Analyzing the effect of tool edge radius on cutting temperature in micro-milling process
NASA Astrophysics Data System (ADS)
Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.
2010-10-01
Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
Effect of micro-scale texturing on the cutting tool performance
NASA Astrophysics Data System (ADS)
Vasumathy, D.; Meena, Anil
2018-05-01
The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.
Experimental evaluation of tool run-out in micro milling
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta
2018-05-01
This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule
2016-03-01
A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.
Choi, Woong Kirl; Baek, Seung Yub
2015-09-22
In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width.
NASA Astrophysics Data System (ADS)
Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul
2011-05-01
Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2017-02-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins
NASA Astrophysics Data System (ADS)
Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-05-01
Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bono, M J; Hibbard, R L
2005-12-05
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The toolmore » holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.« less
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
High performance cutting using micro-textured tools and low pressure jet coolant
NASA Astrophysics Data System (ADS)
Obikawa, Toshiyuki; Nakatsukasa, Ryuta; Hayashi, Mamoru; Ohno, Tatsumi
2018-05-01
Tool inserts with different kinds of microtexture on the flank face were fabricated by laser irradiation for promoting the heat transfer from the tool face to the coolant. In addition to the micro-textured tools, jet coolant was applied to the tool tip from the side of the flank face, but under low-pressure conditions, to make Reynolds number of coolant as high as possible in the wedge shape zone between the tool flank and machined surface. First, the effect of jet coolant on the flank wear evolution was investigated using a tool without microtexture. The jet coolant showed an excellent improvement of the tool life in machining stainless steel SUS304 at higher cutting speeds. It was found that both the flow rate and velocity of jet coolant were indispensable to high performance cutting. Next, the effect of microtexture on the flank wear evolution was investigated using jet coolant. Three types of micro grooves extended tool life largely compared to the tool without microtexture. It was found that the depth of groove was one of important parameters affecting the tool life extension. As a result, the tool life was extended by more than l00 % using the microtextured tools and jet coolant compared to machining using flood coolant and a tool without microtexture.
Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.
Zhu, Zhiwei; To, Suet; Zhang, Shaojian
2015-08-10
Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng
2016-02-01
This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Surface morphology study in high speed milling of soda lime glass
NASA Astrophysics Data System (ADS)
Konneh, Mohamed; Bagum, Mst. Nasima; Ali, Mohammad Yeakub; Amin, A. K. M. Nurul
2018-05-01
Soda lime glass has a wide range of applications in optical, bio-medical and semi-conductor industries. It is undeniably a challenging task to produce micro finish surface on an amorphous brittle solid like soda lime glass due to its low fracture toughness. In order to obtain such a finish surface, ductile machining has been exploited, as this usually cause's plastic flow which control crack propagation. At sub-micro scale cutting parameters, researchers achieved nano finish surface in micro milling operation using coated tool. However it is possible to enhance the rate of material removal (RMR) of soda lime glass at flexible cutting condition. High speed cutting at micro meter level, extend of thermal softening might be prominent than the strain gradient strengthening. The purpose of this study was to explore the effects of high cutting speed end milling parameters on the surface texture of soda lime glass using uncoated carbide tool. The spindle speed, depth of cut and feed rate were varied from 20,000 to 40,000 rpm, 10 to 30 mm/min and 30 to 50 µm respectively. Mathematical model of roughness has been developed using Response Surface Methodology (RSM). Experimental verification confirmed that surface roughness (Ra) 0.38 µm is possible to achieve at increased RMR, 4.71 mm3/min.
The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.
Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A
2018-02-01
Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated real-world knife marks imaged by micro-CT to demonstrate the potential of quantitative approaches in knife mark analysis. Findings and methods presented in this study are relevant to both forensic toolmark researchers as well as practitioners. Limitations of the experimental methodologies and imaging techniques are discussed, and further work is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments
NASA Astrophysics Data System (ADS)
Chu, Bryan
The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced platelets (with 4--8 graphene layers and in-solution characteristic lateral length of 562--2780 nm), a concentration of 0.2 wt% appears to be optimal. An investigation into the impingement dynamics of the graphene-laden colloidal solutions on a heated substrate reveals that the most important criterion dictating their machining performance is their ability to form uniform, submicron thick films of the platelets upon evaporation of the carrier fluid. As such, the characterization of the residual platelet film left behind on a heated substrate may be an effective technique for evaluating different graphene colloidal solutions for cutting fluids applications in micromachining. Graphene platelets have also recently been shown to reduce the aggressive chemical wear of diamond tools during the machining of transition metal alloys. However, the specific mechanisms responsible for this improvement are currently unknown. The modeling work presented in this thesis uses molecular dynamics techniques to shed light on the wear mitigation mechanisms that are active during the diamond cutting of steel when in the presence of graphene platelets. The dual mechanisms responsible for graphene-induced chemical wear mitigation are: 1) The formation of a physical barrier between the metal and tool atoms, preventing graphitization; and 2) The preferential transfer of carbon from the graphene platelet rather than from the diamond tool. The results of the simulations also provide new insight into the behavior of the 2D graphene platelets in the cutting zone, specifically illustrating the mechanisms of cleaving and interlayer sliding in graphene platelets under the high pressures in cutting zones.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2017-02-01
In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.
2017-03-01
Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
NASA Astrophysics Data System (ADS)
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Multilayer composition coatings for cutting tools: formation and performance properties
NASA Astrophysics Data System (ADS)
Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.
2018-03-01
The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.
NASA Astrophysics Data System (ADS)
Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander
2017-01-01
The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Test and study on mirror quality of ultra-precision diamond turning
NASA Astrophysics Data System (ADS)
Chang, Yanyan; Sun, Tao; Li, Zengqiang; Wu, Baosen
2014-09-01
Using the diamond turning lathe and mono crystalline diamond tool, the aluminum alloy of 2A12 was cut under different cutting parameters including cutting speed, feed rate and depth of cut and the mirror surfaces were made. The surface roughness, micro hardness and residual stress of the mirror surface were tested by the surface profiler, the universal hardness tester and X-stress Robot. The influences of the cutting parameters on the mirror quality were studied. The research results have theoretical and practical significance to the selection of the optimal cutting parameters in ultraprecision diamond turning.
NASA Astrophysics Data System (ADS)
Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.
2011-07-01
Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
Rapid fabrication of miniature lens arrays by four-axis single point diamond machining
McCall, Brian; Tkaczyk, Tomasz S.
2013-01-01
A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error. PMID:23481813
Nano Mechanical Machining Using AFM Probe
NASA Astrophysics Data System (ADS)
Mostofa, Md. Golam
Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.
Geometry and surface damage in micro electrical discharge machining of micro-holes
NASA Astrophysics Data System (ADS)
Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir
2009-10-01
Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.
Hard particle effect on surface generation in nano-cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.
Usewear studies of flint tools with microPIXE and microRBS
NASA Astrophysics Data System (ADS)
Christensen, Marianne; Grime, Geoff; Menu, Michel; Walter, Philippe
1993-05-01
The use of ancient stone tools leaves a polish (usewear) on the cutting edge which can be studied to determine the material the tool had worked during its use. The film is formed by high pressure intrusion of the worked material into the microcavities of the chipped flint surface and so the film can also be analysed directly to determine the nature of the worked material. This paper describes the analysis of experimental flint tools which had worked bone and ivory using microbeam PIXE and RBS. It is found that PIXE used simultaneously with RBS allows the thickness and composition of the film to be determined and ivory distinguished from bone while RBS mapping allows the three-dimensional structure of the film to be determined.
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Saddam Khairuddin, Amir
2017-03-01
This paper presents the study on vibration and surface roughness of Inconel 718 workpiece produced by micro end-milling using Mikrotools Integrated Multi-Process machine tool DT-110 with control parameters; spindle speed (15000 rpm and 30000 rpm), feed rate (2 mm/min and 4 mm/min) and depth of cut (0.10 mm and 0.15mm). The vibration was measured using DYTRAN accelerometer instrument and the average surface roughness Ra was measured using Wyko NT1100. The analysis of variance (ANOVA) by using Design Expert software revealed that feed rate and depth of cut are the most significant factors on vibration meanwhile for average surface roughness, Ra, spindle speed is the most significant factor.
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining
NASA Astrophysics Data System (ADS)
Lei, X. L.; He, Y.; Sun, F. H.
2016-12-01
The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
NASA Astrophysics Data System (ADS)
Yang, Yang; Pan, Yayue; Guo, Ping
2017-04-01
Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.
Tool Condition Monitoring in Micro-End Milling using wavelets
NASA Astrophysics Data System (ADS)
Dubey, N. K.; Roushan, A.; Rao, U. S.; Sandeep, K.; Patra, K.
2018-04-01
In this work, Tool Condition Monitoring (TCM) strategy is developed for micro-end milling of titanium alloy and mild steel work-pieces. Full immersion slot milling experiments are conducted using a solid tungsten carbide end mill for more than 1900 s to have reasonable amount of tool wear. During the micro-end milling process, cutting force and vibration signals are acquired using Kistler piezo-electric 3-component force dynamometer (9256C2) and accelerometer (NI cDAQ-9188) respectively. The force components and the vibration signals are processed using Discrete Wavelet Transformation (DWT) in both time and frequency window. 5-level wavelet packet decomposition using Db-8 wavelet is carried out and the detailed coefficients D1 to D5 for each of the signals are obtained. The results of the wavelet transformation are correlated with the tool wear. In case of vibration signals, de-noising is done for higher frequency components (D1) and force signals were de-noised for lower frequency components (D5). Increasing value of MAD (Mean Absolute Deviation) of the detail coefficients for successive channels depicted tool wear. The predictions of the tool wear are confirmed from the actual wear observed in the SEM of the worn tool.
Zhu, Zhiwei; To, Suet; Zhang, Shaojian
2015-09-01
The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.
Thermal modeling and analysis of thin-walled structures in micro milling
NASA Astrophysics Data System (ADS)
Zhang, J. F.; Ma, Y. H.; Feng, C.; Tang, W.; Wang, S.
2017-11-01
The numerical analytical model has been developed to predict the thermal effect with respect to thin walled structures by micro-milling. In order to investigate the temperature distribution around micro-edge of cutter, it is necessary to considering the friction power, the shearing power, the shear area between the tool micro-edge and materials. Due to the micro-cutting area is more difficult to be measured accurately, the minimum chip thickness as one of critical factors is also introduced. Finite element-based simulation was employed by the Advantedge, which was determined from the machining of Ti-6Al-4V over a range of the uncut chip thicknesses. Results from the proposed model have been successfully accounted for the effects of thermal softening for material.
Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.
Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W
2013-06-01
Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice
2013-04-01
The characterization of material properties and the diagnosis of their state of weathering and conservation are three of the most important steps in the field of cultural heritage preservation. Several standardised experimental methods exist, especially for determining the material properties and their durability. However, they are limited in their application by the required size of test specimens and the controlled laboratory conditions needed to undertake the tests; this is especially true when the materials under study constitute immovable parts of heritage structures. The current use of other advanced methods of analysis, such as imaging techniques, in the aforementioned field of research offers invaluable results. However, these techniques may not always be accessible to the wider research community due to their complex nature and relatively high cost of application. This study presents innovative applications of two recently developed cutting techniques; the portable Drilling Resistance Measuring System (DRMS) and the scratch tool. Both methods are defined as micro-destructive, since they only destroy a very small portion of sample material. The general concept of both methods lies within the forces needed to cut a material by linear (scratch tool) or rotational (DRMS) cutting action; these forces are related to the mechanical properties of the material and the technological parameters applied on the tool. Therefore, for a given testing configuration, the only parameter influencing the forces applied is the strength of the material. These two techniques have been used alongside a series of standardised laboratory tests aiming at the correlation of various stone properties (density, porosity, dynamic elastic modulus and uniaxial compressive strength). The results prove the potential of both techniques in assessing the uniaxial compressive strength of stones. The scratch tool has also been used effectively to estimate the compressive strength of mud bricks. It therefore follows that both micro-destructive techniques may prove useful in the physico-mechanical characterization of materials which demand in-situ measurements or allow very limited sampling. Moreover, both techniques have been used, for the first time, to map the distribution of salts in building stone in the laboratory; micro-drilling was also applied in the same context in-situ. The results of the laboratory tests performed on limestone impregnated with sodium and magnesium sulfate confirm that both the scratch tool and the DRMS may successfully detect the location of the salt front, as they respond to pore clogging by salt crystals by providing increased scratching/drilling resistance values. Drilling and scratching of duplicate samples treated with a hydrophobic product show the sensitivity of both techniques as they clearly detect changes to the salt front location (i.e. cryptoflorescence) caused by surface treatments. Both techniques were also successful in highlighting the difference in the crystallisation location and pattern of magnesium sulphate and sodium chloride. In-situ application of the micro-drilling test demonstrated its potential for use in the assessment of masonry salt weathering; the results suggest that this technique may, in fact, be useful as a preventive measure against salt damage. Last but not least, both aforementioned novel micro-destructive techniques have been used to assess the effectiveness of commercially available consolidants. The results of the scratch tool have also been utilised to develop a tomography image of the samples under test. Scratching tomography may potentially be combined with in-situ micro-drilling tests to evaluate the effectiveness of consolidation treatments applied on monuments and historic buildings.
NASA Astrophysics Data System (ADS)
Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo
2017-02-01
By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).
NASA Astrophysics Data System (ADS)
Afolalu, S. A.; Abioye, O. P.; Salawu, E. Y.; Okokpujie, I. P.; Abioye, A. A.; Omotosho, O. A.; Ajayi., O. O.
2018-04-01
Carburization is one the best heat treatment that responded well to hardening with Palm Kernel Shell giving the best hardness value. This work studied the influence of carburization on HSStool(ASTM A600) and its behaviour during machining of mild steel (ASTM A36). Composition of the samples (12 pieces of 180 × 12 × 12 mm) HSS tools were checked using UV-VIS spectrometer and the tools were carburized with PKS at holding temperatures and time of 800, 850, 900, 950 °C and 60,90 120 minutes using muffle furnance. The micro structural analysis, surface and core hardnessof the treated samples gave better results than the untreated samples when checked withsoft driven and optical microscope. It wasalso observed that increase in the feed rate and depth for length of cut of 50 mm significantly reduces the wear progression and thereby gave best machining time at maximum carburizing temperature and time(950 °C / 120 minutes) when it was used to cut mild steelon the lathe machine.
Electrochemical micro/nano-machining: principles and practices.
Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun
2017-03-06
Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.
Tool feed influence on the machinability of CO(2) laser optics.
Arnold, J B; Steger, P J; Saito, T T
1975-08-01
Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.
Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool
NASA Astrophysics Data System (ADS)
Chayeuski, V. V.; Zhylinski, V. V.; Rudak, P. V.; Rusalsky, D. P.; Višniakov, N.; Černašėjus, O.
2018-07-01
This work deals with the features of the structure of combined ZrC/Ni-ultradisperse diamonds (UDD) coating synthesized by electroplating and cathode arc evaporation physical vapor deposition (CAE-PVD) techniques on the tungsten carbide WC - 2 wt% Co on cutting inserts to improve tool life. The microstructure, phase composition, and micro-scratch test analysis of the ZrC/Ni-UDD coating were studied. The ZrC/Ni-UDD coating consists of separate phases of zirconium carbide ZrC, α-Ni, and Ni-UDD phase. The surface morphology of the coating shows a pattern with pits, pores, and particles. Separated nanodiamond particles are present in the pores of the combined coating. Therefore, the structure of the bottom layer of Ni-UDD affects the morphology of the surface of the ZrC/Ni-UDD coating. The obtained value of the critical loads on the scratch track of the coating in 26 N proves a sufficiently high value of the adhesion strength of the intermediate Ni-UDD-layer with hard alloy of WC-Co substrate. Due to their unique structure ZrC/Ni-UDD-coatings can be used to increase the durability period of a wood-cutting milling tool for cutting chipboard by CNC machines.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
NASA Astrophysics Data System (ADS)
Frotscher, M.; Kahleyss, F.; Simon, T.; Biermann, D.; Eggeler, G.
2011-07-01
NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive.
Characteristics for electrochemical machining with nanoscale voltage pulses.
Lee, E S; Back, S Y; Lee, J T
2009-06-01
Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.
NASA Astrophysics Data System (ADS)
Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.
2016-02-01
Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.
NASA Astrophysics Data System (ADS)
Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu
2016-03-01
H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer; ...
2017-09-23
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
NASA Astrophysics Data System (ADS)
Czettl, C.; Pohler, M.
2016-03-01
Increasing demands on material properties of iron based work piece materials, e.g. for the turbine industry, complicate the machining process and reduce the lifetime of the cutting tools. Therefore, improved tool solutions, adapted to the requirements of the desired application have to be developed. Especially, the interplay of macro- and micro geometry, substrate material, coating and post treatment processes is crucial for the durability of modern high performance tool solutions. Improved and novel analytical methods allow a detailed understanding of material properties responsible for the wear behaviour of the tools. Those support the knowledge based development of tailored cutting materials for selected applications. One important factor for such a solution is the proper choice of coating material, which can be synthesized by physical or chemical vapor deposition techniques. Within this work an overview of state-of-the-art coated carbide grades is presented and application examples are shown to demonstrate their high efficiency. Machining processes for a material range from cast iron, low carbon steels to high alloyed steels are covered.
Micro/nano-particle decorated metal wire for cutting soft matter
NASA Astrophysics Data System (ADS)
Zhang, Wei; Feng, Liang-liang; Wu, Fan; Zhang, Run-run; Wu, Cheng-wei
2016-09-01
To cut soft materials such as biological tissues with minimal damage and reduced positional error is highly desired in medical surgery and biomechanics. After years of natural selection and evolution, mosquitoes have acquired the ability to insert their proboscises into human skin with astonishingly tiny forces. This can be associated with the unique structure of their proboscises, with micro/nano sawteeth, and the distinctive insertion manner: high frequency reciprocating saw cutting. Inspired by these, this communication describes the successful implantation of metal oxide particles onto molybdenum wire surfaces through a sol-calcination process, to form a biomimetic sawblade with a high density of micro/nano saw teeth, where the acidification is essential in terms of generating active anchoring sites on the wire. When used as a sawblade in conjunction with reciprocating action to cut the viscoelastic gel, both the cut-in force and cut-in displacement could be decreased substantially. The cutting speed and frequency of reciprocating action are important operating parameters influencing cut-in force.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-02-07
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-01-01
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials. PMID:29414839
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
NASA Astrophysics Data System (ADS)
Goktan, R. M.; Gunes Yılmaz, N.
2017-09-01
The present study was undertaken to investigate the potential usability of Knoop micro-hardness, both as a single parameter and in combination with operational parameters, for sawblade specific wear rate (SWR) assessment in the machining of ornamental granites. The sawing tests were performed on different commercially available granite varieties by using a fully instrumented side-cutting machine. During the sawing tests, two fundamental productivity parameters, namely the workpiece feed rate and cutting depth, were varied at different levels. The good correspondence observed between the measured Knoop hardness and SWR values for different operational conditions indicates that it has the potential to be used as a rock material property that can be employed in preliminary wear estimations of diamond sawblades. Also, a multiple regression model directed to SWR prediction was developed which takes into account the Knoop hardness, cutting depth and workpiece feed rate. The relative contribution of each independent variable in the prediction of SWR was determined by using test statistics. The prediction accuracy of the established model was checked against new observations. The strong prediction performance of the model suggests that its framework may be applied to other granites and operational conditions for quantifying or differentiating the relative wear performance of diamond sawblades.
