The system analysis of light field information collection based on the light field imaging
NASA Astrophysics Data System (ADS)
Wang, Ye; Li, Wenhua; Hao, Chenyang
2016-10-01
Augmented reality(AR) technology is becoming the study focus, and the AR effect of the light field imaging makes the research of light field camera attractive. The micro array structure was adopted in most light field information acquisition system(LFIAS) since emergence of light field camera, micro lens array(MLA) and micro pinhole array(MPA) system mainly included. It is reviewed in this paper the structure of the LFIAS that the Light field camera commonly used in recent years. LFIAS has been analyzed based on the theory of geometrical optics. Meanwhile, this paper presents a novel LFIAS, plane grating system, we call it "micro aperture array(MAA." And the LFIAS are analyzed based on the knowledge of information optics; This paper proves that there is a little difference in the multiple image produced by the plane grating system. And the plane grating system can collect and record the amplitude and phase information of the field light.
Full-frame, programmable hyperspectral imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Steven P.; Graff, David L.
A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn
An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.
Micro-LiDAR velocity, temperature, density, concentration sensor
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A. (Inventor); Danehy, Paul M. (Inventor)
2010-01-01
A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.
Izzotti, Alberto; Calin, George A; Steele, Vernon E; Croce, Carlo M; De Flora, Silvio
2009-09-01
MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.
Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio
2009-01-01
MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.—Izzotti, A., Calin, G. A., Vernon E. St., Croce, G. M., De Flora, S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. PMID:19465468
Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK.
Lu, Zhijian; Tian, Pengfei; Chen, Hong; Baranowski, Izak; Fu, Houqiang; Huang, Xuanqi; Montes, Jossue; Fan, Youyou; Wang, Hongyi; Liu, Xiaoyan; Liu, Ran; Zhao, Yuji
2017-07-24
Visible light communication (VLC) holds the promise of a high-speed wireless network for indoor applications and competes with 5G radio frequency (RF) system. Although the breakthrough of gallium nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) increases the -3dB modulation bandwidth exceptionally from tens of MHz to hundreds of MHz, the light collected onto a fast photo receiver drops dramatically, which determines the signal to noise ratio (SNR) of VLC. To fully implement the practical high data-rate VLC link enabled by a GaN-based micro-LED, it requires focusing optics and a tracking system. In this paper, we demonstrate an active on-chip tracking system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK). Using this novel technique, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10 -4 were achieved without manual focusing. This paper demonstrates the establishment of a VLC physical link that shows enhanced communication quality by orders of magnitude, making it optimized for practical communication applications.
Tilaye, Mesfin; van Dijk, Meine Pieter
2014-01-01
Privatization of urban services focuses often on the involvement of foreign enterprises. This contribution deals with micro-privatization, the partial transfer of government responsibility for solid waste collection to micro-enterprises. It tries to shed light on whether the current private sector participation (PSP) of micro-enterprises in solid waste collection service is the best way to capture the expected advantages of private sector involvement. The article examines the relations of the micro-enterprises with beneficiaries and the public sector by focusing on the contract procedure, the tariff-setting process, the cost recovery mechanism and institutionalizing of market principles for micro-enterprises. The research was carried out using secondary and primary data sources. Primary data were collected through the interviewing of public sector officials at different levels, focus group discussions with community groups and micro-enterprises, and observation. A survey was conducted among 160 micro-enterprises in the city of Addis Ababa, Ethiopia, using a standard questionnaire. What are some of the factors contributing to the results of PSP in Addis Ababa, the capital of Ethiopia? Policies at higher levels of government definitely produced an overall climate conducive to micro-privatization and recognized the need to develop micro-enterprises, but it is not clear what role the micro-enterprises are to play in solid waste management. New opportunities were created by formalization and taken up by communities and micro-enterprises. Coverage and waste collected both increased. The initiation and institutionalization of the formalization process was not without problems. The public sector over-stressed the autonomy of micro-enterprises. The fate of the micro-enterprises is largely determined by the reforms undertaken at local government level. The rapid changes in policies at the local level made waste-collecting micro-enterprises lose confidence and more dependent on the public sector. The study shows the continued power of the state and its agents in shaping developments in this domain.
Chamber study of PCBemissions from caulking materials and light ballasts
The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 di...
NASA Astrophysics Data System (ADS)
Greene, Amy
2013-04-01
MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.
NASA Astrophysics Data System (ADS)
Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.
2018-02-01
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
The collection of MicroED data for macromolecular crystallography.
Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir
2016-05-01
The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.
Pate, S. F.; Wester, T.; Bugel, L.; ...
2018-02-28
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pate, S. F.; Wester, T.; Bugel, L.
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
Analysis of the reflection of a micro drop fiber sensor
NASA Astrophysics Data System (ADS)
Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo
2005-01-01
Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.
Siegle, Tobias; Kellerer, Jonas; Bonenberger, Marielle; Krämmer, Sarah; Klusmann, Carolin; Müller, Marius; Kalt, Heinz
2018-02-05
We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude. When using fibers for detection, the collection efficiency is enhanced by four orders of magnitude compared to a free-space read-out perpendicular to the resonator plane. By enhancing the collection efficiency we are able to record a pronounced modulation of the dye fluorescence under continuous wave (cw) pumping conditions evoked by coupling to the WGMs. Alternatively to fibers as a collection tool, we present a read-out technique based on the detection of in-plane radiated light. We show that this method is especially beneficial in an aqueous environment as well as for size-reduced micro-lasers where radiation is strongly pronounced. Furthermore, we show that this technique allows for the assignment of transverse electric (TE) and transverse magnetic (TM) polarization to the observed fundamental modes in a water environment by performing polarization-dependent photoluminescence (PL) spectroscopy. We emphasize the importance of the polarization determination for sensing applications and verify expected differences in the bulk refractive index sensitivity for TE and TM WGMs experimentally.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran
2016-04-01
The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.
A novel optical system design of light field camera
NASA Astrophysics Data System (ADS)
Wang, Ye; Li, Wenhua; Hao, Chenyang
2016-01-01
The structure of main lens - Micro Lens Array (MLA) - imaging sensor is usually adopted in optical system of light field camera, and the MLA is the most important part in the optical system, which has the function of collecting and recording the amplitude and phase information of the field light. In this paper, a novel optical system structure is proposed. The novel optical system is based on the 4f optical structure, and the micro-aperture array (MAA) is used to instead of the MLA for realizing the information acquisition of the 4D light field. We analyze the principle that the novel optical system could realize the information acquisition of the light field. At the same time, a simple MAA, line grating optical system, is designed by ZEMAX software in this paper. The novel optical system is simulated by a line grating optical system, and multiple images are obtained in the image plane. The imaging quality of the novel optical system is analyzed.
Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa
2016-08-08
We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1997-01-01
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1994-01-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1997-05-06
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1994-11-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.
76 FR 82279 - Procurement List; Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Micro, Light Blue, Size 5.5''. NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6''. NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5''. NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' . NSN...
Photonic jet with ultralong working distance by hemispheric shell.
Hengyu, Zhu; Zaichun, Chen; Chong, Chong Tow; Minghui, Hong
2015-03-09
Micro-particle assisted nano-imaging has proven its success in the past few years since it can magnify the nano-objects, especially the metallic objects, into an image then collected by a conventional microscope. Micro-shell, which is a novel design of micro-particle in the configuration of a hemisphere with a hollow core region, is proposed and optimized in this paper in order to obtain a long photonic jet far away from its flat surface, thus increasing its working distance. Its dependence on the configuration and refractive index is investigated numerically. A micro-shell with the outer and inner radii of 5 and 2.5 µm and the refractive index of 1.5 can focus the incident light of 400 nm wavelength 2.7 µm away from the micro-shell flat surface, although the photonic jet intensity decreases to 25.8% compared to the solid hemisphere. Meanwhile, the photonic jet length of the micro-shell under the incident light of 400 nm and 1000 nm wavelengths are 1.7 µm and 4.3 µm, respectively, because its hollow core region tends to reduce the angle variation of the Poynting vectors in the photonic jet. With the long working distance and long photonic jet, the micro-shell could be used to scan over a sample to obtain a large area image when coupled with a conventional microscope, which is especially useful for the samples with the rough surfaces.
Micro-optics: enabling technology for illumination shaping in optical lithography
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2014-03-01
Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future.
Roy, Arijit Bardhan; Dhar, Arup; Choudhuri, Mrinmoyee; Das, Sonali; Hossain, S Minhaz; Kundu, Avra
2016-07-29
Analysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches. The work presents computational studies on how such micro-nanostructures are more potent for future ultra-thin monocrystalline silicon absorbers. For such ultra-thin absorbers, the optimally designed micro-nanostructures provide additional advantages of advanced light management capabilities as it behaves as a lossy 2D photonic crystal making the physically thin absorber optically thick along with the ability to collect photo-generated carriers orthogonal to the direction of light (radial junction) for unified photon-electron harvesting. Most significantly, the work answers the key question on how thin the monocrystalline solar absorber should be so that optimum micro-nanostructure would be able to harness the incident photons ensuring proper collection so as to reach the well-known Shockley-Queisser limit of solar cells. Flexible ultra-thin monocrystalline silicon solar cells have been fabricated using nanosphere lithography and MacEtch technique along with a synergistic association of crystalline and amorphous silicon technologies to demonstrate its physical and technological flexibilities. The outcomes are relevant so that nanotechnology may be seamlessly integrated into the technology roadmap of monocrystalline silicon solar cells as the silicon thickness should be significantly reduced without compromising the efficiency within the next decade.
Small angle light scattering characterization of single micrometric particles in microfluidic flows
NASA Astrophysics Data System (ADS)
Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.
2013-04-01
A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.
NASA Astrophysics Data System (ADS)
Haney, Michael W.
2015-12-01
The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.
Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe
2018-04-10
InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.
NASA Astrophysics Data System (ADS)
Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.
2018-02-01
While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.
Shikata, Masahito; Ezura, Hiroshi
2016-01-01
Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.
Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M
2012-06-01
To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of Physicists in Medicine.
Detection of viability of micro-algae cells by optofluidic hologram pattern.
Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing
2018-03-01
A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.
Study of Selecting on Light Source Used for Micro-algae Cultivation in Space
NASA Astrophysics Data System (ADS)
Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng
To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation
Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi
2015-08-10
A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.
76 FR 62391 - Procurement List; Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Blue, Size 5.5'' NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6'' NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5'' NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' NSN: 6515-00-NIB-0725...
Bionomics of Eucosma monitorana (Lepidoptera: Tortricidae) attacking red pine cones in Wisconsin
Stanley J. Barras; Dale M. Norris
1969-01-01
A localized infestation of Eucosma monitorama Heinrich was studied in 1963 and 1964 in southern Wisconsin. Adults are secretive, weak flyers but several were collected in May with sticky trap-boards and light traps. Adult emergence and flight occur at time of red pine pollen release. Eggs were not found in macro- and micro-scopic examinations of...
Wafer-scale micro-optics fabrication
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2012-07-01
Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.
NASA Astrophysics Data System (ADS)
Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro
2017-05-01
Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.
NASA Astrophysics Data System (ADS)
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Serkland, Darwin K.; Boye, Robert; Fang, Lu; Casias, Adrian; Manginell, Ronald P.; Moorman, Matthew; Prestage, John; Yu, Nan
2011-06-01
We are developing a highly miniaturized trapped ion clock to probe the 12.6 GHz hyperfine transition in the 171Yb+ ion. The clock development is being funded by the Integrated Micro Primary Atomic Clock Technology (IMPACT) program from DARPA where the stated goals are to develop a clock that consumes 50 mW of power, has a size of 5 cm3, and has a long-term frequency stability of 10-14 at one month. One of the significant challenges will be to develop miniature single-frequency lasers at 369 nm and 935 nm and the optical systems to deliver light to the ions and to collect ion fluorescence on a detector.
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.
2012-01-01
Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased rates of leaf photosynthesis with increased CO2 concentration paralleled trends in biomass production (published previously) but were not proportional to the biomass yields.
The study of LED light source illumination conditions for ideal algae cultivation
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng
2017-02-01
Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.
Zhao, Peng; Zhao, Hongping
2012-09-10
The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.
Lee, Hsiao-Wen; Lin, Bor-Shyh
2012-11-05
LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.
Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient.
Marcisz, Katarzyna; Lamentowicz, Lukasz; Słowińska, Sandra; Słowiński, Michał; Muszak, Witold; Lamentowicz, Mariusz
2014-10-01
Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal-Wallis test, p=0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu
2017-09-01
An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
Guevara, Miguel; Lodeiros, César; Gómez, Olga; Lemus, Nathalie; Núñez, Paulino; Romero, Lolymar; Vásquez, Aléikar; Rosales, Néstor
2005-01-01
We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaüer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production.
Spatial distribution of plankton in Riau islands province, Indonesia
NASA Astrophysics Data System (ADS)
Ayu, I. P.; Pratiwi, N. T. M.; Iswantari, A.; Hariyadi, S.; Mulyawati, D.; Subhan, B.; Arafat, D.; Santoso, P.; Sastria, M.
2017-01-01
Riau Islands which is located at 4ºLU - 1ºLS and 104ºBT - 107ºBT, consist of around 3200 islands. It has high marine biodiversity, especially micro-plankton. Biodiversity of marine phytoplankton is usually dominated by diatom and zooplankton by micro-crustacean and early stage of marine biota. Nowadays, biodiversity of micro-plankton is an important study to identify their origin and potential as alien and invasive species. The aim of this research was to determine the biodiversity of marine micro-plankton in Riau Islands. This research was conducted in 14 small islands (Karanggerih, Pemping, Panjang, Melur, Palantuah, Dendun, Mantang, Bunut, Kelong, Mercusuar, Tokong Hiu Kecil, Tokong Hiu Besar, Karimun, Penyengat) in Riau Islands Province. Samples of micro-plankton were collected from surface water using plankton net. Samples were observed under light microscope and identified morphologically. Biodiversity index was calculated. There were found 20-34 taxa of phytoplankton and 10-17 taxa of zooplankton in all sites. Phytoplankton was dominated by Bacillariophyceae group and zooplankton by Crustacean and Protozoa groups. This result is expected for biodiversity bank information and further research.
Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M
2014-11-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.
2014-01-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789
Micro Solar Cells with Concentration and Light Trapping Optics
NASA Astrophysics Data System (ADS)
Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph
2013-03-01
Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293
Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes
NASA Astrophysics Data System (ADS)
Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif
2017-08-01
Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.
Multi-layered fabrication of large area PDMS flexible optical light guide sheets
NASA Astrophysics Data System (ADS)
Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.
2017-02-01
Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo
2015-03-01
Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement trajectory in 1st proximity region will be better simulated when the electronic electrostatic fields are simulated.
Izawa, Norimitsu; Suzuki, Takeshi; Watanabe, Masakatsu; Takeda, Makio
2009-04-01
Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a K(m) for tryptamine as substrate of 0.42 microM, and a V(max) of 9.39 nmol/mg protein/min. The apparent K(m) for acetyl-CoA was 59.9 microM and the V(max) was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.
microRNA modulation of circadian clock period and entrainment
Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl
2007-01-01
microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428
NASA Technical Reports Server (NTRS)
Lu, Y. T.; Hidaka, H.; Feldman, L. J.
1996-01-01
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.
Micro spectrometer for parallel light and method of use
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
Micro lens design for efficiency improvement of red organic light-emitting diode
NASA Astrophysics Data System (ADS)
Ki, Hyun-Chul; Kim, Doo-Gun; Kim, Seon-Hoon; Jung, U.-Ra; Kim, Sang-Gi; Hong, Kyung-Jin
2012-11-01
We have proposed a micro lens to improve the luminance of red organic light-emitting devices (ROLEDs). The micro lenses were applied on the glass/indium tin oxide (ITO)/OLED. The size, thickness and diameter of micro lenses were calculated by using FDTD (finite-difference timedomain) method. Simulations were performed for 5 µm and 10 µm sized. The thickness and the gap of the micro lens were both 1 µm. The material of the micro lenses was silicon dioxide. The highest luminance of an OLED applied with a micro lens was 11,185 cd/m2, at on approval voltage of 14.5 V, The efficiency of the device with a micro lens increased by 3 times compared to that of the device with no micro lens.
Sterile Neutrino Searches in MiniBooNE and MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignarra, Christina M.
Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis fi rst presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, futuremore » experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a di fferent energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fi ts which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.« less
NASA Astrophysics Data System (ADS)
Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.
2015-09-01
A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-01-01
This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
NASA Astrophysics Data System (ADS)
Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.
2008-10-01
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.
NASA Astrophysics Data System (ADS)
Huang, Shiyuan; Wu, Yuanpeng; Ma, Xiangyang; Yang, Zongyin; Liu, Xu; Yang, Qing
2018-05-01
Realizing high performance silicon based light sources has been an unremitting pursuit for researchers. In this letter, we propose a simple structure to enhance electroluminescence emission and reduce the threshold of injected current of silicon/CdS micro-/nanoribbon p-n heterojunction visible light emitting diodes, by fabricating trenched structure on silicon substrate to mount CdS micro-/nanoribbon. A series of experiments and simulation analysis favors the rationality and validity of our mounting design. After mounting the CdS micro-/nanoribbon, the optical field confinement increases, and absorption and losses from high refractive silicon substrate are effectively reduced. Meanwhile the sharp change of silicon substrate near heterojunction also facilitates the balance between electron current and hole current, which substantially conduces to the stable amplification of electroluminescence emission in CdS micro-/nanoribbon.
Integrated micro-optofluidic platform for real-time detection of airborne microorganisms
NASA Astrophysics Data System (ADS)
Choi, Jeongan; Kang, Miran; Jung, Jae Hee
2015-11-01
We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.
Integrated micro-optofluidic platform for real-time detection of airborne microorganisms
Choi, Jeongan; Kang, Miran; Jung, Jae Hee
2015-01-01
We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-02-08
This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.
An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy.
Koelbl, Philipp S; Lingenfelder, Christian; Spraul, Christoph W; Kampmeier, Juergen; Koch, Frank Hj; Kim, Yong Keun; Hessling, Martin
2018-03-01
Development of a new, fiber-free, single-use endo-illuminator for pars plana vitrectomy as a replacement for fiber-based systems with external light sources. The hand-guided intraocularly placed white micro light-emitting diode is evaluated for its illumination properties and potential photochemical and thermal hazards. A micro light-emitting diode was used to develop a single-use intraocular illumination system. The light-source-on-tip device was implemented in a prototype with 23G trocar compatible outer diameter of 0.6 mm. The experimental testing was performed on porcine eyes. All calculations of possible photochemical and thermal hazards during the application of the intraocular micro light-emitting diode were calculated according to DIN EN ISO 15007-2: 2014. The endo-illuminator generated a homogeneous and bright illumination of the intraocular space. The color impression was physiologic and natural. Contrary to initial apprehension, the possible risk caused by inserting a light-emitting diode into the intraocular vitreous was much smaller when compared to conventional fiber-based illumination systems. The photochemical and thermal hazards allowed a continuous exposure time to the retina of at least 4.7 h. This first intraocular light source showed that a light-emitting diode can be introduced into the eye. The system can be built as single-use illumination system. This light-source-on-tip light-emitting diode-endo-illumination combines a chandelier wide-angle illumination with an adjustable endo-illuminator.
