endothelial cells (EC) with 200microg protein/ml of oxLDL caused a significant decrease of prostacyclin (PGI(2)) generation. LDL oxidized in presence of 5microM curcumin did not show any inhibition of PGI(2) generation compared to the control cells. These results indicate that curcumin is an effective chain-breaking antioxidant which prevents oxidation and lipid modification of LDL. The inhibition of oxLDL on PGI(2) is considered a contributing factor in the pathogenesis of thrombosis and atherosclerosis. Curcumin supplementation could be an effective strategy in preventing LDL oxidation and its impact on atherosclerosis and lesion formation.
NASA Astrophysics Data System (ADS)
Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.
2017-02-01
Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.
Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, A.; Laboratoire de Genie des Materiaux et Procedes Associes; Paillard, P.
At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the producedmore » weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.« less
Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4
NASA Astrophysics Data System (ADS)
Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li
2018-01-01
TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.
Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man
2011-01-01
Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian
2016-08-01
To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.
Chen, B; Zhao, X; Inoue, S; Ando, Y
2010-06-01
In this work, we produced SWNTs by a hydrogen DC arc discharge with evaporation of carbon anode containing 1 at% Fe catalyst in H2-Ar mixture gas. This was named as FH-arc discharge method. The as-grown SWNTs synthesized by FH-arc discharge method have high crystallinity. An oxidation purification process of as-grown SWNTs with H2O2 has been developed to remove the coexisting Fe catalyst nanoparticles. As a result, SWNTs with purity higher than 90 at% have been achieved. To exhibit remarkable characteristics, CNTs should be separated from the bundles and kept in homogeneous and stable suspensions. For this purpose, the SWNTs prepared by FH-arc discharge method also have been treated by Nanomizer process with some surfactants. SPM images showed that the SWNTs bundles had become thinner and shorter.
Cusumano, Zachary T.; Watson, Michael E.
2014-01-01
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient. PMID:24144727
Localization algorithms for micro-channel x-ray telescope on board SVOM space mission
NASA Astrophysics Data System (ADS)
Gosset, L.; Götz, D.; Osborne, J.; Willingale, R.
2016-07-01
SVOM is a French-Chinese space mission to be launched in 2021, whose goal is the study of Gamma-Ray Bursts, the most powerful stellar explosions in the Universe. The Micro-channel X-ray Telescope (MXT) is an X-ray focusing telescope, on board SVOM, with a field of view of 1 degree (working in the 0.2-10 keV energy band), dedicated to the rapid follow-up of the Gamma-Ray Bursts counterparts and to their precise localization (smaller than 2 arc minutes). In order to reduce the optics mass and to have an angular resolution of few arc minutes, a "lobster-Eye" configuration has been chosen. Using a numerical model of the MXT Point Spread Function (PSF) we simulated MXT observations of point sources in order to develop and test different localization algorithms to be implemented on board MXT. We included preliminary estimations of the instrumental and sky background. The algorithms on board have to be a combination of speed and precision (the brightest sources are expected to be localized at a precision better than 10 arc seconds in the MXT reference frame). We present the comparison between different methods such as barycentre, PSF fitting in one or two dimensions. The temporal performance of the algorithms is being tested using the X-ray afterglow data base of the XRT telescope on board the NASA Swift satellite.
NASA Astrophysics Data System (ADS)
Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab
2018-04-01
We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.
Method of operating a centrifugal plasma arc furnace
Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.
1998-01-01
A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.
Method of operating a centrifugal plasma arc furnace
Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.
1998-03-24
A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.
Initiation and growth kinetics of solidification cracking during welding of steel
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.
2017-01-01
Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852
NASA Astrophysics Data System (ADS)
Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao
2015-06-01
The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.
Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Morales, W.
1982-01-01
Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.
Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka
2005-04-15
Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.
Development of an applicator for eye lens dosimetry during radiotherapy.
Park, J M; Lee, J; Kim, H S; Ye, S-J; Kim, J-I
2014-10-01
To develop an applicator for in vivo measurements of lens dose during radiotherapy. A contact lens-shaped applicator made of acrylic was developed for in vivo measurements of lens dose. This lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistors (MOSFETs) dosemeters. CT images of an anthropomorphic phantom with and without the applicator were acquired. Ten volumetric modulated arc therapy plans each for the brain and the head and neck cancer were generated and delivered to an anthropomorphic phantom. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The average difference between the measured and the calculated doses with the applicator was 3.1 ± 1.8 cGy with a micro MOSFET and 2.8 ± 1.3 cGy with a standard MOSFET. The average difference without the lens applicator was 4.8 ± 5.2 cGy with the micro MOSFET and 5.7 ± 6.5 cGy with the standard MOSFET. The maximum difference with the micro MOSFET was 10.5 cGy with the applicator and 21.1 cGy without the applicator. For the standard MOSFET, it was 6.8 cGy with the applicator and 27.6 cGy without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured doses during in vivo measurement for the lens compared with in vivo measurement at the surface of the eyelid. By using an applicator for in vivo dosimetry of the eye lens, it was possible to reduce the measurement uncertainty.
NASA Astrophysics Data System (ADS)
Stefanov, P.; Galanov, D.; Vissokov, G.; Paneva, D.; Kunev, B.; Mitov, I.
2008-06-01
The optimal conditions on the plasma-forming gas flowrate, discharge current and voltage, distance between the plasma-torch nozzle and the metal plate surface for the process of penetration in and vaporization of steel plates by the contracted electric-arc air plasma torch accompanied by water quenching, were determined. The X-ray structural and phase studies as well as Mössbauer and electron microscope studies on the samples treated were performed. It was demonstrated that the vaporized elemental iron was oxidized by the oxygen present in the air plasma jet to form iron oxides (wüstite, magnetite, hematite), which, depending on their mass ratios, determined the color of the iron oxide pigments, namely, beginning from light yellow, through deep yellow, light brown, deep brown, violet, red-violet, to black. A high degree of dispersity of the iron oxides is thus produced, with an averaged diameter of the particles below 500 nm, and their defective crystal structure form the basis of their potential application as components of iron-containing catalysts and pigments.
Highly oxidising fluids generated during serpentinite breakdown in subduction zones.
Debret, B; Sverjensky, D A
2017-09-04
Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
Topological Dirac semimetal phase in Pd and Pt oxides
NASA Astrophysics Data System (ADS)
Li, Gang; Yan, Binghai; Wang, Zhijun; Held, Karsten
2017-01-01
Topological Dirac semimetals (DSMs) exhibit nodal points through which energy bands disperse linearly in three-dimensional (3D) momentum space, a 3D analog of graphene. The first experimentally confirmed DSMs with a pair of Dirac points (DPs), Na3Bi and Cd3As2 , show topological surface Fermi arc states and exotic magnetotransport properties, boosting the interest in the search for stable and nontoxic DSM materials. Based on density-functional theory and dynamical mean-field theory calculations, we predict a family of palladium and platinum oxides to be robust 3D DSMs with three pairs of Dirac points that are well separated from bulk bands. The Fermi arcs at the surface display a Lifshitz transition upon a continuous change of the chemical potential. Corresponding oxides are already available as high-quality single crystals, an excellent precondition for the verification of our predictions by photoemission and magnetotransport experiments, extending DSMs to the versatile family of transition-metal oxides.
Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; ...
2012-11-26
Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10 -5 Ωcm, high electron mobility of 142 cm 2/Vs, and mean transmittance over 80% frommore » 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less
Method and apparatus for treating gaseous effluents from waste treatment systems
Flannery, Philip A.; Kujawa, Stephan T.
2000-01-01
Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.
NASA Astrophysics Data System (ADS)
Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin
2018-01-01
Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.
Finite element analysis of displacement actuator based on giant magnetostrictive thin film
NASA Astrophysics Data System (ADS)
Yu, Shaopeng; Wang, Bowen; Zhang, Changgeng; Cui, Baozhi
2018-05-01
With the rapid development of science and technology, mechanical and electrical equipment become more and more miniature. In order to achieve precise control in less than 1cm3, the giant magnetostrictive thin film has become a research hotspot. The micro displacement actuator with planar and arc film is designed by the dynamic coupling model based on J-A model and magneto-mechanical effect method which is proposed in this paper. The different structure and thickness of films are analyzed by COMSOL Multiphysics software when the current flows through driving coil. After comparing the simulation results with the test ones, it can be seen that the coupling model is accurate and the structure is reliable. At the same time, MATLAB is used to fit the current density-displacement curve and higher order equation is obtained, and then the feasibility of design can be verified. The actuator with arc structure had advantages of small volume, fast response, high precision, easy integration, etc., which has a broad application prospect in the field of vibration control, micro positioning, robot and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisham, L. R.; Halle, A. von; Carpe, A. F.
2013-12-15
Recently it was proposed [L. R. Grisham et al. Phys. Plasmas 19, 023107 (2012)] that one of the initiators of vacuum voltage breakdown between conducting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which then become electrostatically charged when an electric potential is applied across the vacuum gap. This note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maximum operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where thismore » was not done, with each case preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance.« less
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang
2017-01-01
We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.
[Characteristics of body constitution and their relations to success in learning].
Vikhruk, T I; Vikhruk, A Ia; Churganov, O A; Kolotov, V Ia
2004-01-01
Somatotype, finger dermatoglyphic pattern type, emotional stability level and foreign languages learning successfulness have been analyzed in 297 male cadets (aged 17-20 years) of the Military Institute of Physical Training. The cadets studied most frequently belonged to macrosomal and mesosomal somatotypes. In the study of finger patterns, loops were found to be most common (61.5% of all the patterns), while ringlets (33.4%) and arc patterns (5.1%) were less frequent. The amount of ulnar loops increased, while that of ringlets became less in the direction from micro- to macrosomal type. Almost half (46.9%) of the cadets appeared to be ambiverts, 30.8% were intraverts and the rest were extraverts. Loop patterns on all the fingers to a greater extent were found in cadets with high level of neuroticism; the cadets having lower neuroticism level were characterized by a combinations of loops with arcs on the left hand and arcs with ringlets on the right one. The cadets differing in foreign language learning successfulness level were different in their dermatoglyphic patterns and, especially in the prevalence of pattern combinations. So, among the excellent pupils the loop-arc combinations were 2.7 times more common and combinations of all three types of patterns (arcs, loops, ringlets) were 1.4 times more common.
Trailing Shield For Welding On Pipes
NASA Technical Reports Server (NTRS)
Coby, John B., Jr.; Gangl, Kenneth J.
1991-01-01
Trailing shield ensures layer of inert gas covers hot, newly formed bead between two tubes or pipes joined by plasma arc welding. Inert gas protects weld bead from oxidation by air until cooler and less vulnerable to oxidation. Intended for use on nickel-base alloy pipes, on which weld beads remain hot enough to oxidize after primary inert-gas purge from welding-torch cup has passed.
Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas
NASA Astrophysics Data System (ADS)
Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.
2014-12-01
Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al., CMP (2012). 6. T. Elliott et al., JGR (1997). 7. J. A. Wade et al.. JVGR (2005). 8. J. Woodhead, Chem. Geol. (1989). 9. K. A. Kelley et al., J. Pet. (2010). 10. T. Sisson et al., CMP (1993).
NASA Technical Reports Server (NTRS)
Gordon, W. A.
1975-01-01
Matrix effects related to the chemical form of analyzed materials were studied. An arc in argon was used which was buffered with silver chloride. The effect of chemical form was minimal for a variety of metals, oxides, and carbides representing the most refractory compounds and thermally stable metal-containing molecules. Only four of the most refractory materials known showed significant emission depressions due to incomplete volatilization in the arc system. These results are discussed in terms of vapor pressures of the solid materials placed on the anodes and dissociation reactions of the molecules in the gaseous environment.
Degradation Analysis of NBR and Epichlorohydrin Rubber by New Micro Analysis Method
NASA Astrophysics Data System (ADS)
Katoh, Hisao; Kamoto, Ritsu; Murata, Jun
The degradation analysis of NBR and Epichlorohydrin rubber was carried out by infrared micro spectroscopy (μ-IR) and micro sampling mass spectrometry (μ-MS) which gives information on the scission and crosslinking of rubber molecules. Samples were prepared by three different treatments, heat as well as ultra violet (UV) and electron beam (EB) irradiations. It was found for NBR vulcanizates that the heat treatment induced the oxidation, scission and crosslinking of rubber molecules. By the UV treatment, chain scission and crosslinking accompanied by a slight oxidation were induced. The EB treatment enhanced the crosslinking, however, the extent of oxidation was negligible. For Epichlorohydrin rubber vulcanizates, the heat treatment accelerated chain scission rather than crosslinking. On the other hand, the oxidation and crosslinking were induced by the UV and EB treatments.
Kim, Yang Hee; Kim, Taeho; Ryu, Ji Heon; Yoo, Young Je
2010-01-15
An amperometric biosensor for the detection of the reduced nicotinamide cofactors NADH and NADPH was designed, based on the electrochemical oxidation of NAD(P)H with an iron oxide/carbon black composite (Fe(2)O(3)/CB) electrode. The electrode exhibited excellent performances in that it led to a substantial decrease in the overpotential of electrochemical NADH oxidation. Iron oxide plays a significant role as a catalyst for NADH oxidation and the reaction occurs at +0.00 V (vs. Ag/AgCl). The method of the sensor construction is very simple and the sensor performed well, giving high sensitivity, high stability, and a broad detection range. The sensitivity of this system is 2.54 microA mM(-1) and the limit of detection (S/N=3) is 10 microM. A linear range was observed between 10 microM and 1000 microM of NADH (R(2)=0.993), which is preferable to that of the previous studies. The Fe(2)O(3)/CB electrode also oxidizes NADPH under the same condition and can be applied as an NADPH sensor. Moreover, when the sensor system was integrated into a dehydrogenase-based sensor system, it also showed a good sensing performance. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan
2013-11-01
Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.
Osteoinductive composite coatings for flexible intramedullary nails.
Bolbasov, E N; Popkov, A V; Popkov, D A; Gorbach, E N; Khlusov, I A; Golovkin, A S; Sinev, A; Bouznik, V M; Tverdokhlebov, S I; Anissimov, Y G
2017-06-01
This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100-25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9±2.4MPa and a relative elongation to 5.9±1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~530MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Hashemi Beni, Batoul; Vashaee, Daryoosh; Tayebi, Lobat
2014-05-01
Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications. Published by Elsevier B.V.
Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong
2017-01-01
Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jun; Wang, Ze-Xin; Lu, Sheng; Lv, Wei-gang; Jiang, Xi-zhi; Sun, Lei
2017-03-01
The micro-arc oxidation process was conducted on ZK60 Mg alloy under two and three steps voltage-increasing modes by DC pulse electrical source. The effect of each mode on current-time responses during MAO process and the coating characteristic were analysed and discussed systematically. The microstructure, thickness and corrosion resistance of MAO coatings were evaluated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), microscope with super-depth of field and electrochemical impedance spectroscopy (EIS). The results indicate that two and three steps voltage-increasing modes can improve weak spark discharges with insufficient breakdown strength in later period during the MAO process. Due to higher value of voltage and voltage increment, the coating with maximum thickness of about 20.20μm formed under two steps voltage-increasing mode shows the best corrosion resistance. In addition, the coating fabricated under three steps voltage-increasing mode shows a smoother coating with better corrosion resistance due to the lower amplitude of voltage-increasing.
Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source
Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...
2006-01-01
Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less
Separate zones of sulfate and sulfide release from subducted mafic oceanic crust
NASA Astrophysics Data System (ADS)
Tomkins, Andrew G.; Evans, Katy A.
2015-10-01
Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (∼450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate that this zoned sulfur liberation might be one of the factors that lead to the apparently redox-influenced zoned distribution of ore deposit types in the Andean arc. Furthermore, given the lack of sulfate-associated sea floor oxidation prior to the second great oxidation event, the pattern of sulfur transfer from the slab to the sub-arc mantle likely changed over time, becoming shallower and more oxidised from the Neoproterozoic onwards.
Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.
Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M
2014-10-01
The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment and root region resulted in no statistically significant effect after artificial aging. RelyX Unicem cement had significantly higher push-out bond strength than did zinc phosphate and RelyX ARC cements. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdallah, B.; Naddaf, M.; A-Kharroub, M.
2013-03-01
Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).
Free suspension processing of oxides to form amorphous oxide materials, appendix B
NASA Technical Reports Server (NTRS)
Wouch, G.
1973-01-01
The processing of yttria, zirconia, and alumina under weightless conditions is discussed. The process consists of levitation or position control, heating and melting, superheating, and supercooling. The use of arc imaging furnaces, lasers, induction heating, microwave, and electron beam methods are analyzed to show the advantages and disadvantages of each.