Augello, Marcello; Deibel, Waldemar; Nuss, Katja; Cattin, Philippe; Jürgens, Philipp
2018-04-13
Most industrial laser applications utilize computer and robot assistance, for guidance, safety, repeatability, and precision. In contrast, medical applications using laser systems are mostly conducted manually. The advantages can be effective only when the system is coupled to a robotic guidance, as operating by hand does not reach the required accuracy. We currently developed the first laser osteotome which offers preoperative planning based on CT data, robot guidance, and a precise execution of the laser cuts. In an animal trial, our system was used to create a grid pattern of the same depth on the inner layer of parietal bone in 12 adult sheep. The same bone cuts were done with piezoelectric osteotome on the contralateral side. The micro-CT and histological analysis showed more new mineralized bone in the laser group compared to the piezoelectric group. As well, a cutting pattern with especially a constant osteotomy depth in the laser group was demonstrated. The here presented autonomous osteotomy tool shows not only an advantage in early bone healing stage but additionally sharp bone cuts with a very high accuracy and freely selectable design cuts.
1976-08-18
A metal strap became tangled over one of the folded solar array panels when Skylab lost its micro meteoroid shield during its launch. Cutters like the ones used to free the solar array were used to cut the ribbon opening to the public a new full-scale Skylab cluster exhibit at the Alabama Space and Rocket Center in Huntsville, Alabama. Wielding the cutters are (left to right): Alabama Senator James B. Allen; Marshall Space Flight Center director, Dr. William R. Lucas, Huntsville Mayor, Joe Davis; Madison County Commission Chairman, James Record (standing behind Mayor Davis); and chairman of the Alabama Space Science Exhibit Commission, Jack Giles. Astronauts Conrad and Kerwin used the same type of tool in Earth orbit to cut the aluminum strap which jammed the Skylab solar array.
NASA Astrophysics Data System (ADS)
Devillez, Arnaud; Dudzinski, Daniel
2007-01-01
Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.
Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers
NASA Astrophysics Data System (ADS)
Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi
2017-08-01
We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.
Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement
NASA Astrophysics Data System (ADS)
Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel
2017-06-01
In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.
Mesoplasticity approach to studies of the cutting mechanism in ultra-precision machining
NASA Astrophysics Data System (ADS)
Lee, Rongbin W. B.; Wang, Hao; To, Suet; Cheung, Chi Fai; Chan, Chang Yuen
2014-03-01
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
NASA Astrophysics Data System (ADS)
Hyde, B. C.; Tait, K. T.; Nicklin, I.; Day, J. M. D.; Ash, R. D.; Moser, D. E.
2013-09-01
Sectioning of meteorites is usually done in an arbitrary manner. We used micro-computed tomography to view the interior of brachinite NWA 4872. A cut was then made through an area of interest. Heterogeneity and modal abundance are discussed.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension
USDA-ARS?s Scientific Manuscript database
We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...
Bieg, Lothar F.
1993-01-12
A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.
Array servo scanning micro EDM of 3D micro cavities
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Yi, Futing
2011-05-01
Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
NASA Astrophysics Data System (ADS)
Haga, Yoichi; Muyari, Yuta; Goto, Shoji; Matsunaga, Tadao; Esashi, Masayoshi
This paper reports micro-fabrication techniques using laser processing on cylindrical substrates for the realization of high-performance multifunctional minimally invasive medical tools with small sizes. A spring-shaped shape memory alloy (SMA) micro-coil with a square cross section has been fabricated by spiral cutting of a Ti-Ni SMA tube with a femtosecond laser. Small diameter active bending catheter which is actuated by hydraulic suction mechanism for intravascular minimally invasive diagnostics and therapy has also been developed. The catheter is made of a Ti-Ni super elastic alloy (SEA) tube which is processed by laser micromachining and a silicone rubber tube which covers the outside of the SEA tube. The active catheter is effective for insertion in branch of blood vessel which diverse in acute angle which is difficult to proceed. Multilayer metallization and patterning have been performed on glass tubes with 2 and 3 mm external diameters using maskless lithography techniques using a laser exposure system. Using laser soldering technique, a integrated circuit parts have been mounted on a multilayer circuit patterned on a glass tube. These fabrication techniques will effective for realization of high-performance multifunctional catheters, endoscopic tools, and implanted small capsules.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
2001-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
1999-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Castro, Martha C C; Sadek, Fernanda T; Batitucci, Eduardo; Miranda, Mauro S
2014-01-01
The bond strength of dental materials has been evaluated by tensile testing of micro-specimens. The cutting process used to obtain specimens may influence the results. The objective of this study was to investigate the influence of different types of diamond disks and cutting speeds on the bond strength of ceramic specimens and on specimen integrity. Lithium disilicate-based ceramic cubes were bonded with resin cement to composite resin cubes, according to the manufacturers' instructions. The ceramic/cement/resin blocks thus obtained were divided into two groups to be cut with Buehler(®) or Extec(®) disks and then sectioned at cutting speeds of 200 rpm and 400 rpm. The results showed that the bond strength values were affected by the cutting speed and disk/speed interaction (p<0.05). SEM analysis revealed better specimen properties when the blocks were cut at 200 rpm. It was concluded that ceramic specimens must be cut at low speeds.
NASA Astrophysics Data System (ADS)
Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito
2017-04-01
This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
NASA Astrophysics Data System (ADS)
Deyhle, Hans; Schmidli, Fredy; Krastl, Gabriel; Müller, Bert
2010-09-01
Direct composite fillings belong to widespread tooth restoration techniques in dental medicine. The procedure consists of successive steps, which include etching of the prepared tooth surface, bonding and placement of composite in incrementally built up layers. Durability and lifespan of the composite inlays strongly depend on the accurate completion of the individual steps to be also realized by students in dental medicine. Improper handling or nonconformity in the bonding procedure often lead to air enclosures (bubbles) as well as to significant gaps between the composite layers or at the margins of the restoration. Traditionally one analyzes the quality of the restoration cutting the tooth in an arbitrarily selected plane and inspecting this plane by conventional optical microscopy. Although the precision of this established method is satisfactory, it is restricted to the selected two-dimensional plane. Rather simple micro computed tomography (μCT) systems, such as SkyScan 1174™, allows for the non-destructive three-dimensional imaging of restored teeth ex vivo and virtually cutting the tomographic data in any desired direction, offering a powerful tool for inspection of the restored tooth with micrometer resolution before cutting and thus also to select a two-dimensional plane with potential defects. In order to study the influence of the individual steps on the resulted tooth restoration, direct composite fillings were placed in mod cavities of extracted teeth. After etching, an adhesive was applied in half of the specimens. From the tomographic datasets, it becomes clear that gaps occur more frequently when bonding is omitted. The visualization of air enclosures offers to determine the probability to find a micrometer-sized defect using an arbitrarily selected cutting plane for inspection.
NASA Astrophysics Data System (ADS)
Akhavan Niaki, Farbod
The objective of this research is first to investigate the applicability and advantage of statistical state estimation methods for predicting tool wear in machining nickel-based superalloys over deterministic methods, and second to study the effects of cutting tool wear on the quality of the part. Nickel-based superalloys are among those classes of materials that are known as hard-to-machine alloys. These materials exhibit a unique combination of maintaining their strength at high temperature and have high resistance to corrosion and creep. These unique characteristics make them an ideal candidate for harsh environments like combustion chambers of gas turbines. However, the same characteristics that make nickel-based alloys suitable for aggressive conditions introduce difficulties when machining them. High strength and low thermal conductivity accelerate the cutting tool wear and increase the possibility of the in-process tool breakage. A blunt tool nominally deteriorates the surface integrity and damages quality of the machined part by inducing high tensile residual stresses, generating micro-cracks, altering the microstructure or leaving a poor roughness profile behind. As a consequence in this case, the expensive superalloy would have to be scrapped. The current dominant solution for industry is to sacrifice the productivity rate by replacing the tool in the early stages of its life or to choose conservative cutting conditions in order to lower the wear rate and preserve workpiece quality. Thus, monitoring the state of the cutting tool and estimating its effects on part quality is a critical task for increasing productivity and profitability in machining superalloys. This work aims to first introduce a probabilistic-based framework for estimating tool wear in milling and turning of superalloys and second to study the detrimental effects of functional state of the cutting tool in terms of wear and wear rate on part quality. In the milling operation, the mechanisms of tool failure were first identified and, based on the rapid catastrophic failure of the tool, a Bayesian inference method (i.e., Markov Chain Monte Carlo, MCMC) was used for parameter calibration of tool wear using a power mechanistic model. The calibrated model was then used in the state space probabilistic framework of a Kalman filter to estimate the tool flank wear. Furthermore, an on-machine laser measuring system was utilized and fused into the Kalman filter to improve the estimation accuracy. In the turning operation the behavior of progressive wear was investigated as well. Due to the nonlinear nature of wear in turning, an extended Kalman filter was designed for tracking progressive wear, and the results of the probabilistic-based method were compared with a deterministic technique, where significant improvement (more than 60% increase in estimation accuracy) was achieved. To fulfill the second objective of this research in understanding the underlying effects of wear on part quality in cutting nickel-based superalloys, a comprehensive study on surface roughness, dimensional integrity and residual stress was conducted. The estimated results derived from a probabilistic filter were used for finding the proper correlations between wear, surface roughness and dimensional integrity, along with a finite element simulation for predicting the residual stress profile for sharp and worn cutting tool conditions. The output of this research provides the essential information on condition monitoring of the tool and its effects on product quality. The low-cost Hall effect sensor used in this work to capture spindle power in the context of the stochastic filter can effectively estimate tool wear in both milling and turning operations, while the estimated wear can be used to generate knowledge of the state of workpiece surface integrity. Therefore the true functionality and efficiency of the tool in superalloy machining can be evaluated without additional high-cost sensing.
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-07-13
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.
Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe
NASA Astrophysics Data System (ADS)
Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy
2017-12-01
Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
NASA Astrophysics Data System (ADS)
Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman
2018-03-01
Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Tailor cutting of crystalline solar cells by laser micro jet
NASA Astrophysics Data System (ADS)
Bruckert, F.; Pilat, E.; Piron, P.; Torres, P.; Carron, B.; Richerzhagen, B.; Pirot, M.; Monna, R.
2012-03-01
Coupling a laser into a hair thin water micro jet (Laser Micro Jet, LMJ) for cutting applications offers a wide range of processes that are quite unique. As the laser beam is guided by internal reflections inside of a liquid cylinder, the cuts are naturally straight and do not reflect any divergence as otherwise occurs with an unguided laser beam. Furthermore, having a liquid media at the point of contact ensures a fast removal of heat and eventual debris ensuring clean cuts, which are free of any burrs. Many applications have indeed been developed for a large variety of materials, which are as different as e.g. diamond, silicon, aluminum, ceramic and hard metals. The photovoltaic industry has enjoyed in the last decades tremendous growth rates, which are still projected into the future. We focus here on the segment of Building Integrated PV (BIPV), which requests tailored solutions to actual buildings and not-one-fits-it-all standardized modules. Having the option to tailor cut solar cells opens a new field of BIPV applications. For the first time, finished crystalline solar cells have been LMJ cut into predetermined shapes. First results show that the cut is clean and neat. Preliminary solar performance measurements are positive. This opens a new avenue of tailored made modules instead of having to rely on the one-fits-alloy approach used so far.
Laser-assisted micro sheet forming
NASA Astrophysics Data System (ADS)
Holtkamp, Jens; Gillner, Arnold
2008-01-01
The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures
Numerical modelling of tool wear in turning with cemented carbide cutting tools
NASA Astrophysics Data System (ADS)
Franco, P.; Estrems, M.; Faura, F.
2007-04-01
A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.
Qin, Sheng; Li, Zhongquan; Guo, Guoqiang; An, Qinglong; Chen, Ming; Ming, Weiwei
2016-09-28
The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al₂O₃/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al₂O₃/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen.
Qin, Sheng; Li, Zhongquan; Guo, Guoqiang; An, Qinglong; Chen, Ming; Ming, Weiwei
2016-01-01
The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al2O3/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al2O3/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen. PMID:28773926
Study on the separation effect of high-speed ultrasonic vibration cutting.
Zhang, Xiangyu; Sui, He; Zhang, Deyuan; Jiang, Xinggang
2018-07-01
High-speed ultrasonic vibration cutting (HUVC) has been proven to be significantly effective when turning Ti-6Al-4V alloy in recent researches. Despite of breaking through the cutting speed restriction of the ultrasonic vibration cutting (UVC) method, HUVC can also achieve the reduction of cutting force and the improvements in surface quality and cutting efficiency in the high-speed machining field. These benefits all result from the separation effect that occurs during the HUVC process. Despite the fact that the influences of vibration and cutting parameters have been discussed in previous researches, the separation analysis of HUVC should be conducted in detail in real cutting situations, and the tool geometry parameters should also be considered. In this paper, three situations are investigated in details: (1) cutting without negative transient clearance angle and without tool wear, (2) cutting with negative transient clearance angle and without tool wear, and (3) cutting with tool wear. And then, complete separation state, partial separation state and continuous cutting state are deduced according to real cutting processes. All the analysis about the above situations demonstrate that the tool-workpiece separation will take place only if appropriate cutting parameters, vibration parameters, and tool geometry parameters are set up. The best separation effect was obtained with a low feedrate and a phase shift approaching 180 degrees. Moreover, flank face interference resulted from the negative transient clearance angle and tool wear contributes to an improved separation effect that makes the workpiece and tool separate even at zero phase shift. Finally, axial and radial transient cutting force are firstly obtained to verify the separation effect of HUVC, and the cutting chips are collected to weigh the influence of flank face interference. Copyright © 2018 Elsevier B.V. All rights reserved.
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-01-01
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692
Investigating bone chip formation in craniotomy.
Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen
2017-10-01
In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.
NASA Astrophysics Data System (ADS)
Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei
2018-05-01
Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.
Terpitz, Ulrich; Zimmermann, Dirk
2010-01-01
The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
Cutting tool form compensation system and method
Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.
1993-10-19
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.
Cutting tool form compensaton system and method
Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.
1993-01-01
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.
Experimental study on internal cooling system in hard turning of HCWCI using CBN tools
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.
Zeitouni, Jihad; Clough, Bret; Zeitouni, Suzanne; Saleem, Mohammed; Al Aisami, Kenan; Gregory, Carl
2017-01-01
Background: The use of lasers has become increasingly common in the field of medicine and dentistry, and there is a growing need for a deeper understanding of the procedure and its effects on tissue. The aim of this study was to compare the erbium-doped yttrium aluminium garnet (Er:YAG) laser and conventional drilling techniques, by observing the effects on trabecular bone microarchitecture and the extent of thermal and mechanical damage. Methods: Ovine femoral heads were employed to mimic maxillofacial trabecular bone, and cylindrical osteotomies were generated to mimic implant bed preparation. Various laser parameters were tested, as well as a conventional dental drilling technique. The specimens were then subjected to micro-computed tomographic (μCT) histomorphometic analysis and histology. Results: Herein, we demonstrate that mCT measurements of trabecular porosity provide quantitative evidence that laser-mediated cutting preserves the trabecular architecture and reduces thermal and mechanical damage at the margins of the cut. We confirmed these observations with histological studies. In contrast with laser-mediated cutting, conventional drilling resulted in trabecular collapse, reduction of porosity at the margin of the cut and histological signs of thermal damage. Conclusions: This study has demonstrated, for the first time, that mCT and quantification of porosity at the margin of the cut provides a quantitative insight into damage caused by bone cutting techniques. We further show that with laser-mediated cutting, the marrow remains exposed to the margins of the cut, facilitating cellular infiltration and likely accelerating healing. However, with drilling, trabecular collapse and thermal damage is likely to delay healing by restricting the passage of cells to the site of injury and causing localized cell death. PMID:29416849
UV laser-assisted wire stripping and micro-machining
NASA Astrophysics Data System (ADS)
Martyniuk, Jerry
1994-02-01
Results are reported for the use of a 266 nm frequency quadrupled Nd:YAG ultraviolet laser in the areas of wire stripping of small coaxial type transmission lines and for micro-machining of various materials including copper, glass, polyimide and DuPont TEFLONTM. This new laser is typically run with a 2 KHz repetition rate, 40 ns FWHM pulse and a fluence of about 50 joules/cm2 which makes it possible to micro-machine metals, polymers, glasses and ceramics. The high fluence of this laser allows shielding structures such as Al-MylarTM, Al-KaptonTM or the plated copper used in small coaxial cables to be precisely cut. Cut rates are reported for the above materials as well as results and photos of wire stripping and micro- machining.
NASA Astrophysics Data System (ADS)
Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.
2018-01-01
Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.
More About Cutting Tool For Shaving Weld Beads
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A.; Davis, William M.
1996-01-01
Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.
The machined surface of magnesium AZ31 after rotary turning at air cooling condition
NASA Astrophysics Data System (ADS)
Akhyar, G.; Purnomo, B.; Hamni, A.; Harun, S.; Burhanuddin, Y.
2018-04-01
Magnesium is a lightweight metal that is widely used as an alternative to iron and steel. Magnesium has been applied in the automotive industry to reduce the weight of a component, but the machining process has the disadvantage that magnesium is highly flammable because it has a low flash point. High temperature can cause the cutting tool wear and contributes to the quality of the surface roughness. The purpose of this study is to obtain the value of surface roughness and implement methods of rotary cutting tool and air cooling output vortex tube cooler to minimize the surface roughness values. Machining parameters that is turning using rotary cutting tool at speed the workpiece of (Vw) 50, 120, 160 m/min, cutting speed of rotary tool of (Vt) 25, 50, 75 m/min, feed rate of (f) 0.1, 0.15, 0.2 mm/rev, and depth of cut of 0.3 mm. Type of tool used is a carbide tool diameter of 16 mm and air cooling pressure of 6 bar. The results show the average value of the lowest surface roughness on the speed the workpiece of 80 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. While the average value of the highest surface roughness on the speed the workpiece of 160 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. The influence of machining parameters concluded the higher the speed of the workpiece the surface roughness value higher. Otherwise the higher cutting speed of rotary tool then the lower the surface roughness value. The observation on the surface of the rotary tool, it was found that no uniform tool wear which causes non-uniform surface roughness. The use of rotary cutting tool contributing to lower surface roughness values generated.
NASA Astrophysics Data System (ADS)
Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.
2018-04-01
Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeong-Du; Moon, Chan-Hong
1995-12-31
Ultraprecision metal cutting (UPMC) technology which makes possible submicrometer form accuracy and manometer roughness is developed to reach the 1nm nominal (undeformed) thickness of cut. At this thickness level, a few of atom`s layers should be considered. In this paper using the Molecuar Dynamics simulation, the phenomena of microcutting with a subnanometer chip thickness, the cutting mechanism for tool edge configuration to consider the sharp edge and round edge tool, the cut material and cutting speed are evaluated. Cutting mechanism of subnanometer depth of cut is evaluated.
Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana
2017-03-01
The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keune, A., E-mail: anne.keune@epfl.ch
2012-09-15
The possibility of improving the limit on the branching fraction of the lepton flavor violating decay {tau}{sup {+-}} {yields} Micro-Sign {sup {+-}} Micro-Sign {sup {+-}} Micro-Sign {sup Minus-Or-Plus-Sign} at LHCb is discussed. It is shown that a simple, cut-based analysis is sufficient to improve the upper limit on this branching fraction within the lifetime of LHCb.
Ashbaugh, Fred N.; Murry, Kenneth R.