X-ray micro-Tomography at the Advanced Light Source
USDA-ARS?s Scientific Manuscript database
The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...
Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan
2012-11-01
Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; ...
2014-10-09
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis.
Liang, H L; Whelan, H T; Eells, J T; Meng, H; Buchmann, E; Lerch-Gaggl, A; Wong-Riley, M
2006-05-12
Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necrotic pathway was unclear. The current study tested our hypothesis that light-emitting diode rescues neurons from apoptotic cell death. Primary neuronal cultures from postnatal rat visual cortex were pretreated with light-emitting diode for 10 min at a total energy density of 30 J/cm2 before exposing to potassium cyanide for 28 h. With 100 or 300 microM potassium cyanide, neurons died mainly via the apoptotic pathway, as confirmed by electron microscopy, Hoechst 33258, single-stranded DNA, Bax, and active caspase-3. In the presence of caspase inhibitor I, the percentage of apoptotic cells in 300microM potassium cyanide was significantly decreased. Light-emitting diode pretreatment reduced apoptosis from 36% to 17.9% (100 microM potassium cyanide) and from 58.9% to 39.6% (300 microM potassium cyanide), representing a 50.3% and 32.8% reduction, respectively. Light-emitting diode pretreatment significantly decreased the expression of caspase-3 elicited by potassium cyanide. It also reversed the potassium cyanide-induced increased expression of Bax and decreased expression of Bcl-2 to control levels. Moreover, light-emitting diode decreased the intensity of 5-(and -6) chloromethy-2', 7-dichlorodihydrofluorescein diacetate acetyl ester, a marker of reactive oxygen species, in neurons exposed to 300 microM potassium cyanide. These results indicate that light-emitting diode pretreatment partially protects neurons against cyanide-induced caspase-mediated apoptosis, most likely by decreasing reactive oxygen species production, down-regulating pro-apoptotic proteins and activating anti-apoptotic proteins, as well as increasing energy metabolism in neurons as reported previously.
Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.
Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung
2010-01-01
In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.
Reconfigurable and responsive droplet-based compound micro-lenses.
Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias
2017-03-07
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.
Reconfigurable and responsive droplet-based compound micro-lenses
Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias
2017-01-01
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505
Lensless magneto-optic speed sensor
Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.
1998-02-17
Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.
Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells
NASA Astrophysics Data System (ADS)
Chadha, S.; Nelson, W. H.; Sperry, J. F.
1993-11-01
The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.
[Secondary Raman spectrum of beta-carotene molecule in living leaf of French phoenix tree].
Zhao, Jin-tao; Zhang, Peng-xiang; Xu, Cun-ying
2002-10-01
Under visible incidence light 514.5 nm, the Raman scattering spectrum from the beta-carotene molecule in the leaf was directly obtained after it was immediately collected from French phoenix tree without any preparing the sample but cleaning. It is very easy to collect the secondary Raman lines addition to the first Raman spectrum in situ by micro Raman. By careful comparing and analyzing the Raman lines between 2,000-3,100 cm-1 and below 2,000 cm-1 regions, we obtained the correlated relation of the first and secondary Raman lines. The study results indicated that there is no damage to the structure and configuration of beta-carotene molecule in the live leaf by controlling laser power on the sample surface and integrating time for Raman signal, but large power laser or long time irradiation on the live sample would cause very strong fluorescence background in Raman spectrum which indicated that there is a photo damage in the center of photo reaction. The Micro Raman would become one of possible in situ methods for investigating live plant molecules growing up in different environment. At last we proposed and discussed the advantages and limits in micro Raman when it is applied to investigating live molecules in botany field.
NASA Astrophysics Data System (ADS)
Hagopian, John; Bolcar, Matthew; Chambers, John; Crane, Allen; Eegholm, Bente; Evans, Tyler; Hetherington, Samuel; Mentzell, Eric; Thompson, Patrick L.; Ramos-Izquierdo, Luis; Vaughnn, David
2016-09-01
The sole instrument on NASA's ICESat-2 spacecraft shown in Figure 1 will be the Advanced Topographic Laser Altimeter System (ATLAS)1. The ATLAS is a Light Detection and Ranging (LIDAR) instrument; it measures the time of flight of the six transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of global ice. The ATLAS laser beam is split into 6 main beams by a Diffractive Optical Element (DOE) that are reflected off of the earth and imaged by an 800 mm diameter Receiver Telescope Assembly (RTA). The RTA is composed of a 2-mirror telescope and Aft Optics Assembly (AOA) that collects and focuses the light from the 6 probe beams into 6 science fibers. Each fiber optic has a field of view on the earth that subtends 83 micro Radians. The light collected by each fiber is detected by a photomultiplier and timing related to a master clock to determine time of flight and therefore distance. The collection of the light from the 6 laser spots projected to the ground allows for dense cross track sampling to provide for slope measurements of ice fields. NASA LIDAR instruments typically utilize telescopes that are not diffraction limited since they function as a light collector rather than imaging function. The more challenging requirements of the ATLAS instrument require better performance of the telescope at the ¼ wave level to provide for improved sampling and signal to noise. NASA Goddard Space Flight Center (GSFC) contracted the build of the telescope to General Dynamics (GD). GD fabricated and tested the flight and flight spare telescope and then integrated the government supplied AOA for testing of the RTA before and after vibration qualification. The RTA was then delivered to GSFC for independent verification and testing over expected thermal vacuum conditions. The testing at GSFC included a measurement of the RTA wavefront error and encircled energy in several orientations to determine the expected zero gravity figure, encircled energy, back focal length and plate scale. In addition, the science fibers had to be aligned to within 10 micro Radians of the projected laser spots to provide adequate margin for operations on-orbit. This paper summarizes the independent testing and alignment of the fibers performed at the GSFC.
Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2018-02-19
Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.
NASA Astrophysics Data System (ADS)
Zang, Gongzheng; Fu, Zhihong; Zhang, Lei; Wan, Yue
2018-01-01
Extrusion roller embossing process has demonstrated the ability to produce polymer film with micro-structure. However the influence of various parameters on the forming quality has not been understood clearly. In this paper, a light diffusion plate with semi cylindrical micro-structure array as the research object, the influence of the main processing parameters such as roller speed, pressuring distance and polymer film temperature to the rolling quality was investigated in detail by simulation and experimental methods. The results show that the thickness of the light diffusion plate and the micro-structure fitting diameter increases with the increasing of the roll speed and the polymer film temperature, and decreases with the increasing of the pressing distance. Besides, the simulation results conformed well to the experimental results.
Holistic sustainable development: Floor-layers and micro-enterprises.
Lortie, Monique; Nadeau, Sylvie; Vezeau, Steve
2016-11-01
Attracting and retaining workers is important to ensuring the sustainability of floor laying businesses, which are for the most part micro-enterprises (MiE). The aim of this paper is to shed light on the challenges MiE face in OHS implementation in the context of sustainable development. Participative ergonomics and user-centred design approaches were used. The material collected was reviewed to better understand the floor layers' viewpoints on sustainability. The solutions that were retained and the challenges encountered to make material handling and physical work easier and to develop training and a website are presented. The importance of OHS as a sustainability factor, its structuring effect, what distinguishes MiE from small businesses and possible strategies for workings with them are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of light transmission and fluence rate in mouse brain in vivo(Conference Presentation)
NASA Astrophysics Data System (ADS)
Macklin, John J.; Graves, Austin R.; Stujenske, Joseph M.; Hantman, Adam W.; Bittner, Katie C.
2017-02-01
Optogenetic experiments require light delivery, typically using fiber optics, to light-gated ion channels genetically targeted to specific brain regions. Understanding where light is—and isn't—in an illuminated brain can be a confounding factor in designing experiments and interpreting results. While the transmission of light, i.e. survival of forward-directed and forward-scattered light, has been extensively measured in vitro, light scattering can be significantly different in vivo due to blood flow and other factors. To measure irradiance in vivo, we constructed a pipette photodetector tipped with fluorescent quantum dots that function as a light transducer. The quantum dot fluorescence is collected by a waveguide and sent to a fiber-coupled spectrometer. The device has a small photo-responsive area ( 10 um x 15 um), enabling collection of micron-resolution irradiance profiles, and can be calibrated to determine irradiance with detection limits of 0.001 mW/mm2. The photodetector has the footprint of a micro-injection pipette, so can be inserted into almost any brain region with minimal invasiveness. With this detector, we determined transverse and axial irradiance profiles in mice across multiple brain regions at 5 source wavelengths spanning the visible spectrum. This profile data is compared to in vitro measurements obtained on tissue slices, and provides a means to derive scattering coefficients for specific brain regions in vivo. The detector is straightforward to fabricate and calibrate, is stable in air storage > 9 months, and can be easily installed in an electrophysiology setup, thereby enabling direct measurement of light spread under conditions used in optogenetics experiments.
A parallel bubble column system for the cultivation of phototrophic microorganisms.
Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk
2008-07-01
An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).
Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E.; Dewi, Chitra U.; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C.; Ho, Joshua W. K.; Harman, David G.
2018-01-01
ABSTRACT Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. PMID:29217756
Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E; Dewi, Chitra U; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C; Ho, Joshua W K; Harman, David G; O'Connor, Michael D
2018-01-09
Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Schmitt, H. H.; Petro, N. E.
2017-12-01
Light-gray regolith overlying the orange and black pyroclastic ash (Schmitt, 2017) at Shorty Crater protected the ash from incorporation into surrounding basaltic regolith for 3.5 billion years (Tera and Wasserburg, 1976; Saito and Alexander, 1979). Inspection of LROC images indicate this regolith probably came from a 350 m diameter, degraded impact crater (Fitzgibbon Crater), about 1 km NNE of Shorty. This regolith was derived largely from basalt and spread over the ash deposit about 24 Myr (Eugster, et al., 1979, corrected for post-Shorty exposure) after the last ash eruption. Maturity indexes for light gray regolith samples 74441 and 74461 are about 8 (Morris, 1978) and agglutinate concentrations are 8% and 7.7% (Heiken and McKay, 1974), respectively. These values are inconsistent with the exposure and cycling of the light-gray regolith during 3.5 billion years in the lunar surface impact environment (i.e., the time between ash deposition and the light mantle avalanche). If agglutinate content and Is/FeO indexes largely reflect the cumulative effect of micro-meteor impacts, as generally concluded, the light-gray regolith formed in an environment with significantly less micro-meteor flux than that which has prevailed more recently. 14-18% of fragile, ropy glass in the light-gray regolith, as compared with <1% in presently exposed Taurus-Littrow regoliths, also is consistent with low micro-meteor flux during development. The high recent micro-meteor flux appears to have existed for at least for the last 75 million years (Schmitt, et al., 2017), the estimated time using LROC-based crater frequency analysis (van der Bogert, et al., 2012) since the light mantle avalanche of South Massif regolith covered the light-gray regolith. New regolith on the light mantle appears to be developing a higher concentration of agglutinates and a higher maturity index relative to regolith in deeper portions of the unit. Light mantle avalanche samples 73141 (subsurface) and 73121 (near surface), have agglutinates at 32% and 42% and Is/FeO indexes of 48 and 78, respectively. This difference further supports the hypothesis of a highly variable micro-meteor flux throughout lunar history, with its current flux being significantly higher than for some period both prior to and subsequent to 3.5 Ga.
Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
Toh, Ren Wei; Li, Jie Sheng; Wu, Jie
2018-01-04
A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.
Light propagation in the Solar System for astrometry on sub-micro-arcsecond level
NASA Astrophysics Data System (ADS)
Zschocke, Sven
2018-04-01
We report on recent advancement in the theory of light propagation in the Solar System aiming at sub-micro-arcsecond level of accuracy: (1) A solution for the light ray in 1.5PN approximation has been obtained in the field of N arbitrarily moving bodies of arbitrary shape, inner structure, oscillations, and rotational motion. (2) A solution for the light ray in 2PN approximation has been obtained in the field of one arbitrarily moving pointlike body.
NASA Astrophysics Data System (ADS)
Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.
2015-03-01
The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.
Photomixing of chlamydomonas rheinhardtii suspensions
NASA Astrophysics Data System (ADS)
Dervaux, Julien; Capellazzi Resta, Marina; Abou, Bérengère; Brunet, Philippe
2014-11-01
Chlamydomonas rheinhardtii is a fast swimming unicellular alga able to bias its swimming direction in gradients of light intensity, an ability know as phototaxis. We have investigated experimentally both the swimming behavior of individual cells and the macroscopic response of shallow suspensions of these micro-organisms in response to a localized light source. At low light intensity, algae exhibit positive phototaxis and accumulate beneath the excitation light. In weakly concentrated thin layers, the balance between phototaxis and cell motility results in steady symmetrical patterns compatible with a purely diffusive model using effective diffusion coefficients extracted from the analysis of individual cell trajectories. However, at higher cell density and layer depth, collective effects induce convective flows around the light source. These flows disturb the cell concentration patterns which spread and may then becomes unstable. Using large passive tracer particles, we have characterized the velocity fields associated with this forced bioconvection and their dependence on the cell density and layer depth. By tuning the light distribution, this mechanism of photo-bioconvection allows a fine control over the local fluid flows, and thus the mixing efficiency, in algal suspensions.
Intelligent rear light for compensation of environmental effects on car visibility
NASA Astrophysics Data System (ADS)
Gruner, Roman; Schubert, Jorg
2004-01-01
LIDAR remote sensing technology has not only applications in geographical, atmospheric or biological sciences but it can also play an important role in the everyday life. Within the last 10 years statistics of European car traffic has shown that about one third of all accidents go back to darkness and poor road conditions. A system collecting information about visibility and distance to following vehicles and setting appropriate rear light intensities could provide a much safer road travel under various environmental conditions. The system that is being developed co-operates with a dirt and brightness sensor to take into account these various external influences on an automobile and applies them to the operation of the rear light. The developed sensors are integrated in an advanced micro-system and capable of providing external environmental data for automatic brightness control within a requested range of light output for constant perceptibility of light signals to the following traffic. This conference gives further information about: (1) construction, optical and laser parameters, (2) application in rear light systems, (3) measurement characteristics, (4) test equipment (LIDAR_Probe), (5) measurement results, test rides, raw data.
Micro Ring Grating Spectrometer with Adjustable Aperture
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)
2012-01-01
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
NASA Astrophysics Data System (ADS)
Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun
2016-03-01
Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.
Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas
NASA Technical Reports Server (NTRS)
Hoban-Higgins, T. M.; Alpatov, A. M.; Wassmer, G. T.; Rietveld, W. J.; Fuller, C. A.
2003-01-01
Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
NASA Astrophysics Data System (ADS)
Tian, Chao; Wang, Weibiao; Liang, Jingqiu; Liang, Zhongzhu; Qin, Yuxin; Lv, Jinguang
2015-04-01
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit, and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42-1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2-2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chao; University of Chinese Academy of Sciences, Beijing 100049; Wang, Weibiao, E-mail: wangwbcn@163.com
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit,more » and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42–1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2–2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.« less
Device and nondestructive method to determine subsurface micro-structure in dense materials
Sun, Jiangang [Westmont, IL
2006-05-09
A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.
Micromachined edge illuminated optically transparent automotive light guide panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas
2012-03-01
Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.
To enhance light extraction of OLED devices by multi-optic layers including a micro lens array
NASA Astrophysics Data System (ADS)
Chiu, Chuang-Hung; Chien, Chao-Heng; Kuo, Yu-Xaong; Lee, Jen-Chi
2014-10-01
In recent years, OLED has advantages including that larger light area, thinner thickness, excellent light uniformity, and can be as a flexible light source. Many display panel and lighting have been started to use the OLED due to OLED without back light system, thus how to make and employ light extracting layer could be important issue to enhance OLED brightness. The purpose of this study is to enhance the light extraction efficiency and light emitting area of OLED, so the micro lens array and the prism reflection layer were provided to enhance the surface light extracting efficiency of OLD. Finally the prism layer and diffusing layer were used to increase the uniformity of emitting area of OLED, which the efficiency of 31% increasing to compare with the OLED without light extracting film.
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections
NASA Astrophysics Data System (ADS)
Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.
2017-02-01
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tool development will enhance its utility.
Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension
USDA-ARS?s Scientific Manuscript database
We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin
2017-08-01
Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.
Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.
Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie
2018-06-13
Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.
A compactly integrated laser-induced fluorescence detector for microchip electrophoresis.
Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Uchiyama, Katsumi; Hobo, Toshiyuki
2004-06-01
A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.
Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn
2009-11-09
A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.
From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.
Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko
2017-07-03
Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm -2 at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Qubo; Sun, Wenyu; Okano, Kiichiro; Chen, Yu; Zhang, Ning; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
MicroRNA-183 (miR-183), miR-96, and miR-182 comprising the miR-183/96/182 cluster are highly expressed in photoreceptor cells. Although in vitro data have indicated an important role for this cluster in the retina, details of its in vivo biological activity are still unknown. To observe the impact of the miR-183/96/182 cluster on retinal maintenance and light adaptation, we generated a sponge transgenic mouse model that disrupted the activities of the three-component microRNAs simultaneously and selectively in the retina. Although our morphological and functional studies showed no differences between transgenic and wild type mice under normal laboratory lighting conditions, sponge transgenic mice displayed severe retinal degeneration after 30 min of exposure to 10,000 lux light. Histological studies showed that the outer nuclear layer thickness was dramatically reduced in the superior retina of transgenic mice. Real time PCR experiments in both the sponge transgenic mouse model and different microRNA stable cell lines identified Arrdc3, Neurod4, and caspase-2 (Casp2) as probable downstream targets of this cluster, a result also supported by luciferase assay and immunoblotting analyses. Further studies indicated that expression of both the cluster and Casp2 increased in response to light exposure. Importantly, Casp2 expression was enhanced in transgenic mice, and inhibition of Casp2 partially rescued their light-induced retinal degeneration. By connecting the microRNA and apoptotic pathways, these findings imply an important role for the miR-183/96/182 cluster in acute light-induced retinal degeneration of mice. This study demonstrates a clear involvement of miRs in the physiology of postmitotic cells in vivo. PMID:21768104
Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.