2012-02-21
passive oxidation of zirconium diboride forms zirconia and boron oxide, and the passive oxidation of silicon carbide forms silica and carbon monoxide: ZrB2... silicon carbide composites in the ICP wind tunnels. However, this concept has never been explored as an in situ diagnostic for UHTC materials systems...Process- ing, properties, and arc jet oxidation of hafnium diboride/ silicon carbide ultra high temperature ceramics. J Mater Sci 2004;39:5925–37. 12
NASA Astrophysics Data System (ADS)
Sekhar, H.; Narayana Rao, D.
2012-07-01
Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.
Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates.
Sung, Yilin; Malay, Robert E; Wen, Xin; Bezama, Christian N; Soman, Varun V; Huang, Ming-Huang; Garner, Sean M; Poliks, Mark D; Klotzkin, David
2018-03-20
Flexible glass has many applications including photovoltaics, organic light-emitting device (OLED) lighting, and displays. Its ability to be processed in a roll-to-roll facility enables high-throughput continuous manufacturing compared to conventional glass processing. For photovoltaic, OLED lighting, and display applications, transparent conductors are required with minimal optical reflection losses. Here, we demonstrate an anti-reflective coating (ARC) that incorporates a useful transparent conductor that is realizable on flexible substrates. This reduces the average reflectivity to less than 6% over the visible band from normal incidence to incident angles up to 60°. This ARC is designed by the average uniform algorithm method. The coating materials consist of a multilayer stack of an electrically functional conductive indium tin oxide with conductivity 2.95×10 5 Siemens/m (31 Ω/□), and AlSiO 2 . The coatings showed modest changes in reflectivity and no delamination after 10,000 bending cycles. This demonstrates that effective conductive layers can be integrated into ARCs and can be realized on flexible glass substrates with proper design and process control.
NASA Astrophysics Data System (ADS)
Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.
2014-07-01
Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.
Modeling the Relationship Between Porosity and Permeability During Oxidation of Ablative Materials
NASA Technical Reports Server (NTRS)
Thornton, John M.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Mansour, Nagi N.
2017-01-01
The ablative materials used in thermal protection systems (TPS) undergo oxidation during atmospheric entry which leads to an in-depth change in both permeability and porosity. These properties have a significant affect on heat transfer in a TPS during entry. X-ray micro-tomography has provided 3D images capturing the micro-structure of TPS materials. In this study, we use micro-tomography based simulations to create high-fidelity models relating permeability to porosity during oxidation of FiberForm, the carbon fiber preform of the Phenolic Impregnated Carbon Ablator (PICA) often used as a TPS material. The goal of this study is to inform full-scale models and reduce uncertainty in TPS modeling.
Denby, Katie J.; Rolfe, Matthew D.; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K.
2015-01-01
Summary Systematic analyses of transcriptional and metabolic changes occurring when E scherichia coli K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E . coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. PMID:25471524
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-04-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-07-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V
2015-02-01
We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Neissi, R.; Shamanian, M.; Hajihashemi, M.
2016-05-01
In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.
A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan
2016-02-01
Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08580b
Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources
Kim, Jinchoon
1979-01-01
A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.
NASA Astrophysics Data System (ADS)
Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.
2015-12-01
The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.
Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma
NASA Astrophysics Data System (ADS)
Namihira, T.; Sakai, S.; Matsuda, M.; D., Wang; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.
2007-12-01
Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.
Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D
2016-06-01
Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.
Effect of quercitrin gallate on zymosan A-induced peroxynitrite production in macrophages.
Kim, Byung Hak; Cho, Sung-Min; Chang, Yoon Sook; Han, Sang Bae; Kim, Youngsoo
2007-06-01
We previously isolated quercetin 3-O-beta-(2"-galloyl)-rhamnopyranoside (QGR), a quercitrin gallate, from aerial parts of Persicaria lapathifolia (Polygonaceae) to prevent superoxide produc tion in monocytes from venous blood of healthy human donors. In this study, effects of QGR and its building moieties (quercitrin, quercetin and gallic acid) on the production of peroxyni trite, a coupling oxidant between superoxide and nitric oxide (NO) radicals, were investigated in zymosan A-stimulated macrophages RAW 264.7. The QGR, quercitrin and quercetin inhib ited peroxynitrite production in dose-dependent manners with IC50 values of 2.1 microM, 24.5 microM and 5.1 microM, respectively, but gallic acid even at 100 microM was inactive. QGR also inhibited both zymosan A- and phorbol 12-myristate 13-acetate-induced superoxide productions with IC50 values of 3.2 microM and 4.7 microM, respectively. However, QGR affected neither zymosan A-induced NO production nor inducible NO synthase synthesis. Taken together, QGR could inhibit peroxynitrite production by blocking superoxide production without affecting NO production. Finally, this study could provide a pharmacological potential of QGR in the oxidative stress-implicated disorders.
Hard turning micro-machine tool
DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G
2013-10-22
A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.
Tyramine-induced noradrenaline release from rat brain slices: prevention by (-)-deprenyl.
Glover, V.; Pycock, C. J.; Sandler, M.
1983-01-01
Clorgyline (1 and 10 microM) and (+)-deprenyl (10 microM) both significantly potentiated the tyramine (100 microM)-induced release of [3H]-noradrenaline from rat cerebral cortex slices. (-)-Deprenyl (50 microM) significantly reduced it, while lower concentrations had no effect on noradrenaline release. However, in combination, 1 microM (-)-deprenyl blocked the release-facilitating action of 1 microM clorgyline, and 10 microM (-)-deprenyl that of 10 microM (+)-deprenyl. Low concentrations of (+)- and (-)-deprenyl (1 and 10 microM), both selectively inhibited phenylethylamine oxidation by monoamine oxidase B. Higher concentrations of (-)-deprenyl (20 and 50 microM) also inhibited 5-hydroxytryptamine oxidation by monoamine oxidase A. Clorgyline (1 and 10 microM) inhibited both enzymes. Thus, the effects of these drugs on noradrenaline-release cannot be explained solely in terms of irreversible inhibition of monoamine oxidase A and B, and other possible mechanisms are discussed. If the brain-slice model faithfully mirrors the sequence of events manifesting peripherally as the tyramine hypertensive response ('cheese effect'), then it is possible that low doses of (-)-deprenyl, administered with antidepressant monoamine oxidase inhibitors, can prevent this adverse reaction. PMID:6418254
NASA Astrophysics Data System (ADS)
Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin
2018-05-01
Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.
NASA Technical Reports Server (NTRS)
Hambourger, Paul D.
1997-01-01
Useful and informative results were obtained on virtually all materials investigated. For example, the stability of ITO-based arc-proof transparent coatings was greatly improved by substitution of silicon oxide for magnesium fluoride as a dopant. Research on 'air-doped' ITO films has yielded new insight into their conduction mechanism which will help in further development of these coatings. Some air-doped films were found to be extremely pressure sensitive. This work may lead to improved, low-cost gas sensors and vacuum gauges. Work on another promising transparent arc-proof coating (titanium oxide) was initiated in collaboration with industry. Graphite oxide-like materials were synthesized and tested for possible use in high energy-density batteries and other applications. We also started a high-priority project to find the cause of unexpected environmental damage to the exterior of the Hubble Space Telescope (HST) discovered on a recent Shuttle mission. Materials were characterized before and after exposure to soft x-rays and other threats in ground-based simulators.
NASA Technical Reports Server (NTRS)
Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.
1994-01-01
An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Held, M; Morin, O
2015-06-15
Purpose: To investigate the sensitivity of traditional gamma-index-based fluence measurements for patient-specific measurements in VMAT delivered spine SBRT. Methods: The ten most recent cases for spine SBRT were selected. All cases were planned with Eclipse RapidArc for a TrueBeam STx. The delivery was verified using a point dose measurement with a Pinpoint 3D micro-ion chamber in a Standard Imaging Stereotactic Dose Verification Phantom. Two points were selected for each case, one within the target in a low dose-gradient region and one in the spinal cord. Measurements were localized using on-board CBCT. Cumulative and separate arc measurements were acquired with themore » ArcCheck and assessed using the SNC patient software with a 3%/3mm and 2%/2mm gamma analysis with global normalization and a 10% dose threshold. Correlations between data were determined using the Pearson Product-Moment Correlation. Results: For our cohort of patients, the measured doses were higher than calculated ranging from 2.2%–9.7% for the target and 1.0%–8.2% for the spinal cord. There was strong correlation between 3%/3mm and 2%/2mm passing rates (r=0.91). Moderate correlation was found between target and cord dose with a weak fit (r=0.67, R-Square=0.45). The cumulative ArcCheck measurements showed poor correlation with the measured point doses for both the target and cord (r=0.20, r=0.35). If the arcs are assessed separately with an acceptance criteria applied to the minimum passing rate between all arcs, a moderate negative correlation was found for the target and cord (r=−0.48, r= −0.71). The case with the highest dose difference (9.7%) received a passing rate of 97.2% for the cumulative arcs and 87.8% for the minimum with separate arcs. Conclusion: Our data suggest that traditional passing criteria using ArcCheck with cumulative measurements do not correlate well with dose errors. Separate arc analysis shows better correlation but may still miss large dose errors. Point dose verifications are recommended.« less
Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts.
Lawlor, S M; O'Brien, N M
1995-06-01
The ability of beta-carotene to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GSH-Px; EC 1.11.19) were measured as indices of oxidative stress. CEF incubated with 0.25 mM-PQ for 18 h exhibited increased SOD and CAT activities and decreased GSH-Px activity compared with the control (P < 0.001). Incorporation of added beta-carotene (0.1 microM) into 0.25 mM-PQ-treated CEF returned SOD activity to that seen in non-PQ-treated cells. beta-Carotene (0.1 microM) reduced the CAT activity from that seen in PQ-treated cells and returned the GSH-Px activity to its control value thus protecting the cells against PQ-induced oxidative stress. However, at higher concentrations of beta-carotene (10 microM), SOD and CAT activities increased significantly (P < 0.001) relative to non-PQ-treated cells and GSH-Px activity decreased relative to its control value. Similar trends were observed when CEF grown in beta-carotene-enriched media (0.1-10 microM) were oxidatively stressed by exposure to 0.25 mM-PQ for 18 h.
Some difficulties in the assessment of electric arc welding fume.
Hewitt, P J; Gray, C N
1983-10-01
During electric arc welding of metals, particulate fume in a variety of chemical compositions and physical forms is produced with consequent complex solution chemistry. Mechanisms of fume formation include condensation of vaporized metals to produce submicron diameter chains, and spatter of larger particles with subsequent oxidation to yield mixed metal oxide fumes in the respirable range. Complete dissolution of certain constituent metals such as chromium, can be achieved by fusion with potassium hydrogen sulphate. Extraction of hexavalent chromium by sodium carbonate/hydroxide solution is efficient and rapid, while some other extractants give erroneous results. Investigations show that constituent metals are released from the fume at different rates both in vitro and in vivo. The implications arising from the complex nature of welding fume for industrial hygiene assessment are discussed.
The influence of oxygen additions on argon-shielded gas metal arc welding processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, P.G.; Murphy, A.B.; Szekely, J.
1995-02-01
It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less
NASA Astrophysics Data System (ADS)
Anikeev, V. N.; Dokukin, M. Yu
2017-05-01
In the modern technics there is a requirement in micro- and macrorough surfaces of products for improvement of their operational characteristics (improvement of adhesive properties of various coverings, decrease in deterioration of rubbing details because of the best deduction of greasing, increase of the heat exchanging coefficient from a surface, stimulation of adhesive processes on sites of contact to a bone fabric of medical implants in stomatology and orthopedy etc.). In the given work the modes of reception regulated micro- and macrorough surfaces on samples from a titanic alloy and stainless steel by electrothermal influence of moving cathodic stains in the vacuum arc discharge are investigated. Chaotically moving stains, possessing high specific power allocation (∼ 107 W/cm2), “scan” the difficult design of a product, including “shadow” sites, doing rough its blanket. The sizes of roughnesses are regulated by a current and time of influence of the discharge, pressure in the vacuum chamber and a number of other parameters. The scheme of experimental device, photo and the characteristic of rough surfaces and technological modes of their reception are resulted.
Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution
NASA Astrophysics Data System (ADS)
Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.
2003-03-01
Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.
Synthesis of carbon nanotubes by arc discharge in open air.
Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap
2005-05-01
In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.
Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energiesmore » relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less
Fabrication and characterization of an egg-shaped hollow fiber microbubble
NASA Astrophysics Data System (ADS)
Wang, Guanjun; Ruan, Yinlan; Jia, Pinggang; Gui, Zhiguo; Zhang, Pengcheng; Wang, Chao; Liu, Shen; Liao, Changrui; Yin, Guolu; Wang, Yiping
2017-04-01
In this paper, an egg-shaped microbubble is proposed and analyzed firstly, which is fabricated by the pressure-assisted arc discharge technique. By tailoring the arc parameters and the position of glass tube during the fabrication process, the thinnest wall of the fabricated microbubble could reach to the level of 873nm. Then, the fiber Fabry-Perot interference technique is used to analyze the deformation of microbubble that under different filling pressures. It is found that the endface of micro-bubble occurs compression when the inner pressure increasing from 4Kpa to 1400KPa. And the pressure sensitivity of such egg-shaped microbubble sample is14.3pm/Kpa. Results of this study could be good reference for developing new pressure sensors, etc.
Rear-side picosecond laser ablation of indium tin oxide micro-grooves
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Wenjun; Mei, Xuesong; Liu, Bin; Zhao, Wanqin
2015-06-01
A comparative study of the fabrication of micro-grooves in indium tin oxide films by picosecond laser ablation for application in thin film solar cells is presented, evaluating the variation of different process parameters. Compared with traditional front-side ablation, rear-side ablation results in thinner grooves with varying laser power at a certain scan speed. In particular, and in contrast to front-side ablation, the width of the micro-grooves remains unchanged when the scan speed was changed. Thus, the micro-groove quality can be optimized by adjusting the scan speed while the groove width would not be affected. Furthermore, high-quality micro-grooves with ripple free surfaces and steep sidewalls could only be achieved when applying rear-side ablation. Finally, the formation mechanism of micro-cracks on the groove rims during rear-side ablation is analyzed and the cracks can be almost entirely eliminated by an optimization of the scan speed.
Zhu, You-Gen; Zhou, Jun-Fu; Shan, Wei-Ying; Zhou, Pei-Su; Tong, Gui-Zhong
2004-12-01
To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P < 0.005-0.0001), while the average value of LPO in erythrocytes in the WOs group was significantly increased (P < 0.0001). The findings from the partial correlation analysis on the controlling of age suggested that with a prolonged duration of exposure to photochemical smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P < 0.05-0.005), the value of LPO in the WOs was increased gradually (P < 0.001), and that with the ozone dose increased in the air in each worksite VC, VE, SOD, CAT and GPX decreased (P < 0.005-0.001), but LPO increased (P < 0.001). The findings from the reliability analysis for the VC, VE, SOD, CAT, GPX, and LPO values which were used to reflect oxidative stress and potential oxidative damage in the WOs showed that the reliability coefficients' alpha (6 items) was 0.8021, P < 0.0001, and that the standardized item alpha was 0.9577, P < 0.0001. Findings in the present study suggest that there exists an oxidative stress induced by long-term exposure to photochemical smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.
NASA Astrophysics Data System (ADS)
Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.
2014-12-01
The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
Nitridation of a Super-Ferritic Stainless Steel for PEMFC Bipolar Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Turner, J. A.; Brady, M. P.
2007-01-01
AL29-4C alloy nitrided in pure nitrogen resulted in a nitrogen-modified oxide surface, which is the same as AISI446 nitrided under identical conditions. When the alloy was nitrided 24h at 900 C in N2-4H2, XRD and XPS analysis indicated that the surface layer consisted of a nitride outer layer ({approx}0.20 {micro}m) and an oxide inner layer ({approx} 0.82 {micro}m). According to XPS, the nitride outer layer is composed of CrN and [Cr(N),Fe]2N1-x, with much more Cr2N than Fe2N. Mn is migrated and enriched in the oxide inner layer and combined with chromium oxide.AL29-4C alloy nitrided in N2-4H2 resulted in low ICRmore » and excellent corrosion resistance in simulated PEMFC environments. Current was at ca. -3.0 {micro}A/cm2 in the PEMFC anode environment, and at ca. 0.3 {approx} 0.5 {micro}A/cm2 in the cathode environment. This is considered to be rather stable. After being polarized in a PEMFC environment, the ICR increased slightly compared with the as-nitrided sample, but was still rather low.« less
NASA Astrophysics Data System (ADS)
Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.; Ketchum, Douglas R.; Ghodssi, Reza
2015-10-01
A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 with solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.
A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 withmore » solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.« less
Development of A Thrust Stand to Meet LISA Mission Requirements
NASA Technical Reports Server (NTRS)
Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)
2002-01-01
A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.
NASA Technical Reports Server (NTRS)
Bolotov, A. V.; Yukhimchuk, S. A.