1988-12-27
A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hubble Space Telescope has given the world amazing images of the distant stars, planets, and galaxies. The cutting-edge imaging technology that enhances the Hubble images also extends its benefits to life here on Earth, from deciphering previously unreadable portions of the Dead Sea Scrolls to improving digital mammographies for advanced cancer detection. This imaging technology is now helping physicians to perform micro-invasive arthroscopic surgery, which is the visual examination of an interior joint such as the knee. In 1997, NASA's Glenn Research Center signed a Space Act Agreement with Micro Medical Devices, Inc. (MMD), a medical device engineering company that licenses miniature surgical devices. At that time, MMD was in the process of developing a new micro-endoscope. This tool enables surgeons to view what is happening inside the body on a screen, eliminating the need for a more invasive diagnostic procedure. The images from the micro-endoscope needed to be extremely clear, a challenge with the tool s small size. The images also needed to be viewed in real time to allow surgeons to see what was happening in the body at that very moment. MMD established Clear Image Technology, LLC, of Elyria, Ohio, to commercialize the miniature endoscope. Clear Image Technology then partnered with Arthrotek, Inc., a sports medicine subsidiary of Biomet, Inc., to introduce the tool to the commercial market as the InnerVue[TM] Diagnostic Scope System. The InnerVue system is designed for use in a diagnostic environment, such as an office or outpatient service, to evaluate conditions within a joint. While the InnerVue scope is primarily being applied to the knee and shoulder, other small joints such as the wrist, elbow, and ankle are being investigated. A physician can use the system alone or in conjunction with magnetic resonance imaging (MRI) to determine the next treatment step for each patient. The procedure can be more accurate than MRI, particularly with diagnosing cartilage and articular surface damage and assessing arthritis severity.
Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal
2016-01-01
Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashbaugh, F.N.; Murry, K.R.
A method of boring two concentric holes of different depths is described utilizing an elongated boring tool having a tool axis of rotation, a longitudinally disposed tool centerline axis, and first and second transverse cutting edges at one end thereof extending across the boring tool, the second cutting edge being longitudinally rearwardly recessed with respect to the first cutting edge. The method consists of inserting the boring tool into an adjustable boring head, adjusting a distance B between the tool centerline axis and the tool axis of rotation such that the tool axis of rotation intersects a first boring areamore » of the first cutting edge; and boring the concentric holes having respectively larger and smaller diameters.« less
NASA Astrophysics Data System (ADS)
Anan, Ruito; Matsuoka, Hironori; Ono, Hajime; Ryu, Takahiro; Nakae, Takashi; Shuto, Schuichi; Watanabe, Suguru; Sato, Yuta
2017-04-01
This study examined the improvements to the tool life and finished surface roughness by using water-miscible cutting fluids in carbon fiber reinforced plastics end milling. In cutting tests, it was found that the use of emulsion type, soluble type, and solution type cutting fluids improved tool life compared with the case of dry cutting. Specifically, significant differences in tool life were observed at a high cutting speed of 171 m/min. In addition, the finished surface exhibited a low level of roughness when the solution type cutting fluid was used, regardless of the cutting speed.
Asmanes, Charles
1979-01-01
A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.
Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.
2005-01-01
This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.
Shock synthesized and static sintered boron nitride cutting tool
NASA Astrophysics Data System (ADS)
Araki, M.; Kuroyama, Y.
1986-05-01
Shock synthesis of wBN (wurtzite phase boron nitride) on an industrial scale was achieved by Nippon Oil & Fats and Showa Denko in 1971. It seemed that the resultant wBN powder might display excellent qualities as a cutting tool material when it was sintered under very high static pressure and temperature because of its polycrystalline nature. Attempts to produce a wBN cutting tool material were commenced by the Tokyo Institute of Technology and Nippon Oil & Fats in 1976 and commercially available wBN cutting tools were first sold in 1980. Meanwhile, a new type of explosion chamber designed to eliminate explosion sound and earth vibration problems, novel high pressure vessels and other peripheral apparatuses have been developed. Now, WURZIN (trademark for the wBN cutting tool) is used in many aspects of the steel cutting field because it is durable when cutting various steels from mild steels to superalloys under high speed, interrupt and precision cutting conditions.
Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.
Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin
2018-05-09
Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.
1982-10-01
AISI 1340, 4140 , 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined at...Tool Load Data for AISI 1340 "finishing" cuts Life-Line Data for AISI 4140 "roughing" cuts Tool Wear-Land Chart Data for AISI 4140 - "roughing...34 cuts; 570 Ceramic Coated Carbide Tool Wear-Land Chart Data for AISI 4140 - "roughing" cuts; G-10 Ceramic- Tool Wear-Land Chart Data for AISI 4140
Cutting Tool For Shaving Weld Beads
NASA Technical Reports Server (NTRS)
Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.
1995-01-01
Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
NASA Astrophysics Data System (ADS)
Hikiji, R.
2018-01-01
The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.
Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning
NASA Astrophysics Data System (ADS)
Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.
2018-01-01
Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.
Death by a Thousand Cuts: Micro-Air Vehicles (MAV) in the Service of Air Force Missions
2001-04-01
25 Microjets ...based designs need to overcome high operating temperature limitations.67 Microjets A promising, but technically difficult, propulsion and/or power...source is the microjet , a micro-electromechanical system based device about the size of a dime. These devices are based on micro-turbines that are
Effects of random aspects of cutting tool wear on surface roughness and tool life
NASA Astrophysics Data System (ADS)
Nabil, Ben Fredj; Mabrouk, Mohamed
2006-10-01
The effects of random aspects of cutting tool flank wear on surface roughness and on tool lifetime, when turning the AISI 1045 carbon steel, were studied in this investigation. It was found that standard deviations corresponding to tool flank wear and to the surface roughness increase exponentially with cutting time. Under cutting conditions that correspond to finishing operations, no significant differences were found between the calculated values of the capability index C p at the steady-state region of the tool flank wear, using the best-fit method or the Box-Cox transformation, or by making the assumption that the surface roughness data are normally distributed. Hence, a method to establish cutting tool lifetime could be established that simultaneously respects the desired average of surface roughness and the required capability index.
Assessment of wear dependence parameters in complex model of cutting tool wear
NASA Astrophysics Data System (ADS)
Antsev, A. V.; Pasko, N. I.; Antseva, N. V.
2018-03-01
This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.
Investigation of wear land and rate of locally made HSS cutting tool
NASA Astrophysics Data System (ADS)
Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.
2018-04-01
Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.
Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano
2010-09-01
Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p < 0.05, n = 4 in the flurotic, and n = 5 in the control group). Results from the micro-ATR-FTIR spectroscopic analysis on one longitudinally cut incisor carried out at six points reveal a higher C-H bond content at the surface of the enamel, with values decreasing toward the dentine-enamel junction, and reaching the lowest values at the subsuperficial enamel. These results agree with the morphological data, which indicate that in the rat incisor the fluorotic lesion is superficial, rather than subsuperficial, as in the case of human enamel. The results also suggest that the increased C-H bond content may extend toward the more basal enamel (intraosseous), indicating that fluorotic enamel may intrinsically contain more protein. Finally, particularly when coupled to ATR, FTIR is a suitable tool to study the rat incisor enamel, which is a largely used model of normal and abnormal amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.
Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.
Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-12
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.
Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting
Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-01
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976
NASA Astrophysics Data System (ADS)
M, Vasu; Shivananda Nayaka, H.
2018-06-01
In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
NASA Astrophysics Data System (ADS)
Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre
2017-06-01
This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.
Wear and breakage monitoring of cutting tools by an optical method: theory
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Yongqing; Chen, Fangrong; Tian, Zhiren; Wang, Yao
1996-10-01
An essential part of a machining system in the unmanned flexible manufacturing system, is the ability to automatically change out tools that are worn or damaged. An optoelectronic method for in situ monitoring of the flank wear and breakage of cutting tools is presented. A flank wear estimation system is implemented in a laboratory environment, and its performance is evaluated through turning experiments. The flank wear model parameters that need to be known a priori are determined through several preliminary experiments, or from data available in the literature. The resulting cutting conditions are typical of those used in finishing cutting operations. Through time and amplitude domain analysis of the cutting tool wear states and breakage states, it is found that the original signal digital specificity (sigma) 2x and the self correlation coefficient (rho) (m) can reflect the change regularity of the cutting tool wear and break are determined, but which is not enough due to the complexity of the wear and break procedure of cutting tools. Time series analysis and frequency spectrum analysis will be carried out, which will be described in the later papers.
NASA Astrophysics Data System (ADS)
Pan, Minqiang; Zhong, Yujian
2018-01-01
Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.
3D-profile measurement of advanced semiconductor features by using FIB as reference metrology
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2017-03-01
A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.
NASA Astrophysics Data System (ADS)
Abdel-Aal, H. A.; Mansori, M. El
2012-12-01
Cutting tools are subject to extreme thermal and mechanical loads during operation. The state of loading is intensified in dry cutting environment especially when cutting the so called hard-to-cut-materials. Although, the effect of mechanical loads on tool failure have been extensively studied, detailed studies on the effect of thermal dissipation on the deterioration of the cutting tool are rather scarce. In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.
NASA Technical Reports Server (NTRS)
Spier, R. A.
1970-01-01
Triangular cutting tool uses carbide tips for notching heat-treated or abrasive materials, and alloys subjected to high structural stresses. The tool is rigidly mounted in a slot of mating contour to prevent deflection during cutting of tensile specimens. No other expensive machine equipment is required.
Porosity characterization for heterogeneous shales using integrated multiscale microscopy
NASA Astrophysics Data System (ADS)
Rassouli, F.; Andrew, M.; Zoback, M. D.
2016-12-01
Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.
Influence of Surface Features for Increased Heat Dissipation on Tool Wear
Beno, Tomas; Hoier, Philipp; Wretland, Anders
2018-01-01
The critical problems faced during the machining process of heat resistant superalloys, (HRSA), is the concentration of heat in the cutting zone and the difficulty in dissipating it. The concentrated heat in the cutting zone has a negative influence on the tool life and surface quality of the machined surface, which in turn, contributes to higher manufacturing costs. This paper investigates improved heat dissipation from the cutting zone on the tool wear through surface features on the cutting tools. Firstly, the objective was to increase the available surface area in high temperature regions of the cutting tool. Secondly, multiple surface features were fabricated for the purpose of acting as channels in the rake face to create better access for the coolant to the proximity of the cutting edge. The purpose was thereby to improve the cooling of the cutting edge itself, which exhibits the highest temperature during machining. These modified inserts were experimentally investigated in face turning of Alloy 718 with high-pressure coolant. Overall results exhibited that surface featured inserts decreased flank wear, abrasion of the flank face, cutting edge deterioration and crater wear probably due to better heat dissipation from the cutting zone. PMID:29693579
NASA Astrophysics Data System (ADS)
López de Lacalle, Luis Norberto; Urbicain Pelayo, Gorka; Fernández-Valdivielso, Asier; Alvarez, Alvaro; González, Haizea
2017-09-01
Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation. This paper establishes the cutting force relation between work-piece and tool in the turning of such difficult-to-cut alloys by means of a mechanistic cutting force model that considers the tool wear effect. The cutting force model demonstrates the force sensitivity to the cutting engagement parameters (ap, f) when using ceramic inserts and wear is considered. Wear is introduced through a cutting time factor, being useful in real conditions taking into account that wear quickly appears in alloys machining. A good accuracy in the cutting force model coefficients is the key issue for an accurate prediction of turning forces, which could be used as criteria for tool replacement or as input for chatter or other models.
The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping
NASA Astrophysics Data System (ADS)
Vopát, Tomáš; Peterka, Jozef; Kováč, Martin
2014-12-01
The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.
NASA Astrophysics Data System (ADS)
Odedeyi, P. B.; Abou-El-Hossein, K.; Liman, M.
2017-05-01
Stainless steel 316 is a difficult-to-machine iron-based alloys that contain minimum of about 12% of chromium commonly used in marine and aerospace industry. This paper presents an experimental study of the tool wear propagation variations in the end milling of stainless steel 316 with coated carbide inserts. The milling tests were conducted at three different cutting speeds while feed rate and depth of cut were at (0.02, 0.06 and 01) mm/rev and (1, 2 and 3) mm, respectively. The cutting tool used was TiAlN-PVD-multi-layered coated carbides. The effects of cutting speed, cutting tool coating top layer and workpiece material were investigated on the tool life. The results showed that cutting speed significantly affected the machined flank wears values. With increasing cutting speed, the flank wear values decreased. The experimental results showed that significant flank wear was the major and predominant failure mode affecting the tool life.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... upholstery cover (i.e., furniture part) duty rate (free) after the fabric has been cut, sewn, and formed into..., and recliners annually) and cut-and-sewn upholstery covers for the U.S. market and export. The application proposes that Best Home utilize foreign-origin ``micro-denier suede'' fabric to be cut and sewn...
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
NASA Astrophysics Data System (ADS)
Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan
2004-06-01
This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.
Study on boring hardened materials dryly by ultrasonic vibration cutter
NASA Astrophysics Data System (ADS)
Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue
2011-05-01
It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.
Cutting holes in fabric-faced panels
NASA Technical Reports Server (NTRS)
Peterson, S. A.
1981-01-01
Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.
Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel
NASA Astrophysics Data System (ADS)
Samardžiová, Michaela
2016-09-01
This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.
NASA Technical Reports Server (NTRS)
Gheen, Darrell
2007-01-01
A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and, hence, with the frictional drag acting on the outer sleeve. As the wire cuts toward the center of the core, the inner sleeve rotates farther with respect to the outer sleeve. Once the wire has cut to the center of the core, the tool and the core can be removed from the hole. The proper choice of cutting wire depends on the properties of the core material. For a sufficiently soft core material, a nonmetallic monofilament can be used. For a rubber-like core material, a metal wire can be used. For a harder core material, it is necessary to use an abrasive wire, and the efficiency of the tool can be increased greatly by vacuuming away the particles generated during cutting. For a core material that can readily be melted or otherwise cut by use of heat, it could be preferable to use an electrically heated cutting wire. In such a case, electric current can be supplied to the cutting wire, from an electrically isolated source, via rotating contact rings mounted on the sleeves.
Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel
NASA Astrophysics Data System (ADS)
Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.
2018-01-01
Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.
Diamond tool machining of materials which react with diamond
Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.
1992-01-01
Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool
NASA Astrophysics Data System (ADS)
Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre
2018-04-01
The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.
NASA Astrophysics Data System (ADS)
Vasu, M.; Shivananda, Nayaka H.
2018-04-01
EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
NASA Astrophysics Data System (ADS)
Daneshmend, L. K.; Pak, H. A.
1984-02-01
On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.
NASA Technical Reports Server (NTRS)
Mcsmith, D. D.; Richardson, J. I. (Inventor)
1984-01-01
A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.
AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS
Hohenegger, Johann; Briguglio, Antonino
2015-01-01
The “critical shear velocity” and “settling velocity” of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl’s lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations. PMID:26166914
AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS.
Hohenegger, Johann; Briguglio, Antonino
2012-04-01
The "critical shear velocity" and "settling velocity" of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl's lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations.
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour
NASA Astrophysics Data System (ADS)
Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.
2012-04-01
A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
3D FEM Simulation of Flank Wear in Turning
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio
2011-05-01
This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
Ceramic tools insert assesment based on vickers indentation methodology
NASA Astrophysics Data System (ADS)
Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.
2018-05-01
In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.
Improved tool grinding machine
Dial, C.E. Sr.
The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.
Dial, Sr., Charles E.
1980-01-01
The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.
Study of the Vibration Effect on the Cutting Forces and Roughness of Slub Milling
NASA Astrophysics Data System (ADS)
Germa, S.; Estrems Amestoy, M.; Sánchez Reinoso, H. T.; Franco Chumillas, P.
2009-11-01
For the planning process of slab milling operations, the vibration of the tool is the main factor to be considered. Under vibration conditions, the effect of the small displacements of the cutting tool and the cutting forces on the chip thickness must be minimized in order to avoid undesirable consequences, such as the fast flank wear, superficial defects and roughness increase. In this work, a mathematical model is developed to take into account the combined effect of the cutting tool and workpiece oscillation, as well as the axial errors of different milling tool tips. As a result, the model estimates the variation of the cutting forces and the ideal surface roughness.
NASA Astrophysics Data System (ADS)
Pratap, A.; Sahoo, P.; Patra, K.; Dyakonov, A. A.
2017-09-01
This study focuses on the improvement in grinding performance of BK-7 glass using polycrystalline diamond micro-tool. Micro-tools are modified using wire EDM and performance of modified tools is compared with that of as received tool. Tool wear of different types of tools are observed. To quantify the tool wear, a method based on weight loss of tool is introduced in this study. Modified tools significantly reduce tool wear in comparison to the normal tool. Grinding forces increase with machining time due to tool wear. However, modified tools produce lesser forces thus can improve life of the PCD micro-grinding tool.
NASA Astrophysics Data System (ADS)
Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.
2015-11-01
Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.
Micro-scanning mirrors for high-power laser applications in laser surgery
NASA Astrophysics Data System (ADS)
Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald
2014-03-01
We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.
Material Behavior At The Extreme Cutting Edge In Bandsawing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, Mohammed; Haider, Julfikar; Persson, Martin
2011-01-17
In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less
Ductile-regime turning of germanium and silicon
NASA Technical Reports Server (NTRS)
Blake, Peter N.; Scattergood, Ronald O.
1989-01-01
Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
Diamond tool machining of materials which react with diamond
Lundin, R.L.; Stewart, D.D.; Evans, C.J.
1992-04-14
An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
NASA Astrophysics Data System (ADS)
Khidhir, Basim A.; Mohamed, Bashir
2011-02-01
Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.
NASA Astrophysics Data System (ADS)
Ravi, S.; Pradeep Kumar, M.
2011-09-01
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.
Thermal modelling of cooling tool cutting when milling by electrical analogy
NASA Astrophysics Data System (ADS)
Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.
2010-06-01
Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.
NASA Astrophysics Data System (ADS)
Maity, Kalipada; Pradhan, Swastik
2018-04-01
In this study, machining of titanium alloy (grade 5) is carried out using MT-CVD coated cutting tool. Titanium alloys possess superior strength-to-weight ratio with good corrosion resistance. Most of the industries used titanium alloy for the manufacturing of various types of lightweight components. The parts made from Ti-6Al-4V largely used in aerospace, biomedical, automotive and marine sectors. The conventional machining of this material is very difficult, due to low thermal conductivity and high chemical reactivity properties. To achieve a good surface finish with minimum tool wear of cutting tool, the machining is carried out using MT-CVD coated cutting tool. The experiment is carried out using of Taguchi L27 array layout with three cutting variables and levels. To find out the optimum parametric setting desirability function analysis (DFA) approach is used. The analysis of variance is studied to know the percentage contribution of each cutting variables. The optimum parametric setting results calculated from DFA were validated through the confirmation test.
Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia
2012-01-01
The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980
NASA Astrophysics Data System (ADS)
Prasad, Balla Srinivasa; Prabha, K. Aruna; Kumar, P. V. S. Ganesh
2017-03-01
In metal cutting machining, major factors that affect the cutting tool life are machine tool vibrations, tool tip/chip temperature and surface roughness along with machining parameters like cutting speed, feed rate, depth of cut, tool geometry, etc., so it becomes important for the manufacturing industry to find the suitable levels of process parameters for obtaining maintaining tool life. Heat generation in cutting was always a main topic to be studied in machining. Recent advancement in signal processing and information technology has resulted in the use of multiple sensors for development of the effective monitoring of tool condition monitoring systems with improved accuracy. From a process improvement point of view, it is definitely more advantageous to proactively monitor quality directly in the process instead of the product, so that the consequences of a defective part can be minimized or even eliminated. In the present work, a real time process monitoring method is explored using multiple sensors. It focuses on the development of a test bed for monitoring the tool condition in turning of AISI 316L steel by using both coated and uncoated carbide inserts. Proposed tool condition monitoring (TCM) is evaluated in the high speed turning using multiple sensors such as Laser Doppler vibrometer and infrared thermography technique. The results indicate the feasibility of using the dominant frequency of the vibration signals for the monitoring of high speed turning operations along with temperatures gradient. A possible correlation is identified in both regular and irregular cutting tool wear. While cutting speed and feed rate proved to be influential parameter on the depicted temperatures and depth of cut to be less influential. Generally, it is observed that lower heat and temperatures are generated when coated inserts are employed. It is found that cutting temperatures are gradually increased as edge wear and deformation developed.