Ilie, Nicoleta; Simon, Alexander
2012-04-01
Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Amarie, Dragos (Inventor); Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor)
2010-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2011-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Khan, Javid; Gu, Jiuwang; He, Shiman; Li, Xiaohui; Ahmed, Gulzar; Liu, Zhongwu; Akhtar, Muhammad Nadeem; Mai, Wenjie; Wu, Mingmei
2017-07-20
A tri-layered photoelectrode for dye-sensitized solar cells (DSSCs) is assembled using single crystal hollow TiO 2 nanoparticles (HTNPs), sub-micro hollow TiO 2 mesospheres (SHTMSs) and hierarchical TiO 2 microspheres (HTMSs). The bottom layer composed of single crystal hollow TiO 2 nanoparticles serves to absorb dye molecules, harvest light due to its hollow structure and keep a better mechanical contact with FTO conducting glass; the middle layer consisting of sub-micro hollow mesospheres works as a multifunctional layer due to its high dye adsorption ability, strong light trapping and scattering ability and slow recombination rates; and the top layer consisting of hierarchical microspheres enhances light scattering. The DSSCs made of photoanodes with a tripartite-layer structure (Film 4) show a superior photoconversion efficiency (PCE) of 9.24%, which is 7.4% higher than a single layered photoanode composed of HTNPs (Film 1: 8.90%), 4.6% higher than a double layer-based electrode consisting of HTNPs and SHTMSs (Film 2: 9.03%) and 2.6% higher than a double layer-based electrode made of HTNPs and HTMSs (Film 3: 9.11%). The significant improvements in the PCE for tri-layered TiO 2 photoanodes are mainly because of the combined effects of their higher light scattering ability, long electron lifetime, fast electron transport rate, efficient charge collection and a considerable surface area with high dye-loading capability. This study confirms that the facile tri-layered photoanode is an interesting structure for high-efficiency DSSCs.
Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong
2014-02-01
Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.
Light propagation in the micro-size capillary injected by high temperature liquid
NASA Astrophysics Data System (ADS)
Li, Yan-jun; Li, Edward; Xiao, Hai
2016-11-01
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
Manipulation of Micro Scale Particles in Optical Traps Using Programmable Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Seibel, Robin E.; Decker, Arthur J. (Technical Monitor)
2003-01-01
1064 nm light, from an Nd:YAG laser, was polarized and incident upon a programmable parallel aligned liquid crystal spatial light modulator (PAL-SLM), where it was phase modulated according to the program controlling the PAL-SLM. Light reflected from the PAL-SLM was injected into a microscope and focused. At the focus, multiple optical traps were formed in which 9.975 m spheres were captured. The traps and the spheres were moved by changing the program of the PAL-SLM. The motion of ordered groups of micro particles was clearly demonstrated.
2012-01-01
Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface program, can control the PFD and mixing ratios of five wavelength-band lights. A highly uniform PFD distribution was achieved, although an intentionally distorted PFD gradient was also created. Phototropic responses of oat coleoptiles to the blue light gradient demonstrated the merit of fine controllability of this plant lighting system. PMID:23173915
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
NASA Astrophysics Data System (ADS)
Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun
2018-07-01
An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.
New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals
NASA Astrophysics Data System (ADS)
Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.
2003-04-01
Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.
Courrier, Emilie; Renault, Didier; Kaspi, Mathilde; Marcon, Agathe; Lambert, Victor; Garcin, Thibaud; Chiambaretta, Frederic; Garhofer, Gerhard; Thuret, Gilles; Gain, Philippe
2018-03-01
To describe and validate the micro-instillation of fluorescein on the ocular surface by a disposable calibrated inoculation loop to improve corneal and conjunctival staining quality. Accuracy and precision of the volume of 0.5% sodium fluorescein collected by a single use 1 μl-calibrated inoculation loop were measured using a precision balance. Twenty patients (40 eyes) suffering from dry eye syndrome were enrolled in a prospective interventional nonrandomized study. Fluorescein was instilled with the loop, and slit-lamp images were taken within 30 seconds using cobalt blue light with and without a yellow barrier filter. For comparison, after a washout period, the same images were retaken after instillation of one drop of fluorescein from a single-dose unit. The main outcome measure was the staining quality assessed by three experts, blind to the instillation method. Patient discomfort (tolerance, by a questionnaire) was also compared. The mean volume collected by the loop was 1.18 ± 0.12 μl, compared with 33.70 ± 6.10 μl using the single-dose unit. The loop avoided excess dye responsible for unpleasant tearing, masking of lesions and rapid diffusion into the stroma. Micro-instillation greatly improved image quality without losing information. The yellow filter further improved image contrast. Tolerance was excellent. The 1 μl-calibrated inoculation loop is a safe, convenient, inexpensive, disposable, sterile, well-tolerated tool for reproducible micro-instillation of commercial fluorescein. By greatly improving staining quality, it will help standardize assessment of dry eye severity. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Design method of LED rear fog lamp based on freeform micro-surface reflectors
NASA Astrophysics Data System (ADS)
Yu, Jindong; Wu, Heng
2017-11-01
We propose a practical method for the design of a light-emitting diode (LED) rear fog lamp based on freeform micro-surface reflectors. The lamp consists of nine LEDs and each of them has a freeform micro-surface reflector correspondingly. The micro-surface reflector design includes three steps. An initial freeform reflector is first built based on the light energy maps. The micro-surface reflector is then constructed on the bias of the initial one. Finally, a two-step method is designed to optimize the micro-surface reflector. With the proposed method, a module is designed and LCW DURIS E5 LED source whose emitting surface is 5.7 mm × 3.0 mm is adopted for simulation. A prototype is also assembled and fabricated to verify the real performance. Both the simulation and experimental results demonstrate that the luminous intensity distribution can well fulfill the requirements of ECE No.38 regulation. Furthermore, more than 79% energy can be saved when compared with the rear fog lamps using conventional sources.
A finger-free wrist-worn pulse oximeter for the monitoring of chronic obstructive pulmonary disease
NASA Astrophysics Data System (ADS)
Chu, Chang-Sheng; Chuang, Shuang-Chao; Lee, Yeh Wen; Fan, Chih-Hsun; Chung, Lung Pin; Li, Yu-Tang; Chen, Jyh-Chern
2016-03-01
Herein, a finger-free wrist-worn pulse oximeter is presented. This device allows patients to measure blood oxygen level and pulse rate without hindering their normal finger movement. This wrist-worn pulse oximeter is built with a reflectance oximetry sensor, which consists of light emitting diodes and photodiode light detectors located side by side. This reflectance oximetry sensor is covered with an optical element with micro structured surface. This micro structured optical element is designed to modulate photon propagation beneath the skin tissue so that the photoplethysmogram signals of reflected lights or backscattered lights detected by the photodetector are therefore enhanced.
Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan
2013-07-15
Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.
Kopec, Scott E; DeBellis, Ronald J; Irwin, Richard S
2002-01-01
The purpose of this study was to assess the stability of stored capsaicin solutions and the actual concentrations of prepared solutions. Capsaicin solutions ranging in concentration from 0.5 to 128 microM were mixed and analyzed using high performance liquid chromatography. Samples of varying concentrations were then stored under 4 environmental conditions: 4 degrees C and protected from light, room temperature (RT) exposed to light, RT protected from light, and -20 degrees C and protected from light. The concentrations were measured every other month for 1 year. Actual concentrations of freshly prepared solutions were on average 88.3% of predicted. For solutions stored at 4 degrees C, there was a decrease only in the lower concentrations (0.5, 1, and 2 microM) after 2 months (P=0.003). Solutions stored at RT exposed to light decreased in concentration after 6 months (P=0.020), and solutions stored at RT protected from light decreased in concentration after 4 months (P=0.026). The group stored at -20 degrees C decreased in concentration after 1 year (P=0.033). We conclude that the actual concentration of capsaicin solution is less than predicted, and solutions of 4 microM or higher concentration are stable for 1 year if stored at 4 degrees C protected from light.
Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.
Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T
2013-01-01
Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.
micROS: a morphable, intelligent and collective robot operating system.
Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng
2016-01-01
Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.
ZnO-based microrockets with light-enhanced propulsion.
Dong, Renfeng; Wang, Chun; Wang, Qinglong; Pei, Allen; She, Xueling; Zhang, Yuxian; Cai, Yuepeng
2017-10-12
Improving the propulsion of artificial micro-nanomotors represents an exciting nanotechnology challenge, especially considering their cargo delivery ability and fuel efficiency. In light of the excellent photocatalytic performance of zinc oxide (ZnO) and chemical catalytic properties of platinum (Pt), ZnO-Pt microrockets with light-enhanced propulsion have been developed by atomic layer deposition (ALD) technology. The velocity of such microrockets is dramatically doubled upon irradiation by 77 mW cm -2 ultraviolet (UV) light in 10% H 2 O 2 and is almost 3 times higher than the classic poly(3,4-ethylenedioxythiophene)-Pt microrockets (PEDOT-Pt microrockets) even in 6% H 2 O 2 under the same UV light. In addition, such micromotors not only retain the standard approach to improve propulsion by varying the fuel concentration, but also demonstrate a simple way to enhance the movement velocity by adjusting the UV light intensity. High reversibility and controllable "weak/strong" propulsion can be easily achieved by switching the UV irradiation on or off. Finally, light-enhanced propulsion has been investigated by electrochemical measurements which further confirm the enhanced photocatalytic properties of ZnO and Pt. The successful demonstration of ZnO-based microrockets with excellent light-enhanced propulsion is significant for developing highly efficient synthetic micro-nanomotors which have strong delivery ability and economic fuel requirements for future practical applications in the micro-nanoscale world.
Zinelis, Spiros; Al Jabbari, Youssef S
2018-05-01
This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).
Contact resistance evolution of highly cycled, lightly loaded micro-contacts
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Coutu, Ronald
2014-03-01
Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.
Fogging in Polyvinyl Toluene Scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Richard J.; Fritz, Brad G.; Hurlbut, Charles
It has been observed that large polyvinyl toluene (PVT)-based gamma ray detectors can suffer internal “fogging” when exposed to outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated.
NASA Technical Reports Server (NTRS)
Zahlava, B. A. (Inventor)
1973-01-01
A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.
Sunlight-thin nanophotonic monocrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef
2017-09-01
Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.
A demonstration of particle duality of light
NASA Astrophysics Data System (ADS)
Jiang, Haili; Liu, Zhihai; Sun, Qiuhua; Zhao, Yancheng
2017-08-01
The need of understanding and teaching about wave-particle duality if light with gets more and more apparent in the background of the attention of modern physics. As early as the beginning of twentieth Century, Einstein dared to "deny" the development of a very perfect light electromagnetic theory, so that the quantum of light can be developed. In 1924, De Broglie put forward wave-particle duality if light to other micro particles and the concept of matter wave, pointed out that all micro particle has wave-particle duality. This is a very abstract concept for students, most college physics teaching all lack of demonstration about particle duality of light. The present article aims to contribute to demonstrate the wave-particle duality of light at the same time using a simple way based on fiber optical tweezers. It is hoped that useful lesson can be absorbed so that students can deepen the understanding of the particle and wave properties of light. To complement the demonstration experiment for this attribute light has momentum.
Dye to use with virus challenge for testing barrier materials.
Lytle, C D; Felten, R P; Truscott, W
1991-01-01
Can FD&C Blue no. 1 dye photoinactivate bacteriophages phi X174, T7, PRD1, and phi 6 under laboratory lighting conditions? At high levels of light, the dye (500 microM) photoinactivated only phi 6. Thus, this dye can be used at concentrations up to 500 microM with bacteriophages phi X174, T7, and PRD1 to test barrier material integrity. PMID:1872612
Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization
2011-07-31
Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
Study of cylindrical optical micro-structure technology used in infrared laser protection
NASA Astrophysics Data System (ADS)
Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li
2016-10-01
The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
On-Demand Drug Delivery System Using Micro-organogels with Gold Nanorods
2016-01-01
In this study, we designed a biocompatible drug carrier: micro-organogels prepared by emulsification using vegetable oils and self-assembled gelator fibers. Flurbiprofen was chosen as a hydrophobic model drug and is classified as a nonsteroidal anti-inflammatory drug. In the absence of NIR light, flurbiprofen encapsulated in micro-organogels with gold nanorods (GNRs) was released slowly, while release was accelerated in the presence of NIR light due to the increase in the temperature surrounding the GNRs that transforms the gels into liquid. These results suggest that our system can be efficiently used as a versatile scaffold for on-demand drug delivery systems. PMID:27994743
Micro-Doppler analysis of multiple frequency continuous wave radar signatures
NASA Astrophysics Data System (ADS)
Anderson, Michael G.; Rogers, Robert L.
2007-04-01
Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.
Application of dynamic light scattering for studying the evolution of micro- and nano-droplets
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.
2018-01-01
The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.
NASA Astrophysics Data System (ADS)
Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor
2015-03-01
Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.
Observation and simulation of an optically driven micromotor
NASA Astrophysics Data System (ADS)
Metzger, N. K.; Mazilu, M.; Kelemen, L.; Ormos, P.; Dholakia, K.
2011-04-01
In the realm of low Reynolds number flow there is a need to find methods to pump, move and mix minute amounts of analyte. Interestingly, micro-devices performing such actuation can be initiated by means of the light-matter interaction. Light induced forces and torques are exerted on such micro-objects, which are then driven by the optical gradient or scattering force. Here, different driving geometries can be realized to harness the light induced force. For example, the scattering force enables micro-gears to be operated in a tangential setup where the micromotor rotors are in line with an optical waveguide. The operational geometry we investigate has the advantage that it reduces the complexity of the driving of such a device in a microfluidic environment by delivering the actuating light by means of a waveguide or fiber optic. In this paper we explore the case of a micromotor being driven by a fiber optically delivered light beam. We experimentally investigate how the driving light interacts with and diffracts from the motor, utilizing two-photon imaging. The micromotor rotation rate dependence on the light field parameters is explored. Additionally, a theoretical model based on the paraxial approximation is used to simulate the torque and predict the rotation rate of such a device and compare it with experiment. The results presented show that our model can be used to optimize the micromotor performance and some example motor designs are evaluated.
NASA Astrophysics Data System (ADS)
Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.
2018-03-01
Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.
Fabrication of Multi-point Side-Firing Optical Fiber by Laser Micro-ablation
Nguyen, Hoang; Arnob, Md Masud Parvez; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan
2018-01-01
A multi-point, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This paper demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8 % of the input light. This was increased to more than 19 % on a 65 μm fiber with side windows created using femtosecond (fs) laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light activated drug-release and optogenetics studies. PMID:28454166
Fabrication of multipoint side-firing optical fiber by laser micro-ablation.
Nguyen, Hoang; Parvez Arnob, Md Masud; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan
2017-05-01
A multipoint, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This Letter demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8% of the input light. This can be increased to more than 19% on a 65 μm fiber with side windows created using femtosecond laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light-activated drug-release and optogenetics studies.
NASA Technical Reports Server (NTRS)
Frolking, S. E.; Bubier, J. L.; Moore, T. R.; Ball, T.; Bellisario, L. M.; Bhardwaj, A.; Carroll, P.; Crill, P. M.; Lafleur, P. M.; McCaughey, J. H.;
1998-01-01
We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe, NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = alpha PPFD P(sub max)/(alpha PPFD + P(sub max) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = beta PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = -2.0 micro mol m(exp -2) s(exp -1) for bogs and -2.7 micro mol m(exp -2) s(exp -1)) for fens) and lower NEE at moderate and high light levels (P(sub max)= 5.2 micro mol m(exp -2) s(exp -1) for bogs and 10.8 micro mol m(exp -2) s(exp -1) for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = -2.4 micro mol m(exp -2) s(exp -1)) and NEE rates (alpha = 0.020 and P(sub max)= 9.2 micro mol m(exp -2) s(exp -1)) than the upland ecosystems (closed canopy forest, grassland, and cropland). Despite this low productivity, northern peatland soil carbon pools are generally 5-50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils.
NASA Astrophysics Data System (ADS)
Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan
2016-03-01
To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.
An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.
Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M
2001-09-15
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
Development of optics with micro-LED arrays for improved opto-electronic neural stimulation
NASA Astrophysics Data System (ADS)
Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond
2013-03-01
The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).
Whippo, Craig W; Hangarter, Roger P
2003-07-01
Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 micro mol m(-)(2) s(-)(1)) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 micro mol m(-)(2) s(-)(1)) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light.
High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi
2016-12-02
A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.
A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology
Vizvári, Attila D.; Bali, Zsolt K.; Márki, Balázs; Nagy, Lili V.; Kónya, Zoltán; Madarász, Dániel; Henn-Mike, Nóra; Varga, Csaba; Hernádi, István
2018-01-01
Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length–impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis. PMID:29513711
Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu
2016-04-15
A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.
Hybrid integrated single-wavelength laser with silicon micro-ring reflector
NASA Astrophysics Data System (ADS)
Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian
2018-02-01
A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.
[The optimizing design and experiment for a MOEMS micro-mirror spectrometer].
Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun
2011-12-01
A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.
Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung
2009-01-01
This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.
NASA Astrophysics Data System (ADS)
Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla
2009-04-01
For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-02-25
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-01-01
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603
RAMOS, Marcelo Barbosa; PEGORARO, Thiago Amadei; PEGORARO, Luiz Fernando; CARVALHO, Ricardo Marins
2012-01-01
Objectives To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-ESPE and Panavia F 2.0®, Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor® - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent. PMID:23138743
Li, Huming; Radunz, Alfons; He, Ping; Schmid, Georg H
2002-01-01
Cultivation of the climbing plant Dioscorea zingiberensis at a light intensity of 100 microE. m(-2) sec(-1) yields three different phenotypes. Most of the plants grow as green phenotype (DzW). Two further forms differ in their leaf shape and leaf color. Whereas one type exhibits a more pointed leaf shape in the upper part of the plant with leaves appearing yellow-green with white stripes or hatchings (DzY), the other type shows a more round leaf shape with an intensive yellow-green color (DzT). These three plant types differ in their diosgenin content not only in their rhizomes but also in the chloroplasts. In the rhizomes the diosgenin content in the green form is 0.4%, in the DzY-form 0.6% and in the DzT-form even 1.3% of the dry weight. Furthermore, even in chloroplasts of the green DzW-form and of the DzY-form the presence of diosgenin was demonstrated. It occurs there as the epimeric form yamogenin. The DzT-form contains no yamogenin in its chloroplasts. Besides this, these plant forms differ in their chlorophyll and carotenoid content and in their fatty acid composition. Carotenoids increase from 1.3% of total lipids in the green phenotype to 3.3% in the DzY- and to 4.2% in the DzT-form. This increase refers to beta-carotene as well as to lutein and neoxanthin. The chlorophyll content in the green type is 8.1% and lower in the DzY-form with 7%. The highest chlorophyll content is found in the DzT-form with 12%. Fatty acids in the DzY-form and in the DzT-form have a more unsaturated character than in the green phenotype. The content of the monoenoic acid trans-hexadecenoic acid is considerably lower in both phenotypes when compared to the green phenotype. In both phenotypes the quantity of fatty acids with 16 carbon atoms is reduced, whereas fatty acids with 18 carbon atoms occur in higher concentration. Cultivation of the green phenotype (DzW) at the three light intensities of 10, 100 and 270 microE x m(-2) x sec(-1) leads to changes of the diosgenin content in rhizomes, to an increase of leaf dry weight, to a reduction of the grana structure in chloroplasts and therewith to a decrease of the chlorophyll content. The total lipid content is highest under the cultivation at 100 microE x m(-2) x sec(-1) and reduced by 30% at 10 and 270 microE x m(-2) x sec(-1). Carotenoids, however, are highest in shaded plants (10 microE x m(-2) x sec(-1)) and plants grown under high light conditions of 270 microE x m(-2) x sec(-1). At 100 microE x m(-2) x sec(-1) a decrease of saturated fatty acids is observed in comparison to plants grown under shaded conditions.