1985-01-01
An analysis is made of the electrophysical processes occurring at the end surface of rod electrodes during constant and alternating arc discharge in hydrogen. Experiments are reported on the effect of surface temperature of tungsten electrodes on their erosion. The influence of activating additions of thorium oxide, the structure of the tungsten, and the gas surrounding the electrode on the specific thermal loading and the erosion of the electrodes is discussed.
NASA Astrophysics Data System (ADS)
Farner, Michael J.; Lee, Cin-Ty A.
2017-07-01
The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas from being extracted; in the rare case that residual magmas can be extracted, they represent the very last melt fractions, which are highly silicic. When the crust is thick, cooling is slow, so intermediate melt fractions can readily segregate and erupt to the surface, where they cool and crystallize before highly silicic residual melts can be generated.
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells
NASA Astrophysics Data System (ADS)
Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.
2016-03-01
It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5nr09143h
The influence of repressor DNA binding site architecture on transcriptional control.
Park, Dan M; Kiley, Patricia J
2014-08-26
How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors. In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By dissecting the role of multiple sequence elements within the icdA promoter, we provide insight into the design principles that allow ArcA to repress transcription within diverse promoter contexts. Our data suggest that the arrangement of recognition elements is tailored to achieve sufficient repression of a given promoter while maintaining appropriate signal-dependent regulation of repression, providing insight into how diverse binding site architectures link changes in O2 with the fine-tuning of carbon oxidation pathway levels. Copyright © 2014 Park and Kiley.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Hagen, L.; Kokalj, D.
2017-10-01
In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Gorokhovsky
2008-03-31
This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less
Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells.
Losa, G A
2003-09-01
We examined the effect of resveratrol (RS), a nonflavonoid polyphenolic phytoalexin found in grapes and red wine, and RS coincubated with the oxidant 2-deoxy-D-ribose (dR), on apoptosis and on the oxidative metabolic status of normal human peripheral blood mononuclear cells (PBMNCs) isolated ex vivo from healthy donors. Apoptosis was measured by changes of membrane permeability to propidium iodide (PI), plasma membrane exposure of phosphatidylserine (PS) and intracellular caspase activity. Oxidative status was assessed by recording the intracellular glutathione concentration (GSH), the activities of the enzymes y-glutamyltransferase (y-GT) and glutathione-S-transferase (GST), and intracellular lipid peroxidation (MDA). Neither apoptotic nor oxidative parameters were affected by culturing PBMNCs in medium containing RS up to 20 micro M for 5 days, while the frequency of cells with intermediate permeability to PI (17% +/- 5) increased at 50 micro M of RS. Thus resveratrol was slightly toxic, but there was little apoptosis in these cells. Peripheral blood mononuclear cells were also grown first in medium plus RS for 24 h and then for 96 h in medium containing RS plus 10 mM of dR, an oxidant sugar that is apoptogenic for human lymphocytes. The apoptotic changes triggered by dR were counteracted by the phytoalexin in a dose-dependent manner, but RS activity was absent at the lowest concentration (5 micro M) and significantly reduced at the highest concentration used (50 micro M). In PBMNCs coincubated with 20 micro M of RS and 10 mM of dR the antioxidant effect of RS manifested with a significant reduction of caspases-3, -8, y-GT, GST activities and MDA content. Peripheral blood mononuclear cells acquire antioxidant capacity when treated with RS. Grape resveratrol may make a useful dietary supplement for minimizing oxidative injury in immune-perturbed states and human chronic degenerative diseases.
Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support
NASA Astrophysics Data System (ADS)
Panthi, Dhruba; Tsutsumi, Atsushi
2014-08-01
Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.
Carvajal, Ana Karina; Rustad, Turid; Mozuraityte, Revilija; Storrø, Ivar
2009-09-09
The effect of hemoglobin (Hb) and lipid concentration, pH, temperature, and different antioxidants on heme-mediated lipid oxidation of liposomes from marine phospholipids was studied. The rate of lipid oxidation was measured by consumption of dissolved oxygen. Heme-mediated lipid oxidation at different Hb and lipid concentrations was modeled by Michaelis-Menten kinetics. The maximum rate (V(max)) for the reaction with cod and bovine Hb as a pro-oxidant was 66.2 +/- 3.4 and 56.6 +/- 3.4 microM/min, respectively. The Michaelis-Menten constant (K(m)) for the reaction with cod and bovine Hb was 0.67 +/- 0.09 and 1.2 +/- 0.2 microM, respectively. V(max) for the relationship between the oxygen uptake rate and lipid concentration was 43.2 +/- 1.5 microM/min, while the K(m) was 0.93 +/- 0.14 mg/mL. The effect of the temperature followed Arrhenius kinetics, and there was no significant difference in activation energy between cod and bovine Hb. The rate of lipid oxidation induced by bovine Hb was highest around pH 6. Ethylenediaminetetraacetic acid (EDTA) had no significant effect on heme-mediated lipid oxidation, but alpha-tocopherol and astaxanthin worked well as antioxidants. Kinetic differences were found between iron and Hb as pro-oxidants, and the efficacy of the antioxidants depended upon the pro-oxidant in the system.
Spectrally Adaptable Compressive Sensing Imaging System
2014-05-01
signal recovering [?, ?]. The time-varying coded apertures can be implemented using micro-piezo motors [?] or through the use of Digital Micromirror ...feasibility of this testbed by developing a Digital- Micromirror -Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement...Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, ”Development of a digital- micromirror - device- based multishot snapshot spectral imaging
Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui
2014-03-01
An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of chromium picolinate on oxidative damage in primary piglet hepatocytes.
Tan, Gao-Yi; Bi, Jin-Ming; Zhang, Min-Hong; Feng, Jing-Hai; Xie, Peng; Zheng, Shan-Shan
2008-12-01
Chromium picolinate is a popular nutritional supplement whose safety has been questioned because of the potential risk of oxidative DNA damage. To investigate this possibility, a dose-dependent study was performed in piglet hepatocyte cultures in which low (8 microM), medium (200 microM), and high (400 microM) doses of chromium picolinate were tested and compared to untreated controls. After 48 h incubation, there were no significant differences in the levels of intracellular reactive oxygen species, medium lactate dehydrogenase activity, and comet indicators between the three experimental groups and controls (p > 0.05). In the 8 microM-treated group, the intracellular malondialdehyde content was significantly decreased relative to controls (p < 0.05). All of the studied parameters showed a dose-dependent increase that was statistically significant between the low and high doses (p < 0.05). These results suggest that: (1) chromium picolinate may affect the oxidative status of piglet hepatocytes; (2) the appropriate dose (approximately physiological concentration) of chromium picolinate can inhibit lipid peroxidation, and (3) high doses of chromium picolinate have no significant effects on oxidative damage in piglet hepatocytes, but the existing evidence also imply that exposure to a higher dose appears to be unwarranted.
Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens.
Jeong, Tae-Sook; Ryu, Young Bae; Kim, Hoi Young; Curtis-Long, Marcus John; An, Sojin; An, So Jin; Lee, Jin Hwan; Lee, Woo Song; Park, Ki Hun
2008-11-01
Oxidation of low density lipoprotein (LDL) is strongly implicated as a key process in the onset of atherosclerosis. In this study, nine alkylated (C10-C5) flavonoids from Sophora flavescens were examined for their inhibitory effects on copper-induced LDL oxidation. Of the flavonoids tested, sophoraflavanone G (1), kurarinone (2), kurarinol (3), norkurarinol (4), and kuraridin (9) inhibited the generation of thiobarbituric acid reactive substances (TBARS) with IC50s of 7.9, 14.5, 22.0, 26.9, and 17.5 microM, respectively. The most potent inhibitor, compound 1, also demonstrated significant activities in complementary in vitro investigations, such as lag time (130 min at 5 microM), relative electrophoretic mobility (REM) of ox-LDL (80% inhibition at 20 microM), and fragmentation of apoB-100 (inhibition of 71% at 20 microM). Analysis of the structures of these compounds reveals that a resorcinol moiety in the B-ring is strongly correlated with protection of LDL-oxidation.
Denby, Katie J; Rolfe, Matthew D; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K; Green, Jeffrey
2015-07-01
Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ni, Junjun; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi
2017-01-01
Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2′-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging. PMID:28265338
Ni, Junjun; Wu, Zhou; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi
2017-01-01
Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H 2 O 2 -) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H 2 O 2 -generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2'-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β -amyloid and IL-1 β -impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.
Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano
2018-06-08
The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.
Infrared Submillimeter and Radio Astronomy Research and Analysis Program
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2000-01-01
This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.
NASA Technical Reports Server (NTRS)
Talia, George E.
1996-01-01
Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.
No effect of H2O degassing on the oxidation state of magmatic liquids
NASA Astrophysics Data System (ADS)
Waters, Laura E.; Lange, Rebecca A.
2016-08-01
The underlying cause for why subduction-zone magmas are systematically more oxidized than those formed at mid-ocean spreading ridges is a topic of vigorous debate. It is either a primary feature inherited from the subduction of oxidized oceanic crust into the mantle or a secondary feature that develops because of H2O degassing and/or magma differentiation. Low total iron contents and high melt H2O contents render rhyolites sensitive to any effect of H2O degassing on ferric-ferrous ratios. Here, pre-eruptive magmatic Fe2+ concentrations, measured using Fe-Ti oxides that co-crystallized with silicate phenocrysts under hydrous conditions, are compared with Fe2+ post-eruptive concentrations in ten crystal-poor, fully-degassed obsidian samples; five are microlite free. No effect of H2O degassing on the ferric-ferrous ratio is found. In addition, Fe-Ti oxide data from this study and the literature show that arc magmas are systematically more oxidized than both basalts and hydrous silicic melts from Iceland and Yellowstone prior to extensive degassing. Nor is there any evidence that differentiation (i.e., crystal fractionation, crustal assimilation) is the cause of the higher redox state of arc magmas relative to those of Iceland/Yellowstone rhyolites. Instead, the evidence points to subduction of oxidized crust and the release of an H2O-rich fluid and/or melt with a high oxygen fugacity (fO2), which plays a role during H2O-flux melting of the mantle in creating basalts that are relatively oxidized.
Development of an applicator for eye lens dosimetry during radiotherapy
Park, J M; Lee, J; Ye, S-J
2014-01-01
Objective: To develop an applicator for in vivo measurements of lens dose during radiotherapy. Methods: A contact lens-shaped applicator made of acrylic was developed for in vivo measurements of lens dose. This lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistors (MOSFETs) dosemeters. CT images of an anthropomorphic phantom with and without the applicator were acquired. Ten volumetric modulated arc therapy plans each for the brain and the head and neck cancer were generated and delivered to an anthropomorphic phantom. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. Results: The average difference between the measured and the calculated doses with the applicator was 3.1 ± 1.8 cGy with a micro MOSFET and 2.8 ± 1.3 cGy with a standard MOSFET. The average difference without the lens applicator was 4.8 ± 5.2 cGy with the micro MOSFET and 5.7 ± 6.5 cGy with the standard MOSFET. The maximum difference with the micro MOSFET was 10.5 cGy with the applicator and 21.1 cGy without the applicator. For the standard MOSFET, it was 6.8 cGy with the applicator and 27.6 cGy without the applicator. Conclusion: The lens applicator allowed reduction of the differences between the calculated and the measured doses during in vivo measurement for the lens compared with in vivo measurement at the surface of the eyelid. Advances in knowledge: By using an applicator for in vivo dosimetry of the eye lens, it was possible to reduce the measurement uncertainty. PMID:25111733
Kim, Man Suk; Kim, Young Jae
2004-11-30
Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase exhibited an apparent K(m) value of approximately 65 microM for NADH. The maximum activity of the NADH oxidase was obtained at about pH 8.5 in the presence of 0.1 M KCl (or NaCl). Respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited the activity of the NADH oxidase by about 90% at a concentration of 40 microM. Interestingly, rotenone and capsaicin inhibited the activity of the NADH oxidase by about 60% at a concentration of 40 microM and the activity was also highly sensitive to Ag(+).
Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou
2018-07-01
A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.
The spectral emissivity of the anode of a carbon arc.
Schurer, K
1968-03-01
Data in the literature on the spectral emissivity of carbon and graphite show a great divergence, ranging from 0.75 to 0.99 in the visible region. A new determination has been undertaken at a number of wavelengths using an integrating sphere and modulated light. Emissivities ranging from 0.99 in the visible to 0.96 at 0.28 micro and 1.7 micro have been found for several different graphite anodes; the values for lampblack anodes are about 0.005 lower. There is a good agreement with the highest values thus far published. Most of the literature data on the spectral radiance of the anode are consistent with the emissivities found by the present author.
Concentric nano rings observed on Al-Cu-Fe microspheres
NASA Astrophysics Data System (ADS)
Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang
2016-05-01
It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang
2017-12-01
Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.
Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.
Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong
2016-02-01
In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.
The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation
Green, Gregory N.
1992-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050
The digital geologic map of Colorado in ARC/INFO format, Part B. Common files
Green, Gregory N.
1992-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050
NASA Technical Reports Server (NTRS)
Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.
1999-01-01
Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.
Bartlett, K; Hovik, R; Eaton, S; Watmough, N J; Osmundsen, H
1990-01-01
1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation. Images Fig. 2. Fig. 3. Fig. 4. PMID:2396977
Stefano, G B; Zhu, W; Cadet, P; Bilfinger, T V; Mantione, K
2004-03-01
Studies from our laboratory have revealed a novel micro opiate receptor, micro(3), which is expressed in both human vascular tissues and leukocytes. The micro(3) receptor is selective for opiate alkaloids, insensitive to opioid peptides and is coupled to constitutive nitric oxide (cNO) release. We now identify the micro(3) receptor characteristics in mammalian gut tissues. It appears that the various regions of the mouse gut release low levels of NO (0.02 to 4.6 nM ) in a pulsatile manner. We demonstrate that morphine stimulates cNO release (peak level 17 nM) in the mouse stomach, small intestine and large intestine in a naloxone and L-NAME antagonizable manner. Opioid peptides do not exhibit cNO-stimulating capabilities in these tissues. Taken together, we surmise morphine acts as a hormone to limit gut activity via micro(3) coupled to NO release since micro opiate receptors are found in the gut and endogenous morphine is not but is found in blood.
Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich
2007-06-01
Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.
Novel splice techniques and micro-hole collapse effect in photonic crystal fibers
NASA Astrophysics Data System (ADS)
Xiao, Limin
Photonic crystal fibers (PCFs) represent one of the most active research areas today in the field of fiber optics. Because of the freedom they offer in their design and novel wave-guiding properties, PCFs have resulted in a number of applications that are difficult to achieve with conventional fibers. In practical applications, low-loss connection PCFs with conventional fibers is a key issue for integrating PCF devices into existing fiber optic systems. However, connecting PCFs to conventional fibers without incurring too much loss is a very challenging problem. Two novel techniques were proposed to solve this problem in the thesis. One is fusion splicing technique; the other is micro-tip technique. First, fusion splicing technique for PCFs is investigated. For fusion splicing SMFs and PCFs having similar mode field diameters, a low-loss joint with good mechanical strength can be formed by choosing a suitably weak fusion current, short fusion time, offset and overlap to minimize the collapse of air holes and well melt two fibers together. For small-core PCFs, an optimum mode field match and an adiabatic mode field variation can be achieved by repeated arc discharges. Low-loss fusion splicing of five different PCFs with SMFs are achieved, including large mode PCF, hollow-core PCF, nonlinear PCFs with low and high air-filling fraction and polarization maintaining PCF. The other novel technique is using micro-tips. The method is based on growing photopolymer micro-tips directly on the end face of SMFs. The shape and the size of the tips can be controlled, by adjusting the laser power, the exposure time and the oxygen diffusion concentration for polymerization, to match its mode field to the small-core PCFs. Micro-hole collapse effect can be used to fabricate selective injection PCFs. The suitable arc discharge energy can cause the cladding holes to collapse while leaving the central hollow core to remain open. Thus a simple method for selective filling the central hole of PCFs is developed. Hybrid PCF guides light by a novel guiding mechanism, which is a combination of index-guiding and bandgap-guiding. The properties of the hybrid PCF are systematically investigated.
Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
NASA Astrophysics Data System (ADS)
Korobov, Yu. S.; Nevezhin, S. V.; FiliÑpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.
2017-12-01
Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.
Thermodynamic analysis of the selective chlorination of electric arc furnace dust.
Pickles, C A
2009-07-30
The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,; Grisham, Larry R.