NASA Astrophysics Data System (ADS)
Adesta, Erry Yulian T.; Riza, Muhammad; Avicena
2018-03-01
Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.
Stability analysis of multipoint tool equipped with metal cutting ceramics
NASA Astrophysics Data System (ADS)
Maksarov, V. V.; Khalimonenko, A. D.; Matrenichev, K. G.
2017-10-01
The article highlights the issues of determining the stability of the cutting process by a multipoint cutting tool equipped with cutting ceramics. There were some recommendations offered on the choice of parameters of replaceable cutting ceramic plates for milling based of the conducted researches. Ceramic plates for milling are proposed to be selected on the basis of value of their electrical volume resistivity.
Modeling and Tool Wear in Routing of CFRP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.
2011-01-17
This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less
Some aspects of precise laser machining - Part 1: Theory
NASA Astrophysics Data System (ADS)
Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr
2018-05-01
The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.
Finite element simulation of cutting grey iron HT250 by self-prepared Si3N4 ceramic insert
NASA Astrophysics Data System (ADS)
Wang, Bo; Wang, Li; Zhang, Enguang
2017-04-01
The finite element method has been able to simulate and solve practical machining problems, achieve the required accuracy and the highly reliability. In this paper, the simulation models based on the material properties of the self-prepared Si3N4 insert and HT250 were created. Using these models, the results of cutting force, cutting temperature and tool wear rate were obtained, and tool wear mode was predicted after cutting simulation. These approaches may develop as the new method for testing new cutting-tool materials, shortening development cycle and reducing the cost.
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
Femtosecond Laser Micro-structuring Of Transparent Materials And Its Ophthalmologic Applications
NASA Astrophysics Data System (ADS)
Ionin, Andrey A.; Kozhushko, Svetlana E.; Kudryashov, Sergey I.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.; Zakharov, Stanislav D.; Alekhin, Alexander I.; Kourylyova, Irina M.; Kuz'min, Kirill K.; Likhvantseva, Vera G.; Samoylov, Michail V.
2010-10-01
We have successfully fabricated in vitro femtosecond laser micro-incisions inside cornea and—for the first time—inside sclera mildly pre-cleared by a biocompatible and clinically safe (non-toxic) natural agent (replacive refractive index-matching 40%-glucose solution in water), with the tissues taken as fresh cool cuts of human cadaver eyes, and reported on basic operational conditions of the micro-surgical procedures.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
NASA Astrophysics Data System (ADS)
Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan
2009-11-01
To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
NASA Astrophysics Data System (ADS)
Pillai, Nandakumar; Karthikeyan, R., Dr.
2018-04-01
Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route
NASA Astrophysics Data System (ADS)
Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha
2017-04-01
High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.
Prediction of Cutting Force in Turning Process-an Experimental Approach
NASA Astrophysics Data System (ADS)
Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.
2018-02-01
This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.
Tool wear analysis during duplex stainless steel trochoidal milling
NASA Astrophysics Data System (ADS)
Amaro, Paulo; Ferreira, Pedro; Simões, Fernando
2018-05-01
In this study a tool with interchangeable inserts of sintered carbides coated with AlTiN were used to mill a duplex stainless steel with trochoidal strategies. Cutting speed range from 120 to 300 m/min were used and t he evaluation of tool deterioration and tool life was made according international standard ISO 8688-1. It was observed a progressive development of a flank wear and a cumulative cyclic process of localized adhesion of the chip to the cutting edge, followed by chipping, loss of the coating and substrate exposure. The tool life reached a maximum of 35 min. for cutting speed of 120 m/min. However, it was possible to maintain a tool life of 20-25 minutes when the cutting speed was increased up to 240 m/min.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Yilmaz, Ali Osman
2017-04-01
In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.
NASA Astrophysics Data System (ADS)
Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.
2015-07-01
Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.
NASA Astrophysics Data System (ADS)
Boy, M.; Yaşar, N.; Çiftçi, İ.
2016-11-01
In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.
Laser cutting plastic materials
NASA Astrophysics Data System (ADS)
Vancleave, R. A.
1980-08-01
A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.
CUTTING AND WEDGING JACKET REMOVER
Freedman, M.; Raynor, S.
1959-04-01
A tool is presented for stripping cladded jackets from fissionable fuel elements. The tool is a tube which fits closely around the jacket and which has two cutting edges at opposite sides of one end. These cutting edges are adjusted to penetrate only the jacket so that by moving the edges downward the jacket is cut into two pieces.
Investigation of pathogen infiltration into produce using Xradia Bio MicroCT
USDA-ARS?s Scientific Manuscript database
The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...
Tool post modification allows easy turret lathe cutting-tool alignment
NASA Technical Reports Server (NTRS)
Fouts, L.
1966-01-01
Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, Joseph Patrick
1997-01-01
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions.
Thermal-mechanical modeling of laser ablation hybrid machining
NASA Astrophysics Data System (ADS)
Matin, Mohammad Kaiser
2001-08-01
Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.
Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
Nairn, John A
2016-06-06
A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.
Tool Enlarges Hard-to-Reach Holes
NASA Technical Reports Server (NTRS)
Geddes, J. P.
1984-01-01
Tool centers itself and cuts precise depth. Tool consists of crosscut carbide bur; sleeve that serves as depth stop and pilot; length of flexible, strong piano wire; and standard drive socket. Parts brazed together. Piano wire transmits torque and axial force to cutting tool.
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md
2011-01-01
Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.
NASA Astrophysics Data System (ADS)
Benhassine, Mehdi; Rivière-Lorphèvre, Edouard; Arrazola, Pedro-Jose; Gobin, Pierre; Dumas, David; Madhavan, Vinay; Aizpuru, Ohian; Ducobu, François
2018-05-01
Carbon-fiber reinforced composites (CFRP) are attractive materials for lightweight designs in applications needing good mechanical properties. Machining of such materials can be harder than metals due to their anisotropic behavior. In addition, the combination of the fibers and resin mechanical properties must also include the fiber orientation. In the case of orthogonal cutting, the tool inclination, rake angle or cutting angle usually influence the cutting process but such a detailed investigation is currently lacking in a 2D configuration. To address this issue, a model has been developed with Abaqus Explicit including Hashin damage. This model has been validated with experimental results from the literature. The effects of the tool parameters (rake angle, clearance angle) on the tool cutting forces, CFRP chip morphology and surface damage are herewith studied. It is shown that 90° orientation for the CFRP increases the surface damage. The rake angle has a minimal effect on the cutting forces but modifies the chip formation times. The feed forces are increased with increasing rake angle.
NASA Astrophysics Data System (ADS)
Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.
2011-01-01
The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.
Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge
NASA Astrophysics Data System (ADS)
Kozlov, V.; Gerasimov, A.; Kim, A.
2016-04-01
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm]; σh - normal specific contact load on the flank land [MPa]; τh - tangential (shear) specific contact load on the flank land [MPa]; HSS - high speed steel (material of cutting tool); Py - radial component of cutting force [N]; Py r - radial component of cutting force on the rake face [N]; Pz - tangential component of cutting force [N]; γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°] αh - clearance angle of the flank wear land [°] ρ - rounding off radius of the cutting edge [mm]; b - width of the machined disk [mm].
Electrical contact tool set station
Byers, M.E.
1988-02-22
An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.
Pilot study of manual sugarcane harvesting using biomechanical analysis.
Clementson, C L; Hansen, A C
2008-07-01
In many countries, sugar cane harvesting is a very labor-intensive activity in which workers usually become fatigued after manually cutting the cane for a few hours. They need frequent pauses for rest, and they experience sustained injuries from excessive stress on the joints and muscles of the body. The cutting tool and motion involved directly influence the stresses created. A cutting tool that has not been designed by taking into consideration occupational biomechanics can lead to unnecessary strains in the body's muscle system, resulting in injuries. The purpose of this research was to carry out a pilot study of the impact of two common manual sugarcane cutting tools and the cutting posture they induce on the body with the aid of biomechanics. The machete and the cutlass from South Africa and Guyana, respectively, were examined to determine the cutting forces. Using static strength prediction modeling, the body stress levels at the point of cut in the cutting motion were determined. The cutting postures of three subjects were contrasted, their extreme postures were identified, and suggestions were made to improve the ergonomics of the cutting activity. The results of this pilot study showed that the cutlass required less cutting force than the machete because of the slicing cut provided by the curved blade edge of the cutlass. However, the biomechanical analysis indicated that the bent blade of the machete required less flexion of the back and therefore was likely to cause less back fatigue and injury. An improved design of the sugarcane manual harvesting tool should incorporate the bend of the machete to reduce flexion and a curved cutting edge that provides a slicing cut.
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
Cross-border health and productivity effects of alcohol policies.
Johansson, Per; Pekkarinen, Tuomas; Verho, Jouko
2014-07-01
This paper studies the cross-border health and productivity effects of alcohol taxes. We estimate the effect of a large cut in the Finnish alcohol tax on mortality, alcohol-related illnesses and work absenteeism in Sweden. This tax cut led to large differences in the prices of alcoholic beverages between these two countries and to a considerable increase in cross-border shopping. The effect is identified using differences-in-differences strategy where changes in these outcomes in regions near the Finnish border are compared to changes in other parts of northern Sweden. We use register data where micro level data on deaths, hospitalisations and absenteeism is merged to population-wide micro data on demographics and labour market outcomes. Our results show that the Finnish tax cut did not have any clear effect on mortality or alcohol-related hospitalisations in Sweden. However, we find that workplace absenteeism increased by 9% for males and by 15% for females near the Finnish border as a result of the tax cut. Copyright © 2014 Elsevier B.V. All rights reserved.
Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining
NASA Astrophysics Data System (ADS)
Rizzuti, S.; Umbrello, D.
2011-01-01
Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, J.P.
1997-07-22
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions. 26 figs.
Some aspects of precise laser machining - Part 2: Experimental
NASA Astrophysics Data System (ADS)
Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert
2018-05-01
The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-01-01
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391
“Investigations on the machinability of Waspaloy under dry environment”
NASA Astrophysics Data System (ADS)
Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.
2016-09-01
Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process
Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour
Braun, David R.; Pante, Michael; Archer, William
2016-01-01
Although we know that our lineage has been producing sharp-edged tools for over 2.6 Myr, our knowledge of what they were doing with these tools is far less complete. Studies of these sharp-edged stone tools show that they were most probably used as cutting implements. However, the only substantial evidence of this is the presence of cut marks on the bones of animals found in association with stone tools in ancient deposits. Numerous studies have aimed to quantify the frequency and placement of these marks. At present there is little consensus on the meaning of these marks and how the frequency relates to specific behaviours in the past. Here we investigate the possibility that mechanical properties associated with edges of stone tools as well as the properties of bones themselves may contribute to the overall morphology of these marks and ultimately their placement in the archaeological record. Standardized tests of rock mechanics (Young's modulus and Vickers hardness) indicate that the hardness of tool edges significantly affects cut-mark morphology. In addition, we show that indentation hardness of bones also impacts the overall morphology of cut marks. Our results show that rock type and bone portions influence the shape and prevalence of cut marks on animal bones. PMID:27274806
Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
Malak, Sharif F F; Anderson, Iain A
2008-07-01
Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.
NASA Astrophysics Data System (ADS)
Wada, Tadahiro; Hanyu, Hiroyuki
2017-11-01
Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.
NASA Astrophysics Data System (ADS)
Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre
2018-05-01
Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan
2010-10-01
Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls
NASA Astrophysics Data System (ADS)
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook
2017-03-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.
2018-02-01
Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.
NASA Astrophysics Data System (ADS)
Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen
2017-10-01
A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study
NASA Astrophysics Data System (ADS)
Rostamsowlat, Iman
2018-06-01
The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.
Generalized interactions using virtual tools within the spring framework: cutting
NASA Technical Reports Server (NTRS)
Montgomery, Kevin; Bruyns, Cynthia D.
2002-01-01
We present schemes for real-time generalized mesh cutting. Starting with the a basic example, we describe the details of implementing cutting on single and multiple surface objects as well as hybrid and volumetric meshes using virtual tools with single and multiple cutting surfaces. These methods have been implemented in a robust surgical simulation environment allowing us to model procedures ranging from animal dissection to cleft lip correction.
Highly Productive Tools For Turning And Milling
NASA Astrophysics Data System (ADS)
Vasilko, Karol
2015-12-01
Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.
Monitoring of Surface Roughness in Aluminium Turning Process
NASA Astrophysics Data System (ADS)
Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat
2018-01-01
As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.
Measuring Contours of Coal-Seam Cuts
NASA Technical Reports Server (NTRS)
1983-01-01
Angle transducers measure angle between track sections as longwall shearer proceeds along coal face. Distance transducer functions in conjunction with angle transducers to obtain relative angles at known positions. When cut is complete, accumulated data are stored on cassette tape, and track profile is computed and displayed. Micro-processor-based instrument integrates small changes in angle and distance.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels
NASA Astrophysics Data System (ADS)
Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.
2017-09-01
The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.
The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon
NASA Astrophysics Data System (ADS)
Kumar, Arkadeep; Melkote, Shreyes N.
2017-07-01
The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Machining of Silicon-Ribbon-Forming Dies
NASA Technical Reports Server (NTRS)
Menna, A. A.
1985-01-01
Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.
Effect of magneto rheological damper on tool vibration during hard turning
NASA Astrophysics Data System (ADS)
Paul, P. Sam; Varadarajan, A. S.
2012-12-01
Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
NASA Astrophysics Data System (ADS)
Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.
2017-09-01
Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.
Strength of inserts in titanium alloy machining
NASA Astrophysics Data System (ADS)
Kozlov, V.; Huang, Z.; Zhang, J.
2016-04-01
In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].
Choi, Seunghee; Coon, Joshua J.; Goggans, Matthew Scott; Kreisman, Thomas F.; Silver, Daniel M.; Nesson, Michael H.
2016-01-01
Many of the materials that are challenging for large animals to cut or puncture are also cut and punctured by much smaller organisms that are limited to much smaller forces. Small organisms can overcome their force limitations by using sharper tools, but one drawback may be an increased susceptibility to fracture. We use simple contact mechanics models to estimate how much smaller the diameter of the tips or edges of tools such as teeth, claws and cutting blades must be in smaller organisms in order for them to puncture or cut the same materials as larger organisms. In order to produce the same maximum stress when maximum force scales as the square of body length, the diameter of the tool region that is in contact with the target material must scale isometrically for punch-like tools (e.g. scorpion stings) on thick targets, and for crushing tools (e.g. molars). For punch-like tools on thin targets, and for cutting blades on thick targets, the tip or edge diameters must be even smaller than expected from isometry in smaller animals. The diameters of a small sample of unworn punch-like tools from a large range of animal sizes are consistent with the model, scaling isometrically or more steeply (positively allometric). In addition, we find that the force required to puncture a thin target using real biological tools scales linearly with tip diameter, as predicted by the model. We argue that, for smaller tools, the minimum energy to fracture the tool will be a greater fraction of the minimum energy required to puncture the target, making fracture more likely. Finally, energy stored in tool bending, relative to the energy to fracture the tool, increases rapidly with the aspect ratio (length/width), and we expect that smaller organisms often have to employ higher aspect ratio tools in order to puncture or cut to the required depth with available force. The extra stored energy in higher aspect ratio tools is likely to increase the probability of fracture. We discuss some of the implications of the suggested scaling rules and possible adaptations to compensate for fracture sensitivity in smaller organisms. PMID:27274804
The Methodology of Calculation of Cutting Forces When Machining Composite Materials
NASA Astrophysics Data System (ADS)
Rychkov, D. A.; Yanyushkin, A. S.
2016-08-01
Cutting of composite materials has specific features and is different from the processing of metals. When this characteristic intense wear of the cutting tool. An important criterion in the selection process parameters composite processing is the value of the cutting forces, which depends on many factors and is determined experimentally, it is not always appropriate. The study developed a method of determining the cutting forces when machining composite materials and the comparative evaluation of the calculated and actual values of cutting forces. The methodology for calculating cutting forces into account specific features of the cutting tool and the extent of wear, the strength properties of the processed material and cutting conditions. Experimental studies conducted with fiberglass milling cutter equipped with elements of hard metal VK3M. The discrepancy between the estimated and the actual values of the cutting force is not more than 10%.
NASA Astrophysics Data System (ADS)
Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.
2017-10-01
Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionin, Andrey A.; Kozhushko, Svetlana E.; Kudryashov, Sergey I.
We have successfully fabricated in vitro femtosecond laser micro-incisions inside cornea and--for the first time--inside sclera mildly pre-cleared by a biocompatible and clinically safe (non-toxic) natural agent (replacive refractive index-matching 40%-glucose solution in water), with the tissues taken as fresh cool cuts of human cadaver eyes, and reported on basic operational conditions of the micro-surgical procedures.
Micro-Sugar-Snap and -Wire-Cut Cookie Baking with Trans- and Zero-Trans-Fat Shortenings
USDA-ARS?s Scientific Manuscript database
The effect of trans- and zero-trans-fat shortenings on cookie-baking performance was evaluated, using the two AACC micro-cookie-baking methods. Regardless of fat type, sugar-snap cookies made with a given flour were larger in diameter, smaller in height, and greater in weight loss during baking tha...
Cutting force measurement of electrical jigsaw by strain gauges
NASA Astrophysics Data System (ADS)
Kazup, L.; Varadine Szarka, A.
2016-11-01
This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement.
NASA Technical Reports Server (NTRS)
Girala, A. S. (Inventor)
1981-01-01
A self clamping cutting tool which includes a handle attached to a C-shaped housing is described. Rotatably mounted within the housing is a C-shaped tool body carrying a set of clamping rolls, two support rolls, and an edged cutting roll (64). The support rolls are disposed to one side of the axis of a pipe and the cutting roll is disposed to the other side of a pipe axis so that these rolls contact a pipe at three circumferential points. Cutter advancing apparatus advance the cutting roll toward the support rollers. The support rolls and cutting roll are rotatable independently of the C-shaped housing. A one way ratchet mechanism disposed between the C-shaped housing and the C-shaped tool body permits operation by movement in one rotational direction about the pipe axis.
Study on electroplating technology of diamond tools for machining hard and brittle materials
NASA Astrophysics Data System (ADS)
Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue
2016-10-01
With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.
Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment
NASA Astrophysics Data System (ADS)
Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu
2016-07-01
It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in <110> and <100> silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.
NASA Astrophysics Data System (ADS)
Razani, Marjan; Soudagar, Yasaman; Yu, Karen; Galbraith, Christopher M.; Webster, Paul J. L.; Van Vlack, Cole; Sun, Cuiru; Mariampillai, Adrian; Leung, Michael K. K.; Standish, Beau; Kiehl, Tim-Rasmus; Fraser, James M.; Yang, Victor X. D.
2013-03-01
Precision depth control of bone resection is necessary for safe surgical procedures in the spine. In this paper, we compare the control and quality of cutting bovine tail bone, as an ex vivo model of laminectomy and bony resection simulating spinal surgery, planned with micro-CT data and executed using two approaches: (a) mechanical milling guided by optical topographical imaging (OTI) and (b) optical milling using closed-loop inline coherent imaging (ICI) to monitor and control the incision depth of a high-power 1070 nm fiber laser in situ. OTI provides the in situ topology of the 2-dimensional surface of the bone orientation in the mechanical mill which is registered with the treatment plan derived from the micro-CT data. The coregistration allows the plan to be programmed into the mill which is then used as a benchmark of current surgical techniques. For laser cutting, 3D optical land marking with coaxial camera vision and the ICI system is used to coregister the treatment plan. The unstable, carbonization-mediated ablation behaviour of 1070 nm light and the unknown initial geometry of bone leads to unpredictable ablation which substantially limits the depth accuracy of open-loop cutting. However, even with such a non-ideal cutting laser, we demonstrate that ICI provides in situ high-speed feedback that automatically and accurately limits the laser's cut depth to effectively create an all-optical analogue to the mechanical mill.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1996-01-01
In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.