Si light-emitting device in integrated photonic CMOS ICs
NASA Astrophysics Data System (ADS)
Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl
2017-07-01
The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.
Arrayed Micro-Ring Spectrometer System and Method of Use
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.
Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng
2017-02-08
Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.
Quantum cascade light emitting diodes based on type-2 quantum wells
NASA Technical Reports Server (NTRS)
Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.
1997-01-01
The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk
2016-07-04
Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.
Evaluation of laser ablation crater relief by white light micro interferometer
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana
2017-06-01
A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.
[Health community agent: subject of the buccal health practice in Alagoinhas, Bahia state].
Rodrigues, Ana Aurea Alécio de Oliveira; Santos, Adriano Maia Dos; Assis, Marluce Maria Araújo
2010-05-01
This study about the work of micro politics was carried out by the Buccal Health Team (ESB) in the Family Health Program (PSF) of Alagoinhas, Bahia State, and has as central theoretical purpose the specific and singular forms in the practice of daily work, using the technologies (hard, light-hard and light). The methodological trajectory is based on the historical-social current in view of a dialectic approach of qualitative nature. The techniques of data collection used were: semi structured interview, observation of the work process and documental analysis. The analysis of the data was oriented by the hermeneutics-dialectics, allowing to compare the different levels of analysis, articulating the theoretical with the empirical evidence. The results reveal that the Family Health Teams are multidisciplinary, but have still not developed an interdisciplinary work, hence occurring juxtaposition of skills. Each unit plans their work process according to the singularities of the social subjects, implementing different characteristics in how to welcome, inform, attend and refer. An effort in changing the work process can be perceived in the perspective of amplified clinic with the health community agent standing out as a social/collective subject.
Direct laser writing of polymer micro-ring resonator ultrasonic sensors
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.
Programmable artificial phototactic microswimmer.
Dai, Baohu; Wang, Jizhuang; Xiong, Ze; Zhan, Xiaojun; Dai, Wei; Li, Chien-Cheng; Feng, Shien-Ping; Tang, Jinyao
2016-12-01
Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering. Here, we show an artificial microswimmer that can sense and orient to the illumination direction of an external light source. Our microswimmer is a Janus nanotree containing a nanostructured photocathode and photoanode at opposite ends that release cations and anions, respectively, propelling the microswimmer by self-electrophoresis. Using chemical modifications, we can control the zeta potential of the photoanode and program the microswimmer to exhibit either positive or negative phototaxis. Finally, we show that a school of microswimmers mimics the collective phototactic behaviour of green algae in solution.
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.
2016-01-01
We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.
Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui
2018-01-01
Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510
Micro guidance and control synthesis: New components, architectures, and capabilities
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1993-01-01
New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.
Rühe, J
2017-09-26
In photolithographic processes, the light inducing the photochemical reactions is confined to a small volume, which enables direct writing of micro- and nanoscale features onto solid surfaces without the need of a predefined photomask. The direct writing process can be used to generate topographic patterns through photopolymerization or photo-cross-linking or can be employed to use light to generate chemical patterns on the surface with high spatial control, which would make such processes attractive for bioapplications. The prospects of maskless photolithography technologies with a focus on two-photon lithography and scanning-probe-based photochemical processes based on scanning near-field optical microscopy or beam pen lithography are discussed.
Biconcave micro-optofluidic lens with low-refractive-index liquids.
Song, Chaolong; Nguyen, Nam-Trung; Asundi, Anand Krishna; Low, Cassandra Lee-Ngo
2009-12-01
One of the current problems of micro-optofluidics is the choice of a suitable liquid with a high refractive index (RI). We report the use of a low-RI liquid in a biconcave liquid-core liquid-cladding lens for focusing light. For the characterization of the lens, a telescope system was constructed from polydimethylsiloxane lenses to collimate and expand a light beam emitted from an optical fiber. The tunable optofluidic biconcave lens focuses the parallel beam. Fluorescent dye diluted in an index-matching liquid was used for the visualization of the light rays in a beam-tracing chamber. The focused beam is tuned by adjusting the flow rate ratio between core and cladding streams.
Biomarkers in Immunoglobulin Light Chain Amyloidosis.
Kufová, Z; Sevcikova, T; Growkova, K; Vojta, P; Filipová, J; Adam, Z; Pour, L; Penka, M; Rysava, R; Němec, P; Brozova, L; Vychytilova, P; Jurczyszyn, A; Grosicki, S; Barchnicka, A; Hajdúch, M; Simicek, M; Hájek, R
2017-01-01
Immunoglobulin light chain amyloidosis (AL amyloidosis - ALA) is a monoclonal gammopathy characterized by presence of aberrant plasma cells producing amyloidogenic immunoglobulin light chains. This leads to formation of amyloid fibrils in various organs and tissues, mainly in heart and kidney, and causes their dysfunction. As amyloid depositing in target organs is irreversible, there is a big effort to identify biomarker that could help to distinguish ALA from other monoclonal gammopathies in the early stages of disease, when amyloid deposits are not fatal yet. High throughput technologies bring new opportunities to modern cancer research as they enable to study disease within its complexity. Sophisticated methods such as next generation sequencing, gene expression profiling and circulating microRNA profiling are new approaches to study aberrant plasma cells from patients with light chain amyloidosis and related diseases. While generally known mutation in multiple myeloma patients (KRAS, NRAS, MYC, TP53) were not found in ALA, number of mutated genes is comparable. Transcriptome of ALA patients proves to be more similar to monoclonal gammopathy of undetermined significance patients, moreover level of circulating microRNA, that are known to correlate with heart damage, is increased in ALA patients, where heart damage in ALA typical symptom.Key words: amyloidosis - plasma cell - genome - transcriptome - microRNA.
Calcium homeostasis in the outer segments of retinal rods from the tiger salamander.
Lagnado, L; Cervetto, L; McNaughton, P A
1992-01-01
1. The processes regulating intracellular calcium in the outer segments of salamander rods have been investigated. The main preparation used was the isolated rod loaded with the Ca(2+)-sensitive photoprotein aequorin, from which outer segment membrane current and free [Ca2+]i could be recorded simultaneously. Two other preparations were also used: outer segment membrane current was recorded from intact, isolated rods using a suction pipette, and from detached outer segments using a whole-cell pipette. 2. Measurements of free intracellular [Ca2+] in Ringer solution were obtained from two aequorin-loaded rods. Mean [Ca2+]i in darkness was 0.41 microM, and after a bright flash [Ca2+]i fell to below detectable levels ( < 0.3 microM). No release of intracellular Ca2+ by a bright flash of light could be detected ( < 0.2 microM). 3. Application of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) caused an increase in the size of the light-sensitive current and a rise in [Ca2+]i, but application of IBMX either when the light-sensitive channels had been closed by a bright light or in the absence of external Ca2+ caused no detectable rise in [Ca2+]i. It is concluded that IBMX increases [Ca2+]i by opening light-sensitive channels, and does not release Ca2+ from stores within the outer segment. 4. Removal of external Na+ caused a rise in [Ca2+]i to around 2 microM and completely suppressed the light-sensitive current. 5. The Na(+)-Ca2+, K+ exchange current in aequorin-loaded rods was activated in first-order manner by internal free calcium, with a mean Michaelis constant, KCa, of 1.6 microM. 6. The KCa of the Na(+)-Ca2+, K+ exchange was increased by elevating internal [Na+]. 7. The Michaelis relation between [Ca2+]i and the activity of the Na(+)-Ca2+, K+ exchange was used to calculate the change in [Ca2+]i occurring during the response to a bright light. In aequorin-loaded rods in Ringer solution the mean change in free [Ca2+]i after a bright flash was 0.34 microM. In these rods 10% of the dark current was carried by Ca2+. 8. Most of the calcium entering the outer segment was taken up rapidly and reversibly by buffer systems. The time constant of equilibration between free and rapidly bound Ca2+ was less than 20 ms. No slow component of calcium uptake was detected. 9. Two components of calcium buffering could be distinguished in the outer segments of aequorin-loaded rods.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1282928
Imaging birefringent crystals using micro optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sharma, Gargi; Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Uric acid crystals have recently been identified as a possible therapeutic target for coronary artery disease. Being subcellular in size, it is difficult to identify these crystals in situ. Micro optical coherence tomography (Micro-OCT) allows one to image subcellular structures with 1-micron resolution. Even though Micro-OCT should be capable of resolving urate crystals, it's difficult to differentiate these structures from other scattering particles within tissue. In this work we developed a novel polarization sensitive micro OCT (ps-Micro-OCT) system for identification of uric acid crystals. Methods: A spectrometer based ps-Micro-OCT system was developed using a broadband light source. The broadband input light was divided into reference and sample signals using a beam splitter. The reference signal was further divided into two polarized signals with different polarization states. Reflected reference and sample signals were combined and sent to a spectrometer that recorded the interference signal. Results: To test the performance of system, a mirror was used as sample and a quarter wave-plate was placed in the sample path. The measured quarter wave-plate angle values matched closely to actual angle values. Next we prepared uric acid crystals in our lab and imaged them using this system.We were able to image and identify these crystals based on polarization measurements. Conclusion: In this work we imaged and identified uric acid crystals using a newly developed ps-Micro-OCT system. The proposed technique will enable imaging uric acid crystals in coronary artery.
Development of ultra-precision micro-cavity measurement technique in HIT-UOI
NASA Astrophysics Data System (ADS)
Cui, Jiwen; Li, Lei; Tan, Jiubin
2010-08-01
Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.
Micro-position sensor using faraday effect
McElfresh, Michael [Livermore, CA; Lucas, Matthew [Pittsburgh, PA; Silveira, Joseph P [Tracy, CA; Groves, Scott E [Brentwood, CA
2007-02-27
A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.
Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function
Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.
2015-01-01
Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844
NASA Astrophysics Data System (ADS)
Koelbl, Philipp Simon; Koch, Frank H. J.; Lingenfelder, Christian; Hessling, Martin
2018-02-01
The illumination of the intraocular space during pars plana vitrectomy always bears the risk of retina damage by irradiation. Conventional illumination systems consist of an external light source and an optical fiber to transfer the visible light (radiation) into the eye. Often xenon arc and halogen lamps are employed for this application with some disadvantageous properties like high phototoxicity and low efficiency. Therefore, we propose to generate the light directly within the eye by inserting a white micro LED with a diameter of 0.6 mm. The LED offers a luminous flux of 0.6 lm of white light with a blue peak @ 450 nm and a yellow peak @ 555 nm. The presented prototypes fit through a standard 23 G trocar and are the first intraocular light sources worldwide. Two different single-use approaches have already been developed: a handguided and a chandelier device. The hand-guided applicator enables a directly navigation and illumination up to a working distance of 6 mm. The chandelier device is much smaller and does not need an active navigation of the light cone. The brightness and homogeneity of the illumination of these LED devices have been successfully tested on porcine eyes. Presented measurements and calculations prove that even for high LED currents and small distances to the retina these intraocular micro LED devices expose the retina to less hazard than conventional illumination sources like fiber based xenon systems. Even under the worst circumstances application durations of 180 hours would be justifiable.
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Lamparter, T; Kagawa, T; Brücker, G; Wada, M
2004-01-01
The photoreceptor phytochrome mediates tropic responses in protonemata of the moss Ceratodon purpureus. Under standard conditions the tip cells grow towards unilateral red light, or perpendicular to the electrical vector of polarized light. In this study the response of tip cells to partial irradiation of the apical region was analysed using a microbeam apparatus. The fluence response curve gave an unexpected pattern: whereas a 15-min microbeam with light intensities around 3 micro mol m (-2) s (-1) induced a growth curvature towards the irradiated side, higher light intensities around 100 micro mol m (-2) s (-1) caused a negative response, the cells grew away from the irradiated side. This avoidance response is explained by two effects: the light intensity is high enough to induce photoconversion into the active Pfr form of phytochrome, not only on the irradiated but also on the non-irradiated side by stray light. At the same time, the strong light on the irradiated side acts antagonistically to Pfr. As a result of this inhibition, the growth direction is moved to the light-avoiding side. Such a Pfr-independent mechanism might be important for the phototropic response to distinguish between the light-directed and light-avoiding side under unilateral light.
Tsai, Cheng-Yu; Jiang, Jhih-Shan
2018-01-01
A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457
The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program
NASA Astrophysics Data System (ADS)
Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi
In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Modification of microneedles using inkjet printing
NASA Astrophysics Data System (ADS)
Boehm, R. D.; Miller, P. R.; Hayes, S. L.; Monteiro-Riviere, N. A.; Narayan, R. J.
2011-06-01
In this study, biodegradable acid anhydride copolymer microneedles containing quantum dots were fabricated by means of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing. Nanoindentation was performed to obtain the hardness and the Young's modulus of the biodegradable acid anhydride copolymer. Imaging of quantum dots within porcine skin was accomplished by means of multiphoton microscopy. Our results suggest that the combination of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing enables fabrication of solid biodegradable microneedles with a wide range of geometries as well as a wide range of pharmacologic agent compositions.
Toward scatter-free phosphors in white phosphor-converted light-emitting diodes
Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young
2012-01-01
Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang
2017-01-01
We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.
Forward light scatter analysis of the eye in a spatially-resolved double-pass optical system.
Nam, Jayoung; Thibos, Larry N; Bradley, Arthur; Himebaugh, Nikole; Liu, Haixia
2011-04-11
An optical analysis is developed to separate forward light scatter of the human eye from the conventional wavefront aberrations in a double pass optical system. To quantify the separate contributions made by these micro- and macro-aberrations, respectively, to the spot image blur in the Shark-Hartmann aberrometer, we develop a metric called radial variance for spot blur. We prove an additivity property for radial variance that allows us to distinguish between spot blurs from macro-aberrations and micro-aberrations. When the method is applied to tear break-up in the human eye, we find that micro-aberrations in the second pass accounts for about 87% of the double pass image blur in the Shack-Hartmann wavefront aberrometer under our experimental conditions. © 2011 Optical Society of America
Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph
2016-01-01
Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Yan, Bing; Teng, Dongdong; Liu, Lilin; Wang, Gang
2017-06-01
Medium power GaN-based light emitting diode (LED) chips with periodic micro via-holes are designed and fabricated. The active area of each chip is 200 μm×800 μm and the diameter of each micro via-hole is 50 μm. For comparison, an LED chip with only one big via-hole (Diameter=86.6 μm) is also fabricated under the same conditions as the control partner. Both kinds of LED chips have an equal effective PN junction area. Experimentally, the LED with periodic via-holes exhibits higher output optical power and the -3 dB modulation bandwidth by about 33% and 48%, respectively, than the LED with only one bigger via-hole. The method of concurrently improving modulation and optical performances of power-type LED chips through periodic micro via-holes take the advantages of easy fabrication, suitable for mass-production.
Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing
2015-09-16
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro
2018-02-01
An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.
Micro-Costing Quantity Data Collection Methods
Frick, Kevin D.
2009-01-01
Background Micro-costing studies collect detailed data on resources utilized and the value of those resources. Such studies are useful for estimating the cost of new technologies or new community-based interventions, for producing estimates in studies that include non-market goods, and for studying within-procedure cost variation. Objectives This objectives of this paper were to (1) describe basic micro-costing methods focusing on quantity data collection; and (2) suggest a research agenda to improve methods in and the interpretation of micro-costing Research Design Examples in the published literature were used to illustrate steps in the methods of gathering data (primarily quantity data) for a micro-costing study. Results Quantity data collection methods that were illustrated in the literature include the use of (1) administrative databases at single facilities, (2) insurer administrative data, (3) forms applied across multiple settings, (4) an expert panel, (5) surveys or interviews of one or more types of providers; (6) review of patient charts, (7) direct observation, (8) personal digital assistants, (9) program operation logs, and (10) diary data. Conclusions Future micro-costing studies are likely to improve if research is done to compare the validity and cost of different data collection methods; if a critical review is conducted of studies done to date; and if the combination of the results of the first two steps described are used to develop guidelines that address common limitations, critical judgment points, and decisions that can reduce limitations and improve the quality of studies. PMID:19536026
Liaparinos, P F
2015-11-21
X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.
[Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation].
Huang, Yumei; Zhang, Jian; Yang, Wanqin
2006-12-01
In this paper, meso-micro soil fauna were extracted and collected by Baermann's and Tullgren' s method, and their distribution pattern in the Eucalyptus grandis plantation of Hongya County, Sichuan Province was studied. A total of 13 550 specimens were collected, belonging to 6 phyla, 13 classes, and 26 orders. Acarina, Nematoda, Collembola were the dominant groups, and Enchytraeidae was the frequent one. The group and individual numbers of meso-micro soil fauna varied with seasons, being the maximum in autumn or winter, fewer in summer, and the minimum in spring. The density of meso-micro soil fauna in soil profile decreased rapidly with increasing soil depth, but a converse distribution was observed from time to time in 5 - 10 cm and 10 - 15 cm soil layers. The meso-micro soil fauna collected by Baermann's and Tullgren's method had a density of 3. 333 x 10(3) - 2. 533 x 10(5) ind x m(-2) and 1.670 x 10(2) - 2.393 x 10(5) ind x m(-2), respectively, and the decreasing rate of the density with the increase of soil depth was higher for those collected by Tullgren's method. The density-group index of meso-micro soil fauna in the E. grandis plantation was the lowest in spring, but the highest in autumn or summer. There were no significant differences in the density of meso-micro soil fauna and in the density-group index between E. grandis plantation and Quercus acutissima secondary forest.
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.
Search for Bs0 --> micro+ micro- and B0 --> micro+ micro- decays with 2 fb-1 of pp collisions.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-03-14
We have performed a search for B(s)(0) --> micro(+) micro(-) and B(0) --> micro(+) micro(-) decays in pp collisions at square root s = 1.96 TeV using 2 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron Collider. The observed number of B(s)(0) and B0 candidates is consistent with background expectations. The resulting upper limits on the branching fractions are B(B(s)0) --> micro(+) micro(-)) <5.8 x 10(-8) and B(B(0) --> micro(+) micro(-))<1.8 x 10(-8) at 95% C.L.
Secured independent tools in peritoneoscopy.
Tsin, Daniel A; Davila, Fausto; Dominguez, Guillermo; Manolas, Panagiotis
2010-01-01
Secured independent tools are being introduced to aid in peritoneoscopy. We present a simple technique for anchoring instruments, powered lights, and micro machines through the abdominal wall. We used a laparoscopic trainer, micro alligator clips with one or two 2-0 nylon tails and cables for engines and lights. The above instruments were introduced via a 12-mm or 15-mm port. Clips were placed for traction, retraction and exposure, lights for illumination, and motors for potential work. A laparoscopy port closure or suture passer was introduced percutaneously to grab and extract the tails or cables outside of the simulated abdominal cavity. The engines and lights were powered by a direct electric current (DC) plugged into exteriorized cables. We used 2 to 3 clips for each, and engines performed well. This basic simulation adds independent instruments, lights, and engines. We replaced cannulas with threads or cables in an attempt to limit the number of ports. This technique further opens the door for innovations in wired machines in laparoscopy, single-port laparoscopy, or natural orifice surgery.