2014-02-24
Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparingmore » cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance« less
Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same
Resnick, Paul J.; Langlois, Eric
2015-12-01
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode
Resnick, Paul J.; Langlois, Eric
2014-08-26
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc
NASA Astrophysics Data System (ADS)
Rojas-Agramonte, Yamirka; Williams, Ian S.; Arculus, Richard; Kröner, Alfred; García-Casco, Antonio; Lázaro, Concepción; Buhre, Stephan; Wong, Jean; Geng, Helen; Echeverría, Carlos Morales; Jeffries, Teresa; Xie, Hangqian; Mertz-Kraus, Regina
2017-10-01
The Lesser Antilles arc is one of the best global examples in which to examine the effects of the involvement of subducted sediment and crustal assimilation in the generation of arc crust. Most of the zircon recovered in our study of igneous and volcaniclastic rocks from Grenada and Carriacou (part of the Grenadines chain) is younger than 2 Ma. Within some late Paleogene to Neogene ( 34-0.2 Ma) lavas and volcaniclastic sediments however, there are Paleozoic to Paleoarchean ( 250-3469 Ma) xenocrysts, and Late Jurassic to Precambrian zircon ( 158-2667 Ma) are found in beach and river sands. The trace element characteristics of zircon clearly differentiate between different types of magmas generated in the southern Lesser Antilles through time. The zircon population from the younger arc (Miocene, 22-19 Ma, to Present) has minor negative Eu anomalies, well-defined positive Ce anomalies, and a marked enrichment in heavy rare earth elements (HREE), consistent with crystallization from very oxidized magmas in which Eu2 + was in low abundance. In contrast, zircon from the older arc (Eocene to mid-Oligocene, 30-28 Ma) has two different REE patterns: 1) slight enrichment in the light (L)REE, small to absent Ce anomalies, and negative Eu anomalies and 2) enriched High (H)REE, positive Ce anomalies and negative Eu anomalies (a similar pattern is observed in the xenocrystic zircon population). The combination of positive Ce and negative Eu anomalies in the zircon population of the older arc indicates crystallization from magmas that were variably, but considerably less oxidized than those of the younger arc. All the igneous zircon has positive εHf(t), reflecting derivation from a predominantly juvenile mantle source. However, the εHf(t) values vary significantly within samples, reflecting considerable Hf isotopic heterogeneity in the source. The presence of xenocrystic zircon in the southern Lesser Antilles is evidence for the assimilation of intra-arc crustal sediments and/or the recycling and incorporation of sediments into the magma sources in the mantle wedge. Most likely however, primitive magmas stalling and fractionating during their ascent through the Antilles crust entrained ancient zircon. This is evidence by the geochemistry of the study samples, which is inconsistent with any involvement of partially melted subducted sediment. Paleogeographic reconstructions show that the old zircon could derive from distant regions such as the Eastern Andean Cordillera of Colombia, the Merida Andes, and the northern Venezuela coastal ranges, transported for example by the Proto-Maracaibo River precursor of the Orinoco River.
Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J
2015-03-03
Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.
Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.
Song, Linyang; Song, Wei; Schipper, Hyman M
2007-08-01
The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Yin, Yajiang; Li, Xiangyu; You, Zheng
2014-04-01
A micro-supercapacitor with a three-dimensional configuration has been fabricated using an ICP etching technique. Hydrous ruthenium oxide with a tubular morphology is successfully synthesized using a cathodic deposition technique with a Si micro prominence as a template. The desired tubular RuO2·xH2O architecture facilitates electrolyte penetration and proton exchange/diffusion. A single MEMS electrode is studied using cyclic voltammetry, and a specific capacitance of 99.3 mF cm-2 and 70 F g-1 is presented at 5 mV s-1 in neutral Na2SO4 solution. The accelerated cycle life is tested at 80 mV s-1, and satisfactory cyclability is observed. When placed on a chip, the symmetric cell exhibits good supercapacitor properties, and a specific capacitance as high as 23 mF cm-2 is achieved at 10 mA cm-2. Therefore, 3D MEMS microelectrode arrays with electrochemically deposited ruthenium oxide films are promising candidates for on-chip electrochemical micro-capacitor applications.
de Sousa, José Tavares; Lima, Jéssyca de Freitas; da Silva, Valquíria Cordeiro; Leite, Valderi Duarte; Lopes, Wilton Silva
2017-03-01
The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S 0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S 2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S 0 . The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S 2- , while 20.9% was present as dissolved SO 4 2- and 46% was precipitated as S 0 . It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S 2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.
Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea.
Arciero, D; Vannelli, T; Logan, M; Hooper, A B
1989-03-15
Suspensions of Nitrosomonas europaea are shown to cause the complete disappearance of 10 microM trichloroethylene at rates of 1 microM mg protein-1. The reaction continues at nearly this rate for many hours. Fresh cells catalyze the reaction in the absence of added ammonium (presumably utilizing endogenous ammonia or stored reductant). In older cells, trichloroethylene degradation depends on the addition of ammonia. Acetylene, 2-chloro 6-trichloromethylpyridine and alpha alpha'dipyridyl, which inhibit the oxidation of ammonia by cells, inhibit the degradation of trichloroethylene. Thus degradation of trichloroethylene is dependent on- and possibly catalyzed by the ammonia oxidizing enzyme.
Plasma chemistry for inorganic materials
NASA Technical Reports Server (NTRS)
Matsumoto, O.
1980-01-01
Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; ...
2017-11-21
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less
NASA Astrophysics Data System (ADS)
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe
2017-11-01
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.
Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud
2017-09-01
An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dimitrov, Dimitar; Nogués-Bravo, David; Scharff, Nikolaj
2012-01-01
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change. PMID:23185283
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Izumi, N.; Landen, O. L.
2016-08-03
Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less
Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.
2017-01-01
The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817
NASA Astrophysics Data System (ADS)
Hager, K. W.; Fullerton, H.; Moyer, C. L.
2015-12-01
Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.
Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.
Espín, J C; Varón, R; Tudela, J; García-Cánovas, F
1997-05-01
Despite the importance of the substrate 4-hydroxyanisole in melanoma therapy, the kinetics of its oxidation catalyzed by tyrosinase has never been properly characterized. This approach is reported here for the first time. The applicability to 4-hydroxyanisole of the reaction mechanism of tyrosinase previously proposed for other monophenols has been corroborated. The Michaelis constant for the oxidation of 4-hydroxyanisole catalyzed by mushroom tyrosinase was (62 +/- 1.5) microM at pH 7 and increased when the pH decreased, reaching a value of (195 +/- 5) microM at pH 5.5. However the maximum steady-state rate, whose value was (0.54 +/- 0.01) microM/min, did not change with the pH. The apparent catalytic constant was (184 +/- 5) s-1, around twenty three times higher than that previously described for L-tyrosine (8 s-1).
Exergy analysis of a solid oxide fuel cell micropowerplant
NASA Astrophysics Data System (ADS)
Hotz, Nico; Senn, Stephan M.; Poulikakos, Dimos
In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.
NASA Astrophysics Data System (ADS)
Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.
2015-02-01
Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.
Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan
2013-12-01
The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-16
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag(+) or silk/[AuCl4](-) aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 10(4)-Ω(-1 ) m(-1)-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-01-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]− aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω−1 m−1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600
Matoušková, Petra; Hanousková, Barbora; Skálová, Lenka
2018-04-14
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3'untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins' expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
NASA Astrophysics Data System (ADS)
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
Reid-Bayliss, Kate S; Loeb, Lawrence A
2017-08-29
Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.
Alt, J.C.; Shanks, Wayne C.; Jackson, M.C.
1993-01-01
The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (??34S = 21???) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in 34S (??34S = up to 10.3???, mean = 3.8???) and depleted in S (20-290 ppm, mean = 100 ppm) relative to MORB (850 ppm S, ??34S = 0.1 ?? 0.5???). The back-arc trough basalts contain 200-930 ppm S and have ??34S values of 1.1 ?? 0.5???, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at f{hook}O2 ??? NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of ??34S with 87Sr 86Sr, LILE and LREE contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a 34S-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2. CO2 in the arc and back-arc rocks has ??13C values of -2.1 to -13.1???, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower ??13C values for some Mariana Trough volcanic glasses, and that incorporation of subduction-derived organic carbon into the Mariana Trough mantle source may not be necessary. More analyses are required to resolve this question, however. ?? 1993.
Geodynamic evolution of the Sabzevar zone, northern central Iranian micro-continent
NASA Astrophysics Data System (ADS)
Omrani, Hadi; Moazzen, Mohssen; Oberhänsli, Roland
2018-02-01
The Northern Central Iranian Micro-continent (CIM) represents Neotethys-related oceanic crust remnants, emplaced due to convergence between CIM and Eurasia plates during Eocene. Mafic and ultramafic units are exposed along the northern part of the CIM in the Sabzevar area. The geology and field relation of Sabzevar ophiolite indicate northward subduction of the Sabzevar basin. The average whole rock chemistry of mafic (gabbros) and ultramafic samples (lherzolite, harzburgite and dunite) is characterized by a range of MgO of 11.16-31.88, CaO 5.22-11.53 and Al2O3 2.77-14.57, respectively. Low LREE/HREE ratio of ultramafic samples is accompanied by enrichment of large ion lithophile elements (LILE) such as Sr, Pb and K. Mafic samples show two distinct groups with low and high LREE/HREE ratios. The spider diagram of mafic samples indicates enrichment in Sr, Pb and K and depletion in REE. Petrological and geochemical evidence and field relations show that the mafic rocks formed in a supra-subduction zone setting. Petrological studies reveal the role of fractional crystallization and assimilation effect by released fluids during subduction related generation of the Sabzevar mafic rocks. We suggest that the studied mafic rocks likely represent the basement of an initial island arc, which was generated in a supra-subduction zone setting within the Neotethys branch of the Sabzevar Ocean at the north of CIM. Copper, gold and chromite mineralizations are studied in relation to island arc setting and supra-subduction environment. Similarities in lithology, ophiolite age and mineralization between Sabzevar ophiolite and Bardaskan-Torbat Heydariyeh ophiolites testify for their separation due to rotation (or faulting) of the Central Iranian Micro-continent.
NASA Astrophysics Data System (ADS)
Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.
2015-02-01
Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.
Extremely magnetized abyssal lavas erupted in active back-arc of the Okinawa Trough
NASA Astrophysics Data System (ADS)
Fujii, M.; Sato, H.; Okino, K.
2017-12-01
Although high-amplitude of marine magnetic anomalies have been utilized for understanding for seafloor dynamics, the causal link between intensity of natural remanent magnetization and physical and chemical processes of extrusive rocks are still unclear. In addition, we essentially lack rock magnetic data of arc-back-arc lavas, which potentially provide strong constraints for understanding time- and spatial-dependent diversity of lava magnetization including mid-ocean ridge basalts. Here, we present new rock magnetic data of strongly magnetized basaltic rocks, which rank among the most magnetized in known oceanic basaltic rocks, from active back-arc region of the Okinawa Trough. We analyzed 27 non-oxidized (fresh) basaltic rock samples obtained from the active back-arc volcanoes, located at the segment boundary along back-arc rift. Their natural remanent magnetization ranges 7 A/m to >200 A/m, and has clear nonlinear relationship with both magnetic hysteresis signatures and titanomagnetite amount. The strongly magnetized lavas show large contribution of appropriate amount of SD titanomagnetite grains formed in proper crystal growth environments. The high-temperature thermomagnetic experiments demonstrate reversible curves in both heating and cooling with single Curie temperature. The Curie temperature shows up to 480°C for strongly magnetized lavas, which is much higher than that of mid-ocean ridge basalts mainly containing TM60, indicating that rich Fe and low Ti contents of titanomagnetite grains are main magnetic carrier. These observations clearly demonstrate that intensity of natural remanent magnetization is primarily controlled by cooling rate of lavas and ratio of Fe to Ti of titanomagnetite grains as well as bulk iron contents, with important implications towards marine magnetic anomalies and arc-back-arc volcanism.
Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.
Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping
2015-11-15
A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. Copyright © 2015 Elsevier Inc. All rights reserved.
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1993-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1992-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, M.T.; Scott, T.C.; Byers, C.H.
1992-06-16
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.
NASA Astrophysics Data System (ADS)
Siddiqui, Rehanul Haq; Qasim Jan, M.; Asif Khan, M.
2012-10-01
The Raskoh arc is about 250 km long, 40 km wide and trends in an ENE direction. The oldest rock unit in the Raskoh arc is an accretionary complex (Early to Late Jurassic), which is followed in age by Kuchakki Volcanic Group, the most wide spread unit of the Raskoh arc. The Volcanic Group is mainly composed of basaltic to andesitic lava flows and volcaniclastics, including agglomerate, volcanic conglomerate, breccia and tuff, with subordinate shale, sandstone, limestone and chert. The flows generally form 3-15 m thick lenticular bodies but rarely reach up to 300 m. They are mainly basaltic-andesites with minor basalts and andesites. The main textures exhibited by these rocks are hypocrystalline porphyritic, subcumulophyric and intergranular. The phenocrysts comprise mainly plagioclase (An30-54 in Nok Chah and An56-64 in Bunap). They are embedded in a micro-cryptocrystalline groundmass having the same minerals. Apatite, magnetite, titanomagnetite and hematite occur as accessory minerals. Major, trace and rare earth elements suggest that the volcanics are oceanic island arc tholeiites. Their low Mg # (42-56) and higher FeO (total)/MgO (1.24-2.67) ratios indicate that the parent magma of these rocks was not directly derived from a mantle source but fractionated in an upper level magma chamber. The trace element patterns show enrichment in LILE and depletion in HFSE relative to N-MORB. Their primordial mantle-normalized trace element patterns show marked negative Nb anomalies with positive spikes on K, Ba and Sr which confirm their island arc signatures. Slightly depleted LREE to flat chondrite normalized REE patterns further support this interpretation. The Zr versus Zr/Y and Cr versus Y studies show that their parent magma was generated by 20-30% melting of a depleted mantle source. The trace elements ratios including Zr/Y (1.73-3.10), Ti/Zr (81.59-101.83), Ti/V (12.39-30.34), La/YbN (0.74-2.69), Ta/Yb (0.02-0.05) and Th/Yb (0.11-0.75) of the volcanics are more consistent with oceanic island arcs rather than continental margin arcs. It is suggested that the Raskoh arc is an oceanic island arc which formed due to the intra-oceanic convergence in the Ceno-Tethys during the Late Cretaceous rather than constructed on the southern continental margin of the Afghan block, as claimed by previous workers. It is further suggested that the Semail, Zagros, Chagai-Raskoh, Muslim Bagh, and Waziristan island arcs were developed in a single but segmented Cretaceous Ceno-Tethyan convergence zone.
Implementation of an Outer Can Welding System for Savannah River Site FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, S.R.
2003-03-27
This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.
Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei
2008-11-22
SiC nanowires have been synthesized at 1,600 degrees C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO(2) nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.
Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film
NASA Astrophysics Data System (ADS)
Jin, Huiming; Adriana, Felix; Majorri, Aroyave
2008-02-01
Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.
Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W
2016-07-01
Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu
2016-08-01
This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field.
Chan, Wan; Chen, Bingzi; Wang, Lianrong; Taghizadeh, Koli; Demott, Michael S; Dedon, Peter C
2010-05-05
The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC-MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1'-oxidation and the nucleoside 5'-aldehyde of 5'-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC-MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5'-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin gamma(1)(I), was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5'-aldehyde per 10(6) nt per microM in accord with its established minor 1'- and major 5'-oxidation chemistry. Calicheamicin unexpectedly caused 1'-oxidation at a low level of 10 2-deoxyribonolactone per 10(6) nt per microM in addition to the expected predominance of 5'-oxidation at 560 nucleoside 5'-aldehyde per 10(6) nt per microM. The two hydroxyl radical-mediated DNA oxidants, gamma-radiation and Fe(2+)-EDTA, produced nucleoside 5'-aldehyde at a frequency of 57 per 10(6) nt per Gy (G-value 74 nmol/J) and 3.5 per 10(6) nt per microM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, gamma-radiation and Fe(2+)-EDTA produced different proportions of 2-deoxyribonolactone at 7% and 24% of total 2-deoxyribose oxidation, respectively, with frequencies of 10 lesions per 10(6) nt per Gy (G-value, 13 nmol/J) and 2.4 lesions per 10(6) nt per microM. Studies in TK6 human lymphoblastoid cells, in which the analytical data were corrected for losses sustained during DNA isolation, revealed background levels of 2-deoxyribonolactone and nucleoside 5'-aldehyde of 9.7 and 73 lesions per 10(6) nt, respectively. Gamma-irradiation of the cells caused increases of 0.045 and 0.22 lesions per 10(6) nt per Gy, respectively, which represents a approximately 250-fold quenching effect of the cellular environment similar to that observed in previous studies. The proportions of the various 2-deoxyribose oxidation products generated by gamma-radiation are similar for purified DNA and cells. These results are consistent with solvent exposure as a major determinant of hydroxyl radical reactivity with 2-deoxyribose in DNA, but the large differences between gamma-radiation and Fe(2+)-EDTA suggest that factors other than hydroxyl radical reactivity govern DNA oxidation chemistry.