Computer-aided dermoscopy for diagnosis of melanoma
Barzegari, Masoomeh; Ghaninezhad, Haiedeh; Mansoori, Parisa; Taheri, Arash; Naraghi, Zahra S; Asgari, Masood
2005-01-01
Background Computer-aided dermoscopy using artificial neural networks has been reported to be an accurate tool for the evaluation of pigmented skin lesions. We set out to determine the sensitivity and specificity of a computer-aided dermoscopy system for diagnosis of melanoma in Iranian patients. Methods We studied 122 pigmented skin lesions which were referred for diagnostic evaluation or cosmetic reasons. Each lesion was examined by two clinicians with naked eyes and all of their clinical diagnostic considerations were recorded. The lesions were analyzed using a microDERM® dermoscopy unit. The output value of the software for each lesion was a score between 0 and 10. All of the lesions were excised and examined histologically. Results Histopathological examination revealed melanoma in six lesions. Considering only the most likely clinical diagnosis, sensitivity and specificity of clinical examination for diagnosis of melanoma were 83% and 96%, respectively. Considering all clinical diagnostic considerations, the sensitivity and specificity were 100% and 89%. Choosing a cut-off point of 7.88 for dermoscopy score, the sensitivity and specificity of the score for diagnosis of melanoma were 83% and 96%, respectively. Setting the cut-off point at 7.34, the sensitivity and specificity were 100% and 90%. Conclusion The diagnostic accuracy of the dermoscopy system was at the level of clinical examination by dermatologists with naked eyes. This system may represent a useful tool for screening of melanoma, particularly at centers not experienced in the field of pigmented skin lesions. PMID:16000171
Laser beam machining of polycrystalline diamond for cutting tool manufacturing
NASA Astrophysics Data System (ADS)
Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold
2017-10-01
The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.
NASA Astrophysics Data System (ADS)
Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi
2017-12-01
In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.
NASA Astrophysics Data System (ADS)
Ee, K. C.; Dillon, O. W.; Jawahir, I. S.
2004-06-01
This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.
DPSSL for direct dicing and drilling of dielectrics
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Schwagmeier, M.
2007-02-01
New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.
Flexible Micro-and Nano-Patterning Tools for Photonics
2016-03-10
AFRL-AFOSR-VA-TR-2016-0125 Flexible Micro- and Nano -Patterning Tools for Photonics Henry Smith LUMARRAY INC. 15 WARD ST. SOMERVILLE, MA 21434228 03...14-01-2015 4. TITLE AND SUBTITLE Flexible Micro- and Nano -Patterning Tools for Photonics - OSD STTR Phase 2 5a. CONTRACT NUMBER FA9550-12-C-0082 5b...2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll DISTRIBUTION A: Distribution approved for public release. FLEXIBLE MICRO- AND NANO - PATTERNING
Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert
NASA Astrophysics Data System (ADS)
Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.
2018-02-01
Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.
Impact of high-pressure coolant supply on chip formation in milling
NASA Astrophysics Data System (ADS)
Klocke, F.; Döbbeler, B.; Lakner, T.
2017-10-01
Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.
Applications of picosecond lasers and pulse-bursts in precision manufacturing
NASA Astrophysics Data System (ADS)
Knappe, Ralf
2012-03-01
Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.
NASA Astrophysics Data System (ADS)
Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.
2018-02-01
In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.
Tube cutter tool and method of use for coupon removal
Nachbar, H.D.; Etten, M.P. Jr.; Kurowski, P.A.
1997-05-06
A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place. 4 figs.
Tube cutter tool and method of use for coupon removal
Nachbar, Henry D.; Etten, Jr., Marvin P.; Kurowski, Paul A.
1997-01-01
A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place.
Green Turning of FCD 700 Ductile Cast Iron Using Coated Carbide Tool
NASA Astrophysics Data System (ADS)
Rodzi, Mohd Nor Azmi Mohd; Ghani, Jaharah A.; Eghawail, A. M.; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che
2010-10-01
This paper presents the performance of carbide coated cutting insert in turning FCD700 ductile cast iron in various dry machining conditions (without air, using air and chilled air). The turning parameters studied were, cutting speed of 120 m/min., feed rate of 0.15 mm/rev-0.4 mm/rev, and depth of cut of 0.6 mm-1.0 mm. The results show that the tool life was significantly controlled by the type of air coolant used, whereas the cutting force and surface roughness were not influenced by these coolants. Chilled air was found to be significantly improved the tool life by about 30% and 40% respectively when compared with normal air and without air conditions. The wear mechanism was predominantly controlled by the flank and crater wears on the flank and rake faces respectively. Due to the low cutting speed used in the experiment, both flank and crater wears were uniformly formed along the cutting edge and no catastrophic failure was observed under the scanning electron microscope (SEM).
Day, Robert Dean; Foreman, Larry R.; Hatch, Douglas J.; Meadows, Mark S.
1998-01-01
There is provided an apparatus for machining surfaces to accuracies within the nanometer range by use of electrical current flow through the contact of the cutting tool with the workpiece as a feedback signal to control depth of cut.
On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters
NASA Astrophysics Data System (ADS)
Han, Fenghua; Xie, Feng
2017-07-01
In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.
NASA Astrophysics Data System (ADS)
Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong
2017-09-01
Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.
NASA Astrophysics Data System (ADS)
Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.
2018-01-01
This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.
The use of cutting temperature to evaluate the machinability of titanium alloys.
Kikuchi, Masafumi
2009-02-01
This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
Micro Slot Generation by μ-ED Milling
NASA Astrophysics Data System (ADS)
Dave, H. K.; Mayanak, M. K.; Rajpurohit, S. R.; Mathai, V. J.
2016-08-01
Micro electro discharge machining is one of the most widely used advanced micro machining technique owing to its capability to fabricate micro features on any electrically conductive materials irrespective of its material properties. Despite its wide acceptability, the process is always adversely affected by issues like wear that occurred on the tool electrode, which results into generation of inaccurate features. Micro ED milling, a process variant in which the tool electrode simultaneously rotated and scanned during machining, is reported to have high process efficiency for generation of 3D complicated shapes and features with relatively less electrode wear intensity. In the present study an attempt has been made to study the effect of two process parameters viz. capacitance and scanning speed of tool electrode on end wear that occurs on the tool electrode and overcut of micro slots generated by micro ED milling. The experiment has been conducted on Al 1100 alloy with tungsten electrode having diameter of 300 μm. Results suggest that wear on the tool electrode and overcut of the micro features generated are highly influenced by the level of the capacitance employed during machining. For the parameter usage employed for present study however, no significant effect of variation of scanning speed has been observed on both responses.
Cutting Symmetrical Recesses In Soft Ceramic Tiles
NASA Technical Reports Server (NTRS)
Nesotas, Tony C.; Tyler, Brent
1989-01-01
Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.
NASA Astrophysics Data System (ADS)
Bayraktar, S.; Hekimoglu, A. P.; Turgut, Y.; Haciosmanoglu, M.
2018-01-01
In this study, Al-35Zn alloy was produced by permanent mold casting. To investigate the cutting performance of uncoated and TiAlN coated carbide end mills on this alloy, a series of tests were carried out in the CNC vertical machining center at a constant cutting speed, feed rate and depth of cut. The results obtained from the tests showed that uncoated carbide end mill have lower cutting force and surface roughness than TiAlN coated carbide end mill. These observations are discussed in terms of the alloys properties, cutting tool surfaces, and friction and wear behavior between the cutting tool and the material.
Day, R.D.; Foreman, L.R.; Hatch, D.J.; Meadows, M.S.
1998-09-08
There is provided an apparatus for machining surfaces to accuracies within the nanometer range by use of electrical current flow through the contact of the cutting tool with the workpiece as a feedback signal to control depth of cut. 3 figs.
NASA Astrophysics Data System (ADS)
El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal
2016-10-01
Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.
NASA Astrophysics Data System (ADS)
Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.
2018-03-01
As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.
NASA Astrophysics Data System (ADS)
Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre
2018-03-01
This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
Rotary fast tool servo system and methods
Montesanti, Richard C.; Trumper, David L.
2007-10-02
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Rotary fast tool servo system and methods
Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-08-18
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
An experimental study of cutting performances in machining of nimonic super alloy GH2312
NASA Astrophysics Data System (ADS)
Du, Jinfu; Wang, Xi; Xu, Min; Mao, Jin; Zhao, Xinglong
2018-05-01
Nimonic super alloy are extensively used in the aerospace industry because of its unique properties. As they are quite costly and difficult to machine, the machining tool is easy to get worn. To solve the problem, an experiment was carried out on a numerical control slitting automatic lathe to analysis the tool wearing conditions and parts' surface quality of nimonic super alloy GH2132 under different cutters. The selection of suitable cutter, reasonable cutting data and cutting speed is obtained and some conclusions are made. The excellent coating tool, compared with other hard alloy cutters, along with suitable cutting data will greatly improve the production efficiency and product quality, it can completely meet the process of nimonic super alloy GH2312.
Loayza, María Fernanda; Villavicencio, Fernando Xavier; Santander, Stephanie Carolina; Baldeón, Manuel; Ponce, Lourdes Karina; Salvador, Iván; Vivar Díaz, Nicolás
2015-01-01
To assess the molecular events exerted by Helicobacter pylori interacting directly with gastric epithelial cells, an improved procedure for microbial DNA isolation from stained hematoxilin-eosin gastric biopsies was developed based on laser micro-dissection (LM) [1]. Few articles have described the use of LM to select and detect H. pylori genome from formalin-fixed paraffin embedded gastric tissue [2]. To improve the yield and quality of DNA isolated from H. pylori contacting intestinal epithelial cells, the following conditions were established after modification of the QIAamp DNA Micro kit. •Use of at least 25 cut sections of 10-20 μm of diameter and 3 μm thick with more than 10 bacteria in each cut.•Lysis with 30 μL of tissue lysis buffer and 20 μL of proteinase K (PK) with the tube in an upside-down position.•The use of thin purification columns with 35 μL of elution buffer. The mean of DNA concentration obtained from 25 LM cut sections was 1.94± 0 .16 ng/μL, and it was efficiently amplified with qPCR in a Bio Rad iCycler instrument. The LM can improve the sample selection and DNA extraction for molecular analysis of H. pylori associated with human gastric epithelium.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
An Experimental Study of Cutting Performances of Worn Picks
NASA Astrophysics Data System (ADS)
Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil
2016-01-01
The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.
Finite Element Simulation of Machining of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Rizzuti, S.; Umbrello, D.
2011-05-01
Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.
Diagnosis of edge condition based on force measurement during milling of composites
NASA Astrophysics Data System (ADS)
Felusiak, Agata; Twardowski, Paweł
2018-04-01
The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
Russell, W.H. Jr.
1959-06-30
A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.
Lathe tool bit and holder for machining fiberglass materials
NASA Technical Reports Server (NTRS)
Winn, L. E. (Inventor)
1972-01-01
A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.
75 FR 34179 - Tivoly, Inc., Derby Line, VT; Notice of Negative Determination on Reconsideration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... firm regarding their purchases of cutting tools, taps, and reamers during 2007, 2008, and during the... five months in 2008. Those surveys showed customer imports of cutting tools, taps, and reamers to be...
Developing Lathing Parameters for PBX 9501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodrum, Randall Brock
This thesis presents the work performed on lathing PBX 9501 to gather and analyze cutting force and temperature data during the machining process. This data will be used to decrease federal-regulation-constrained machining time of the high explosive PBX 9501. The effects of machining parameters depth of cut, surface feet per minute, and inches per revolution on cutting force and cutting interface were evaluated. Cutting tools of tip radius 0.005 -inches and 0.05 -inches were tested to determine what effect the tool shape had on the machining process as well. A consistently repeatable relationship of temperature to changing depth of cutmore » and surface feet per minute is found, while only a weak dependence was found to changing inches per revolution. Results also show the relation of cutting force to depth of cut and inches per revolution, while weak dependence on SFM is found. Conclusions suggest rapid, shallow cuts optimize machining time for a billet of PBX 9501, while minimizing temperature increase and cutting force.« less
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
The use of power tools in the insertion of cortical bone screws.
Elliott, D
1992-01-01
Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Gong, Yadong; Wang, Jinsheng
2013-11-01
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools
Qi, Chaolong; Echt, Alan; Gressel, Michael G
2017-01-01
This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343
The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.
Qi, Chaolong; Echt, Alan; Gressel, Michael G
2017-03-01
This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.
Properties and Cutting Performance of TiAlSiN Coating Prepared by Cathode Arc Ion Plating
NASA Astrophysics Data System (ADS)
Zhang, Er-Geng; Chen, Qiang; Wang, Qin-Xue; Huang, Biao
2016-06-01
TiAlSiN coating was deposited on high-speed steel (HSS) samples and cemented carbide tool inserts, respectively, by a new coating preparation procedure, and its properties and cutting performance were characterized. The coating thickness, chemical composition, microstructure morphology and mechanical properties were investigated by X-ray fluorescence measurement system, energy dispersive spectrometer (EDS), scanning electron microscope (SEM), nanoindentation, Rockwell hardness tester and ball-on-disc tribometer. A 3D orthogonal cutting experiment model was established by DEFORM-3D to study the influences of different coating thicknesses on cutting force and temperature, and the field cutting experiment was carried out. The results show that the thickness of TiAlSiN coating is 3.14μm prepared by the 3μm preparation procedure, microhardness is 36.727GPa with the Si content of about 5.22at.% as well as good fracture toughness and adhesion strength. The TC4 and AISI 1045 cutting tool inserts with 4μm coating thickness have the minimum cutting forces of about 734.7N and 450.7N, respectively. Besides, tool inserts with a thickness of 3μm have the minimum cutting temperatures of about 510.2∘C and 230.6∘C, respectively.
An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.
Shendell, Derek G; Mizan, Samina S; Marshall, Elizabeth G; Kelly, Sarah W; Therkorn, Jennifer H; Campbell, Jennifer K; Miller, Ashley E
2012-09-01
Investigations of young workers, including limited surveys in supervised school settings, suggested their elevated injury risk. This study identified factors contributing to cuts-lacerations among adolescents in New Jersey secondary school career, technical, and vocational education programs. Of 1,772 injuries reported between December 1, 1998, and September 1, 2010, 777 (44%) were cuts-lacerations; analyses focused on 224 reports (n = 182 post-exclusions) submitted after fall 2005 in three career groups-Food, Hospitality & Tourism (FH&T) (n = 71), Manufacturing & Construction (M&C) (n = 84), and Automotive & Transportation (A&T) (n = 27). Most students were "struck by" tools or hard surfaces (n = 93, 51%); 63 cuts were from knives in FH&T. In M&C, most cuts-lacerations were caused by hand-held tools (n = 18) and being "struck against/by" or "caught between hard surfaces" (n = 19). Males reported more cuts-lacerations (n = 145), most commonly among 11th graders (n = 54) and ages 16 to 17 years (n = 79). Fingers (n = 117) were most often injured, usually by cutting tools (n = 83). Training, supervision, and appropriate equipment, and further assessments of "struck by" and "pinch point" hazards, are needed. Copyright 2012, SLACK Incorporated.
Calculating and Mitigating the Risk of a Cut Glove to a Space Walking Astronaut
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2013-01-01
One of the high risk operations on the International Space Station (ISS) is conducting a space walk, or an Extra Vehicular Activity (EVA). Threats to the space walking crew include airlock failures, space suit failures, and strikes from micro ]meteoroids and orbital debris (MM/OD). There are risks of becoming untethered from the space station, being pinched between the robotic arm and a piece of equipment, tearing your suit on a sharp edge, and other human errors that can be catastrophic. For decades NASA identified and tried to control sharp edges on external structure and equipment by design; however a new and unexpected source of sharp edges has since become apparent. Until recently, one of the underappreciated environmental risks was damage to EVA gloves during a spacewalk. The ISS has some elements which have been flying in the environment of space for over 14 years. It has and continues to be bombarded with MM/OD strikes that have created small, sharp craters all over the structure, including the dedicated EVA handrails and surrounding structure. These craters are capable of cutting through several layers of the EVA gloves. Starting in 2006, five EVA crewmembers reported cuts in their gloves so large they rendered the gloves unusable and in some cases cut the spacewalk short for the safety of the crew. This new hazard took engineers and managers by surprise. NASA has set out to mitigate this risk to safety and operations by redesigning the spacesuit gloves to be more resilient and designing a clamp to isolate MM/OD strikes on handrails, and is considering the necessity of an additional tool to repair strikes on non ]handrail surfaces (such as a file). This paper will address how the ISS Risk Team quantified an estimate of the MM/OD damage to the ISS, and the resulting likelihood of sustaining a cut glove in order to measure the effectiveness of the solutions being investigated to mitigate this risk to the mission and crew.
Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2014-01-01
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534
Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys
NASA Astrophysics Data System (ADS)
de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.
2009-11-01
Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.
Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.
Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya
2016-01-01
In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.
Updating the Micro-Tom TILLING platform.
Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi
2013-03-01
The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems
NASA Astrophysics Data System (ADS)
Choi, Edward
Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the applications above is evaluated. The viability of this approach is not limited to the examples listed in this work, and innovative new methodologies beyond those included here may be developed in the future for other systems which would benefit from the versatility of chip-scale platforms.
USSR Report, Machine Tools and Metalworking Equipment, No. 6
1983-05-18
production output per machine tool at a tool plant average 2-3 times the figures for tool shops. This is explained by the well-known advantages of...specialized production. Specifically, the advantages of standardization and unification of machine- attachment design can be fully exploited in...lemiiiiä IS MVCti\\e UtiUzation °f appropriate special equipmeT ters)! million thread-cutting dies, and 2.3 million milling cut- The advantages of
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Estimation of tool wear during CNC milling using neural network-based sensor fusion
NASA Astrophysics Data System (ADS)
Ghosh, N.; Ravi, Y. B.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A. R.; Chattopadhyay, A. B.
2007-01-01
Cutting tool wear degrades the product quality in manufacturing processes. Monitoring tool wear value online is therefore needed to prevent degradation in machining quality. Unfortunately there is no direct way of measuring the tool wear online. Therefore one has to adopt an indirect method wherein the tool wear is estimated from several sensors measuring related process variables. In this work, a neural network-based sensor fusion model has been developed for tool condition monitoring (TCM). Features extracted from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure level have been fused to estimate the average flank wear of the main cutting edge. Novel strategies such as, signal level segmentation for temporal registration, feature space filtering, outlier removal, and estimation space filtering have been proposed. The proposed approach has been validated by both laboratory and industrial implementations.
Ultrafast Bessel beams: advanced tools for laser materials processing
NASA Astrophysics Data System (ADS)
Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois
2018-05-01
Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.
NASA Astrophysics Data System (ADS)
Afolalu, S. A.; Okokpujie, I. P.; Salawu, E. Y.; Abioye, A. A.; Abioye, O. P.; Ikumapayi, O. M.