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Sentences. MicroSIFT Courseware Evaluation.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): VERSION: Apple II. PRODUCER: Micro Power & Light Company, 12820 Hillcrest Rd., Suite 224, Dallas, Texas 75230. EVALUATION COMPLETED: June 1982 by the staff and constituents of the Portland Public Schools, Multnomah ESD, Portland, Oregon. COST: $24.95.…
Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources
NASA Astrophysics Data System (ADS)
Lal, Amit
2013-12-01
This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.
Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration
NASA Astrophysics Data System (ADS)
Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan
2017-12-01
As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.
Automatic flatness detection system for micro part
NASA Astrophysics Data System (ADS)
Luo, Yi; Wang, Xiaodong; Shan, Zhendong; Li, Kehong
2016-01-01
An automatic flatness detection system for micro rings is developed. It is made up of machine vision module, ring supporting module and control system. An industry CCD camera with the resolution of 1628×1236 pixel, a telecentric with magnification of two, and light sources are used to collect the vision information. A rotary stage with a polished silicon wafer is used to support the ring. The silicon wafer provides a mirror image and doubles the gap caused by unevenness of the ring. The control system comprise an industry computer and software written in LabVIEW Get Kernel and Convolute Function are selected to reduce noise and distortion, Laplacian Operator is used to sharp the image, and IMAQ Threshold function is used to separate the target object from the background. Based on this software, system repeating precision is 2.19 μm, less than one pixel. The designed detection system can easily identify the ring warpage larger than 5 μm, and if the warpage is less than 25 μm, it can be used in ring assembly and satisfied the final positionary and perpendicularity error requirement of the component.
Gustavsson, Inger; Lindell, Monica; Wilander, Erik; Strand, Anders; Gyllensten, Ulf
2009-10-01
The FTA elute micro card, which enable the collection, transport, and archiving of DNA could be an attractive alternative to a liquid based collection system for detection of human papillomavirus (HPV). To develop a method based on the FTA elute micro card for dry collection of cervical epithelial cell samples, suitable for subsequent PCR-based HPV testing. The method was evaluated by a comparison of the DNA collected by cytobrush and the regular FTA elute micro card from 50 cervical cell samples. The method was then used to estimate the DNA amount in 1040 samples applied to the indicating FTA elute micro card. The agreement in HPV positivity between the cytobrush and FTA samples (94%) was excellent (kappa=0.88, 95% CI 0.748-1). All the 1040 samples on the indicating FTA card had sufficient amounts of genomic DNA (>10 copies of a single copy gene) to be suitable for HPV typing. In 53 of the 1040 women the day in the menstrual cycle was noted, and the copy number during follicular phase day 9-13 was found to be statistically significantly lower than for the other three stages in the menstrual cycle (day 4-8, 14, >14) and during menopause. The indicating FTA elute micro card represents a suitable medium for collection of cervical cell samples, although follow-up studies are needed to verify the detection of low frequency HPV types.
Micro-optofluidic Lenses: A review
Nguyen, Nam-Trung
2010-01-01
This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369
Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L
2014-11-07
We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.
Towards manipulating relativistic laser pulses with micro-tube plasma lenses
Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2016-01-01
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657
NASA Astrophysics Data System (ADS)
Xiao, Huifu; Li, Dezhao; Liu, Zilong; Han, Xu; Chen, Wenping; Zhao, Ting; Tian, Yonghui; Yang, Jianhong
2018-03-01
In this paper, we propose and experimentally demonstrate an integrated optical device that can implement the logical function of priority encoding from a 4-bit electrical signal to a 2-bit optical signal. For the proof of concept, the thermo-optic modulation scheme is adopted to tune each micro-ring resonator (MRR). A monochromatic light with the working wavelength is coupled into the input port of the device through a lensed fiber, and the four input electrical logic signals regarded as pending encode signals are applied to the micro-heaters above four MRRs to control the working states of the optical switches. The encoding results are directed to the output ports in the form of light. At last, the logical function of priority encoding with an operation speed of 10 Kbps is demonstrated successfully.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices
NASA Astrophysics Data System (ADS)
Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang
2016-04-01
An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.
Effects of Gravity on Insect Circadian Rhythmicity
NASA Technical Reports Server (NTRS)
Hoban-Higgins, Tana M.
2000-01-01
Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure to microgravity was, of necessity, relatively short in duration. In early spaceflight experiments an organism's internal rhythms often expressed periods that were different from each other, even in the presence of a 24.0 hour light-dark cycle, suggesting that the organism was experiencing internal desynchronization (17, 18). In (micro)G, the body temperature rhythm was delayed with respect to other body rhythms and to the light-dark cycle in rhesus macaques (19) and man (20, 21). In the absence of a light-dark cycle, the circadian rhythm of spore formation persisted in Neurospora crassa, however, both the variability and average period of the rhythm increased (22). The beetle Trigonoscelis gigas, exhibited changes in period during and following 11-13 days in (micro)G (23, 24). Resynchronization of the urinary calcium rhythm following a 1800 phase shift of the LID cycle was retarded in rats exposed to (micro)G compared to 1G controls (25). With the development of the Russian Mir Space Station, long-term controlled microgravity exposure became possible. We recorded activity rhythms from black-bodied Tenebrionid beetles, Trigonoscelis gigas, in (micro)G (spaceflight). Each insect was housed individually within an activity monitor (26) and data (activity counts) were collected and stored in five-minute bins. Thirty-two individual activity monitors were housed within each of 2 experimental kits. The beetles within each kit were divided into two groups and the lighting was controlled separately for each group.
NASA Astrophysics Data System (ADS)
Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong
2008-01-01
Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.
Spin waves in micro-structured yttrium iron garnet nanometer-thick films
Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...
2015-03-24
Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.
NASA Astrophysics Data System (ADS)
Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan
2016-08-01
A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.
Photodynamic effects of pyropheophorbide-a methyl ester in nasopharyngeal carcinoma cells.
Xu, Chuan Shan; Leung, Albert Wing Nang
2006-08-01
Nasopharyngeal carcinoma (NPC) is one of the most common cancers, and exploring novel therapeutic modalities will improve the clinical outcomes. It has been confirmed that photodynamic therapy can efficiently deactivate malignant cells. The aim of the present study was to explore the photodynamic effects of pyropheophorbide-a methyl ester (MPPa) in CNE2 nasopharyngeal carcinoma cells. CNE2 cells were subjected to photodynamic therapy with MPPa, in which the drug concentration was 0.25 to 4 microM and light energy 1 to 8 J/cm(2). Photodynamic toxicity was investigated 24 h after treatment. Apoptosis was determined using flow cytometry with annexin V-FITC and propidum iodine staining and with nuclear staining with Hoechst 33258. The mitochondrial membrane potential (DeltaPsim) was evaluated by Rhodamine 123 assay. There was no dark cytotoxicity of MPPa in the CNE2 cells at doses of 0.25-4 microM, and MPPa resulted in dose- and light-dependent phototoxicity. The apoptotic rate 8 h after PDT with MPPa (2 microM) increased to 16.43% under a light energy of 2 J/cm(2). Mitochondrial membrane potential (DeltaPsim) collapsed when the CNE2 cells were exposed to 2 microM MPPa for 20 h and then 2 J/cm(2) irradiation. Photodynamic therapy with MPPa significantly enhanced apoptosis and the collapse of DeltaPsim. This can be developed for treating nasopharyngeal carcinoma.
Combined optical resolution photoacoustic and fluorescence micro-endoscopy
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-02-01
We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Breakthrough: micro-electronic photovoltaics
Okandan, Murat; Gupta, Vipin
2018-01-16
Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Chamber study of PCB emissions from caulking materials and light ballasts.
Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H; Roache, Nancy F
2015-10-01
The emissions of polychlorinated biphenyl (PCB) congeners from thirteen caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-L environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r(2)⩾0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. Published by Elsevier Ltd.
Microphysics of liquid complex plasmas in equilibrium and non-equilibrium systems
NASA Astrophysics Data System (ADS)
Piel, Alexander; Block, Dietmar; Melzer, André; Mulsow, Matthias; Schablinski, Jan; Schella, André; Wieben, Frank; Wilms, Jochen
2018-05-01
The dynamic evolution of the microscopic structure of solid and liquid phases of complex plasmas is studied experimentally and by means of molecular dynamics (MD) simulations. In small finite systems, the cooperative motion can be described in terms of discrete modes. These modes are studied with different experimental approaches. Using diffuse scattered laser light, applying laser tweezer forces to individual particles, and periodic laser pulses, the excitation of modes is investigated. The instantaneous normal mode analysis of experimental data from two-dimensional liquid clusters gives access to the local dynamics of the liquid phase. Our investigations shed light on the role of compressional and shear modes as well as the determination of diffusion constants and melting temperatures in finite systems. Special attention is paid to hydrodynamic situations with a stationary inhomogeneous dust flow. MD simulations allow to study the collective motion in the shell of nearest neighbors, which can be linked to smooth and sudden changes of the macroscopic flow. Finally, the observed micro-motion in all situations above allows to shed light on the preference of shear-like over compressional motion in terms of a minimized potential energy and a dynamic incompressibility.
Grant, Aileen; Sullivan, Frank; Dowell, Jon
2013-06-21
Prescribing is a core activity for general practitioners, yet significant variation in the quality of prescribing has been reported. This suggests there may be room for improvement in the application of the current best research evidence. There has been substantial investment in technologies and interventions to address this issue, but effect sizes so far have been small to moderate. This suggests that prescribing is a decision-making process that is not sufficiently understood. By understanding more about prescribing processes and the implementation of research evidence, variation may more easily be understood and more effective interventions proposed. An ethnographic study in three Scottish general practices with diverse organizational characteristics. Practices were ranked by their performance against Audit Scotland prescribing quality indicators, incorporating established best research evidence. Two practices of high prescribing quality and one practice of low prescribing quality were recruited. Participant observation, formal and informal interviews, and a review of practice documentation were employed. Practices ranked as high prescribing quality consistently made and applied macro and micro prescribing decisions, whereas the low-ranking practice only made micro prescribing decisions. Macro prescribing decisions were collective, policy decisions made considering research evidence in light of the average patient, one disease, condition, or drug. Micro prescribing decisions were made in consultation with the patient considering their views, preferences, circumstances and other conditions (if necessary).Although micro prescribing can operate independently, the implementation of evidence-based, quality prescribing was attributable to an interdependent relationship. Macro prescribing policy enabled prescribing decisions to be based on scientific evidence and applied consistently where possible. Ultimately, this influenced prescribing decisions that occur at the micro level in consultation with patients. General practitioners in the higher prescribing quality practices made two different 'types' of prescribing decision; macro and micro. Macro prescribing informs micro prescribing and without a macro basis to draw upon the low-ranked practice had no effective mechanism to engage with, reflect on and implement relevant evidence. Practices that recognize these two levels of decision making about prescribing are more likely to be able to implement higher quality evidence.
2013-01-01
Background Prescribing is a core activity for general practitioners, yet significant variation in the quality of prescribing has been reported. This suggests there may be room for improvement in the application of the current best research evidence. There has been substantial investment in technologies and interventions to address this issue, but effect sizes so far have been small to moderate. This suggests that prescribing is a decision-making process that is not sufficiently understood. By understanding more about prescribing processes and the implementation of research evidence, variation may more easily be understood and more effective interventions proposed. Methods An ethnographic study in three Scottish general practices with diverse organizational characteristics. Practices were ranked by their performance against Audit Scotland prescribing quality indicators, incorporating established best research evidence. Two practices of high prescribing quality and one practice of low prescribing quality were recruited. Participant observation, formal and informal interviews, and a review of practice documentation were employed. Results Practices ranked as high prescribing quality consistently made and applied macro and micro prescribing decisions, whereas the low-ranking practice only made micro prescribing decisions. Macro prescribing decisions were collective, policy decisions made considering research evidence in light of the average patient, one disease, condition, or drug. Micro prescribing decisions were made in consultation with the patient considering their views, preferences, circumstances and other conditions (if necessary). Although micro prescribing can operate independently, the implementation of evidence-based, quality prescribing was attributable to an interdependent relationship. Macro prescribing policy enabled prescribing decisions to be based on scientific evidence and applied consistently where possible. Ultimately, this influenced prescribing decisions that occur at the micro level in consultation with patients. Conclusion General practitioners in the higher prescribing quality practices made two different ‘types’ of prescribing decision; macro and micro. Macro prescribing informs micro prescribing and without a macro basis to draw upon the low-ranked practice had no effective mechanism to engage with, reflect on and implement relevant evidence. Practices that recognize these two levels of decision making about prescribing are more likely to be able to implement higher quality evidence. PMID:23799906
Multi-peaks scattering of light in glasses
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Vostrikova, L. I.
2018-04-01
Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Single-mode light source fabrication based on colloidal quantum dots
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.
2009-02-01
There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.
Circulation (Organs). MicroSIFT Courseware Evaluation.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: Micro Power and Light Company, Keystone Park, Suite 1108, 13773 N. Central Expressway, Dallas, TX 75243. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981. VERSION: Apple II. COST: $29.95. ABILITY LEVEL: Grades 5-12.…
FPGA Control System for the Automated Test of MicroShutters
NASA Technical Reports Server (NTRS)
Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey
2008-01-01
The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.
Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth
NASA Technical Reports Server (NTRS)
Maclennan, Donald A.; Turner, Brian P.; Dolan, James T.; Ury, Michael G.; Gustafson, Paul
1994-01-01
Fusion Systems Corporation has developed a mercury-free, low infrared, efficient microwave lamp using a benign sulfur based fill optimized for visible light. Our literature search and discussions with researchers directed us to enhance the bulbs red output. We have demonstrated a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 1.3 micro-moles per joule at the power main. Recent work has shown we can make additional increases in overall system efficiency. During the next two years, we expect to demonstrate a system capable of producing more than 1.5 micro-moles/joule measured at the power main with significantly less IR than alternative lamp systems. We determined optimal plant growth light requirements via a literature search and researcher input. We surveyed candidate lamp fill materials to be used in combination with sulfur and explored several methods of increasing photosynthetic efficacy.
Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward
2012-01-01
We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Varactor with integrated micro-discharge source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.
2016-10-18
An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of themore » np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).« less
NASA Astrophysics Data System (ADS)
Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.
2017-05-01
The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.
Fabrication of micro/nano optical fiber by mechano-electrospinning
NASA Astrophysics Data System (ADS)
Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng
2017-10-01
We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.
Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin
HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang
2012-01-01
Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746
Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E
2011-06-15
Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing and climatic studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Abbas, H K; Paul, R N; Riley, R T; Tanaka, T; Shier, W T
1998-12-01
Ultrastructural effects of AAL-toxin TA from Alternaria alternata on black nightshade (Solanum, nigrum L.) leaf discs and correlation with biochemical measures of toxicity. In black nightshade (Solanum nigrum L.) leaf discs floating in solutions of AAL-toxin TA (0.01-200 microM) under continuous light at 25 degrees C, electrolyte leakage, chlorophyll loss, autolysis, and photobleaching were observed within 24 h. Electrolyte leakage, measured by the conductivity increase in the culture medium, began after 12 h with 200 microM AAL-toxin T(A), but was observed after 24 h with 0.01 to 50 microM AAL-toxin T(A), when it ranged from 25%) to 63% of total releasable electrolytes, respectively. After 48 h incubation, leakage ranged from 39% to 79% of total for 0.01 to 200 microM AAL-toxin T(A), respectively, while chlorophyll loss ranged from 5% to 32% of total, respectively. Ultrastructural examination of black night-shade leaf discs floating in 10 microM AAL-toxin TA under continuous light at 25 degrees C revealed cytological damage beginning at 30 h, consistent with the time electrolyte leakage and chlorophyll reduction were observed. After 30 h incubation chloroplast starch grains were enlarged in control leaf discs, but not in AAL-toxin T(A)-treated discs, and the thylakoids of treated tissue contained structural abnormalities. After 36-48 h incubation with 10 microM AAL-toxin T(A), all tissues were destroyed with only cell walls, starch grains, and thylakoid fragments remaining. Toxicity was light-dependent, because leaf discs incubated with AAL-toxin T(A) in darkness for up to 72 h showed little phytotoxic damage. Within 6 h of exposure to > or =0.5 microM toxin, phytosphingosine and sphinganine in black nightshade leaf discs increased markedly, and continued to increase up to 24 h exposure. Thus, phy siological and ultrastructural changes occurred in parallel with disruption of sphingolipid synthesis, consistent with the hypothesis that AAL-toxin T(A) causes phytotoxicity by interrupting sphingolipid biosynthesis, thereby damaging cellular membranes.
NASA Astrophysics Data System (ADS)
Su, Ping; Song, Yuming; Ma, Jianshe
2018-01-01
The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.
NASA Astrophysics Data System (ADS)
Skvarenina, L.; Gajdos, A.; Macku, R.; Skarvada, P.
2017-12-01
The aim of this research is to detect and localize microstructural defects by using an electrically excited light emission from a forward/reverse-bias stressed pn-junction in thin-film Cu(In; Ga)Se2 solar cells with metal wrap through architecture. A different origin of the local light emission from intrinsic/extrinsic imperfections in these chalcopyrite-based solar cells can be distinguished by a spectrally-filtered electroluminescence mapping. After a light emission mapping and localization of the defects in a macro scale is performed a micro scale exploration of the solar cell surface by a scanning electron microscope which follows the particular defects obtained by an electroluminescence. In particular, these macroscopic/microscopic examinations are performed independently, then the searching of the corresponding defects in the micro scale is rather difficult due to a diffused light emission obtained from the macro scale localization. Some of the defects accompanied by a highly intense light emission very often lead to a strong local overheating. Therefore, the lock-in infrared thermography is also performed along with an electroluminescence mapping.
Horise, Yuki; He, Xingchi; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian
2015-01-01
In retinal surgery, microsurgical instruments such as micro forceps, scissors and picks are inserted through the eye wall via sclerotomies. A handheld intraocular light source is typically used to visualize the tools during the procedure. Retinal surgery requires precise and stable tool maneuvers as the surgical targets are micro scale, fragile and critical to function. Retinal surgeons typically control an active surgical tool with one hand and an illumination source with the other. In this paper, we present a "smart" light pipe that enables true bimanual surgery via utilization of an active, robot-assisted source of targeted illumination. The novel sensorized smart light pipe measures the contact force between the sclerotomy and its own shaft, thereby accommodating the motion of the patient's eye. Forces at the point of contact with the sclera are detected by fiber Bragg grating (FBG) sensors on the light pipe. Our calibration and validation results demonstrate reliable measurement of the contact force as well as location of the sclerotomy. Preliminary experiments have been conducted to functionally evaluate robotic intraocular illumination.