Bioactive Ca-P coating with self-sealing structure on pure magnesium.
Gan, Junjie; Tan, Lili; Yang, Ke; Hu, Zhuangqi; Zhang, Qiang; Fan, Xinmin; Li, Yangde; Li, Weirong
2013-04-01
Bioactive coatings containing Ca and P with self-sealing structures were fabricated on the surface of pure magnesium using micro-arc oxidation technique (MAO) in a specific calcium hydroxide based electrolyte system. Coatings were prepared at three applied voltages, i.e. 360, 410 and 450 V, and the morphology, chemical composition, corrosion resistance and the degradation properties in Hank's solution of the MAO-coated samples with three different applied voltages were investigated. It was found that all the three coatings showed similar surface morphologies that the majority of micro-pores were filled with compound particles. Both the porous structures and the compound particles were found to contain consistent chemical compositions which were mainly composed of O, Mg, F, Ca and P. Electrochemical tests showed a significant increase in corrosion resistance for the three coatings, meanwhile the coating obtained at 450 V exhibited the superior corrosion resistance owing to the largest coating thickness. The long term immersion tests in Hank's solution also revealed an effective reduction in corrosion rate for the MAO coated samples, and the pH values of the coated samples always maintained a lower level. Besides, all the three coatings were subjected to a mild and uniform degradation, while the coating obtained at 360 V showed a relatively obvious degradation characteristic and appreciable Ca and P contents on the surfaces of the three coatings were observed after immersion in Hank's solution. The results of the present study confirmed that the MAO coatings containing bioactive Ca and P elements with self-sealing structures could significantly enhance the corrosion resistance of magnesium substrate in Hanks' solution with great potential for medical application.
Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines
de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.
2004-01-01
Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.
NASA Astrophysics Data System (ADS)
Gün, E.; Gogus, O.; Pysklywec, R.; Topuz, G.; Bodur, O. F.
2017-12-01
The Tethyan belt in the eastern Mediterranean region is characterized by the accretion of several micro-continental blocks (e.g. Anatolide-Tauride, Sakarya and Istanbul terranes). The accretion of a micro-continental block to the active continental margin and subsequent initiation of a new subduction are of crucial importance in understanding the geodynamic evolution of the region. Numerical geodynamic experiments are designed to investigate how these micro-continental blocks in the ocean-continent subduction system develops the aforementioned subduction, back-arc extension, surface uplift and the ophiolite emplacement in the eastern Mediterranean since Late Cretaceous. In a series set of experiments, we test various sizes of micro-continental blocks (ranging from 50 to 300 km), different rheological properties (e.g. dry-wet olivine mantle) and imposed plate convergence velocities (0 to 4 cm/year). For a prime present-day analogue to the micro-continental block collision-accretion, model predictions are compared against the collision between Eratosthenes and Cyprus. Preliminary results show that slab break-off occurs directly after the collision when the plate convergence velocities are less than 2 cm/yr and the mantle lithosphere of the continental block has viscoplastic rheology. On the other hand, there is no relationship between convergence rate and break-off event when the lithospheric mantle rheology is chosen to be plastic. Furthermore, the micro-continental block undergoes considerable extension before continental collision due to the slab pull force, if a viscoplastic rheology is assumed for the mantle lithosphere.
Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C
NASA Astrophysics Data System (ADS)
Dallaire, S.; Levert, H.; Legoux, J.-G.
2001-06-01
Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.
Progress Towards Microwave Ignition of Explosives
NASA Astrophysics Data System (ADS)
Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William
2009-06-01
Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.
Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda
2012-01-01
Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.
A TEMPLATE-BASED FABRICATION TECHNIQUE FOR SPATIALLY-DESIGNED POLYMER MICRO/NANOFIBER COMPOSITES
Naik, Nisarga; Caves, Jeff; Kumar, Vivek; Chaikof, Elliot; Allen, Mark G.
2013-01-01
This paper reports a template-based technique for the fabrication of polymer micro/nanofiber composites, exercising control over the fiber dimensions and alignment. Unlike conventional spinning-based methods of fiber production, the presented approach is based on micro-transfer molding. It is a parallel processing technique capable of producing fibers with control over both in-plane and out-of-plane geometries, in addition to packing density and layout of the fibers. Collagen has been used as a test polymer to demonstrate the concept. Hollow and solid collagen fibers with various spatial layouts have been fabricated. Produced fibers have widths ranging from 2 µm to 50 µm, and fiber thicknesses ranging from 300 nm to 3 µm. Also, three-dimensionality of the process has been demonstrated by producing in-plane serpentine fibers with designed arc lengths, out-of-plane wavy fibers, fibers with focalized particle encapsulation, and porous fibers with desired periodicity and pore sizes. PMID:24533428
NASA Astrophysics Data System (ADS)
Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.
2017-03-01
To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.
Hodges, Tyler W; Olson, Julie B
2009-03-01
Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
NASA Astrophysics Data System (ADS)
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2006-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2008-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771
Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures
NASA Astrophysics Data System (ADS)
Blatter, D. L.; Sisson, T. W.; Hankins, W. B.
2012-12-01
Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from basalts to rhyolites or granites (ASI/wt% SiO2: 0.012-0.014), and do not commonly become peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates during nearly all evolution of arc magmas, with little or no early crystallization interval dominated by augite, unlike these and other high-pressure crystallization results. Possible implications are: (1) Parental basaltic arc magmas generally have <3 wt% H2O, and so saturate with plagioclase earlier than in these and other investigators' experiments, (2) These and other investigators' basaltic starting compositions have appropriate H2O but insufficient normative plagioclase, and so crystallize excessive augite before saturating with plagioclase, (3) Common parental arc magmas are basaltic andesites, not basalts, and undergo early crystallization dominated by orthopyroxene that does not modify melt ASI, and/or (4) The spectrum of common arc magma compositions is dominantly due to mixing of mafic magmas with evolved crustal melts or residual liquids that are saturated with plagioclase, thereby causing the coupled and consistent increase in SiO2 with ASI. What can be stated with confidence is that the simple case of deep crystallization-differentiation of hydrous basalt produces daughter liquids that differ in important aspects from common arc magmas.
Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells
Selj, Josefine K.; Young, David; Grover, Sachit
2015-08-28
In this study we use an effective weighting function to include the internal quantum efficiency (IQE) and the effective thickness, Te, of the active cell layer in the optical modeling of the antireflection coating (ARC) of very thin crystalline silicon solar cells. The spectrum transmitted through the ARC is hence optimized for efficient use in the given cell structure and the solar cell performance can be improved. For a 2-μm thick crystalline silicon heterojunction solar cell the optimal thickness of the Indium Tin Oxide (ITO) ARC is reduced by ~8 nm when IQE data and effective thickness are taken intomore » account compared to the standard ARC optimization, using the AM1.5 spectrum only. The reduced ARC thickness will shift the reflectance minima towards shorter wavelengths and hence better match the absorption of very thin cells, where the short wavelength range of the spectrum is relatively more important than the long, weakly absorbed wavelengths. For this cell, we find that the optimal thickness of the ITO starts at 63 nm for very thin (1 μm) active Si layer and then increase with increasing T e until it saturates at 71 nm for T e > 30 μm.« less
Particulate and gaseous emissions when welding aluminum alloys.
Cole, Homer; Epstein, Seymour; Peace, Jon
2007-09-01
Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.
Surface martensitization of Carbon steel using Arc Plasma Sintering
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin
2018-03-01
In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.
Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.
Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo
2016-07-01
To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Frey, Thomas G.; Coombs, Lee C.
2012-07-01
Eight double stars with separations between 13 and 48 arc seconds were studied. Their separations and position angles were measured using an equatorial mounted refractor and and alt-az mounted reflector. A 2x Barlow lens was used along with a Celestron Micro Guide eyepiece to magnify the separation. Comparison of the possible effect of magnitude difference on the separation and position angle measurements was investigated.
Direct electrical arc ignition of hybrid rocket motors
NASA Astrophysics Data System (ADS)
Judson, Michael I., Jr.
Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.
Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen
2012-03-01
Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films.
Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M
2011-07-31
Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films
NASA Astrophysics Data System (ADS)
Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.
2011-08-01
Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.
1994-01-01
Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1987-01-01
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.
High intensity discharge device containing oxytrihalides
Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob
1987-01-01
A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.
High intensity discharge device containing oxytrihalides
Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.
1987-06-09
A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Dasgupta, R.
2017-12-01
Sulfur (S) as sulfide minerals, melts, and as S2- species in silicate melts is prevalent in many different tectono-magmatic settings in Earth. Yet, S as anhydrite or as SO42- species in fluids and melts is thought to be relevant for subduction zones, where the presence of sulfate over sulfide is argued to play a key role in processes such as mobility of chalcophile element [e.g., 1], oxidation of mantle and mantle-derived magmas [2], and release of excess S-rich gases [3]. However, it remains unclear what role the slab-released SO42-, dissolved in fluids or melts plays in magma genesis in sub-arc mantle. Furthermore, although oxidized arc magma is thought to transport SO42- from mantle to volcanic arc crust and atmosphere, the SO42- carrying capacity of arc basalts at mantle conditions are unknown as the existing S concentration at anhydrite saturation (SCAS) experiments are restricted to 1 GPa and mostly on felsic compositions [e.g. 4,5]. We performed piston-cylinder experiments in Au-Pd capsules at 1-3 GPa and 1000-1325 °C to investigate (a) the effect of variable dissolved SO42- (0-2 wt.% S) on the liquidus of a primary hydrous arc basalt with 4 wt.% H2O and (b) the SCAS of hydrous mafic magmas. Dissolved SO42- in the silicate melt was confirmed by S Kα X-ray peak position using electron microprobe. S-free hydrous liquidus of cpx at 2 GPa is 25 °C hotter than the liquidus with 0.1 wt.% S as SO42- and the liquidus depression with further S enrichment to anhydrite saturation ( 2 wt.% S) can be fitted by an empirical power function. Experiments on more mafic compositions show that SCAS increases with increasing temperature and CaO and decreases with SiO2. Calculations using a new SCAS model, fitted with our new data and previous experiments, and assuming 150-550 ppm S in the arc mantle [6] show that <10% melting would exhaust anhydrite, if present. The S content as SO42- of hydrous arc basalts produced by 10-20% melting [7] will be 500-4000 ppm, which is comparable to the melt inclusion S contents from various arcs [8]. The SO42- undersaturated basalts may assimilate crustal sulfate and lead to high observed SO2 flux. [1] Canil & Fellows, 2017, EPSL [2] Kelley and Cottrell, 2009, Science [3] Wallace, 2005, JVGR [4] Luhr, 1990, J.Pet [5] Costa et al., 2004, J.Pet [6] de Hoog et al., 2001a, GCA [7] Kelley et al., 2006, JGR [8] Ruscitto et al., 2012, G3
Large-ion lithophile elements delivered by saline fluids to the sub-arc mantle
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuhiko; Mibe, Kenji; Bureau, Hélène; Reguer, Solenn; Mocuta, Cristian; Kubsky, Stefan; Thiaudière, Dominique; Ono, Shigeaki; Kogiso, Tetsu
2014-12-01
Geochemical signatures of arc basalts can be explained by addition of aqueous fluids, melts, and/or supercritical fluids from the subducting slab to the sub-arc mantle. Partitioning of large-ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using a micro-focused synchrotron X-ray beam, in situ X-ray fluorescence (XRF) spectra were obtained from aqueous fluids and haplogranite or jadeite melts at 0.3 to 1.3 GPa and 730°C to 830°C under varied concentrations of (Na, K)Cl (0 to 25 wt.%). Partition coefficients between the aqueous fluids and melts were calculated for Pb, Rb, and Sr ([InlineEquation not available: see fulltext.]). There was a positive correlation between [InlineEquation not available: see fulltext.] values and pressure, as well as [InlineEquation not available: see fulltext.] values and salinity. As compared to the saline fluids with 25 wt.% (Na, K)Cl, the Cl-free aqueous fluids can only dissolve one tenth (Pb, Rb) to one fifth (Sr) of the amount of large-ion lithophile elements when they coexist with the melts. In the systems with 13 to 25 wt.% (Na, K)Cl, [InlineEquation not available: see fulltext.] values were greater than unity, which is indicative of the capacity of such highly saline fluids to effectively transfer Pb and Rb. Enrichment of large-ion lithophile elements such as Pb and Rb in arc basalts relative to mid-oceanic ridge basalts (MORB) has been attributed to mantle source fertilization by aqueous fluids from dehydrating oceanic plates. Such aqueous fluids are likely to contain Cl, although the amount remains to be quantified.
Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures
NASA Astrophysics Data System (ADS)
Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Jarrah, Muhannad; Altarawneh, Mohammednoor; Kingman, Sam
2018-02-01
The pyrolysis of Tetrabromobisphenol A (TBBPA) mixed with electric arc furnace dust (EAFD) was studied using thermogravimetric analysis (TGA) and theoretically analyzed using thermodynamic equilibrium calculations. Mixtures of both materials with varying TBBPA loads (1:1 and 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at heating rates of 5 and 10 °C/min. The mixtures degraded through several steps, including decomposition of TBBPA yielding mainly HBr, bromination of metal oxides, followed by their evaporation in the sequence of CuBr3, ZnBr2, PbBr2, FeBr2, MnBr2, KBr, NaBr, CaBr2, and MgBr2, and finally reduction of the remaining metal oxides by the char formed from decomposition of TBBPA. Thermodynamic calculations suggest the possibility of selective bromination of zinc and lead followed by their evaporation, leaving iron in its oxide form, while the char formed may serve as a reduction agent for iron oxides into metallic iron. However, at higher TBBPA volumes, iron bromide forms, which can also be evaporated at a temperature higher than those of ZnBr2 and PbBr2. Results from this work provide practical insight into selective recovery of valuable metals from EAFD while at the same time recycling the hazardous bromine content in TBBPA.
Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S
2018-01-15
Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)
2002-01-01
An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.
Ferreira, A L; Machado, P E; Matsubara, L S
1999-06-01
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 microM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37 degrees C, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 +/- 0.27 microM/g Hb; b) GSSG = 0.17 +/- 0.03 microM/g Hb; c) GSH-Px = 19.60 +/- 1.96 IU/g Hb; d) GSH-Rd = 3.13 +/- 0.17 IU/g Hb; e) catalase = 394.9 +/- 22.8 IU/g Hb; f) SOD = 5981 +/- 375 IU/g Hb. The addition of 1 to 100 microM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 microM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Effects of specific inhibitors on anammox and denitrification in marine sediments.
Jensen, Marlene Mark; Thamdrup, Bo; Dalsgaard, Tage
2007-05-01
The effects of three metabolic inhibitors (acetylene, methanol, and allylthiourea [ATU]) on the pathways of N2 production were investigated by using short anoxic incubations of marine sediment with a 15N isotope technique. Acetylene inhibited ammonium oxidation through the anammox pathway as the oxidation rate decreased exponentially with increasing acetylene concentration; the rate decay constant was 0.10+/-0.02 microM-1, and there was 95% inhibition at approximately 30 microM. Nitrous oxide reduction, the final step of denitrification, was not sensitive to acetylene concentrations below 10 microM. However, nitrous oxide reduction was inhibited by higher concentrations, and the sensitivity was approximately one-half the sensitivity of anammox (decay constant, 0.049+/-0.004 microM-1; 95% inhibition at approximately 70 microM). Methanol specifically inhibited anammox with a decay constant of 0.79+/-0.12 mM-1, and thus 3 to 4 mM methanol was required for nearly complete inhibition. This level of methanol stimulated denitrification by approximately 50%. ATU did not have marked effects on the rates of anammox and denitrification. The profile of inhibitor effects on anammox agreed with the results of studies of the process in wastewater bioreactors, which confirmed the similarity between the anammox bacteria in bioreactors and natural environments. Acetylene and methanol can be used to separate anammox and denitrification, but the effects of these compounds on nitrification limits their use in studies of these processes in systems where nitrification is an important source of nitrate. The observed differential effects of acetylene and methanol on anammox and denitrification support our current understanding of the two main pathways of N2 production in marine sediments and the use of 15N isotope methods for their quantification.
Chowdhary, Ramesh; Halldin, Anders; Jimbo, Ryo; Wennerberg, Ann
2015-06-01
To describe the early bone tissue response to implants with and without micro threads designed to the full length of an oxidized titanium implant. A pair of two-dimensional finite element models was designed using a computer aided three-dimensional interactive application files of an implant model with micro threads in between macro threads and one without micro threads. Oxidized titanium implants with (test implants n=20) and without (control implants n=20) micro thread were prepared. A total of 12 rabbits were used and each received four implants. Insertion torque while implant placement and removal torque analysis after 4 weeks was performed in nine rabbits, and histomorphometric analysis in three rabbits, respectively. Finite element analysis showed less stress accumulation in test implant models with 31Mpa when compared with 62.2 Mpa in control implant model. Insertion and removal torque analysis did not show any statistical significance between the two implant designs. At 4 weeks, there was a significant difference between the two groups in the percentage of new bone volume and bone-to-implant contact in the femur (p< .05); however, not in the tibia. The effect of micro threads was prominent in the femur suggesting that micro threads promote bone formation. The stress distribution supported by the micro threads was especially effective in the cancellous bone. © 2013 Wiley Periodicals, Inc.