2018-04-01
The degree of holding temperature and time play a major role in nano-case treatment of cutting tools which immensely contributed to its performance during machining operation. The objective of this research work is to carryout comparative study of performance of nano-case treatment tools developed using low and medium carbon steel as work piece. Turning operation was carried out under two different categories with specific work piece on universal lathe machine using HSS cutting tools 100 mm × 12mm × 12mm that has been nano-case treated under varying conditions of temperatures and timeof 800,850, 900, 950°C and 60, 90, 120 mins respectively. The turning parameters used in evaluating this experiment were cutting speed of 270, 380 and 560mm/min, feed rate of 0.15, 0.20 and 0.25 mm/min, depth of cut of 2mm, work piece diameter of 25mm and rake angle of 7° each at three levels. The results of comparative study of their performances revealed that the timespent in the machining of low carbon steel material at a minimum temperature and time of 800°C, 60 mins were1.50, 2.17 mins while at maximum temperature and time of 950°C, 120 mins were 1.19, 2.02 mins. It was also observed that at a corresponding constant speed of 270,380 and 560mm/min at higher temperature and time, a relative increased in the length of cut were observed. Critical observation of the result showed that at higher case hardening temperature and time (950°C/120mins), the HSS cutting tool gave a better performance as lesser time was consumed during the turning operation.
NASA Astrophysics Data System (ADS)
Kuttolamadom, Mathew Abraham
The objective of this research work is to create a comprehensive microstructural wear mechanism-based predictive model of tool wear in the tungsten carbide / Ti-6Al-4V machining tribosystem, and to develop a new topology characterization method for worn cutting tools in order to validate the model predictions. This is accomplished by blending first principle wear mechanism models using a weighting scheme derived from scanning electron microscopy (SEM) imaging and energy dispersive x-ray spectroscopy (EDS) analysis of tools worn under different operational conditions. In addition, the topology of worn tools is characterized through scanning by white light interferometry (WLI), and then application of an algorithm to stitch and solidify data sets to calculate the volume of the tool worn away. The methodology was to first combine and weight dominant microstructural wear mechanism models, to be able to effectively predict the tool volume worn away. Then, by developing a new metrology method for accurately quantifying the bulk-3D wear, the model-predicted wear was validated against worn tool volumes obtained from corresponding machining experiments. On analyzing worn crater faces using SEM/EDS, adhesion was found dominant at lower surface speeds, while dissolution wear dominated with increasing speeds -- this is in conformance with the lower relative surface speed requirement for micro welds to form and rupture, essentially defining the mechanical load limit of the tool material. It also conforms to the known dominance of high temperature-controlled wear mechanisms with increasing surface speed, which is known to exponentially increase temperatures especially when machining Ti-6Al-4V due to its low thermal conductivity. Thus, straight tungsten carbide wear when machining Ti-6Al-4V is mechanically-driven at low surface speeds and thermally-driven at high surface speeds. Further, at high surface speeds, craters were formed due to carbon diffusing to the tool surface and being carried away by the rubbing action of the chips -- this left behind a smooth crater surface predominantly of tungsten and cobalt as observed from EDS analysis. Also, at high surface speeds, carbon from the tool was found diffused into the adhered titanium layer to form a titanium carbide (TiC) boundary layer -- this was observed as instances of TiC build-up on the tool edge from EDS analysis. A complex wear mechanism interaction was thus observed, i.e., titanium adhered on top of an earlier worn out crater trough, additional carbon diffused into this adhered titanium layer to create a more stable boundary layer (which could limit diffusion-rates on saturation), and then all were further worn away by dissolution wear as temperatures increased. At low and medium feeds, notch discoloration was observed -- this was detected to be carbon from EDS analysis, suggesting that it was deposited from the edges of the passing chips. Mapping the dominant wear mechanisms showed the increasing dominance of dissolution wear relative to adhesion, with increasing grain size -- this is because a 13% larger sub-micron grain results in a larger surface area of cobalt exposed to chemical action. On the macro-scale, wear quantification through topology characterization elevated wear from a 1D to 3D concept. From investigation, a second order dependence of volumetric tool wear (VTW) and VTW rate with the material removal rate (MRR) emerged, suggesting that MRR is a more consistent wear-controlling factor instead of the traditionally used cutting speed. A predictive model for VTW was developed which showed its exponential dependence with workpiece stock volume removed. Also, both VTW and VTW rate were found to be dependent on the accumulated cumulative wear on the tool. Further, a ratio metric of stock material removed to tool volume lost is now possible as a tool efficiency quantifier and energy-based productivity parameter, which was found to inversely depend on MRR - this led to a more comprehensive tool wear definition based on cutting tool efficiency. (Abstract shortened by UMI.)
Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator
NASA Astrophysics Data System (ADS)
Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan
2018-06-01
In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.
Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator
NASA Astrophysics Data System (ADS)
Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan
2016-06-01
In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.
Trajectory Calculator for Finite-Radius Cutter on a Lathe
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan
2009-01-01
A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
Physical Modeling of Contact Processes on the Cutting Tools Surfaces of STM When Turning
NASA Astrophysics Data System (ADS)
Belozerov, V. A.; Uteshev, M. H.
2016-08-01
This article describes how to create an optimization model of the process of fine turning of superalloys and steel tools from STM on CNC machines, flexible manufacturing units (GPM), machining centers. Creation of the optimization model allows you to link (unite) contact processes simultaneously on the front and back surfaces of the tool from STM to manage contact processes and the dynamic strength of the cutting tool at the top of the STM. Established optimization model of management of the dynamic strength of the incisors of the STM in the process of fine turning is based on a previously developed thermomechanical (physical, heat) model, which allows the system thermomechanical approach to choosing brands STM (domestic and foreign) for cutting tools from STM designed for fine turning of heat resistant alloys and steels.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S. S.; Karatas, C.
2017-11-01
A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.
Cutting process simulation of flat drill
NASA Astrophysics Data System (ADS)
Tamura, Shoichi; Matsumura, Takashi
2018-05-01
Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.
View of a stone age adze cutting tool floating freely in the flight deck.
NASA Technical Reports Server (NTRS)
1992-01-01
View of a stone age adze cutting tool floating freely in the forward flight deck and framed by the forward and side windows. On the Earth below, the big island of Hawaii can be seen through the window.
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago
2013-05-24
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.
Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago
2013-01-01
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266
NASA Astrophysics Data System (ADS)
Yigit, Ufuk; Cigeroglu, Ender; Budak, Erhan
2017-09-01
Chatter is a self-excited type of vibration that develops during machining due to process-structure dynamic interactions resulting in modulated chip thickness. Chatter is an important problem as it results in poor surface quality, reduced productivity and tool life. The stability of a cutting process is strongly influenced by the frequency response function (FRF) at the cutting point. In this study, the effect of piezoelectric shunt damping on chatter vibrations in a boring process is studied. In piezoelectric shunt damping method, an electrical impedance is connected to a piezoelectric transducer which is bonded on cutting tool. Electrical impedance of the circuit consisting of piezoceramic transducer and passive shunt is tuned to the desired natural frequency of the cutting tool in order to maximize damping. The optimum damping is achieved in analytical and finite element models (FEM) by using a genetic algorithm focusing on the real part of the tool point FRF rather than the amplitude. Later, a practical boring bar is considered where the optimum circuit parameters are obtained by the FEM. Afterwards, the effect of the optimized piezoelectric shunt damping on the dynamic rigidity and absolute stability limit of the cutting process are investigated experimentally by modal analysis and cutting tests. It is both theoretically and experimentally shown that application of piezoelectric shunt damping results in a significant increase in the absolute stability limit in boring operations.
Williams, R.R.
1980-09-03
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.
Williams, Richard R.
1982-01-01
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.
The effect of cutting parameters on the performance of ZTA-MgO cutting tool
NASA Astrophysics Data System (ADS)
Ali, A. M.; Hamidon, N. E.; Zaki, N. K. M.; Mokhtar, S.; Azhar, A. Z. A.; Bahar, R.; Ahmad, Z. A.
2018-01-01
The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.
Process Damping and Cutting Tool Geometry in Machining
NASA Astrophysics Data System (ADS)
Taylor, C. M.; Sims, N. D.; Turner, S.
2011-12-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration.
Li, Zhe; Yang, Daoguo; Hao, Weidong; Wu, Tiecheng; Wu, Song; Li, Xiaoping
2016-04-01
Micro-hole opening on skull is technically challenging and is hard to realize by micro-drilling. Low-stiffness of the drill bit is a serious drawback in micro-drilling. To deal with this problem, a novel ultrasonic vibration assisted micro-hole forming technique has been developed. Tip geometry and vibration amplitude are two key factors affecting the performance of this hole forming technique. To investigate their effects, experiment was carried out with 300μm diameter tools of three different tip geometries at three different vibration amplitudes. Hole forming performance was evaluated by the required thrust force, dimensional accuracy, exit burr and micro-structure of bone tissue around the generated hole. Based on the findings from current study, the 60° conically tipped tool helps generate a micro-hole of better quality at a smaller thrust force, and it is more suitable for hole forming than the 120° conically tipped tool and the blunt tipped tool. As for the vibration amplitude, when a larger amplitude is used, a micro-hole of better quality and higher dimensional accuracy can be formed at a smaller thrust force. Findings from this study would lay a technical foundation for accurately generating a high-quality micro-hole on skull, which enables minimally invasive insertion of a microelectrode into brain for neural activity measuring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multistable wireless micro-actuator based on antagonistic pre-shaped double beams
NASA Astrophysics Data System (ADS)
Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.
2015-07-01
This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.
A normally-closed piezoelectric micro-valve with flexible stopper
NASA Astrophysics Data System (ADS)
Chen, Song; Lu, Song; Liu, Yong; Wang, Jiantao; Tian, Xiaochao; Liu, Guojun; Yang, Zhigang
2016-04-01
In the field of controlled drug delivery system, there are still many problems on those reported micro-valves, such as the small opening height, unsatisfactory particle tolerance and high cost. To solve the above problems, a novel normally-closed piezoelectric micro-valve is presented in this paper. The micro-valve was driven by circular unimorph piezoelectric vibrator and natural rubber membrane with high elasticity was used as the valve stopper. The small axial displacement of piezoelectric vibrator can be converted into a large stroke of valve stopper based on hydraulic amplification mechanism. The experiment indicates that maximum hydraulic amplification ratio is up to 14, and the cut-off pressure of the micro-valve is 39kPa in the case of no working voltage. The presented micro valve has a large flow control range (ranging from 0 to 8.75mL/min).
Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.
Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong
2012-04-01
High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.
miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.
Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M
2009-07-01
Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.
NASA Astrophysics Data System (ADS)
Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver
2015-08-01
Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.
Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut
NASA Astrophysics Data System (ADS)
Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef
2015-12-01
This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).
Micro rotary machine and methods for using same
Stalford, Harold L [Norman, OK
2012-04-17
A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.
Micro rotary machine and methods for using same
Stalford, Harold
2015-01-13
A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.
2016-05-01
Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.
Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V
NASA Astrophysics Data System (ADS)
Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul
2017-12-01
Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.
Validation of tool mark analysis of cut costal cartilage.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2012-03-01
This study was designed to establish the potential error rate associated with the generally accepted method of tool mark analysis of cut marks in costal cartilage. Three knives with different blade types were used to make experimental cut marks in costal cartilage of pigs. Each cut surface was cast, and each cast was examined by three analysts working independently. The presence of striations, regularity of striations, and presence of a primary and secondary striation pattern were recorded for each cast. The distance between each striation was measured. The results showed that striations were not consistently impressed on the cut surface by the blade's cutting edge. Also, blade type classification by the presence or absence of striations led to a 65% misclassification rate. Use of the classification tree and cross-validation methods and inclusion of the mean interstriation distance decreased the error rate to c. 50%. © 2011 American Academy of Forensic Sciences.
Computer aided design of Langasite resonant cantilevers: analytical models and simulations
NASA Astrophysics Data System (ADS)
Tellier, C. R.; Leblois, T. G.; Durand, S.
2010-05-01
Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.
Electromagnetic variable degrees of freedom actuator systems and methods
Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-02-17
The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.
Indoor transformer stations as predictors of residential ELF magnetic field exposure.
Ilonen, K; Markkanen, A; Mezei, G; Juutilainen, Jukka
2008-04-01
Transformer stations in apartment buildings may offer a possibility to conduct epidemiological studies that involve high exposure to extremely low frequency magnetic fields (MF), avoid selection bias and minimize confounding factors. To validate exposure assessment based on transformer stations, measurements were performed in thirty buildings in three Finnish cities. In each building, spot measurements in all rooms and a 24-h recording in a bedroom were performed in one apartment above a transformer station (AAT), in one first floor (FF) reference apartment, and one reference apartment on upper floors (UF). The apartment mean of spot measurements was 0.62 microT in the AATs, 0.21 microT in the FF and 0.11 microT in the UF reference apartments The 24-h apartment mean (estimated from the spot measurements and the bedroom 24-h recording) was 0.2 microT or higher in 29 (97%) AATs, in 7 (25%) FF and in 3 (10 %) UF reference apartments. The corresponding numbers for the 0.4 microT cut-off point were 19 (63%), 4 (14%), and 1 (3.3%). The higher MF level in the FF reference apartments indicates that they should not be considered "unexposed" in epidemiological studies. If such apartments are excluded, a transformer station under the floor predicts 24-h apartment mean MF with a sensitivity of 0.41 (or 0.58) and a specificity of 0.997 (or 0.97), depending on the MF cut-off point (0.2 or 0.4 microT). The results indicate that apartments can be reliably classified as high and low MF field categories based on the known location of transformer stations. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.
2012-03-01
Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase transformation (formation of AlN hex phase) drastically diminishes within the layer of the adaptive coating. Micro-mechanical properties measurements performed at room and elevated temperatures show that the hardness of the multilayer TiAlCrSiYN/TiAlCrN coating appears stable to 500 °C and then drops a little at 600 °C but still remains high. It means that if the surface tribo-films can reduce actual temperature down to this level the coating underneath is able to efficiently withstand heavy loads under operation.
NASA Astrophysics Data System (ADS)
Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo
2018-05-01
An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.
NASA Astrophysics Data System (ADS)
Wang, Jiachun; Li, Yuntao; Liu, Xiaoxuan; Lv, Maoqiang
2016-10-01
In the process of cutting silicon by natural diamond tools, groove wear happens on the flank face of cutting tool frequently.Scholars believe that one of the wear reasons is mechanical scratching effect by hard particles like SiC. To reveal the mechanical scratching mechanism, it is essential to study changes in the mechanical properties of hard particles and diamond, especially the effect of cutting temperature on hardness of diamond and hard particles. Molecular dynamics (MD) model that contact-zone temperature between tool and workpiece was calculated by dividing zone while nano-cutting monocrystalline silicon was established, cutting temperature values in different regions were computed as the simulation was carried out.On this basis, the models of molecular dynamics simulation of SiC and diamond were established separately with setting the initial temperature to room temperature. The laws of length change of C-C bond and Si-C bond varing with increase of simulation temperature were studied. And drawing on predecessors' research on theoretical calculation of hardness of covalent crystals and the relationship between crystal valence electron density and bond length, the curves that the hardness of diamond and SiC varing with bond length were obtained. The effect of temperature on the hardness was calculated. Results show that, local cutting temperature can reach 1300K.The rise in cutting temperature leaded to a decrease in the diamond local atomic clusters hardness,SiC local atomic clusters hardness increased. As the cutting temperature was more than 1100K,diamond began to soften, the local clusters hardness was less than that of SiC.
NASA Astrophysics Data System (ADS)
Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki
2015-02-01
Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.
Oriented microtexturing on the surface of high-speed steel cutting tool
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2016-11-01
Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.
NASA Astrophysics Data System (ADS)
Ramulu, M.; Rogers, E.
1994-04-01
The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
Method of fabricating a micro machine
Stalford, Harold L
2014-11-11
A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.
Methods and systems for micro machines
Stalford, Harold L.
2018-03-06
A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.
Methods and systems for micro machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalford, Harold L.
2017-04-11
A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.
Methods and systems for micro machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalford, Harold L.
A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon
NASA Astrophysics Data System (ADS)
Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.
2017-10-01
In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.
Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts
NASA Astrophysics Data System (ADS)
Senn, Sergei; Liewald, Mathias
2018-05-01
This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.
An analytical method on the surface residual stress for the cutting tool orientation
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2010-03-01
The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.
Critically Loaded Hole Technology Pilot Collaborative Test Programme.
1980-11-01
270 rpm Spindle Speed - 1450 rpm Feed Rate - Manual Feed Rate - Manual Cutting Fluid - Dry Cutting Fluid - Dry Tool Type - Cordia S-18 Tool Type... Cordia S-18 TABLE XI MANUFACTURING DETAILS FOR HIGH AND LOW QUALITY HOLES SELECTED BY THE UNITED KINGDOM HIGH QUALITY LOW QUALITY Pilot Hole: - 1/8 inch
Key improvements in machining of Ti6al4v alloy: A review
NASA Astrophysics Data System (ADS)
Katta, Sivakoteswararao; Chaitanya, G.
2017-07-01
Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.
Research on the EDM Technology for Micro-holes at Complex Spatial Locations
NASA Astrophysics Data System (ADS)
Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.
2017-12-01
For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.
NASA Astrophysics Data System (ADS)
Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.
2016-11-01
In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.
2011-01-17
The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasivemore » and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.« less
Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel
NASA Astrophysics Data System (ADS)
Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.
2018-04-01
Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.
NASA Astrophysics Data System (ADS)
Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.
2011-01-01
The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.
Micro-computed tomography of false starts produced on bone by different hand-saws.
Pelletti, Guido; Viel, Guido; Fais, Paolo; Viero, Alessia; Visentin, Sindi; Miotto, Diego; Montisci, Massimo; Cecchetto, Giovanni; Giraudo, Chiara
2017-05-01
The analysis of macro- and microscopic characteristics of saw marks on bones can provide useful information about the class of the tool utilized to produce the injury. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of false starts experimentally produced on 32 human bone sections using 4 different hand-saws in order to verify the potential utility of micro-CT for distinguishing false starts produced by different saws and to correlate the morphology of the tool with that of the bone mark. Each sample was analysed through stereomicroscopy and micro-CT. Stereomicroscopic analysis allowed the identification of the false starts and the detection of the number of tool marks left by each saw. Micro-CT scans, through the integration of 3D renders and multiplanar reconstructions (MPR), allowed the identification of the shape of each false start correlating it to the injuring tool. Our results suggest that micro-CT could be a useful technique for assessing false starts produced by different classes of saws, providing accurate morphological profiles of the bone marks with all the advantages of high resolution 3D imaging (e.g., high accuracy, non-destructive analysis, preservation and documentation of evidence). However, further studies are necessary to integrate qualitative data with quantitative metrical analysis in order to further characterize the false start and the related injuring tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of Process Performance for Sustainable Hard Machining
NASA Astrophysics Data System (ADS)
Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.
This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook
2017-01-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.
Comparing two quantitative methods for studying remineralization of artificial caries.
Lo, E C M; Zhi, Q H; Itthagarun, A
2010-04-01
To compare the detection of changes before and after remineralization of artificial enamel and dentin caries by microCT scanning, polarized light microscopy (PLM) and transverse microradiography (TMR). Fourteen extracted premolars were cut into tooth blocks and painted with an acid-resistant varnish leaving one enamel and one dentin surface exposed. The tooth blocks were immersed into demineralizing solution for 4 days to produce artificial caries-like lesions and scanned by microCT. Then the 14 tooth blocks were randomly allocated into two groups. Seven tooth blocks in Group I were cut longitudinally through the exposed surface into 100-150 microm thick sections and microradiographs were taken. The other seven tooth blocks in Group II were left intact. All the tooth blocks and sections were then immersed into remineralizing solution for 5 days. PLM and TMR of the tooth sections in Group I were taken again. Depth of the lesion on the TMR was measured. Tooth blocks in Group II were scanned by microCT. Mean lesion depth in Group I reduced by 13.0% and 8.2% after remineralization for enamel and dentin, respectively (paired t-test, P<0.001). In Group II, linear attenuation coefficient (LAC) of the region of interest (ROI) increased by 11.1% and 23.8% after remineralization for enamel and dentin lesions, respectively (paired t-test, P<0.001). Both microCT and microradiography are able to detect a change of similar magnitude in the artificial caries lesions after remineralization. MicroCT may be used to substitute TMR and PLM in in vitro studies about caries. Copyright 2010 Elsevier Ltd. All rights reserved.