NASA Astrophysics Data System (ADS)
Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko
Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and particles such as clay). The surface of micro-particles captured by aerogel is often vitrified. The non-specific fluorescent light is often observed from vitrified materials. Therefore, we need to distinguish fluorescent light of stained microbes from that of vitrified ma-terials. We are going to use two types of differences (wavelength dependence and attenuation rate of fluorescent) between stained microbes with DNA-specific fluorescent dye and other ma-terials such as clay and aerogel. Fluorescent light of stained microbes shows attenuation faster than that of vitrified materials. Fluorescent light of vitrified materials shows broader range of emission spectra than that of stained microbes. In addition, we simulated the high-speed collision experiment of micro-particles to the aerogel with the two stage light gas gun (ca. 4 km/s). The micro-particles containing pre-stained and dried cells of Deinococcus radiodurans mixed with clay material were used for the collision experiment, and the captured particles were observed with fluorescence microscope. This experiment suggests that the captured microbes can be detected and be distinguished from clay materials. Reference [1] Yang, Y. et al. (2009) Biol. Sci. Space, 23, 151-163. [2] Yang, Y., et al. (2008) Biol. Sci. Space 22:18-25. [3] Yang, Y., et al. (2008) JAXA-RR-08-001: 34-42. [4] Yang, Y., et al. (2009) Internatl. J. Syst. Evol. Bacteriol., 59: 1862-1866. [5] Yang, Y. et al. (2010) Internatl. J. Syst. Evol. Bacteriol. (in press). [6] Arrhenius, S. (1908) Worlds in the Making-the Evolution of the Universe (translation to English by H. Borns) Harper and Brothers Publishers, New York. [7]Crick, F. (1981) Life Itself. Simon Schuster, New York. [8] W.L. Nicholson et al., Microbiol. Mol. Biol. Rev. 64 (2000) 548. [9] G. Horneck et al., Orig. Life Evol. Biosph. 31 (2001) 527. [10] Chyba, C. and C. Sagan (1992) Nature 355: 125-132. [11] Sandford, S. A., et al. (2006) Science 314: 1720-1724. [12] Yamagishi, A., et al. (2008) International Symposium on Space Technology and Science (ISTS) Web Paper Archives. 2008-k-05.
NASA Astrophysics Data System (ADS)
Okhai, Timothy A.; Snyman, Lukas W.; Polleux, Jean-Luc
2016-02-01
Si Av LEDs are easily integrated in on-chip integrated circuitry. They have high modulation frequencies into the GHz range and can be fabricated to sub-micron dimensions. Due to subsurface light generation in the silicon device itself, and the high refractive index differences between silicon and the device environment, the exiting light radiation has interesting dispersion characteristics. Three junction micro p+-np+ Silicon Avalanche based Light Emitting Devices (Si Av LEDs) have been analyzed in terms of dispersion characteristics, generally resulting in different wavelengths of light (colors) being emitted at different angles and solid angles from the surfaces of these devices. The emission wavelength is in the 450 - 850 nm range. The devices are of micron dimension and operate at 8 - 10V, 1μA - 2mA. The emission spot sizes are about 1 micron square. Emission intensities are up to 500 nW.μm-2. The observed dispersion characteristics range from 0.05 degrees per nm per degree at emission angle of 5 degrees, to 0.15 degrees per nm at emission angles of 30 degrees. It is believed that the dispersion characteristics can find interesting and futuristic on-chip electro-optic applications involving particularly a ranging from on chip micro optical wavelength dispersers, communication de-multiplexers, and novel bio-sensor applications. All of these could penetrate into the nanoscale dimensions.
Microscopic fluorescence spectral analysis of basal cell carcinomas
NASA Astrophysics Data System (ADS)
He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan
2007-05-01
Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph port of the microscope to collect light from a specific micro area of the sample. The collected light is transmitted via the fiber to a disperserve type CCD spectrometer for spectral analysis. Results. The measurement results showed significant spectral differences between normal and cancerous tissues. For normal tissue regions, the spectral results agreed with our previous findings on autofluorescence of normal skin sections. For the cancerous regions, the epidermis showed very weak fluorescence signal, while the stratum corneum exhibited fluorescence emissions peaking at about 510 nm. In the dermis, the basal cell island and a band of surrounding areas showed very weak fluorescence signal, while distal dermis above and below the basal cell island showed greater fluorescence signal but with different spectral shapes. The very weak autofluorescence from the basal cell island and its surrounding area may be attributed to their degenerative properties that limited the production of collagens. Conclusions. The obtained microscopic results very well explain the in vivo fluorescence properties of BCC lesions in that they have decreased fluorescence intensity compared to the surrounding normal skin. The intrinsic spectra of various microstructures and the microscopic fluorescence images (corresponding fluorophore distribution in tissue) obtained in this study will be used for further theoretical modeling of in vivo fluorescence spectroscopy and imaging of skin cancers.
Fast mapping algorithm of lighting spectrum and GPS coordinates for a large area
NASA Astrophysics Data System (ADS)
Lin, Chih-Wei; Hsu, Ke-Fang; Hwang, Jung-Min
2016-09-01
In this study, we propose a fast rebuild technology for evaluating light quality in large areas. Outdoor light quality, which is measured by illuminance uniformity and the color rendering index, is difficult to conform after improvement. We develop an algorithm for a lighting quality mapping system and coordinates using a micro spectrometer and GPS tracker integrated with a quadcopter or unmanned aerial vehicle. After cruising at a constant altitude, lighting quality data is transmitted and immediately mapped to evaluate the light quality in a large area.
Tracking Control and System Development for Laser-Driven Micro-Vehicles
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Hoshino, Kentaro; Hara, Shinji; Shiokata, Daisuke; Yabe, Takashi
The purpose of this paper is to design a control system for an integrated laser propulsion/tracking system to achieve continuous motion and control of laser-driven micro-vehicles. Laser propulsion is significant in achieving miniature and light micro-vehicles. A laser-driven micro-airplane has been studied using a paper airplane and YAG laser, resulting in successful gliding of the airplane. High-performance laser tracking control is required to achieve continuous flight. This paper presents a control design strategy based on the generalized Kalman-Yakubovic-Popov lemma to achieve this requirement. Experiments have been carried out to evaluate the performance of the integrated laser propulsion/tracking system.
Fixed solar concentrator-collector-satelite receiver and co-generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1985-01-01
An insolation and micro wave receiver fixedly installed in alignment with the suns azimuth and within the look angle of a satellite, and comprised of holographic windows recorded according to time related to the suns position as zone plates to concentrate infrared light into a Rankine cycle power generating receiver and to columnate ultraviolet light onto a photo voltaic power generating plane, utilizing a micro wave dish as the substrate support of photo voltaic cells and as a condenser of the Rankine cycle operating an induction generator synchronous with an external alternating current power system, and with the photo voltaicmore » power synchronized therewith by commutation.« less
Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry
NASA Technical Reports Server (NTRS)
Seibel, Robin
2002-01-01
This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plas, R.J. van der
This paper presents results of two recent World Bank efforts made in Kenya, Niger, and Cameroon to study the impact of two different renewable projects, one a Micro-Lights program involving about 500 lanterns and the second a survey of 410 households using solar electricity systems. The Micro-Lights program showed that users have distinct preferences in the style of the lamps, that they are willing to spend cash, and that they demand good quality. They may be initially satisfied, but rapidly want more from their purchases. The photoelectric system survey touched less than 1% of such households, and looked at usermore » education, system size, satisfaction, expectations, age of system, appliances, and expectations.« less
Virtual reality 3D headset based on DMD light modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.
Integrated ultrasonic particle positioning and low excitation light fluorescence imaging
NASA Astrophysics Data System (ADS)
Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.
2013-12-01
A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.
NASA Astrophysics Data System (ADS)
Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij
2009-02-01
High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.
Spectrometric microbiological analyzer
NASA Astrophysics Data System (ADS)
Schlager, Kenneth J.; Meissner, Ken E.
1996-04-01
Currently, there are four general approaches to microbiological analysis, i.e., the detection, identification and quantification of micro-organisms: (1) Traditional culturing and staining procedures, metabolic fermentations and visual morphological characteristics; (2) Immunological approaches employing microbe-specific antibodies; (3) Biotechnical techniques employing DNA probes and related genetic engineering methods; and (4) Physical measurement techniques based on the biophysical properties of micro-organisms. This paper describes an instrumentation development in the fourth of the above categories, physical measurement, that uses a combination of fluorometric and light scatter spectra to detect and identify micro-organisms at the species level. A major advantage of this approach is the rapid turnaround possible in medical diagnostic or water testing applications. Fluorometric spectra serve to define the biochemical characteristics of the microbe, and light scatter spectra the size and shape morphology. Together, the two spectra define a 'fingerprint' for each species of microbe for detection, identification and quantification purposes. A prototype instrument has been developed and tested under NASA sponsorship based on fluorometric spectra alone. This instrument demonstrated identification and quantification capabilities at the species level. The paper reports on test results using this instrument, and the benefits of employing a combination of fluorometric and light scatter spectra.
Fitch, Joseph P.; Hagans, Karla; Clough, Robert; Matthews, Dennis L.; Lee, Abraham P.; Krulevitch, Peter A.; Benett, William J.; Da Silva, Luiz; Celliers, Peter M.
1998-01-01
A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.
Fitch, J.P.; Hagans, K.; Clough, R.; Matthews, D.L.; Lee, A.P.; Krulevitch, P.A.; Benett, W.J.; Silva, L. Da; Celliers, P.M.
1998-03-03
A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiber-optic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiber-optic cable and connected to mechanically actuate the microgripper. 22 figs.
Updating the Micro-Tom TILLING platform.
Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi
2013-03-01
The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
NASA Astrophysics Data System (ADS)
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-12
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Lensfree microscopy on a cellphone
Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan
2010-01-01
We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943
Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming
2009-03-07
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
Library Skills: What's There and How to Find It. MicroSIFT Courseware Evaluation.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT (Except for the Evaluation Summary Table): PRODUCER: Micro Power and Light Company, Keystone Park, Suite 1108, 13773 N. Central Expressway, Dallas, TX 75243. LOCAL DISTRIBUTORS: Contact producer for list. EVALUATION COMPLETED: Fall 1981. VERSION: Apple II. COST: $24.95. ABILITY LEVEL: Grades 4+.…
Silicon micromachined broad band light source
NASA Technical Reports Server (NTRS)
George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)
2004-01-01
A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.
NASA Astrophysics Data System (ADS)
Mani-Caplazi, Gabriela; Schulz, Georg; Deyhle, Hans; Hotz, Gerhard; Vach, Werner; Wittwer-Backofen, Ursula; Müller, Bert
2017-09-01
Tooth cementum annulation (TCA) is used by anthropologists to decipher age-at-death and stress periods based on yearly deposited incremental lines (ILs). The destructive aspect of the TCA method, which requires cutting the tooth root in sections to display the ILs, using transmission light microscopy, can be problematic for archeological teeth, and so a non-invasive imaging technique is preferred. The purpose of this study is to evaluate conventional micro computed tomography (μCT) and synchrotron radiation-based X-ray micro computed tomography (SRμCT) as a non-destructive technique to explore the tooth cementum ultrastructure and to display ILs. Seven archeological teeth from the Basel- Spitalfriedhof collection (patients died between 1845 and 1868 in the city hospital) were selected for the μCT experiments. This collection is considered a unique worldwide reference series in the anthropological science community, due to the high level of documented life history data in the medical files and the additionally collected and verified birth history by genealogists. The results demonstrate that the conventional μCT is complementary to the SRμCT allowing to prescreen the teeth using conventional μCT to identify the appropriate specimens and areas for the SRμCT measurements. SRμCT displayed cementum ring structure corresponding to the ILs in the microscope view in archeological teeth in a non-invasive fashion with the potential for more accurate assessments of ILs compared to conventional techniques. The ILs were mainly clearly visible, and it was possible to count them for age-at-death assessment and identify qualitatively irregular ILs which could constitute stress markers.
Exploring growth conditions and Eu2+ concentration effects for KSr2I5:Eu scintillator crystals
NASA Astrophysics Data System (ADS)
Stand, L.; Zhuravleva, M.; Camarda, G.; Lindsey, A.; Johnson, J.; Hobbs, C.; Melcher, C. L.
2016-04-01
Our current research is focused on understanding dopant optimization, growth rate, homogeneity and their impact on the overall performance of KSr2I5:Eu2+ single crystal scintillators. In this work we have investigated the effects of Eu2+ concentration in the potassium strontium iodide matrix, and we found that the concentration needed to maximize the light yield was 4 mol%. In order to assess the effects of the pulling rate, we grew single crystals at 12, 24 and 120 mm/day via the vertical Bridgman technique. For the sample sizes measured (5×5×5 mm3), we found that the crystal grown at the fastest rate of 120 mm/day showed a light yield within ~7% of the more slowly grown boules, and no significant change was observed in the energy resolution. Therefore, light yields from 88,000 to 96,000 ph/MeV and energy resolutions from 2.4 to 3.0% (at 662 keV) were measured for KSr2I5:Eu 4% over a relatively wide range of growth conditions. In order to assess the homogeneity of KSr2I5:Eu 4%, a newly developed micro-resolution X-ray technique was used to map the light yield as a function of excitation position. In the crystals that we studied, we did not observe any significant inhomogeneity other than a smooth gradient due to light collection and self absorption effects.
Thrust and Performance Study of Micro Pulsed Plasma Thrusters
2010-03-01
Due to the high- voltage potential, numerous electrons are able to collect in a small area. As the collection of the electrons grows, the ...quasi- neutral plasma removes the need to have a second emitter of free electrons to neutralize the plasma like in the Hall thrusters. PPTs and µPPTs...surface of the cathode. The micro-protrusions
Association of microRNAs with antibody response to mycoplasma bovis in beef cattle
USDA-ARS?s Scientific Manuscript database
The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in t...
2011-01-01
Background The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk. PMID:21714900
A new device for acquiring ground truth on the absorption of light by turbid waters
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.
1974-01-01
The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.
NASA Astrophysics Data System (ADS)
Stone, J. T.; Vaillancourt, R. D.
2016-02-01
Micro-phytoplankton community composition was determined along a section in the western North Atlantic Ocean between waters near Bermuda and the New England continental shelf during the Western Atlantic Climate Study II (WACS II) from May 18, 2014 to June 6, 2014. Seawater samples were collected from the underway line (z = 5 meters) of the RV Knorr and preserved in both Lugol's and formalin preservatives. The concentrations of centric diatoms, pennate diatoms, dinoflagellates and dictyophytes were determined using light microscopy of preserved samples settled in Utermöhl chambers. Cell abundance data were compared with the temperature and salinity of the surface seawater to determine statistical relationships between environmental factors and phytoplankton community composition. The micro-phytoplankton concentrations were lowest around the Sargasso Sea. Diatom concentrations varied along the transect from the Sargasso Sea. Dinoflagellates were the only group of micro-phytoplankton in this study to have a clear pattern in their distribution. Dinoflagellates were most numerous in the northern-most waters and were absent in the southern-most point of the study, in the Sargasso Sea. The most abundant species of diatoms observed were in the genera Pseudo-Nitzschia and Leptocylindrus. The most abundant species of dinoflagellate were of the genus Protoperidinium. Many of the samples with the highest species richness were closer to the coast and more northern than the samples with low species richness, however the Simpson's diversity indices varied amongst regions. While many of the samples were diverse, the lowest of which was in the Sargasso Sea, there was no clear pattern of species diversity with respect to the distance from the coast. Dinoflagellates, centric diatoms, pennate diatoms, dictyophytes and diversity indices were significantly weakly correlated with temperature, while dinoflagellates were significantly strongly correlated with salinity.
Light robotics: aiming towards all-optical nano-robotics
NASA Astrophysics Data System (ADS)
Glückstad, Jesper; Palima, Darwin; Banas, Andrew
2017-04-01
Light Robotics is a new field of research where ingredients from photonics, nanotechnology and biotechnology are put together in new ways to realize light-driven robotics at the smallest scales to solve major challenges primarily within the nanobio-domain but not limited hereto. Exploring the full potential of this new `drone-like' light-printed, light-driven, light-actuated micro- and nanorobotics in challenging geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny tools in 3D to ensure real-time continuous light-delivery on the fly. Our latest developments in this new and exciting research area will be reviewed.
Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue
NASA Astrophysics Data System (ADS)
Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel
1994-08-01
Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.
A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System
Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.
2009-01-01
We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564
Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popeski-Dimovski, Riste
Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.
Quantification of micro stickies
Mahendra Doshi; Jeffrey Dyer; Salman Aziz; Kristine Jackson; Said M. Abubakr
1997-01-01
The objective of this project was to compare the different methods for the quantification of micro stickies. The hydrophobic materials investigated in this project for the collection of micro stickies were Microfoam* (polypropylene packing material), low density polyethylene film (LDPE), high density polyethylene (HDPE; a flat piece from a square plastic bottle), paper...
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
Electron microscopic evaluation of a gold glaucoma micro shunt after explantation.
Berk, Thomas A; Tam, Diamond Y; Werner, Liliana; Mamalis, Nick; Ahmed, Iqbal Ike K
2015-03-01
We present a case of an explanted gold glaucoma micro shunt (GMS Plus) and the subsequent light and electron microscopic analyses. The shunt was implanted in a patient with medically refractive glaucoma. The intraocular pressure (IOP) was stable at 12 mm Hg 6 months postoperatively but spiked to 26 mm Hg 6 months later; membranous growth was visible on the implant gonioscopically. A second gold micro shunt was placed 2 years after the first. The IOP was 7 mm Hg 1 week postoperatively but increased to 23 mm Hg 3 weeks later; similar membranous growth was visible on this implant. One of the shunts was explanted, and light and scanning electron microscopic analyses revealed encapsulation around the shunt exterior and connective tissue invasion of the microstructure. This represents the first electron microscopic analysis of an explanted gold glaucoma micro shunt and the first unequivocal images of the fibrotic pseudo-capsule traversing its microchannels and fenestrations. Dr. Ahmed is a consultant to and has received research grants from Solx, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE
Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.
1997-01-01
The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.
Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
NASA Astrophysics Data System (ADS)
Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun
2017-04-01
A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo
2010-01-31
Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated better with the fluorescence of marine humic substances. The present results stress the importance of characterizing not only the amount but also the quality of seawater DOM to better predict ecological effects from total metal concentration data. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Optical properties of size-resolved particles at a Hong Kong urban site during winter
NASA Astrophysics Data System (ADS)
Gao, Yuan; Lai, Senchao; Lee, Shun-Cheng; Yau, Pui Shan; Huang, Yu; Cheng, Yan; Wang, Tao; Xu, Zheng; Yuan, Chao; Zhang, Yingyi
2015-03-01
Visibility degradation in Hong Kong is related to the city's serious air pollution problems. To investigate the aerosols' optical properties and their relationship with the chemical composition and size distribution of the particles, a monitoring campaign was conducted at an urban site in the early winter period (from October to December, 2010). The particle light scattering coefficient (Bsp) and absorption coefficient (Bap) were measured. Two collocated Micro-Orifice Uniform Deposit Impactor samplers (MOUDI110, MSP, USA) with nominal 50% cut-off aerodynamic diameters of 18, 10, 5.6, 3.2, 1.8, 1, 0.56, 0.32, 0.18, 0.1, and 0.056 μm were used to collect size-resolved particle samples. The average Bsp and Bap were 201.96 ± 105.82 Mm- 1 and 39.91 ± 19.16 Mm- 1, with an average single scattering albedo (ωo) of 0.82 ± 0.07. The theoretical method of light extinction calculation was used to determine the extinction of the size-resolved particulate matters (PM). The reconstructed light scattering coefficient correlated well with the measured scattering value in the Hong Kong urban area. Droplet mode (0.56-1.8 μm) particles contributed most to the particle light extinction (~ 69%). Organic matter, ammonium sulphate and elemental carbon were the key components causing visibility degradation in the droplet (0.56-1.8 μm) and condensation (0.1-0.56 μm) size ranges. Five sources contributing to particle light extinction have been identified using positive matrix factorisation (PMF). Traffic/engine exhausts and secondary aerosols accounted for ~ 36% and ~ 32% of particle light extinction, respectively, followed by sea salt (15%). The remaining sources, soil/fugitive dust and tire dust, contributed by ~ 10% and 7%, respectively, to particle light extinction.
Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...
NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope
2014-09-02
NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Kamada, Kei; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira
2015-03-01
Nd 1 mol% doped (Lu, Gd)3(Ga, Al)5O12 (LGGAG) single crystals were grown by the micro-pulling down (μ-PD) method. Luminescence and scintillation properties such as absorption, excitation and emission spectra, light yield and decay time were evaluated. Nd1%:Lu3Al5O12 showed the highest light output of around 8200 photons/MeV among the grown crystals. Scintillation decay time of Nd:Y3Al5O12 was 1.32 μs (36%) 2.02 μs (64%). Nd:Lu3Ga3Al2O12 was relatively high dense scintillator of 7.38 g/cm3 with good light yield of 6800 photons/MeV and scintillation decay time of 0.20 μs (5%) 2.60 μs (95%).
Augmented reality 3D display based on integral imaging
NASA Astrophysics Data System (ADS)
Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua
2017-02-01
Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.
Evaluation of a standardized micro-vacuum sampling method for collection of surface dust.
Ashley, Kevin; Applegate, Gregory T; Wise, Tamara J; Fernback, Joseph E; Goldcamp, Michael J
2007-03-01
A standardized procedure for collecting dust samples from surfaces using a micro-vacuum sampling technique was evaluated. Experiments were carried out to investigate the collection efficiency of the vacuum sampling method described in ASTM Standard D7144, "Standard Practice for Collection of Surface Dust by Micro-Vacuum Sampling for Subsequent Metals Determination." Weighed masses ( approximately 5, approximately 10 and approximately 25 mg) of three NIST Standard Reference Materials (SRMs) were spiked onto surfaces of various substrates. The SRMs used were: (1) Powdered Lead-Based Paint; (2) Urban Particulate Matter; and (3) Trace Elements in Indoor Dust. Twelve different substrate materials were chosen to be representative of surfaces commonly encountered in occupational and/or indoor settings: (1) wood, (2) tile, (3) linoleum, (4) vinyl, (5) industrial carpet, (6) plush carpet, (7,8) concrete block (painted and unpainted), (9) car seat material, (10) denim, (11) steel, and (12) glass. Samples of SRMs originally spiked onto these surfaces were collected using the standardized micro-vacuum sampling procedure. Gravimetric analysis of material collected within preweighed Accucapinserts (housed within the samplers) was used to measure SRM recoveries. Recoveries ranged from 21.6% (+/- 10.4%, 95% confidence limit [CL]) for SRM 1579 from industrial carpet to 59.2% (+/- 11.0%, 95% CL) for SRM 1579 from glass. For most SRM/substrate combinations, recoveries ranged from approximately 25% to approximately 50%; variabilities differed appreciably. In general, SRM recoveries were higher from smooth and hard surfaces and lower from rough and porous surfaces. Material captured within collection nozzles attached to the sampler inlets was also weighed. A significant fraction of SRM originally spiked onto substrate surfaces was captured within collection nozzles. Percentages of SRMs captured within collection nozzles ranged from approximately 13% (+/- 4 - +/- 5%, 95% CLs) for SRMs 1579 and 2583 from industrial carpet to approximately 45% (+/- 7 - +/- 26%, 95% CLs) for SRM 1648 from glass, tile and steel. For some substrates, loose material from the substrate itself (i.e., substrate particles and fibers) was sometimes collected along with the SRM, both within Accucaps as well as collection nozzles. Co-collection of substrate material can bias results and contribute to sampling variability. The results of this work have provided performance data on the standardized micro-vacuum sampling procedure.
Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia
NASA Astrophysics Data System (ADS)
Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović
2015-11-01
The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.
Consideration of rainwater quality parameters for drinking purposes: A case study in rural Vietnam.
Lee, Minju; Kim, Mikyeong; Kim, Yonghwan; Han, Mooyoung
2017-09-15
Rainwater, which is used for drinking purposes near Hanoi, Vietnam, was analysed for water quality based on 1.5 years of monitoring data. In total, 23 samples were collected from different points within two rainwater harvesting systems (RWHSs). Most parameters met the standard except micro-organisms. Coliform and Escherichia coli (E. coli) were detected when the rainwater was not treated with ultraviolet (UV) light; however, analysis of rainwater after UV sterilisation showed no trace of micro-organisms. The RWHSs appear to provide drinking water of relatively good quality compared with surface water and groundwater. The superior quality of the rainwater suggests the necessity for new drinking rainwater standards because applying all of the drinking water quality standards to rainwater is highly inefficient. The traditionally implemented standards could cause more difficulties for developing countries using RWHSs installed decentralized as a source of drinking water, particularly in areas not well supplied with testing equipment, because such countries must bear the expense and time for these measures. This paper proposes the necessity of rainwater quality guideline, which could serve as a safe and cost-effective alternative to provide an access to safe drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Cong, Do; Trang, Nguyen Thi Thu; Giang, Nguyen Vu; Lam, Tran Dai; Hoang, Thai
2016-05-01
Photo-degradation of poly (ethylene-co-vinyl acetate) (EVA)/poly (lactic acid) (PLA) blend and EVA/PLA/TiO2 nanocomposites was carried out under accelerated weather testing conditions by alternating cycles of ultraviolet (UV) light and moisture at controlled and elevated temperatures. The characters, properties, and morphology of these materials before and after accelerated weather testing were determined by Fourier transform infrared spectroscopy, colour changes, viscosity, tensile test, thermogravimetric analysis, and field emission scanning electron microscopy. The increases in the content of oxygen-containing groups, colour changes; the decreases in viscosity, tensile properties, and thermal stability of these materials after accelerated weather testing are the evidence for the photo-degradation of the blend and nanocomposites. After accelerated weather testing, the appearance of many micro-holes and micro-pores on the surface of the collected samples was observed. The photo-degradation degree of the nanocomposites depended on the TiO2-crystal form. Rutile TiO2 do not enhance the degradation, but anatase and mixed crystals TiO2 nanoparticles promoted the degradation of the nanocomposites. Particularly, the mixed crystals TiO2 nanoparticles showed the highest photo-catalytic activity of the nanocomposites.
Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K
2017-07-01
There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described analytical protocol can be complementary to those involving classical column chromatography (HPLC) or various planar microfluidic devices.
NASA Astrophysics Data System (ADS)
Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo
2012-03-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo
2011-05-01
Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.
NASA Astrophysics Data System (ADS)
Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.
2017-06-01
At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.
ERIC Educational Resources Information Center
Balajthy, Ernest
This publication is a collection of eight articles and ten software reviews written by the author for "Micro Missive" since 1984. "Micro Missive" is a quarterly newsletter that has regularly informed International Reading Association members of new developments in computer-based instruction and reading/language arts through articles, software…
In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.
2017-12-01
Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.
Focusing light through dynamical samples using fast continuous wavefront optimization.
Blochet, B; Bourdieu, L; Gigan, S
2017-12-01
We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.
PREFACE: Ultrafast biophotonics Ultrafast biophotonics
NASA Astrophysics Data System (ADS)
Gu, Min; Reid, Derryck; Ben-Yakar, Adela
2010-08-01
The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and reduced chromatic aberration effects. These extensive advantages have led to further exploration of nonlinear processes including second-harmonic generation (SHG) microscopy and third-harmonic generation (THG) microscopy. Second-harmonic generation has provided biologists with an extremely powerful tool for generating contrast in biological imaging, with the additional benefit of non-invasive three-dimensional imaging. The recent popularity of THG microscopy is largely due to the fact that three-dimensional imaging is achievable without the need for any labels, but rather relying on the intrinsic properties of the biological specimen itself. This optical nonlinear technique has attracted much attention recently from the biological community due to its non-invasive capabilities. Users of ultrafast lasers in the biological and medical fields are becoming a fast-growing community, employing pulse-shaping microscopy, resolution-enhancing microscopy techniques, linear and nonlinear micro-spectroscopy, functional deep-tissue imaging, optical coherence tomography, nonlinear fluorescence microscopy, molecular imaging and control, harmonic microscopy and femtosecond lifetime imaging, for cutting-edge research concerning the interaction of light with biological dynamics. The adaptability of ultrafast lasers to interact with a large array of materials through nonlinear excitation has enabled precise control of laser fluence allowing for highly localized material interactions, permitting micro-structured fabricated surfaces. The resultant multi-dimensional fabricated micro-structures are capable of replicating and/or manipulating microenvironments for controlled cell biology. In this special issue of Journal of Optics readers have a chance to view a collection of new contributions to the growing research field of ultrafast biophotonics. They are presented with recent advances in ultrafast technology applied to biological and medical investigations, where topics include advances in the visualization and identification of photo-reaction dynamics of biological functions under relevant physiological conditions, theoretically proposed imaging designs for obtaining super-resolved optical sectioned images in single exposures and fabricated micro-structured surfaces for biological micro-environments. We hope the collection will stimulate innovative new research in this growing field by showcasing new techniques for the visualization and manipulation of complex biological systems using linear and and nonlinear optical processes. Professor Min Gu would like to acknowledge Dr Betty Kouskousis for her contribution and support towards this editorial.
Polymer/Carbon Nanotube Networks for Smart, Self-Repairing and Light-Weighted Nanocomposites
2012-11-05
was develop smart, strong, and light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by...light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by inhibiting such degradation...one of support references for EPSRC instrument grant application for Micro Materials NanoTest Vantage Testing Suite with NTX4Controller. The grant
Kozuleva, Marina A; Ivanov, Boris N
2010-07-01
The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.
Association of MicroRNAs with Antibody Response to Mycoplasma bovis in Beef Cattle
Cai, Guohong; Kuehn, Larry A.; Register, Karen B.; McDaneld, Tara G.; Neill, John D.
2016-01-01
The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in the summer were ELISA-negative for anti-M. bovis. By the fall, eight animals were seropositive for IgG (positive group), while eight remained negative (negative group). By spring, all animals in both groups were seropositive. MicroRNAs were extracted from sera and sequenced on the Illumina HiSeq next-generation sequencer. A total of 1,374,697 sequences mapped to microRNAs in the bovine genome. Of these, 82% of the sequences corresponded to 27 microRNAs, each represented by a minimum of 10,000 sequences. There was a statistically significant interaction between ELISA response and season for bta-miR-24-3p (P = 0.0268). All sera collected at the initial summer had a similar number of copies of this microRNA (P = 0.773). In the fall, the positive group had an increased number of copies when compared to the negative group (P = 0.021), and this grew more significant by the following spring (P = 0.0001). There were 21 microRNAs associated (P< 0.05) with season. These microRNAs could be evaluated further as candidates to potentially improve productivity in cattle. The microRNAs bta-let-7b, bta-miR- 24-3p, bta-miR- 92a, and bta-miR-423-5p, were significatly associated with ELISA status (P< 0.05). These microRNAs have been recognized as playing a role in the host defense against bacteria in humans, mice, and dairy cattle. Further studies are needed to establish if these microRNAs could be used as diagnostic marker or indicator of exposure, or whether intervention strategies could be developed as an alternative to antibiotics for controlling disease due to M. bovis. PMID:27537842
DPSSL for direct dicing and drilling of dielectrics
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Schwagmeier, M.
2007-02-01
New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.
NASA Astrophysics Data System (ADS)
de Dieu Mugiraneza, Jean; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu
2010-12-01
The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.
Evidence of micro-debris ingestion by Sargassum-associated fishes in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Vick, P.; Hernandez, F., Jr.; Muffelman, S.; Lestrade, O.
2016-02-01
Sargassum natans and S. fluitans collectively form a pelagic macroalgae complex (Sargassum) which is commonly found in surface waters of the Western-Central Atlantic Ocean (including the Gulf of Mexico). Mats and windrows of Sargassum support large and diverse assemblages of marine fishes and invertebrates, including many early life stages which use Sargassum as nursery areas. Sargassum is a near-surface habitat, and therefore is subject to oceanographic processes (e.g., Langmuir cells, frontal zones) that aggregate floating objects, including marine debris. Relatively little is known about the impacts of marine debris (which often gets broken down into "micro-debris") within Sargassum communities, although micro-debris particles may serve as vectors for toxic compounds if consumed by organisms. Here we present preliminary results from a pilot study examining the frequency of micro-debris occurrence in the stomachs of Sargassum-associated fishes. Neuston and plankton purse seine nets were used to collect Sargassum and associated fauna during surveys in the northern Gulf of Mexico (May, June and July 2014). Marine debris was present in all Sargassum collections, and ranged from relatively large items (e.g., soda bottles) to smaller particles (e.g., microplastics, monofilament threads). The associated fish community was dominated by relatively few taxa, including pipefishes, filefishes and the Sargassumfish, which collectively comprised approximately 85% of the total catch. Stomach contents from juvenile fishes contained mostly natural prey items, including copepods, small decapods, hydroids, and fishes. Micro-debris particles were observed in the stomachs of eight fish species, including juvenile Mahi Mahi, Planehead Filefish and Bermuda chub, among others. Overall, our initial observations suggest that there is some ingestion of micro-debris by fishes associated with Sargassum, although the frequency of occurrence is relatively low.
Polymer dispensing and embossing technology for the lens type LED packaging
NASA Astrophysics Data System (ADS)
Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun
2013-06-01
This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.
Beckmann, Katie M; O'Donovan, Declan; McKeown, Sean; Wernery, Ulli; Basu, Puja; Bailey, Tom A
2013-09-01
There are few published data regarding the endangered Northern-East African cheetah (Acinonyx jubatus soemmeringii), held in captivity in the Middle East and Europe. Studies have demonstrated a high incidence of disease in captive cheetahs, in which vitamin and trace element imbalances have often been implicated. Blood vitamin and trace element reference values in cheetahs merit further investigation. In this study, blood samples were opportunistically collected from apparently healthy A. j. soemmeringii from two collections (A and B) with successful breeding programs in the United Arab Emirates. The cheetahs were fed whole prey of mixed species (and, in Collection B, goat muscle and bone as well) dusted with vitamin and mineral supplements. Mean serum vitamin and trace element values (for cheetahs > 4 mo in age) were as follows: vitamin A (retinol), 2.20 microM/L (n = 27); vitamin B1, 0.0818 microM/L (n = 45); vitamin C, 28.6 microM/L (n=10); vitamin E (alpha-tocopherol), 35.6 microM/L (n = 27); copper (Cu), 12.53 microM/L (n = 27); selenium (Se), 3.10 microM/L (n = 27); and zinc (Zn), 10.87 microM/L (n = 27). Mean values of vitamin A, vitamin E, Cu, and Zn fell within ranges of published cheetah mean values, and mean Se was lower than range values for cheetahs presented in one previous study; blood vitamin B1 and vitamin C values of cheetahs have not previously been published. The values were taken to indicate that the cheetahs' nutritional status was adequate with regard to those nutrients analyzed. Serum vitamin E was particularly high in cheetahs fed fresh whole prey, and on this basis vitamin E supplementation of fresh whole prey appeared to have been unnecessary. There were differences (P < 0.05) between collections in serum vitamin B1, vitamin E, Cu, and 10 other hematologic and biochemical parameters. Nine hematologic and blood biochemical parameters differed among age categories.
Retinal fundus imaging with a plenoptic sensor
NASA Astrophysics Data System (ADS)
Thurin, Brice; Bloch, Edward; Nousias, Sotiris; Ourselin, Sebastien; Keane, Pearse; Bergeles, Christos
2018-02-01
Vitreoretinal surgery is moving towards 3D visualization of the surgical field. This require acquisition system capable of recording such 3D information. We propose a proof of concept imaging system based on a light-field camera where an array of micro-lenses is placed in front of a conventional sensor. With a single snapshot, a stack of images focused at different depth are produced on the fly, which provides enhanced depth perception for the surgeon. Difficulty in depth localization of features and frequent focus-change during surgery are making current vitreoretinal heads-up surgical imaging systems cumbersome to use. To improve the depth perception and eliminate the need to manually refocus on the instruments during the surgery, we designed and implemented a proof-of-concept ophthalmoscope equipped with a commercial light-field camera. The sensor of our camera is composed of an array of micro-lenses which are projecting an array of overlapped micro-images. We show that with a single light-field snapshot we can digitally refocus between the retina and a tool located in front of the retina or display an extended depth-of-field image where everything is in focus. The design and system performances of the plenoptic fundus camera are detailed. We will conclude by showing in vivo data recorded with our device.
Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T
2015-01-01
The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.
Hirooka, Takashi; Nagase, Hiroyasu; Uchida, Kotaro; Hiroshige, Yuji; Ehara, Yoshie; Nishikawa, Jun-ichi; Nishihara, Tsutomu; Miyamoto, Kazuhisa; Hirata, Zazumasa
2005-08-01
Bisphenol A (BPA) is known as an endocrine disruptor and often is found in landfill leachates. Removal of BPA by green alga, Chlorella fusca, was characterized, because we previously found that various phenols were well removed by this strain, including BPA. Chlorella fusca was able to remove almost all BPA in the concentration range from 10 to 80 microM for 168 h under continuous illumination at 18 W/m2. At the low light intensity of 2 W/m2, 82% of 40 microM BPA was removed, and only 27% was removed in the dark. Moreover, C. fusca could remove 90% of 40 microM BPA under the 8:16-h light:dark condition, which was almost as high as that under the continuous-light condition. The amount of BPA contained in the cells was less than the amount of BPA removed from the medium. Monohydroxybisphenol A was detected as an intermediate of BPA degradation. Moreover, estrogenic activity that originated from BPA in the culture medium also completely disappeared. Based on these results, BPA was finally degraded to compounds having nonestrogenic activity. Therefore, C. fusca can be considered a useful organism to remove BPA from landfill leachates.