Fully Premixed Low Emission, High Pressure Multi-Fuel Burner
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2012-01-01
A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.; Shanks, Wayne C., III; Jackson, Michael C.
1993-10-01
The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (delta S-34 = 21 parts per thousand) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in S-34(delta S-34 = up to 10.3 parts per thousand, mean = 3.8 parts per thousand) and depleted in S(20-290 ppm, mean = 100 ppm) relative to mid ocean ridge basalt (MORB)(850 ppm S, delta S-34 = 0.1 +/- 0.5 parts per thousand). The bac-arc trough basalts contain 200-930 ppm S and have delta S-34 values of 1.1 +/- 0.5 parts per thousand, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at fO2 is approximately equal to NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of delta S-34 with Sr-87/Sr-86 large ion lithophile element (LILE) and Light rare earth elements (LREE) contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a S-34-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2.CO2 in the arc and back-arc rocks has delta C-13 values of -2.1 to 13.1 parts per thousand, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower delta C-13 values for some Mariana Trough volcanic glasses, and that incorporation of subduction-derived organic carbon into the Mariana trough mantle source may not be necessary. More analyses are required to resolve this question, however.
The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.
Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I
2008-07-01
Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard
2016-03-15
Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a resultmore » of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.« less
Oxidation Behavior of HfB2-SiC Materials in Dissociated Environments
NASA Technical Reports Server (NTRS)
Ellerby, Don; Irby, Edward; Johnson, Sylvia M.; Beckman, Sarah; Gusman, Michael; Gasch, Matthew
2002-01-01
Hafnium diboride based materials have shown promise for use in extremely high temperature applications, such as sharp leading edges on future reentry vehicles. During reentry, the oxygen and nitrogen in the atmosphere are dissociated by the shock layer ahead of the sharp leading edge such that surface reactions are determined by reactions of monatomic oxygen and nitrogen rather than O2, and N2. Simulation of the reentry environment on the ground requires the use of arc jet (plasma jet) facilities that provide monatomic species and are the closest approximation to actual flight conditions. Simple static or flowing oxidation studies under ambient pressures and atmospheres are not adequate to develop an understanding of a materials behavior in flight. Arc jet testing is required to provide the appropriate stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres encountered during flight. This work looks at the response of HfB2/SiC materials exposed to various simulated reentry environments.
Gravity-Driven Deposits in an Active Margin (Ionian Sea) Over the Last 330,000 Years
NASA Astrophysics Data System (ADS)
Köng, Eléonore; Zaragosi, Sébastien; Schneider, Jean-Luc; Garlan, Thierry; Bachèlery, Patrick; Sabine, Marjolaine; San Pedro, Laurine
2017-11-01
In the Ionian Sea, the subduction of the Nubia plate underneath the Eurasia plate leads to an important sediment remobilization on the Calabrian Arc and the Mediterranean Ridge. These events are often associated with earthquakes and tsunamis. In this study, we analyze gravity-driven deposits in order to establish their recurrence time on the Calabrian Arc and the western Mediterranean Ridge. Four gravity cores collected on ridges and slope basins of accretionary prisms record turbidites, megaturbidites, slumping and micro-faults over the last 330,000 years. These turbidites were dated by correlation with a hemipelagic core with a multi-proxy approach: radiometric dating, δ18O, b* colour curve, sapropels and tephrochronology. The origin of the gravity-driven deposits was studied with a sedimentary approach: grain-size, lithology, thin section, geochemistry of volcanic glass. The results suggest three periods of presence/absence of gravity-driven deposits: a first on the western lobe of the Calabrian Arc between 330,000 and 250,000 years, a second between 120,000 years and present day on the eastern lobe of the Calabrian Arc and over the last 60,000 years on the western lobe, and a third on the Mediterranean Ridge over the last 37,000 years. Return times for gravity-driven deposits are around 1,000 years during the most important record periods. The turbidite activity also highlights the presence of volcaniclastic turbidites that seems to be link to the Etna changing morphology over the last 320,000 years.
NASA Astrophysics Data System (ADS)
Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed
2018-02-01
Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.
NASA Astrophysics Data System (ADS)
Canil, Dante; Fellows, Steven A.
2017-07-01
The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (<130 km). The released sulphate on melting potentially increases the fO2 of the arc mantle. We performed melting experiments on three subducted sediment compositions varying in bulk Ca/(Ca + Mg + Fe) from 0.3 to 0.6 at 2.5 GPa and 900-1100 °C to confirm how anhydrite stability can change by orders of magnitude the S, Cu, As, Zn, Mo, Pb, and Sb contents of sediment melts, and their subsequent liberation to the arc mantle. Using Cu/Sc as a proxy for the behaviour of S, the effect of variable subducted sediment composition on sulphide-sulphate stability and release of chalcophiles to the arc mantle is recognizable in volcanic suites from several subduction zones in space and time. The fO2 of the SSO buffers in subducted sediment relative to the arc mantle may have changed with time by shifts in the nature of pelagic sedimentation in the oceans over earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the oceans in only the past 250 million years.
Micro lens design for efficiency improvement of red organic light-emitting diode
NASA Astrophysics Data System (ADS)
Ki, Hyun-Chul; Kim, Doo-Gun; Kim, Seon-Hoon; Jung, U.-Ra; Kim, Sang-Gi; Hong, Kyung-Jin
2012-11-01
We have proposed a micro lens to improve the luminance of red organic light-emitting devices (ROLEDs). The micro lenses were applied on the glass/indium tin oxide (ITO)/OLED. The size, thickness and diameter of micro lenses were calculated by using FDTD (finite-difference timedomain) method. Simulations were performed for 5 µm and 10 µm sized. The thickness and the gap of the micro lens were both 1 µm. The material of the micro lenses was silicon dioxide. The highest luminance of an OLED applied with a micro lens was 11,185 cd/m2, at on approval voltage of 14.5 V, The efficiency of the device with a micro lens increased by 3 times compared to that of the device with no micro lens.
Dross treatment in a rotary arc furnace with graphite electrodes
NASA Astrophysics Data System (ADS)
Drouet, Michel G.; Handfield, My; Meunier, Jean; Laflamme, Claude B.
1994-05-01
Aluminum baths are always covered with a layer of dross resulting from the aluminum surface oxidation. This dross represents 1-10% of the melt and may contain up to 75wt.% aluminum. Since aluminum production is highly energy intensive, dross recycling is very attractive from both energy and economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the production of salt slags. Hydro-Quebec has developed a new technology using a rotary arc furnace with graphite electrodes. This process provides aluminum recovery rates of 80-90%, using a highly energy efficient, environmentally sound production method.
2009-01-01
SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456
Expanded operational capabilities of the Langley Mach 7 Scramjet test facility
NASA Technical Reports Server (NTRS)
Thomas, S. R.; Guy, R. W.
1983-01-01
An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.
Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E
2017-09-01
Pyrite (FeS 2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO 2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Beausoleil-Morrison, Ian; Lombardi, Kathleen
The concurrent production of heat and electricity within residential buildings using solid-oxide fuel cell (SOFC) micro-cogeneration devices has the potential to reduce primary energy consumption, greenhouse gas emissions, and air pollutants. A realistic assessment of this emerging technology requires the accurate simulation of the thermal and electrical production of SOFC micro-cogeneration devices concurrent with the simulation of the building, its occupants, and coupled plant components. The calibration of such a model using empirical data gathered from experiments conducted with a 2.8 kW AC SOFC micro-cogeneration device is demonstrated. The experimental configuration, types of instrumentation employed, and the operating scenarios examined are treated. The propagation of measurement uncertainty into the derived quantities that are necessary for model calibration are demonstrated by focusing upon the SOFC micro-cogeneration system's gas-to-water heat exchanger. The calibration coefficients necessary to accurately simulate the thermal and electrical performance of this prototype device are presented and the types of analyses enabled to study the potential of the technology are demonstrated.
Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads
Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred
2013-01-01
We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561
Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei
2011-07-08
We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.
In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy
NASA Astrophysics Data System (ADS)
Zeng, Rong-Chang; Qi, Wei-Chen; Song, Ying-Wei; He, Qin-Kun; Cui, Hong-Zhi; Han, En-Hou
2014-12-01
Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable biomaterials completely at present. Particularly, the alkalinity in the microenvironment surrounding the implants, resulting from the degradation, arouses a major concern. Micro-arc oxidation (MAO) and poly(lactic acid) (PLA) composite (MAO/PLA) coating on biomedical Mg-1.21Li-1.12Ca-1.0Y alloy was prepared to manipulate the pH variation in an appropriate range. Surface morphologies were discerned using SEM and EMPA. And corrosion resistance was evaluated via electrochemical polarization and impedance and hydrogen volumetric method. The results demonstrated that the MAO coating predominantly consisted of MgO, Mg2SiO4 and Y2O3. The composite coating markedly improved the corrosion resistance of the alloy. The rise in solution pH for the MAO/PLA coating was tailored to a favorable range of 7.5-7.8. The neutralization caused by the alkalinity of MAO and Mg substrate and acidification of PLA was probed. The result designates that MAO/PLA composite coating on Mg-1.21Li-1.12Ca-1.0Y alloys may be a promising biomedical coating.
LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application.
Xiong, Ying; Hu, Qiang; Song, Renguo; Hu, Xiaxia
2017-06-01
A composite bio-coating was fabricated on AZ80 magnesium (Mg) alloy by using micro-arc oxidation (MAO) under the pretreatment of laser shock peening (LSP) in order to improve the bio-corrosion resistance and the mechanical integrity. LSP treatment could induce grain refinement and compressive residual stress field on the surface of material. MAO bio-coating was grown in alkaline electrolyte with hydroxyapatite (HA, Ca 10 (PO4) 6 (OH) 2 ) to improve the biological properties of the material. The microstructure, element and phase composition for untreated based material (BM) and treated samples (LSP layer, MAO bio-coating and LSP/MAO composite bio-coating) were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical tests and slow strain rate tensile (SSRT) tests were used to evaluate the corrosion resistance and the stress corrosion susceptibility in simulated body fluid (SBF). The results indicated that LSP/MAO composite bio-coating can not only improve the corrosion resistance of Mg alloy substrate evidently but also increase the mechanical properties in SBF compared to LSP layer and MAO bio-coating. Mg alloy treated by LSP/MAO composite technique should be better suited as biodegradable orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei
2011-07-01
We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2 + , Sr2 + and PO43 - ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2 + , Sr2 + and PO43 - ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.
Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes
NASA Astrophysics Data System (ADS)
Tiliakos, Nicholas
A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.
NASA Astrophysics Data System (ADS)
Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben
2013-09-01
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization-differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re-ReO2 ≈ ΔNi-NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe-Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro's (Am J Sci 274(4):321-355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization-differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI-SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.
Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben
2013-01-01
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.
Weng, Chih-Chiang; Liao, Juinn-Der; Chen, Hsin-Hung; Lin, Tung-Yi; Huang, Chih-Ling
2011-09-01
An aqueous solution containing Escherichia coli can be completely inactivated within a short treatment time using a capillary-tube-based oxygen/argon micro-plasma source. A capillary-tube-based oxygen/argon micro-plasma system with a hollow inner electrode was ignited by a 13.56 MHz radio frequency power supply with a matching network and characterised by optical emission spectroscopy. An aqueous solution containing E. coli was then treated at various the working distances, plasma exposure durations, and oxygen ratios in argon micro-plasma. The treated bacteria were then assessed and qualitatively investigated. The morphologies of treated bacteria were examined using a scanning electron microscope (SEM). In the proposed oxygen/argon micro-plasma system, the intensities of the main emission lines of the excited species, nitric oxide (NO), hydrated oxide (OH), argon (Ar), and atomic oxygen (O), fluctuated with the addition of oxygen to argon micro-plasma. Under a steady state of micro-plasma generation, the complete inactivation of E. coli in aqueous solution was achieved within 90 s of argon micro-plasma exposure time with a working distance of 3 mm. SEM micrographs reveal obvious morphological damage to the treated E. coli. The addition of oxygen to argon micro-plasma increased the variety of O-containing excited species. At a given supply power, the relative intensities of the excited species, NO and OH, correlated with the ultraviolet (UV) intensity, decreased. For the proposed capillary-tube-based micro-plasma system with a hollow inner electrode, the oxygen/argon micro-plasma source is efficient in inactivating E. coli in aqueous solution. The treatment time required for the inactivation process decreases with decreasing working distance or the increasing synthesised effect of reactive species and UV intensity.
A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance
NASA Technical Reports Server (NTRS)
Cabell, Karen F.; Rock, Kenneth E.
2003-01-01
The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.
NASA Astrophysics Data System (ADS)
Barthwal, Sumit; Lim, Si-Hyung
2015-02-01
We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.
NASA Astrophysics Data System (ADS)
Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.
2018-02-01
Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (p<0.05) for control, TBHP, and NAC. Encouragingly, partial least squares discriminant analysis applied to our data showed high sensitivity and specificity for identification of control (87.3%, 71.7%), NAC (92.3%, 85.1%) and TBHP (86.9%, 92.9%). These results suggest that confocal Raman micro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.
2000-01-01
Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha
Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Du, Chang Ming; Wang, Jing; Zhang, Lu; Xia Li, Hong; Liu, Hui; Xiong, Ya
2012-01-01
Gliding arc discharge has been investigated in recent years as an innovative physicochemical technique for contaminated water treatment at atmospheric pressure and ambient temperature. In this study we tested a gas-liquid gliding arc discharge reactor, the bacterial suspension of which was treated circularly. When the bacterial suspension was passed through the electrodes and circulated at defined flow rates, almost 100% of the bacteria were killed in less than 3.0 min. Experimental results showed that it is possible to achieve an abatement of 7.0 decimal logarithm units within only 30 s. Circulation flow rates and types of feeding gas caused a certain impact on bacteria inactivation, but the influences are not obvious. So, under the promise of sterilization effect, industrial applications can select their appropriate operating conditions. All inactivation curves presented the same three-phase profile showing an apparent sterilization effect. Analysis of the scanning electron microscope images of bacterial cells supports the speculation that the gas-liquid gliding arc discharge plasma is acting under various mechanisms driven essentially by oxidation and the effect of electric field. These results enhance the possibility of applying gas-liquid gliding arc discharge decontamination systems to disinfect bacterial-contaminated water. Furthermore, correlational research indicates the potential applications of this technology in rapid sterilization of medical devices, spacecraft and food.
NASA Astrophysics Data System (ADS)
Borgohain, Rituraj
Carbon nano-onions (CNOs), concentrically multilayered fullerenes, are prepared by several different methods. We are studying the properties of two specific CNOs: A-CNOs and N-CNOs. A-CNOs are synthesized by underwater arc discharge, and N-CNOs are synthesized by high-temperature graphitization of commercial nanodiamond. In this study the synthesis of A-CNOs are optimized by designing an arc discharge aparatus to control the arc plasma. Moreover other synthesis parameters such as arc power, duty cycles, temperature, graphitic and metal impurities are controlled for optimum production of A-CNOs. Also, a very efficient purification method is developed to screen out A-CNOs from carboneseous and metal impurities. In general, A-CNOs are larger than N-CNOs (ca. 30 nm vs. 7 nm diameter). The high surface area, appropriate mesoporosity, high thermal stability and high electrical conductivity of CNOs make them a promising material for various applications. These hydrophobic materials are functionalized with organic groups on their outer layers to study their surface chemistry and to decorate with metal oxide nanoparticles. Both CNOs and CNO nanocomposites are investigated for application in electrochemical capacitors (ECs). The influences of pH, concentration and additives on the performance of the composites are studied. Electrochemical measurements demonstrate high specific capacitance and high cycling stability with high energy and power density of the composite materials in aqueous electrolyte. Key words: Carbon Nano-onions, Arc discharge, Purification, Functionalization, Supercapacitor.
NASA Astrophysics Data System (ADS)
Yi, Xuenong; Wang, Yulin
2017-06-01
A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.