Laser Cutting of Thin Nickel Bellows
NASA Technical Reports Server (NTRS)
Butler, C. L.
1986-01-01
Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.
NASA Technical Reports Server (NTRS)
1976-01-01
Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.
Heuristic algorithms for solving of the tool routing problem for CNC cutting machines
NASA Astrophysics Data System (ADS)
Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.
2015-11-01
The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.
Predicting tool life in turning operations using neural networks and image processing
NASA Astrophysics Data System (ADS)
Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.
2018-05-01
A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.
Modeling and control for micro and nano manipulation
NASA Astrophysics Data System (ADS)
Wejinya, Uchechukwu C.
Manipulation of micro and nano entities implies the movement of micro and nano entities from an initial position (location) to the desire position (location). This operation is not only necessary, but a required task with great precision. The tools needed for the manipulation needs to be chosen properly because the capabilities of the human hand are very restricted. Smart micro and nano manipulation are becoming of great interest in many applications including medicine and industry. In industry, high precision manipulation systems are especially needed for mass production of both micro and nano systems which consist of different component in respective scales. The transition from assembling and manipulating micro and nano entities manually to mass products with high quality is only attainable by automated assembly and manipulation systems. An example is the testing of integrated circuits which can be carried out by exchanging the manipulation tool by an electric probe. Furthermore, in medical research it is customary to pick up a single cell (human, plant, or animal), and carry it to another device which is used to further analyze the cell. Consequently, the cell of interest has to be separated from the other cells and picked up using the appropriate micro/nano tool. Hence it becomes absolutely necessary that the appropriate tool be used for specific micro or nano entity manipulation and assembly. In this research, we focus on developing micro tool for manipulating micro and nano entities in liquid environment using a micro fluidic end effector system with in-situ Polyvinylidene Fluoride (PVDF) sensing. The microfluidic end effector system consists of a DC micro-diaphragm pump and compressor, one region of flexible latex tube, a Polyvinylidene Fluoride (PVDF) sensor for in-situ measurement of micro drag force, and a micro pipette. The micro pipette of the novel microfluidic end effector system has an internal diameter (ID) smaller than 20mum used for microfluidic handling and deposition of micro and nano entities such as carbon nanotubes (CNT), DNA, and for droplet control. The novel microfluidic end effector system with force sensing can significantly improve the success rate for handling/depositing micro/nano entities in the case of carbon nanotubes between micro electrodes. The design, calibration, and experimental implementation of the novel microfluidic end effector is carried out in this research. The experimental results show the success rate for carbon nanotube(s) deposition between micro electrodes can reach close to 80%. Furthermore, carbon nanotubes are of particular interest because they are good candidates for many electronics and sensing applications. The interests in using carbon nanotubes to manufacture electronics and sensors have increased in recent years because of the increase need for making electronics smaller, and their excellent electrical and mechanical properties. These potentials can be achieved if CNTs with semiconducting and metallic band structure can be successfully deposited and separated. The use of dielectrophoresis (DEP) has been established as a course towards the efficient deposition and separation of metallic carbon nanotubes from semiconducting carbon nanotubes. For this reason, this research presents a new mathematical model for dielectrophoresis and electrorotation of carbon nanotubes. Simulation results are presented in this research to validate the developed model. The combination of both the micro robotic manipulation system and the atomic force microscopy (AFM) based nano-robotic system will provide a powerful tool for micro and nano manipulation. Additional applications of this research are endless considering the rapid development of micro and nano technologies.
Multiphase and multiscale approaches for modelling the injection of textured moulds
NASA Astrophysics Data System (ADS)
Nakhoul, Rebecca; Laure, Patrice; Silva, Luisa; Vincent, Michel
2016-10-01
Micro-injection moulding is frequently used for the mass production of devices in micro-medical technologies, micro-optics and micro-mechanics. This work focuses mainly on offering numerical tools to model the injection of micro-textured moulds. Such tools can predict the different filling scenarios of the micro-details and consequently offer optimal operating conditions (mould and melt temperatures, melt flow, stresses, etc.) to analyse the final part quality. To do so, a full Eulerian approach is used to model the injection of textured moulds at both the macroscopic and microscopic scales as usual industrial software cannot handle the filling of micro details. Since heat transfers with the mould are very relevant due to high cooling rates, the coupling between micro- and macro- simulations is primordial to insure a complete and accurate representation of textured mould injection.
ERIC Educational Resources Information Center
DiLuzio, Geneva J.; And Others
This document accompanies Conceptual Learning and Development Assessment Series II: Cutting Tool, a test constructed to chart the conceptual development of individuals. As a technical manual, it contains information on the rationale, development, standardization, and reliability of the test, as well as essential information and statistical data…
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
Tool for cutting insulation from electrical cables
Harless, Charles E.; Taylor, Ward G.
1978-01-01
This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.
The development of Zirconia and Copper toughened Alumina ceramic insert
NASA Astrophysics Data System (ADS)
Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman
2018-04-01
Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.
The Cut-Score Operating Function: A New Tool to Aid in Standard Setting
ERIC Educational Resources Information Center
Grabovsky, Irina; Wainer, Howard
2017-01-01
In this essay, we describe the construction and use of the Cut-Score Operating Function in aiding standard setting decisions. The Cut-Score Operating Function shows the relation between the cut-score chosen and the consequent error rate. It allows error rates to be defined by multiple loss functions and will show the behavior of each loss…
Tool Forces and Chip Formation In Orthogonal Cutting Of Loblolly Pine
George E. Woodson; Peter Koch
1970-01-01
Specimens of earlywood and latewood of Pinus taeda L. were excised so that length along the grain was 3 inches and thickness was 0.1 inch. These specimens were cut orthogonally-as with a carpenter's plane-in the three major directions. Cutting velocity was 2 inches per minute. When cutting was in the planing (90-O) direction, thin chips,...
Machinability of titanium metal matrix composites (Ti-MMCs)
NASA Astrophysics Data System (ADS)
Aramesh, Maryam
Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in addition to the effect of cutting parameters. Thus, promising results were obtained which showed a very good agreement with the experimental results. Moreover, a more advanced model was constructed, by adding the tool wear as another variable to the previous model. Therefore, a new model was proposed for estimating the remaining life of worn inserts under different cutting conditions, using the current tool wear data as an input. The results of this model were validated with the experimental results. The estimated results were well consistent with the results obtained from the experiments.
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.
Optical coherence tomography image-guided smart laser knife for surgery.
Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E
2018-03-01
Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental results using tissue phantoms. Lasers Surg. Med. 50:202-212, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Study of the time and effort signal in cutting operations
NASA Astrophysics Data System (ADS)
Grosset, E.; Maillard, A.; Bouhelier, C.; Gasnier, J.
1990-02-01
Perception and treatment of an effort signal by computer methods is discussed. An automatic control system used to measure the wear of machine tools and carry out quality control throughout the cutting process is described. The testing system is used to evaluate the performance of tools which have been vacuum plated. The system is used as part of the BRITE study, the goal of which is to develop an expert system for measuring the wear of tools used during drilling and perforation operations.
NASA Astrophysics Data System (ADS)
Inoue, Shigeru; Aoyama, Tojiro
Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.
Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian
2018-01-16
Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru; Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru; Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru
A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It ismore » possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.« less
Fractal characteristic in the wearing of cutting tool
NASA Astrophysics Data System (ADS)
Mei, Anhua; Wang, Jinghui
1995-11-01
This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.
Trujillo, Francisco Javier; Sevilla, Lorenzo; Marcos, Mariano
2017-01-01
In this work, the study of the influence of cutting parameters (cutting speed, feed, and depth of cut) on the tool wear used in in the dry turning of cylindrical bars of the UNS A97075 (Al-Zn) alloy, has been analyzed. In addition, a study of the physicochemical mechanisms of the secondary adhesion wear has been carried out. The behavior of this alloy, from the point of view of tool wear, has been compared to similar aeronautical aluminum alloys, such as the UNS A92024 (Al-Cu) alloy and UNS A97050 (Al-Zn) alloy. Furthermore, a first approach to the measurement of the 2D surface of the adhered material on the rake face of the tool has been conducted. Finally, a parametric model has been developed from the experimental results. This model allows predicting the intensity of the secondary adhesion wear as a function of the cutting parameters applied. PMID:28772510
Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44
NASA Astrophysics Data System (ADS)
Nagaraja, R.; Rangaswamy, T.
2018-04-01
Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.
Ghasemi, Amir Hossein; Khorasani, Amir Mahyar
2018-01-01
Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy. PMID:29337858
Microwave interferometer controls cutting depth of plastics
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Iceland, W. F.
1969-01-01
Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.
AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)
Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...
Scissors: More than a Cut Above
ERIC Educational Resources Information Center
Suzanne, Teri
2005-01-01
Scissors are a unique interactive tool when successfully used, allowing teachers and students to recognize and explore each other's creative ability while nurturing mutual communication. Freehand cutting gives children freedom to create as they cut. Scissors have the power to improve fine motor skills, stimulate creative imagination, reinforce…
NASA Technical Reports Server (NTRS)
1988-01-01
A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.
Thermographic measurements of high-speed metal cutting
NASA Astrophysics Data System (ADS)
Mueller, Bernhard; Renz, Ulrich
2002-03-01
Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.
Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)
NASA Astrophysics Data System (ADS)
de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.
2013-10-01
The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.
Fabrication of micro-lens array on convex surface by meaning of micro-milling
NASA Astrophysics Data System (ADS)
Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin
2014-08-01
In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.
Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure
NASA Astrophysics Data System (ADS)
Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong
2018-05-01
Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
Tool wear modeling using abductive networks
NASA Astrophysics Data System (ADS)
Masory, Oren
1992-09-01
A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.
Surface coating metrology of carbides of cutting tools
NASA Astrophysics Data System (ADS)
Parfenov, V. D.; Basova, G. D.
2017-10-01
The coatings were studied by their main sign of the micrometric thickness by means of coating destruction and electron microscopical study of cleavage surfaces. Shock stress ruptures of heated carbides of cutting tools were performed. The discovery of the coating technology and creation of the coating structure for nonuniform and nonequilibrium conditions of the cutting process were dealt with. Multifracture microdestruction of nitride coatings, caused by complex external influences, was analysed to reveal the mechanism of interaction of elementary failures. Positive results were obtained in the form of improving the strength and wear resistance of the product, crack resistance increasing.
Unzip instabilities: Straight to oscillatory transitions in the cutting of thin polymer sheets
NASA Astrophysics Data System (ADS)
Reis, P. M.; Kumar, A.; Shattuck, M. D.; Roman, B.
2008-06-01
We report an experimental investigation of the cutting of a thin brittle polymer sheet with a blunt tool. It was recently shown that the fracture path becomes oscillatory when the tool is much wider than the sheet thickness. Here we uncover two novel transitions from straight to oscillatory fracture by varying either the tilt angle of the tool or the speed of cutting, respectively. We denote these by angle and speed unzip instabilities and analyze them by quantifying both the dynamics of the crack tip and the final shapes of the fracture paths. Moreover, for the speed unzip instability, the straight crack lip obtained at low speeds exhibits out-of-plane buckling undulations (as opposed to being flat above the instability threshold) suggesting a transition from ductile to brittle fracture.
Metal Flow in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2006-01-01
The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.
Thinning Guidelines For Southern Bottomland Hardwood Forests
James S. Meadows
1996-01-01
Thinnings, improvement cuttings, and other partial cuttings in southern bottomland hardwood forests are generally designed to enhance the growth and development of those species favored for management objectives. Hardwood tree classes and stocking guides can be used as tools to aid in planning and conducting partial cuttings in hardwood forests. Two disadvantages...
Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V.
Patil, Sandip; Joshi, Shashikant; Tewari, Asim; Joshi, Suhas S
2014-02-01
The titanium alloys cause high machining heat generation and consequent rapid wear of cutting tool edges during machining. The ultrasonic assisted turning (UAT) has been found to be very effective in machining of various materials; especially in the machining of "difficult-to-cut" material like Ti6Al4V. The present work is a comprehensive study involving 2D FE transient simulation of UAT in DEFORM framework and their experimental characterization. The simulation shows that UAT reduces the stress level on cutting tool during machining as compared to that of in continuous turning (CT) barring the penetration stage, wherein both tools are subjected to identical stress levels. There is a 40-45% reduction in cutting forces and about 48% reduction in cutting temperature in UAT over that of in CT. However, the reduction magnitude reduces with an increase in the cutting speed. The experimental analysis of UAT process shows that the surface roughness in UAT is lower than in CT, and the UATed surfaces have matte finish as against the glossy finish on the CTed surfaces. Microstructural observations of the chips and machined surfaces in both processes reveal that the intensity of thermal softening and shear band formation is reduced in UAT over that of in CT. Copyright © 2013 Elsevier B.V. All rights reserved.
High energy resolution, high angular acceptance crystal monochromator
Alp, E.E.; Mooney, T.M.; Toellner, T.
1996-06-04
A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.
Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays
NASA Astrophysics Data System (ADS)
Gnanamanickam, Ebenezer P.; Sullivan, John P.
2012-12-01
In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.
High speed micro scanner for 3D in-volume laser micro processing
NASA Astrophysics Data System (ADS)
Schaefer, D.; Gottmann, J.; Hermans, M.; Ortmann, J.; Kelbassa, I.
2013-03-01
Using an in-house developed micro scanner three-dimensional micro components and micro fluidic devices in fused silica are realized using the ISLE process (in-volume selective laser-induced etching). With the micro scanner system the potential of high average power femtosecond lasers (P > 100 W) is exploited by the fabrication of components with micrometer precision at scan speeds of several meters per second. A commercially available galvanometer scanner is combined with an acousto-optical and/or electro-optical beam deflector and translation stages. For focusing laser radiation high numerical aperture microscope objectives (NA > 0.3) are used generating a focal volume of a few cubic micrometers. After laser exposure the materials are chemically wet etched in aqueous solution. The laser-exposed material is etched whereas the unexposed material remains nearly unchanged. Using the described technique called ISLE the fabrication of three-dimensional micro components, micro holes, cuts and channels is possible with high average power femtosecond lasers resulting in a reduced processing time for exposure. By developing the high speed micro scanner up-scaling of the ISLE process is demonstrated. The fabricated components made out of glass can be applied in various markets like biological and medical diagnostics as well as in micro mechanics.
A vacuum microgripping tool with integrated vibration releasing capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Weibin; Fan, Zenghua, E-mail: zenghua-fan@163.com; Wang, Lefeng
2014-08-01
Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performancemore » of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm.« less
ERIC Educational Resources Information Center
Klausmeier, Herbert J.; And Others
For this study, the second in the cross sectional series, based on the Conceptual Learning and Development (CLD) model, assessment batteries were developed to determine each child's level of attainment and related use of the concepts "equilateral triangle,""cutting tool,""noun," and "tree." Batteries were…
Manufacturing Process Applications Team (MATeam)
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.
A Micro Ultrasonic Scalpel with Modified Stepped Horn
NASA Astrophysics Data System (ADS)
Kurosawa, Minoru; Umehara, Yuji
A transducer for a micro ultrasonic scalpel has been fabricated. The micro ultrasonic scalpel can be used with an endoscope for a non-abdominal operation or micro surgery, for example, through a microscope. The ultrasonic transducer was 9.8 mm long and 2.7 mm wide and has stepped horn to amplify vibration velocity; tip of the horn is 0.6 mm wide. The scalpel operated at the resonance frequency in longitudinal mode of 278 kHz. The piezoelectric material was lead zirconate titanate (PZT) that was deposited by the hydrothermal method. The vibration velocity at the tip of the horn in longitudinal direction was 4.0 m/s with 40Vp-p driving voltage in both side electrodes. To demonstrate a beneficial effect of the scalpel, a cutting test that the transducer was stuck into pork fat was carried out.
MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research.
Zimmer, Eduardo R; Parent, Maxime J; Cuello, A Claudio; Gauthier, Serge; Rosa-Neto, Pedro
2014-11-01
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research. Copyright © 2014 Elsevier Ltd. All rights reserved.
High power laser downhole cutting tools and systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O
Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.
Optimized path planning for soft tissue resection via laser vaporization
NASA Astrophysics Data System (ADS)
Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick
2018-02-01
Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.
NASA Technical Reports Server (NTRS)
Peters, R. L.
1969-01-01
Improved cutting fluid completely controls the heat generated from machining operations, thus providing longer tool life. Fluid is especially useful in the working of plastics and replaces less efficient contaminating oils.
NASA Astrophysics Data System (ADS)
Jyothi, P. N.; Susmitha, M.; Sharan, P.
2017-04-01
Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism
NASA Technical Reports Server (NTRS)
Gittleman, Mark; Johnston, Alistair
1996-01-01
The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.
Three-Dimensional Profiles Using a Spherical Cutting Bit: Problem Solving in Practice
ERIC Educational Resources Information Center
Ollerton, Richard L.; Iskov, Grant H.; Shannon, Anthony G.
2002-01-01
An engineering problem concerned with relating the coordinates of the centre of a spherical cutting tool to the actual cutting surface leads to a potentially rich example of problem-solving techniques. Basic calculus, Lagrange multipliers and vector calculus techniques are employed to produce solutions that may be compared to better understand…
Calcium signals recorded from cut frog twitch fibers containing antipyrylazo III
1987-01-01
The Ca indicator antipyrylazo III was introduced into cut frog twitch fibers by diffusion (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:41-81). Like arsenazo III, antipyrylazo III was largely bound to or sequestered by intracellular constituents; on average, a fraction 0.68 was so immobilized. After action potential stimulation, there was an early change in absorbance, with a wavelength dependence that nearly matched a cuvette Ca-difference spectrum. As with arsenazo III, this signal became prolonged as experiments progressed. In a freshly prepared cut fiber containing 0.3 mM indicator, the absorbance change had an average half-width of 10 ms at 18 degrees C. The peak amplitude of this Ca signal depended on the indicator concentration in a roughly parabolic manner, which is consistent with a 1:2 stoichiometry for Ca:indicator complexation and, for indicator concentrations less than or equal to 0.4 mM, constant peak free [Ca]. If all the antipyrylazo III inside a fiber can react normally with Ca, peak free [Ca] is 3 microM at 18 degrees C. If only freely diffusible indicator can react, the estimate is 42 microM. The true amplitude probably lies somewhere in between. The time course of Ca binding to intracellular buffers and of Ca release from the sarcoplasmic reticulum is estimated from the 3- and 42- microM myoplasmic [Ca] transients. After action potential stimulation, the release waveform is rapid and brief; its latency after the surface action potential is 2-3 ms and its half-width is 2-4 ms. This requires rapid coupling between the action potential in the transverse tubular system and Ca release from the sarcoplasmic reticulum. The peak fractional occupancy calculated for Ca-regulatory sites on troponin is 0.46 for the 3-microM transient and 0.93 for the 42-microM transient. During a 100-ms tetanus at 100 Hz, the corresponding fractional occupancies are 0.56 and 0.94. The low value of occupancy associated with the low-amplitude [Ca] calibration seems inconsistent with a brief tetanus being able to produce near-maximal activation (Blinks, J. R., R. Rudel, and S. R. Taylor. 1978. Journal of Physiology. 277:291-323; Lopez J. R., L. A. Wanck, and S. R. Taylor. 1981. Science. 214:47-82). PMID:3494102
Machines employing a hot gas jet to cut metals and nonmetallic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyaev, V.M.; Aleksandrenkov, V.P.