NASA Astrophysics Data System (ADS)
Lu, Hailin; Zhang, Pengpeng; Ren, Shanshan; Guo, Junde; Li, Xing; Dong, Guangneng
2018-01-01
Contact mechanical seal is a normal technology applied on middle axis of liquid rocket turbo pump, and the kinetic and static seal rings contact low temperature rocket propellant. Copper-graphite (Cu/C) composite as an excellent self-lubrication material was widely used in aerospace industry, this study took Cu/C as ball and bearing steel as disk to investigate the tribology properties, and distilled water were used to simulate the lox tribology performances. This study prepared polytrifluorochloroethylene (PCTFE) micro-particles which were coated on the oxide surfaces of bearing steel disk at temperature of 150 °C. The tribology results showed that the oxide surfaces treated with micro PCTFE particles have lower fiction coefficient and lower wear rate than original disk in water, and the wear morphology revealed that the treated surfaces obviously had less Cu/C composite transfer film than original disk. Meanwhile SEM, EDS, XRD, XPS and light microscope etc revealed that PCTFE micro-particles could associate with the oxide surfaces and caused higher water contact angle, due to the properties of the fluorine-containing composite may cause the good lubrication effect in water. Thus this technology shows great potential to enhance tribological performances for aerospace industry on a large scale.
Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2017-10-01
In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.
Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag
NASA Astrophysics Data System (ADS)
Safarian, Jafar; Kolbeinsen, Leiv
2015-02-01
The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.
Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen
NASA Astrophysics Data System (ADS)
Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.
2017-02-01
Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.
Emittance of TD-NiCr after simulated reentry
NASA Technical Reports Server (NTRS)
Clark, R. K.; Dicus, D. L.; Lisagor, W. B.
1978-01-01
The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Liu, Yuan; Scheel, Kyle R.; Li, Yong; Yu, Yunhua; Yang, Xiaoping; Peng, Zhonghua
2018-03-01
The electrochemical properties of catalyst materials are highly dependent on the materials structure and architecture. Herein, nano-on-micro Cu electrodes are fabricated by growing Cu microcrystals on Ni foam substrate, followed by introducing Cu nanocrystals onto the surface of the Cu microcrystals. The introduction of Cu nanocrystals onto the surface of Cu microcrystals is shown to dramatically increase the electrochemically active surface area and thus significantly enhances the catalytic activity of the catalyst electrode towards electro-oxidation of hydrazine. The onset potential (-1.04 V vs. Ag/AgCl) of the nano-on-micro Cu electrode is lower than those of the reported Cu-based catalysts under similar testing conditions, and a current density of 16 mA·cm-2, which is 2 times that of the microsized Cu electrode, is achieved at a potential of -0.95 V vs. Ag/AgCl. Moreover, the nano-on-micro Cu electrode demonstrates good long-term stability.
Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong
2017-05-01
The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Díaz, I; Pérez, S I; Ferrero, E M; Fdz-Polanco, M
2011-02-01
Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found. Copyright © 2010 Elsevier Ltd. All rights reserved.
Qian, Xiaoqin; Han, Xiaoxia; Chen, Yu
2017-10-01
The clinical ultrasound (US)-based theranostic biomedicine suffers from the critical issue that traditional microbubbles (MBs) have lots of drawbacks such as low stability, large particle size, difficult structural control, etc. The unique composition, structure and functionality of inorganic micro/nanoplatforms have shown their great prospect for solving these critical issues and drawbacks of traditional organic MBs. This review summarizes and discusses the state-of-art development on exploring inorganic micro/nanoparticles for versatile US-based biomedical applications, ranging from US imaging, photoacoustic imaging, sonodynamic therapy, high intensity-focused US ablation and US-triggered chemotherapy. These inorganic micro/nanoplatforms include silica-based particles, Au, carbon nanotubes, TiO 2 , manganese oxide, iron oxide, Prussian blue, inorganic gas-generating nanoparticles and their versatile composite micro/nanosystems. Especially, their unique structure/composition-functionality relationships and biocompatibility/biosafety in US-based theranostics have been discussed and revealed in detail. Their facing challenges and future developments are finally discussed to promote their further clinical translations. It is highly expected that these inorganic micro/nanoplatforms will enter the clinical stage to benefit the personalized theranostics biomedicine based on their unique functionalities and high performance as necessarily required in US-based theranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.
NASA Astrophysics Data System (ADS)
Shirafuji, Tatsuru; Ishida, Yodai; Nomura, Ayano; Hayashi, Yui; Goto, Motonobu
2017-06-01
We have performed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) on methylene-blue aqueous solutions treated with three-dimensionally integrated micro-solution plasma, in which we have acquired the time evolution of mass spectra as a function of treatment time. The time evolution of mass spectral peak intensities for major detected species has clearly indicated that the parent methylene-blue molecules are degraded through consecutive reactions. The primary reaction is the oxidation of the parent molecules. The oxidized species still have two benzene rings in the parent molecules. The secondary reactions are the separation of the oxidized species and the formation of compounds with one benzene ring. We have also performed the numerical fitting of the time evolution of the mass spectral peak intensities, the results of which have indicated that we must assume additional primary reactions before the primary oxidation for better agreement with experimental results.
Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan
2009-05-01
Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.
Optical Characterizations of VCSEL for Emission at 850 nm with Al Oxide Confinement Layers
NASA Astrophysics Data System (ADS)
Mokhtari, Merwan; Pagnod-Rossiaux, Philippe; Laruelle, Francois; Landesman, Jean-Pierre; Moreac, Alain; Levallois, Christophe; Cassidy, Daniel T.
2018-03-01
In-plane micro-photoluminescence (μ-PL) and micro-reflectivity measurements have been performed at room temperature by optical excitation perpendicular to the surface of two different structures: a complete vertical surface-emitting laser (VCSEL) structure and a VCSEL without the upper p-type distributed Bragg reflector (P-DBR). The two structures were both laterally oxidized and measurements were made on the top of oxidized and unoxidized regions. We show that, since the photoluminescence (PL) spectra consist of the cumulative effect of InGaAs/AlGaAs multi-quantum wells (MQWs) luminescence and interferences in the DBR, the presence or not of the P-DBR and oxide layers can significantly modify the spectrum. μ-PL mapping performed on full VCSEL structures clearly shows oxidized and unoxidized regions that are not resolved with visible light optical microscopy. Finally, preliminary measurements of the degree of polarization (DOP) of the PL have been made on a complete VCSEL structure before and after an oxidation process. We obtain an image of DOP measured by polarization-resolved μ-PL. These measurements allow us to evaluate the main components of strain.
NASA Technical Reports Server (NTRS)
Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.
1990-01-01
The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.
Oxidation and emittance of superalloys in heat shield applications
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Clark, R. K.; Unnam, J.
1986-01-01
Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.
NASA Astrophysics Data System (ADS)
Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.
2018-02-01
We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.
NASA Astrophysics Data System (ADS)
Duncan, M. S.; Dasgupta, R.
2013-12-01
Understanding the balance between subduction inputs vs. arc output of carbon is critical for constraining the global carbon cycle. However, the agent of carbon transfer from slab to sub-arc mantle is not constrained [1]. Partial melt of ocean-floor sediments is thought to be a key agent of mass transfer in subduction zones, accounting for the trace element characteristics of arc magmas [2]. Yet the carbon carrying capacity of rhyolitic partial melts of sediments remains unknown at sub-arc depths. In our previous work [3], we constrained CO2 solubility of natural rhyolite from 1.5-3.0 GPa, 1300 °C and logfO2 at FMQ×1.0. However, the effects of T and fO2 on CO2 solubility remain unconstrained. In particular, for sediments with organic carbon, graphite stability is expected and the fO2 of C-dissolution can be lower, which may affect the solubility. Thus it is critical to constrain the CO2 solubility of sediment partial melts under graphite-saturated conditions. We determined CO2 solubility of a model rhyolite composition, similar to partial melt composition of natural metapelite [4], at graphite saturation, using Pt/Gr capsules and a piston cylinder device. Experiments were conducted at 1.5-3.0 GPa and 1100-1400 °C. FTIR was employed to measure the concentrations of CO2 and H2O in doubly polished experimental glasses. Raman and SIMS were used to determine the presence of reduced carbon species and total carbon, respectively. FTIR spectra reveal that CO2 is dissolved as both molecular CO2 (CO2mol.) and carbonates (CO32-). For graphite-saturated, hydrous melts with measured H2O ~2.0 wt.%, CO2tot. (CO2mol.+CO32-) values increase with increasing P from ~0.6 to 1.2 wt.% from 1.5 to 3.0 GPa at 1300 °C. These values are lower than more oxidized melts with the same water content, which were 0.85 to 1.99 wt.% CO2 as P increased. At 3 GPa, graphite-saturated experiments from 1100 to 1300 °C yield CO2tot. value of 1.18-1.20 wt.%, suggesting minor effect of temperature in bulk CO2 solubility. To meet the minimum requirement of 3000 ppm CO2 in primary arc magma [5,6], the required sediment melt contribution is 0.18-0.28 wt.% CO2, which is distinctly lower than the solubility limit of graphite-saturated melt. However, 1.7 wt.% CO2 in primary arc basalts [5] exceeds the solubility limit of reduced, hydrous melts, which is in contrast to more oxidized, hydrous melts which can contribute up to 2 wt.% CO2. We determine that ~1.7-15% of sediment melt would be required to meet 3000 ppm CO2 in the primary arc basalt depending on the depth of melting (1.5-3.0 GPa) and the degree of mantle wedge melting (15-30%). This contribution is higher than that previously calculated for the more oxidized melts, but still may not be an unreasonable slab flux. [1] Dasgupta (2013) RiMG, 75, 183-229; [2] Plank and Langmuir (1993) Nature, 362, 739-743. [3] Duncan and Dasgupta. (in review) GCA; [4] Tsuno and Dasgupta (2011) CMP, 161, 743-763; [5] Blundy et al. (2010) EPSL, 290, 289-301; [6] Wallace (2005) JVGR, 140, 217-240.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.
2016-08-01
The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.
Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.
2006-01-01
Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.
NASA Astrophysics Data System (ADS)
Muth, M.; Wallace, P. J.; Walowski, K. J.
2017-12-01
Arc magmas have an oxidized signature (higher Fe3+/∑Fe) relative to MORB. This oxidized signature could be developed during crustal differentiation or be derived from slab components such as hydrous melts and fluids. Previous work in the Lassen region of the Cascade arc shows evidence for the addition of a hydrous slab component to the mantle wedge beneath the southern Cascades [1]. Here we investigate whether this hydrous slab component is linked to the oxidation state of primitive magmas using the sulfur, metal, and trace element concentrations of olivine-hosted melt inclusions. Melt inclusions were selected from the tephra of three cinder cones in Lassen volcanic field and analyzed for trace elements and metals (Cu, Zn, Sn) using LA-ICPMS and for major elements, S, and Cl using EMPA. Sulfur concentrations in individual melt inclusions range from 900 to 2200 ppm. Cu, Zn, and Sn concentrations in individual melt inclusions range from 17 to 167 ppm, 65 to 127 ppm, and 0.4 to 1.4 ppm, respectively. Average sulfur concentrations are different for each of the three cinder cones, and individual melt inclusion S/Dy values correlate well with Sr/Nd values. This is an indication that, like other volatiles, sulfur is supplied to the mantle wedge by a slab-derived component. To assess whether this sulfur-carrying slab component affects the oxidation state of the mantle wedge during melting, we used estimates of sulfur content at sulfide saturation to place a minimum bound on fO2 values for the primitive magmas at each cinder cone. These values range from QFM to QFM + 1.5. Despite this wide range of fO2 values, the concentrations of Cu and other metals are low relative to values predicted by partial melting of the mantle wedge during relatively oxidized (greater than QFM + 1.3) conditions [2], and do not vary systematically with indicators of slab component addition such as Sr/Nd. This suggests that metals are not derived from the slab component and/or that residual sulfide is present during melting across the wide range of fO2 values. This observation is also consistent with the addition of a sulfur-carrying slab component to the mantle wedge. Future work will compare these observations to direct measurement of Fe3+/∑Fe and S6+/∑S using XANES. [1] Walowski et al. 2016, EPSL. [2] Lee et al. 2012, Science.
Gaseous and particulate emissions from a DC arc melter.
Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M
2003-01-01
Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.
Spinel-Bearing, Al-Rich Chrondrules in the Unequilibrated Ordinary Chondrite NWA7402
NASA Technical Reports Server (NTRS)
Ross, D. K.; Simon, J. I.; Cato, M. J.
2017-01-01
Several Al-rich chondrules (ARCs) have been discovered in the unequilibrated ordinary chondrite NWA7402. Two of these three ARCs are spinel-bearing. Here we have characterized these unusual chondrules with respect to their mineralogy and bulk compositions. These objects will be targets for future O and Mg isotope analysis. NWA7402 is clearly unequilibrated, with wide ranges of olivine compositions in chondrules (Fo99-Fo70, excluding rims). Chromium-oxide contents in olivine, and Raman organic spectral parameters support the classification of this meteorite as petrologic type 3.1 [1]. NWA7402 is similar to, and could be paired with NWA5717, in that they both possess light and dark lithologies.
Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.
Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K
2006-07-01
Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.
Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J
2004-04-23
The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
Kinetic properties of the human liver cytosolic aldehyde dehydrogenase for retinal isomers.
Bhat, P V; Samaha, H
1999-01-15
Retinoic acid exerts pleiotropic effects by acting through two families of nuclear receptors, RAR and RXR. All-trans and 9-cis retinoic acid bind RARs, whereas 9-cis retinoic acid binds and activates only the RXRs. To understand the role of human liver cytosolic aldehyde dehydrogenase (ALDH1) in retinoic acid synthesis, we examined the ability of ALDH 1 to catalyze the oxidation of the naturally occurring retinal isomers. ALDH1 catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal with equal efficiency. However, the affinity to all-trans retinal (Km = 2.2 microM) was twofold higher than to 9-cis (Km = 5.5 microM) and 13-cis (Km = 4.6 microM) retinal. All-trans retinol was a potent inhibitor of ALDH1 activity, and inhibited all-trans retinal oxidation uncompetitively. Comparison of the kinetic properties of ALDH1 for retinal isomers with those of previously reported rat kidney retinal dehydrogenase showed distinct differences, suggesting that ALDH1 may play a different role in retinal metabolism in liver.
MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases.
Aranda, Juan F; Madrigal-Matute, Julio; Rotllan, Noemi; Fernández-Hernando, Carlos
2013-09-01
The regulation of the metabolism of cholesterol has been one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species can oxidize LDL particles, increasing the levels of the highly proatherogenic oxidized LDL. Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or (high levels of) glucose. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, oxidative derivatives of lipoprotein, and redox balance. Here, we summarize recent findings in the field, highlighting the contributions of some miRNAs to lipid- and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL, and ameliorate lipid- and oxidative-related disorders, including atherosclerosis, nonalcoholic fatty liver disease, and metabolic syndrome. © 2013 Elsevier Inc. All rights reserved.
Present-day Kinematics of Papua New Guinea from GPS campaign measurements
NASA Astrophysics Data System (ADS)
Koulali Idrissi, A.; McClusky, S.; Tregoning, P.
2013-12-01
Papua New Guinea (PNG) is a complex tectonic region located in the convergence zone between the Australian and Pacific Plate. It occupies arguably one of the most tectonically complicated regions of the world, and its geodynamic evolution involves micro-plate rotation, lithospheric rupture forming ocean basins, arc-continent collision, subduction polarity reversal, collisional orogenesis, ophiolite obduction, and exhumation of high-pressure metamorphic (ultramafic) rocks. In this study we present a GPS derived velocity field based on 1993-2008 survey mode observations at 30 GPS sites. We combine our results with previously published GPS velocities to investigate the deformation in northern and northwestern Papua New Guinea. We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for poles of rotation of several micro-plates. The micro-plate block boundary fault geometry is based on geological mapping and regional seismicity. The results show that fault system north of the Highlands fold and thrust belt is the major boundary between the rigid Australian Plate and the north Highlands block, with convergence occurring at rates of between ~ 6 and 11.5 mm/yr. The relative motion across the northern Highlands block increases to the north to ~ 21-24 mm/yr, meaning that the New Guinea trench is likely accumulating elastic strain and confirming that the new Guinea Trench is an active inter-plate boundary. Our results also show, that the north New Guinea Highlands and the Papuan peninsula are best modelled as two blocks separated by a boundary through the Aure Fold belt Belt complex. This block boundary today is accommodating an estimated 4-5 mm/yr dextral motion. Our model also confirms previous results showing that the Ramu-Markham fault accommodates the deformation associated with the Finisterre arc-continent collision. This new GPS velocity field provides fresh insights into the details of the kinematics of the PNG present-day deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palsamy, Periyasamy; Ayaki, Masahiko; Elanchezhian, Rajan
Highlights: Black-Right-Pointing-Pointer We found significant Keap1 promoter demethylation in diabetic cataractous lenses. Black-Right-Pointing-Pointer Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. Black-Right-Pointing-Pointer Elevated levels of Keap1 are known to decrease the levels of Nrf2. Black-Right-Pointing-Pointer Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is knownmore » that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2 Prime deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which then increases the targeting of Nrf2 for proteosomal degradation. Decreased Nrf2 activity represses the transcription of many antioxidant enzyme genes and alters the redox-balance towards lens oxidation. Thus, the failure of antioxidant protection due to demethylation of the CpG islands in the Keap1 promoter is linked to the diabetic cataracts and possibly ARCs.« less
NASA Astrophysics Data System (ADS)
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans.
Cavalheiro, R A; Fortes, F; Borecký, J; Faustinoni, V C; Schreiber, A Z; Vercesi, A E
2004-10-01
The respiration, membrane potential (Deltapsi), and oxidative phosphorylation of mitochondria in situ were determined in spheroplasts obtained from Candida albicans control strain ATCC 90028 by lyticase treatment. Mitochondria in situ were able to phosphorylate externally added ADP (200 microM) in the presence of 0.05% BSA. Mitochondria in situ generated and sustained stable mitochondrial Deltapsi respiring on 5 mM NAD-linked substrates, 5 mM succinate, or 100 microM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus 1 mM ascorbate. Rotenone (4 microM) inhibited respiration by 30% and 2 micro M antimycin A or myxothiazole and 1 mM cyanide inhibited it by 85%. Cyanide-insensitive respiration was partially blocked by 2 mM benzohydroxamic acid, suggesting the presence of an alternative oxidase. Candida albicans mitochondria in situ presented a carboxyatractyloside-insensitive increase of Deltapsi induced by 5 mM ATP and 0.5% BSA, and Deltapsi decrease induced by 10 microM linoleic acid, both suggesting the existence of an uncoupling protein. The presence of this protein was subsequently confirmed by immunodetection and respiration experiments with isolated mitochondria. In conclusion, Candida albicans ATCC 90028 possesses an alternative electron transfer chain and alternative oxidase, both absent in animal cells. These pathways can be exceptional targets for the design of new chemotherapeutic agents. Blockage of these respiratory pathways together with inhibition of the uncoupling protein (another potential target for drug design) could lead to increased production of reactive oxygen species, dysfunction of Candida mitochondria, and possibly to oxidative cell death.
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu
2014-02-01
Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.
Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.
2008-01-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.
2008-08-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.
Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai
2016-01-01
Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542
Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai; Hao, Zhi-Hui
2016-01-01
Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.
Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel
NASA Astrophysics Data System (ADS)
Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.
2017-07-01
The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.
Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications
NASA Astrophysics Data System (ADS)
Hansora, D. P.; Shimpi, N. G.; Mishra, S.
2015-12-01
This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.
miR-638 regulates gene expression networks associated with emphysematous lung destruction
2013-01-01
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks. Methods We profiled microRNAs in different regions of the lung with varying degrees of emphysema from 6 smokers with COPD and 2 controls (8 regions × 8 lungs = 64 samples). Regional emphysema severity was quantified by mean linear intercept. Whole genome microRNA and gene expression data were integrated in the same samples to build co-expression networks. Candidate microRNAs were perturbed in human lung fibroblasts in order to validate these networks. Results The expression levels of 63 microRNAs (P < 0.05) were altered with regional emphysema. A subset, including miR-638, miR-30c, and miR-181d, had expression levels that were associated with those of their predicted mRNA targets. Genes correlated with these microRNAs were enriched in pathways associated with emphysema pathophysiology (for example, oxidative stress and accelerated aging). Inhibition of miR-638 expression in lung fibroblasts led to modulation of these same emphysema-related pathways. Gene targets of miR-638 in these pathways were amongst those negatively correlated with miR-638 expression in emphysema. Conclusions Our findings demonstrate that microRNAs are altered with regional emphysema severity and modulate disease-associated gene expression networks. Furthermore, miR-638 may regulate gene expression pathways related to the oxidative stress response and aging in emphysematous lung tissue and lung fibroblasts. PMID:24380442
Perfluoropolyalkylether decomposition on catalytic aluminas
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1994-01-01
The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.
Pulido, Camilo Andrés; de Oliveira Franco, Ana Paula Gebert; Gomes, Giovana Mongruel; Bittencourt, Bruna Fortes; Kalinowski, Hypolito José; Gomes, João Carlos; Gomes, Osnara Maria Mongruel
2016-10-01
The behavior and magnitude of the deformations that occur during polymerization and the behavior of the luting agents of glass fiber posts inside the root canal require quantification. The purpose of this in vitro study was to investigate the in situ polymerization shrinkage, degree of conversion, and bond strength inside the root canal of resin cements used to lute fiber posts. Thirty maxillary canines were prepared to lute fiber posts. The teeth were randomly divided into 2 groups (n=15) according to the cementation system used, which included ARC, the conventional dual-polymerized resin cement RelyX ARC, and the U200 system, a self-adhesive resin cement, RelyX U200. Two fiber optic sensors with recorded Bragg gratings (FBG) were attached to each post before inserting the resin cement inside the root canal to measure the polymerization shrinkage (PS) of the cements in the cervical and apical root regions (με). Specimens were sectioned (into cervical and apical regions) to evaluate bond strength (BS) with a push-out test and degree of conversion (DC) with micro-Raman spectroscopy. Data were statistically analyzed with 2-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). The ARC and U200 system showed similar PS values (-276.4 ±129.2 με and -252.1 ±119.2 με, respectively). DC values from ARC were higher (87.5 ±2.7%) than those of U200 (55.9 ±9.7%). The cervical region showed higher DC values (74.8 ±15.2%) and PS values (-381.6 ±53.0 με) than those of the apical region (68.5 ±20.1% and -146.9 ±43.5 με, respectively) for both of the resin cements. BS was only statistically different between the cervical and apical regions for ARC (P<.05). The ARC system showed the highest PS and DC values compared with U200; and for both of the resin cements, the PS and DC values were higher at the cervical region than at the apical region of the canal root. BS was higher in the cervical region only for ARC. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R
1997-01-01
This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG).
NASA Astrophysics Data System (ADS)
Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang
2018-05-01
Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.
Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.
Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie
2017-05-22
The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF
NASA Technical Reports Server (NTRS)
Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.
2014-01-01
The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in; Singh, Omveer; Dahiya, Raj P.
We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.
Gravity and magnetic anomalies of the Cyprus arc and tectonic implications
NASA Astrophysics Data System (ADS)
Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.
2003-04-01
In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland geology of Cyprus. Eratosthenes is in the process of actively being underthrust both northwards and southwards under opposing margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavens, C; Wronski, M; Lee, YK
2014-08-15
Purpose: To evaluate normal tissue sparing in intra-cranial HF-SRT, comparing various arc configurations with the Synergy Beam Modulator (SynBM) and Agility linacs, the latter incorporating leaf interdigitation and backup jaws. Methods: Five patients with multiple brain metastases (BMs), (5 BMs (n=2), 3 BMs (n=3)) treated with HF-SRT using 25 Gy (n=2) or 30 Gy (n=3) in 5 fractions, were investigated. Clinical treatment plans used the SynBM. Each patient was retrospectively re-planned on Agility, employing three planning strategies: (A) one isocenter and dedicated arc for each BM; (B) a single isocenter, centrally placed with respect to BMs; (C) the isocenter andmore » arc configuration used in the SynBM plan, where closely spaced (<5cm) BMs used a dedicated isocenter and arcs. Agility plans were normalized for PTV coverage and heterogeneity. Results and Conclusion: Strategy A obtained the greatest improvements over the SynBM plan, where the maximum OAR dose, and mean dose to normal brain (averaged for all patients) were reduced by 55cGy and 25cGy, respectively. Strategy B was limited by having a single isocenter, hence less jaw shielding and increased MLC leakage. The maximum OAR dose was reduced by 13cGy, however mean dose to normal brain increased by 84cGy. Strategy C reduced the maximum OAR dose and mean dose to normal brain by 32cGy and 9cGy, respectively. The results from this study indicate that, for intra-cranial HF-SRT of multiple BMs, Agility plans are equal or better than SynBM plans. Further planning is needed to investigate dose sparing using Strategy A and the SynBM.« less
NASA Technical Reports Server (NTRS)
Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.
1986-01-01
Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.
Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy
NASA Astrophysics Data System (ADS)
Hua, Yinqun; Rong, Zhen; Ye, Yunxia; Chen, Kangmin; Chen, Ruifang; Xue, Qing; Liu, Haixia
2015-03-01
The oxidation is one of the main failure mode of Ni-based alloy at high temperature, laser shock processing not only can improve the mechanical properties but also the oxidation resistance. So the study on laser shock processing effects on oxidation resistance of this alloy is necessary. The aim of this paper is to investigate the effects of laser shock processing on microstructure, micro-hardness and isothermal oxidation resistance of GH586 superalloy. Scanning electron microscopy, energy-dispersive spectrum, transmission electron microscope, and X-ray diffraction technique were used to analyze the microstructure changes and the surface morphologies of the oxide scales. In addition, micro-hardness of LSP-treated samples was measured. The results show that the average grains size on the surfaces of LSP specimen was found to be significantly finer compared to the untreated one (33.3 μm vs. 18.5 μm). Highly tangled and dense dislocation arrangements and a high amount of twins have been observed. After the oxidation, the defects density (dislocations and twins) in the specimen decreased. The oxidation kinetics approximately followed a parabolic oxidation law at 800 °C and 900 °C. The oxidation layer was composed of Cr2O3, NiCr2O4, TiO2, and Al2O3, which generated more quickly on the surface treated by LSP during initial oxidation. The average oxidation rate was lower after LSP due to the dense, tiny and homogeneous oxidation layer. The results show that the specimens treated by LSP have a better high temperature oxidation resistance.
Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry
2002-01-01
This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the bracket and composite aeroshell structure interface.
NASA Astrophysics Data System (ADS)
He, Dengfa
2016-04-01
Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.
Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators
Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen
2010-01-01
This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869
NASA Technical Reports Server (NTRS)
Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.
2010-01-01
In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.
2009-01-01
In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.
Facile synthesis of hierarchical porous VOx@carbon composites for supercapacitors.
Zhao, Chunxia; Cao, Jinqiao; Yang, Yunxia; Chen, Wen; Li, Junshen
2014-08-01
Hierarchical or micro-nano structured porous VOx@carbon composites were synthesized by a one-step method using phenolic resin as the carbon precursor and ammonium metavanadate as the source of vanadium oxides. The effects of the vanadium source loading on the microstructure and electrochemical properties of the composites were investigated. X-ray diffraction results showed that as the vanadium oxides source loading increased, vanadium oxides in the composites changed oxidation states from V2O3 to mixed states of V2O3 and VO2. Electrochemical test results indicated that the micro-nano porous structure of the composites could facilitate the ion diffusion in the rich porous structure and then promote the electrochemical reaction. More importantly, we found that vanadium oxides greatly enhanced the electrochemical performance of the materials, due to the faradic capacitance generated from vanadium oxide nanoparticles. A maximum specific capacitance of 171 F/g was obtained from VOx@carbon composite with vanadium loading of ∼44 wt%. Further increasing the VOx loading over this fraction was not beneficial. Our results suggested that hierarchical porous VOx@carbon composites were promising candidates for supercapacitor applications. Copyright © 2013 Elsevier Inc. All rights reserved.
A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification
NASA Astrophysics Data System (ADS)
Jin, Cang; Yuan, Jinhui; Yu, Chongxiu
2010-11-01
The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.
Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria
NASA Astrophysics Data System (ADS)
Kozlowski, J.; Stein, L. Y.
2014-12-01
Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.
Pigments which reflect infrared radiation from fire
Berdahl, P.H.
1998-09-22
Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
Gas-tungsten arc welding of aluminum alloys
Frye, Lowell D.
1984-01-01
A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.
Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes
Zhou, Xiaowei
2017-01-01
The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C. PMID:29359005
NASA Astrophysics Data System (ADS)
Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo
2012-06-01
Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.
Synthesis of ZnO Hexagonal Micro Discs on Glass Substrates Using the Spray Pyrolysis Technique
NASA Astrophysics Data System (ADS)
Ikhmayies, Shadia J.; Zbib, Mohamad B.
2017-07-01
Zinc oxide (ZnO) is an important transparent conducting oxide of potential use in solar cells, electronics, photoelectronics, and sensors. In this work ZnO micro discs were synthesized in thin film form on glass substrates using the low cost spray pyrolysis method. The films were prepared from a precursor solution of ZnCl2 in distilled water at a substrate temperature of 300 ± 5°C. The as-synthesized samples were analyzed with x-ray diffraction, scanning electron microscopy, and x-ray energy dispersive spectroscopy (EDS). The morphology of the films showed randomly distributed micro discs of hexagonal shape. The EDS reports showed that the films contained Cl and Fe. Size analysis was performed using ImageJ software, where the average diameter was found to be 4.8 ± 0.9 μm, and the average thickness was found to be 254 ± 43 nm.
Protective effect of N-acetylcysteine against oxygen radical-mediated coronary artery injury.
Rodrigues, A J; Evora, P R B; Schaff, H V
2004-08-01
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 microM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 microM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 +/- 3.42 g), compared to control (8.56 +/- 3.16 g) and to NAC group (9.07 +/- 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 microM) was also reduced (maximal relaxation of 52.1 +/- 43.2%), compared to control (100%) and NAC group (97.0 +/- 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 microM; maximal relaxation of 20.0 +/- 21.2%), compared to control (100%) and NAC group (70.8 +/- 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 microM) and pinacidil (1 nM to 10 microM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
NASA Astrophysics Data System (ADS)
Hussein, Rafid M.; Chandrashekhara, K.
2017-11-01
A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.
Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases
Zhai, Yuankun; Tyagi, Suresh C.; Tyagi, Neetu
2017-01-01
Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H2S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H2S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H2S mitigates bone diseases are not completely understood. Experimental evidence suggests that H2S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new possibility for exploring the H2S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H2S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H2S mediated bone loss inhibition, H2S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H2S as a therapeutic agent for bone diseases. PMID:28618652
USDA-ARS?s Scientific Manuscript database
Catechin (monomer), purified grape skin proanthocyanidin (polymer), and purified grape seed proanthocyanidin (polymer) underwent monitored accelerated oxidation under continuous oxygenation and UV light, at a constant 20 °C. Compounds were dissolved in model wine solutions with (and without) catecho...
An optically accessible pyrolysis microreactor
NASA Astrophysics Data System (ADS)
Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.
2016-01-01
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
An optically accessible pyrolysis microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraban, J. H.; Ellison, G. Barney; David, D. E.
2016-01-15
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
Yao, Chang; Webster, Thomas J
2006-01-01
Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.
NASA Astrophysics Data System (ADS)
Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan
2018-02-01
This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.
Zhang, Lan; Han, Yong; Tan, Guoxin
2015-03-01
Percutaneous implant requires a tight bond between the underlying dermis of skin and implant surface to prevent epithelial down-growth and infection, while fibroblasts play a key role in the skin-implant integration. In this work, nanorod-shaped hydroxyaptite (HA) with a mean diameter of 70 nm and length of 400 nm was hydrothermally grown on micro-arc oxidized (MAOed) Ca- and P-doped ZrO2 to form a bilayer coating. The hydrothermal formation mechanism of HA nanorods was explored, and the adsorption of total protein on the coating from α-MEM medium containing 10% fetal bovine serum was examined. Employing L-929 cells, the behaviors of fibroblasts on the bilayer coating, including adhesion and proliferation were evaluated together the polished Zr and as-MAOed ZrO2. The obtained results show that the HA nanorods nucleated on ZrO2 and grew at the expense of the doped Ca and P ions during the hydrothermal treatment (HT). The HA nanorods patterned coating enhanced protein absorption, and significantly improved the adhesion and proliferation of fibroblasts compared to the as-MAOed ZrO2 and polished Zr. It suggests that the HA nanorods/ZrO2 coated zirconium has a potential application for percutaneous implants to enhance the attachment of skin. Copyright © 2015 Elsevier B.V. All rights reserved.
Alrob, Osama Abo; Khatib, Said; Naser, Saleh A
2017-05-01
Despite decades of research, obesity and diabetes remain major health problems in the USA and worldwide. Among the many complications associated with diabetes is an increased risk of cardiovascular diseases, including myocardial infarction and heart failure. Recently, microRNAs have emerged as important players in heart disease and energy regulation. However, little work has investigated the role of microRNAs in cardiac energy regulation. Both human and animal studies have reported a significant increase in circulating free fatty acids and triacylglycerol, increased cardiac reliance on fatty acid oxidation, and subsequent decrease in glucose oxidation which all contributes to insulin resistance and lipotoxicity seen in obesity and diabetes. Importantly, MED13 was initially identified as a negative regulator of lipid accumulation in Drosophilia. Various metabolic genes were downregulated in MED13 transgenic heart, including sterol regulatory element-binding protein. Moreover, miR-33 and miR-122 have recently revealed as key regulators of lipid metabolism. In this review, we will focus on the role of microRNAs in regulation of cardiac and total body energy metabolism. We will also discuss the pharmacological and non-pharmacological interventions that target microRNAs for the treatment of obesity and diabetes.