1995-07-01
The flame-cutting of metals is a basic materials-processing operation performed in the course of machine-building and, in some sectors (shipbuilding, aircraft construction, petrochemicals) it is the most important operation. In addition, this method of cutting remains the main operation performed in the processing of scrap metal. The importance of it has occasioned the development of a wide range of cutting tools within just the last decade. Not surprisingly, VNIIavtogen-mash (the All-Union Scientific Research Institute of Machinery for the Gas Welding and Cutting of Metals) is the leading designer of metal-cutting tools in this country. The problem of efficiently cutting metalsmore » is gaining in importance and will continue to do so in coming years in connection with the conversion of military hardware to other uses, the decommissioning of old and obsolete equipment, and utilization of the enormous reserves of scrap in this country. There will thus be a significant increase in the amounts of existing high-alloy steels, nonferrous metals and their alloys, and composites that require cutting. A wide range of cutters is available for the gas-flame cutting of metals, Liquid fuels based on petroleum products are promising from the viewpoint of energy efficiency and performance. The operation of a new generation of cutters, referred to as thermo-gas jet cutters, is based on the principle of the destructive action of a hot, fast-moving, chemically active jet on the material to be cut.« less
Automated Laser Cutting In Three Dimensions
NASA Technical Reports Server (NTRS)
Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.
1995-01-01
Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.
Dhandapani, N V; Thangarasu, V S; Sureshkannan, G
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process
Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results. PMID:26881267
NASA Technical Reports Server (NTRS)
2004-01-01
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
2004-04-15
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
Weng, Xiaojun; Goldman, Rachel S.
2006-06-06
A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.
A machine vision system for micro-EDM based on linux
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhao, Wansheng; Li, Gang; Li, Zhiyong; Zhang, Yong
2006-11-01
Due to the high precision and good surface quality that it can give, Electrical Discharge Machining (EDM) is potentially an important process for the fabrication of micro-tools and micro-components. However, a number of issues remain unsolved before micro-EDM becomes a reliable process with repeatable results. To deal with the difficulties in micro electrodes on-line fabrication and tool wear compensation, a micro-EDM machine vision system is developed with a Charge Coupled Device (CCD) camera, with an optical resolution of 1.61μm and an overall magnification of 113~729. Based on the Linux operating system, an image capturing program is developed with the V4L2 API, and an image processing program is exploited by using OpenCV. The contour of micro electrodes can be extracted by means of the Canny edge detector. Through the system calibration, the micro electrodes diameter can be measured on-line. Experiments have been carried out to prove its performance, and the reasons of measurement error are also analyzed.
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting
2011-01-01
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear. PMID:22078069
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.
Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin
2011-11-11
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.
NASA Astrophysics Data System (ADS)
Miranda, G.; Ferreira, P.; Buciumeanu, M.; Cabral, A.; Fredel, M.; Silva, F. S.; Henriques, B.
2017-08-01
The current trend to replace cobalt in diamond cutting tools (DCT) for stone cutting has motivated the study of alternative materials for this end. The present study characterizes several copper-nickel-based materials (Cu-Ni; Cu-Ni-10Sn, Cu-Ni-15Sn, Cu-Ni-Sn-2WC and Cu-Ni-Sn-10WC) for using as matrix material for diamond cutting tools for stone. Copper-nickel-based materials were produced by hot pressing, at a temperature of 850 °C during 15 min and under an applied pressure of 50 MPa. The mechanical properties were evaluated though the shear strength and hardness values. The microstructures and fracture surfaces were analyzed by SEM. The wear behavior of all specimens was assessed using a reciprocating ball-on-plate tribometer. The hot pressing produced compacts with good densification. Sn and WC promoted enhanced mechanical properties and wear performance to Cu-Ni alloys. Cu-Ni-10Sn and Cu-Ni-10Sn-2WC displayed the best compromise between mechanical and wear performance.
The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a Screening Tool.
Bastiaens, Leo; Galus, James
2018-03-01
The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure was developed to aid clinicians with a dimensional assessment of psychopathology; however, this measure resembles a screening tool for several symptomatic domains. The objective of the current study was to examine the basic parameters of sensitivity, specificity, positive and negative predictive power of the measure as a screening tool. One hundred and fifty patients in a correctional community center filled out the measure prior to a psychiatric evaluation, including the Mini International Neuropsychiatric Interview screen. The above parameters were calculated for the domains of depression, mania, anxiety, and psychosis. The results showed that the sensitivity and positive predictive power of the studied domains was poor because of a high rate of false positive answers on the measure. However, when the lowest threshold on the Cross-Cutting Symptom Measure was used, the sensitivity of the anxiety and psychosis domains and the negative predictive values for mania, anxiety and psychosis were good. In conclusion, while it is foreseeable that some clinicians may use the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a screening tool, it should not be relied on to identify positive findings. It functioned well in the negative prediction of mania, anxiety and psychosis symptoms.
Aguirre-Gamboa, Raul; Trevino, Victor
2014-06-01
MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Thuróczy, György; Jánossy, Gábor; Nagy, Noémi; Bakos, József; Szabó, Judit; Mezei, Gábor
2008-01-01
Exposure to 50 Hz magnetic field (MF) was evaluated in 31 multi-level apartment buildings with built-in step-down transformer stations. In each building, three apartments were selected: one apartment located immediately above the transformer room (index apartment), one located on the same floor and one on a higher floor. The mean value of measured MFs was 0.98 microT in apartments above transformers, 0.13 microT on the same floor, and 0.1 microT in on higher floors. The mean measured MF value was higher than 0.2 microT in 30 (97%) index apartments, 4 (14%) on the same floor as the index apartments and 4 (13%) on higher floors. The corresponding numbers were 25 (81%), 0 and 0, respectively, when 0.4 microT was used as cut-point. It is concluded that apartments in building with built-in transformers can be reliably classified into high and low-exposure categories based on their location in relation to transformers.
Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears
NASA Astrophysics Data System (ADS)
Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming
2013-10-01
The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.
Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method
NASA Astrophysics Data System (ADS)
Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín
2013-09-01
Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.
A research factory for polymer microdevices: muFac
NASA Astrophysics Data System (ADS)
Anthony, Brian W.; Hardt, David E.; Hale, Melinda; Zarrouati, Nadege
2010-02-01
As part of our research on the manufacturing science of micron scale polymer-based devices, an automated production cell has been developed to explore its use in a volume manufacturing environment. This "micro-factory" allows the testing of models and hardware that have resulted from research on material characterization and simulation, tooling and equipment design and control, and process control and metrology. More importantly it has allowed us to identify the problems that exist between and within unit-processes. This paper details our efforts to produce basic micro-fluidic products in high volume at acceptable production rates and quality levels. The device chosen for our first product is a simple binary micromixer with 40×50 micron channel cross section manufactured by embossing of PMMA. The processes in the cell include laser cutting and drilling, hot embossing, thermal bonding and high-speed inspection of the components. Our goal is to create a "lights-out" factory that can make long production runs (e.g. an 8 hour shift) at high rates (Takt time of less than 3 minutes) with consistent quality. This contrasts with device foundries where prototypes in limited quantities but with high variety are the goal. Accordingly, rate and yield are dominant factors in this work, along with the need for precise material handling strategies. Production data will be presented to include process run charts, sampled functional testing of the products and measures of the overall system throughput.
Comparison study on disturbance estimation techniques in precise slow motion control
NASA Astrophysics Data System (ADS)
Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.
2010-08-01
Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.
Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)
NASA Astrophysics Data System (ADS)
Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard
2013-09-01
Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.
Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy
NASA Astrophysics Data System (ADS)
Yanling, Wan; Jian, Yang; Huadong, Yu
2018-06-01
To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.
When Technology Tools Trump Teachers
ERIC Educational Resources Information Center
Quillen, Ian
2012-01-01
Of all the recent budget cuts made by the Eagle County, Colorado, school district--the loss of 89 staff jobs through attrition and layoffs, a 1.5 percent across-the-board pay cut, and the introduction of three furlough days--none sparked as much anger or faced the same scrutiny as the decision to cut three foreign-language teaching positions and…
Koo, Kyo-In; Lee, Sangmin; Cho, Dong-il Dan
2011-01-01
This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound.
Koo, Kyo-in; Lee, Sangmin; Cho, Dong-il Dan
2011-01-01
This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound. PMID:22163997
Yuan, F S; Wang, Y; Zhang, Y P; Sun, Y C; Wang, D X; Lyu, P J
2017-05-09
Objective: To further study the most suitable parameters for automatic full crown preparation using oral clinical micro robot. Its purpose is to improve the quality of automated tooth preparing for the system and to lay the foundation for clinical application. Methods: Twenty selected artificial resin teeth were used as sample teeth. The micro robot automatic tooth preparation system was used in dental clinic to control the picosecond laser beam to complete two dimensional cutting on the resin tooth sample according to the motion planning path. Using the laser scanning measuring microscope, each layer of cutting depth values was obtained and the average value was calculated. The monolayer cutting depth was determined. The three-dimensional (3D) data of the target resin teeth was obtained using internal scanner, and the CAD data of full-crown tooth preparation was designed by CAD self-develged software. According to the depth of the single layer, 11 complete resin teeth in phantom head were automatically prepared by the robot controlling the laser focused spot in accordance with the layer-cutting way. And the accuracy of resin tooth preparation was evaluated with the software. Using the same method, monolayer cutting depth parameter for cutting dental hard tissue was obtained. Then 15 extracted mandibular and maxillary first molars went through automatic full crown tooth preparation. And the 3D data of tooth preparations were obtained with intra oral scanner. The software was used to evaluate the accuracy of tooth preparation. Results: The results indicated that the single cutting depth of cutting resin teeth and in vitro teeth by picosecond laser were (60.0±2.6) and (45.0±3.6) μm, respectively. Using the tooth preparation robot, 11 artificial resin teeth and 15 complete natural teeth were automatically prepared, and the average time were (13.0±0.7), (17.0±1.8) min respectively. Through software evaluation, the average preparation depth of the occlusal surface of 11 resin teeth was approximately (2.089±0.026) mm, the error was about (0.089±0.026) mm; the average convergence angle was about 6.56°±0.30°, the error was about 0.56°±0.30°. Compared with the target preparation shape, the average shape error of the 11 resin tooth preparations was about 0.02-0.11 mm. And the average preparation depth of the occlusal surface of 15 natural teeth was approximately (2.097±0.022) mm, the error was about (0.097±0.022) mm; the average convergence angle was about 6.98°±0.35°, the error was about 0.98°±0.35°. Compared with the target preparation shape, the average shape error of the 15 natural tooth preparations was about 0.05-0.17 mm. Conclusions: The experimental results indicate that the automatic tooth preparation for resin teeth and the teeth were completed according to the specific parameters of the single cutting depth by the micro robot controlling picosecond laser respectively, its preparation accuracy met the clinical needs. And the suitability of the parameter was confirmed.
Savi, Tadeja; Miotto, Andrea; Petruzzellis, Francesco; Losso, Adriano; Pacilè, Serena; Tromba, Giuliana; Mayr, Stefan; Nardini, Andrea
2017-11-01
Vulnerability curves (VCs) are a useful tool to investigate the susceptibility of plants to drought-induced hydraulic failure, and several experimental techniques have been used for their measurement. The validity of the bench dehydration method coupled to hydraulic measurements, considered as a 'golden standard', has been recently questioned calling for its validation with non-destructive methods. We compared the VCs of a herbaceous crop plant (Helianthus annuus) obtained during whole-plant dehydration followed by i) hydraulic flow measurements in stem segments (classical destructive method) or by ii) in vivo micro-CT observations of stem xylem conduits in intact plants. The interpolated P 50 values (xylem water potential inducing 50% loss of hydraulic conductance) were -1.74 MPa and -0.87 MPa for the hydraulic and the micro-CT VC, respectively. Interpolated P 20 values were similar, while P 50 and P 80 were significantly different, as evidenced by non-overlapping 95% confidence intervals. Our results did not support the tension-cutting artefact, as no overestimation of vulnerability was observed when comparing the hydraulic VC to that obtained with in vivo imaging. After one scan, 25% of plants showed signs of x-ray induced damage, while three successive scans caused the formation of a circular brownish scar in all tested plants. Our results support the validity of hydraulic measurements of samples excised under tension provided standard sampling and handling protocols are followed, but also show that caution is needed when investigating vital plant processes with x-ray imaging. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging
NASA Astrophysics Data System (ADS)
Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.
2012-07-01
Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
NASA Astrophysics Data System (ADS)
Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.
2016-09-01
In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-16
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag(+) or silk/[AuCl4](-) aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 10(4)-Ω(-1 ) m(-1)-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-01-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]− aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω−1 m−1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
NASA Astrophysics Data System (ADS)
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
Computer-aided analysis of cutting processes for brittle materials
NASA Astrophysics Data System (ADS)
Ogorodnikov, A. I.; Tikhonov, I. N.
2017-12-01
This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.
Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Zhang, Long
2018-02-01
Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
Influence of speed on wear and cutting forces in end-milling nickel alloy
NASA Astrophysics Data System (ADS)
Estrems, M.; Sánchez, H. T.; Kurfess, T.; Bunget, C.
2012-04-01
The effect of speed on the flank wear of the cutting tool when a nickel alloy is milled is studied. From the analysis of the measured forces, a dynamic semi-experimental model is developed based on the parallelism between the curve of the thrust forces of the unworn tool and the curves when the flank of the tool is worn. Based on the change in the geometry of the contact in the flank worrn face, a theory of indentation of the tool on the workpiece is formulated in such a way that upon applying equations of contact mechanics, a good approximation of the experimental results is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelady, III, Michael W.J.
A lathe leveler for centering a cutting tool in relation to a cylindrical work piece includes a first leveling arm having a first contact point disposed adjacent a distal end of the first leveling arm, a second leveling arm having a second contact point disposed adjacent a distal end of the second leveling arm, a leveling gage, and a leveling plate having a cutting tool receiving surface positioned parallel to a horizontal axis of the leveling gage and on a same plane as a midpoint of the first contact point and the second contact point. The leveling arms and levelingmore » plate are dimensioned and configured such that the cutting tool receiving surface is centered in relation to the work piece when the first and second contact points are in contact with one of the inner surface and outer surface of the cylindrical work piece and the leveling gage is centered.« less
Controlling the type and the form of chip when machining steel
NASA Astrophysics Data System (ADS)
Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.
2016-08-01
The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools
NASA Astrophysics Data System (ADS)
Sánchez Pineda, A.
2015-12-01
We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.
Ultrasonically assisted turning of aviation materials: simulations and experimental study.
Babitsky, V I; Mitrofanov, A V; Silberschmidt, V V
2004-04-01
Ultrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration (frequency f approximately 20 kHz, amplitude a approximately 15 microm) superimposed on the cutting tool movement. An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration throughout the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented. The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.
NASA Astrophysics Data System (ADS)
Sudhakara, Dara; Prasanthi, Guvvala
2017-04-01
Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Development and testing of an active boring bar for increased chatter immunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining.more » Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.« less
Design and Analysis of Bionic Cutting Blades Using Finite Element Method.
Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin
2015-01-01
Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.
Design and Analysis of Bionic Cutting Blades Using Finite Element Method
Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin
2015-01-01
Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583
Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel
NASA Astrophysics Data System (ADS)
Duan, G.; Zhao, X.; Seren, H. R.; Chen, C.; Zhang, X.
2015-12-01
A miniaturized antenna, 380μm by 380μm in size, was fabricated and integrated with a commercialized passive RFID chip to form a micro-tracer, whose size was 2mm by 1mm in total. The micro-tracer was wirelessly powered and interrogated by a single layer spiral reader antenna through near field coupling. To maximize the working distance, the resonant frequency of micro-tracer and reader antenna were matched at 840MHz. Due to the ultra small size of the tracer antenna, power transfer efficiency decreased dramatically as the distance between tracer antenna and reader antenna increased, thus the working distance of the microtracer was limited within 1mm. To achieve massive operation of the micro-tracer, a microfluidic platform was fabricated with in channel focusing and separation. Acrylic sheets were laser cut to define the channel and cover structure, then bonded together layer by layer with a glass substrate, on which reader antenna was integrated. Pump oil was used as the fluidic media carrying the micro-tracer flowing inside the microfluidic channel. The wireless power transfer and real-time communication was demonstrated with the micro-tracer flowing above the reader antenna, as the ID of the micro-tracer was retrieved and displayed on a computer screen.
Cold machining of high density tungsten and other materials
NASA Technical Reports Server (NTRS)
Ziegelmeier, P.
1969-01-01
Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.
On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power
NASA Astrophysics Data System (ADS)
Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.
1994-02-01
Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.
Simulation of dynamic processes when machining transition surfaces of stepped shafts
NASA Astrophysics Data System (ADS)
Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.
2018-03-01
The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.
Analysis of the temperature of the hot tool in the cut of woven fabric using infrared images
NASA Astrophysics Data System (ADS)
Borelli, Joao E.; Verderio, Leonardo A.; Gonzaga, Adilson; Ruffino, Rosalvo T.
2001-03-01
Textile manufacture occupies a prominence place in the national economy. By virtue of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed within the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. The work presents a technique for the measurement of the temperature based on the processing of infrared images. For this a system was developed composed of an infrared camera, a framegrabber PC board and software that analyzes the punctual temperature in the cut area enabling the operator to achieve the necessary control of the other variables involved in the process.
Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.
Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G
2010-01-01
Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.
Notched K-wire for low thermal damage bone drilling.
Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert
2017-07-01
The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang
2017-06-01
Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.
mESAdb: microRNA Expression and Sequence Analysis Database
Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen
2011-01-01
microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657
mESAdb: microRNA expression and sequence analysis database.
Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen
2011-01-01
microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.
An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel
NASA Astrophysics Data System (ADS)
Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza
2014-11-01
Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.
AN Fitting Reconditioning Tool
NASA Technical Reports Server (NTRS)
Lopez, Jason
2011-01-01
A tool was developed to repair or replace AN fittings on the shuttle external tank (ET). (The AN thread is a type of fitting used to connect flexible hoses and rigid metal tubing that carry fluid. It is a U.S. military-derived specification agreed upon by the Army and Navy, hence AN.) The tool is used on a drill and is guided by a pilot shaft that follows the inside bore. The cutting edge of the tool is a standard-size replaceable insert. In the typical Post Launch Maintenance/Repair process for the AN fittings, the six fittings are removed from the ET's GUCP (ground umbilical carrier plate) for reconditioning. The fittings are inspected for damage to the sealing surface per standard operations maintenance instructions. When damage is found on the sealing surface, the condition is documented. A new AN reconditioning tool is set up to cut and remove the surface damage. It is then inspected to verify the fitting still meets drawing requirements. The tool features a cone-shaped interior at 36.5 , and may be adjusted at a precise angle with go-no-go gauges to insure that the cutting edge could be adjusted as it wore down. One tool, one setting block, and one go-no-go gauge were fabricated. At the time of this reporting, the tool has reconditioned/returned to spec 36 AN fittings with 100-percent success of no leakage. This tool provides a quick solution to repair a leaky AN fitting. The tool could easily be modified with different-sized pilot shafts to different-sized fittings.
A Vibrating Wire System For Quadrupole Fiducialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less
A review of the use of wear-resistant coatings in the cutting-tool industry
NASA Technical Reports Server (NTRS)
Salik, J.
1983-01-01
The main mechanisms involved in the wear of cutting tools are reviewed. Evaluation of the different coating properties required for the reduction of the different kinds of wear was also reviewed. The types of coatings and their ranges of applicability are presented and discussed in view of their properties. Various coating processes as well as their advantages and shortcomings are described. Potential future developments in the field of wear-resistant coatings are discussed.