Brawley, V; Bhatia, J; Karp, W B
1998-06-15
The effect of sodium metabisulfite (MBS) on hydrogen peroxide (HP) production in model and commercial amino acid solutions exposed to phototherapy light was studied. Model and commercial pediatric amino acid solutions were prepared such that the amino acid concentration was 1%. MBS concentration, riboflavin concentration, and duration of exposure to phototherapy light were varied to determine the effect on HP production. Control solutions were kept in the dark. HP production was assayed in the model amino acid solutions by using potassium iodide in the presence of ammonium molybdate. In all experiments, HP production was measured at 360 nm in the presence and absence of catalase. In light-exposed solutions, HP production increased linearly for several hours and reached a plateau by eight hours. A mean maximum of 940 microM was produced (data pooled for all solutions). No detectable HP was generated in the solutions kept in the dark. After two hours of light exposure, it was necessary to add at least 10 times more MBS than is typically found in commercial total parenteral nutrient solutions to scavenge all the HP produced. An average of up to 940 microM of HP was produced in model and commercial pediatric parenteral 1% amino acid solutions in the presence of phototherapy light and clinically relevant concentrations of riboflavin and MBS. Light exposure decreased the antioxidant effect of MBS.
Design method of freeform light distribution lens for LED automotive headlamp based on DMD
NASA Astrophysics Data System (ADS)
Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao
2018-01-01
We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.
A High Performance Micro Channel Interface for Real-Time Industrial Image Processing
Thomas H. Drayer; Joseph G. Tront; Richard W. Conners
1995-01-01
Data collection and transfer devices are critical to the performance of any machine vision system. The interface described in this paper collects image data from a color line scan camera and transfers the data obtained into the system memory of a Micro Channel-based host computer. A maximum data transfer rate of 20 Mbytes/sec can be achieved using the DMA capabilities...
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-04-01
Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.
Structure of catalase determined by MicroED
Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir
2014-01-01
MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172
Wenzel, A; Kornum, F; Knudsen, MR; Lau, E Frandsen
2013-01-01
Objectives: To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Methods: Suspensions of C. albicans and S. oralis were prepared in concentrations of 109 and 105 organisms per ml, and Digora (Digora® Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan® Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5–60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Results: Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Conclusions: Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora. PMID:23420856
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)
2001-01-01
The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
Wenzel, A; Kornum, F; Knudsen, Mr; Lau, E Frandsen
2013-01-01
To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Suspensions of C. albicans and S. oralis were prepared in concentrations of 10(9) and 10(5) organisms per ml, and Digora (Digora(®) Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan(®) Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5-60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora.
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-02-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467
NASA Astrophysics Data System (ADS)
Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.
2015-08-01
Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.
NASA Astrophysics Data System (ADS)
Finn, Aiveen; Karataev, Pavel; Rehm, Guenther
2016-07-01
Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.
Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.
Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik
2017-10-01
The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.
Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers
Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik
2017-01-01
The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320
Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roark, E B; Guilderson, T P; Dunbar, R B
2006-01-13
The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimensmore » as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.« less
Management of health and safety in micro companies in Cyprus: Results on ergonomic issues.
Boustras, Georgios; Hadjimanolis, Athanasios
2015-01-01
Ergonomics in Cyprus is a rather neglected area of safety. The size of the country, the lack of scientific expertise, the nature of the economy and the nature of the majority of the enterprises make it a case, different from the average. The aims of the survey were to examine the views and perceptions of employees and owners/managers on safety issues of micro-firms in Cyprus, to collect information on accidents and other aspects of safety performance in micro-firms and to cross-check the above data with data collected from safety inspectors for the above firms. The authors with the collaboration of the Department of Labour Inspection of the Republic of Cyprus collected information from a relatively large number of micro companies in a National survey. Information from employees, employers and labour inspectors was drawn. Particular emphasis is paid on the exploration of the relationship of the non-use of personal protection equipment with a number of factors. Results show the resistance of employees to the use of PPE (Personal Protective Equipment) and GPM (General Protective Measures). The results of the survey are in line with the relevant literature. Micro firms illustrate several interesting findings that are discussed in detail in the paper.
[Design and experiment of micro biochemical detector based on micro spectrometer].
Yu, Qing-hua; Wen, Zhi-yu; Chen, Gang; Dai, Wei-wei; Liu, Nian-ci; Wu, Xin
2012-03-01
According to the requirements of rapid detection of important life parameters for the sick and wounded, a new micro bio-chemical detection configuration was proposed utilizing continuous spectroscopy analysis, which was founded on MOEMS and embedded technology. The configuration was developed as so much research work was carried out on the detecting objects and methods. Important parameters such as stray light, absorbance linearity, absorbance ratability, stability and temperature accuracy of the instrument were tested, which are all in good agreement with the design requirements. Clinic tests show that it can detect multiple life parameters quickly (Na+, GLU, Hb eg.).
A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation.
McGovern, B; Berlinguer Palmini, R; Grossman, N; Drakakis, E; Poher, V; Neil, M A A; Degenaar, P
2010-12-01
Here, we demonstrate the use of a micro light emitting diode (LED) array as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2-D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro LEDs. We present the system optically integrated into a microscope environment and patch clamp electrophysiology. The results show that the emitters have sufficient radiance at the required wavelength to stimulate neurons expressing channelrhodopsin-2 (ChR2).
Micro-Structured Materials for Generation of Coherent Light and Optical Signal Processing
2008-12-22
Bliss, and D. Weyburne,, "GaAs optical parametric oscillator with circularly polarized and depolarized pump", Optics Letters, No. 18, Vol. 32, pp...Because we measure the space-charge field by propagating the intense green laser beam along the crystal c- axis, the polarization of the light is...ordinary. Most applications utilize light with extraordinary polarization to make use of the largest component of the nonlinear or electro-optic tensor
Optically controlled electrophoresis with a photoconductive substrate
NASA Astrophysics Data System (ADS)
Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa
2018-05-01
A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.
Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels
NASA Astrophysics Data System (ADS)
Li, Jingting; Li, Ming; Santos, Greggy M.; Zhao, Fusheng; Shih, Wei-Chuan
2016-03-01
Microbubbles have been utilized as micro-pumps, micro-mixers, micro-valves, micro-robots and surface cleaners. Various generation techniques can be found in the literature, including resistive heating, hydrodynamic methods, illuminating patterned metal films and noble metal nanoparticles of Au or Ag. We present photothermal microbubble generation by irradiating nanoporous gold disk covered microfluidic channels. The size of the microbubble can be controlled by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, low power consumption, etc. This technique has the potential to provide new flow control functions in microfluidic devices.
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie
2015-11-01
Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.
Washabau, Robert J; Holt, David E; Brockman, Daniel J
2002-05-01
To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.
A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications
NASA Technical Reports Server (NTRS)
Platt, Donald W.; Hoover, Richard B.
2009-01-01
A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.
CMDS9: Continuum Mechanics and Discrete Systems 9, Istanbul Technical University, Macka. Abstracts.
1998-07-01
that can only be achieved via cooperative behavior of the cells. It can be viewed as the action of a singular feedback between the micro -level (the...optimal micro -geometries of multicomponent mixtures. Also, we discuss dynamics of a transition in natural unstable systems that leads to a micro ...failure process. This occurs once the impact load reaches a critical threshold level and results in a collection of oriented matrix micro -cracks
Note: Suppression of kHz-frequency switching noise in digital micro-mirror devices
NASA Astrophysics Data System (ADS)
Hueck, Klaus; Mazurenko, Anton; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-01-01
High resolution digital micro-mirror devices (DMDs) make it possible to produce nearly arbitrary light fields with high accuracy, reproducibility, and low optical aberrations. However, using these devices to trap and manipulate ultracold atomic systems for, e.g., quantum simulation is often complicated by the presence of kHz-frequency switching noise. Here we demonstrate a simple hardware extension that solves this problem and makes it possible to produce truly static light fields. This modification leads to a 47 fold increase in the time that we can hold ultracold 6Li atoms in a dipole potential created with the DMD. Finally, we provide reliable and user friendly APIs written in Matlab and Python to control the DMD.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
Classification of biological micro-objects using optical coherence tomography: in silico study
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT
2017-01-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039
Classification of biological micro-objects using optical coherence tomography: in silico study.
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt
2017-08-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.
NASA Astrophysics Data System (ADS)
Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.
2018-01-01
Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10-5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
2010-10-01
An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles Ming Hou...Report DRDC Toronto TR 2010-075 October 2010 An Empirical Study on Operator Interface Design for Handheld Devices to...drives the need for a small and light controller which will not hinder a soldier carrying it. This requirement brings an issue of designing an
Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta
2015-04-17
The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K
2013-02-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
NASA Astrophysics Data System (ADS)
El-Kady, Maher F.; Kaner, Richard B.
2013-02-01
The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.
Chandrasekaran, Arvind; Packirisamy, Muthukumaran
2009-01-01
The advent of microoptoelectromechanical systems (MOEMS) and its integration with other technologies such as microfluidics, microthermal, immunoproteomics, etc. has led to the concept of an integrated micro-total-analysis systems (microTAS) or Lab-on-a-Chip for chemical and biological applications. Recently, research and development of microTAS have attained a significant growth rate over several biodetection sciences, in situ medical diagnoses, and point-of-care testing applications. However, it is essential to develop suitable biophysical label-free detection methods for the success, reliability, and ease of use of the microTAS. We proposed an infrared (IR)-based evanescence wave detection system on the silicon-on-insulator platform for biodetection with microTAS. The system operates on the principle of bio-optical interaction that occurs due to the evanescence of light from the waveguide device. The feasibility of biodetection has been experimentally investigated by the detection of horse radish peroxidase upon its reaction with hydrogen peroxide.
Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT
NASA Astrophysics Data System (ADS)
Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna
2008-09-01
Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repasky, Kevin
2014-03-31
A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66more » {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.« less
EDITORIAL Light-induced material organization Light-induced material organization
NASA Astrophysics Data System (ADS)
Vainos, Nikos; Rode, Andrei V.
2010-12-01
Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we would like to attract the reader's attention to a curious way in which the laser beam architecture allows light modes to deviate from linear propagation (Morris et al). Laser speckle fields act as an array of potential wells that simultaneously trap thousands of particles in air (Shvedov et al). A new study of spatial light modulators (SLMs) offers a viable and flexible holographic tweezers tool (Bowman et al), demonstrating a dual role of wavefront sensing and corrective performance in a closed-loop adaptive optics system. A new concept for reordering birefringent liquid crystal media has been introduced and discussed (Brasselet). This new approach is based on the spatially modulated optical dielectric torque density arising from the inherent longitudinal component of the electric field of any laser beam. The dynamics of the optical response of a liquid crystal infiltrated photonic structure has been considered by Miroshnichenko et al, concluding that the mechanical effect of light on the orientational ordering of the crystalline axis can be used to control the dynamics of the optical response of such photonic structures. An intriguing result on structural changes in fused silica induced by powerful femtosecond laser pulses in confined geometry is presented in a paper by Juodkazis et al. The results of x-ray diffraction from the laser-modified material indicate a possibility for phase separation, but the physical mechanism is still unclear. At low power, electric-field-assisted hologram recording in chalcogenide thin films yields improved diffraction efficiency, even in ultrathin films (Vlaeva et al). A comprehensive review of recent advances in multiphoton polymerization in hybrid materials with femtosecond laser pulses (Farsari et al) is supplemented by a number of new results in multiphoton polymerization for photonic band gap structures and micro-engineering applications. Microreplication methods are complementing such approaches with produced objects extending the horizons to production processing (Koroleva et al). The use of femtosecond lasers enables polymerization for flexible production of micro-optics and integrated optics (Malinauskas et al). Laser beams of moderate intensity are used to create surface relief patterning in polymer and hybrid matter (Babeva et al) while the use of optimized acrylamide photopolymers results in submicron holographic structures (Trainer et al). In a different concept, the application of laser radiation forces in soft polymer matter offers intriguing, yet unexplored, means for the organization of dense structures and filaments in polymer solutes, pointing to nonlinear optical applications (Anyfantakis et al). Finally, high laser intensities are used for the processing of soft polymer and hybrid matter. In the two modes of operation available, laser-induced forward transfer of polymers is a promising alternative for the creation of controlled structures (Palla-Papavlu et al), while ablative structuring creates interfaces with enhanced properties by excimer laser irradiation at the deep ultraviolet 193 nm and 157 nm wavelengths (Athanasekos et al). Such methods provide flexible tools for the fabrication of optimized photonic sensor structures based on hybrid nanocomposites incorporating diffractive optic interfaces, a technology enabling the recent advent of remote point sensing of chemical and physical agents by light (Vasileiades et al). A substantial part of this work has been supported in the framework of COST MP0604 Action `Optical Micro-Manipulation by Nonlinear Nanophotonics' of the European Science Foundation. We are confident that this collection of papers on light-induced material organization will guide the reader in this emerging field, inspire the interested scientific community and stimulate further research and innovation in this exciting and growing field.
Harnessing optical loss for unique microlaser functionality (Conference Presentation)
NASA Astrophysics Data System (ADS)
Feng, Liang
2017-05-01
Lasers, as the key driving force in the field of optics and photonics over other photonic components, are now being significantly benefited from the studies of nanophotonics and metamaterials, broadening laser physics and device applications. The properties of light are much more beyond its simple intensity and temporal characteristics. The fruitful nature of light provides a great variety of freedoms in manipulating light for modern photonic applications, including spin (polarization), chirality, angular momentum, and spin-orbit coupling. Unfortunately, all these fundamental properties and functionalities of light have not been fully exploited in micro/nano-laser systems because the conventional principles of laser design in bulk optics cannot be easily scaled down to the micro/nano scale. The capability of creating microlasers with controlled spin/orbital information and chirality in their radiations is expected to revolutionize next generation of photonic systems for computing and communication. In this talk, I will focus on our recent effort in harnessing optical losses for unique microlaser functionalities, in particular, an orbital angular momentum (OAM) microlaser that structure and twist the lasing radiation at the microscale. The effective generation of OAM lasing, especially at a micro/nano-scale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode and its polarization state. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications.
Ramasamy, Ranjith; Sterling, Joshua; Manzoor, Maryem; Salamoon, Bekheit; Jain, Manu; Fisher, Erik; Li, Phillip S; Schlegel, Peter N; Mukherjee, Sushmita
2012-01-01
Microdissection testicular sperm extraction (micro-TESE) has replaced conventional testis biopsies as a method of choice for obtaining sperm for in vitro fertilization for men with nonobstructive azoospermia. A technical challenge of micro-TESE is that the low magnification inspection of the tubules with a surgical microscope is insufficient to definitively identify sperm-containing tubules, necessitating tissue removal and cytologic assessment. Full field optical coherence tomography (FFOCT) uses white light interference microscopy to generate quick high-resolution tomographic images of fresh (unprocessed and unstained) tissue. Furthermore, by using a nonlaser safe light source (150 W halogen lamp) for tissue illumination, it ensures that the sperm extracted for in vitro fertilization are not photo-damaged or mutagenized. A focal Sertoli-cell only rodent model was created with busulfan injection in adult rats. Ex vivo testicular tissues from both normal and busulfan-treated rats were imaged with a commercial modified FFOCT system, Light-CT™, and the images were correlated with gold standard hematoxylin and eosin staining. Light-CT™ identified spermatogenesis within the seminiferous tubules in freshly excised testicular tissue, without the use of exogenous contrast or fixation. Normal adult rats exhibited tubules with uniform size and shape (diameter 328 ±11 μm). The busulfan-treated animals showed marked heterogeneity in tubular size and shape (diameter 178 ± 35 μm) and only 10% contained sperm within the lumen. FFOCT has the potential to facilitate real-time visualization of spermatogenesis in humans, and aid in micro-TESE for men with infertility.
Pallua, Johannes D; Kuhn, Volker; Pallua, Anton F; Pfaller, Kristian; Pallua, Anton K; Recheis, Wolfgang; Pöder, Reinhold
2015-01-01
The potential of 3-D nondestructive imaging techniques such as micro-computed tomography (micro-CT) was evaluated to study morphological patterns of the potential medicinal fungus Hericium coralloides (Basidiomycota). Micro-CT results were correlated with histological information gained from scanning electron microscopy (SEM) and light microscopy (LM). It is demonstrated that the combination of these imaging methods results in a more distinct picture of the morphology of the edible and potentially medicinal Hericium coralloides basidiomata. In addition we have created 3-D reconstructions and visualizations based on micro-CT imagery from a randomly selected part of the upper region of a fresh H. coralloides basidioma: Analyses for the first time allowed an approximation of the evolutionary effectiveness of this bizarrely formed basidioma type in terms of the investment of tissue biomass and its reproductive output (production of basidiospores). © 2015 by The Mycological Society of America.
Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Nelson, William; Davis, Christopher C.
2014-10-01
A plenoptic camera is a camera that can retrieve the direction and intensity distribution of light rays collected by the camera and allows for multiple reconstruction functions such as: refocusing at a different depth, and for 3D microscopy. Its principle is to add a micro-lens array to a traditional high-resolution camera to form a semi-camera array that preserves redundant intensity distributions of the light field and facilitates back-tracing of rays through geometric knowledge of its optical components. Though designed to process incoherent images, we found that the plenoptic camera shows high potential in solving coherent illumination cases such as sensing both the amplitude and phase information of a distorted laser beam. Based on our earlier introduction of a prototype modified plenoptic camera, we have developed the complete algorithm to reconstruct the wavefront of the incident light field. In this paper the algorithm and experimental results will be demonstrated, and an improved version of this modified plenoptic camera will be discussed. As a result, our modified plenoptic camera can serve as an advanced wavefront sensor compared with traditional Shack- Hartmann sensors in handling complicated cases such as coherent illumination in strong turbulence where interference and discontinuity of wavefronts is common. Especially in wave propagation through atmospheric turbulence, this camera should provide a much more precise description of the light field, which would guide systems in adaptive optics to make intelligent analysis and corrections.
A Microlensing Analysis of the Central Engine in the Lensed Quasar WFI J2033-4723
Chile. We combined these new data with published measurements from Vuissoz et al. (2008 )to create a 13-season set of optical light curves. Employing the...Bayesian Monte Carlo micro lensing analysis technique of Kochanek (2004), we analyzed these light curves to yield the first-ever measurement of the
UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium
Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro
2016-01-01
Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite deposition may be a novel method to effectively enhance micro-roughened titanium surfaces without altering their microscale morphology. PMID:26834469
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
ERIC Educational Resources Information Center
Byrne, Jenny
2011-01-01
This paper describes the expressed models that children aged 7, 11, and 14 years have about micro-organisms and microbial activity. These were elicited using a variety of data collection techniques that complemented each other, resulting in a rich dataset, and provided information about the level of knowledge and progression of ideas across the…
New micro-beam beamline at SPring-8, targeting at protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Kunio; Ueno, Go; Nisawa, Atsushi
2010-06-23
A new protein micro-crystallography beamline BL32XU at SPring-8 is under construction and scheduled to start operation in 2010. The beamline is designed to provide the stabilized and brilliant micro-beam to collect high-quality data from micro-crystals. The beamline consists of a hybrid in-vacuum undulator, a liquid-nitrogen cooled double crystal monochromator, and K-B focusing mirrors with large magnification factor. Development of data acquisition system and end station consists of high-precision diffractometer, high-efficiency area detector, sample auto-changer etc. are also in progress.
Collection, Measurement and Treatment of Microorganism Using Dielectrophoretic Micro Devices
NASA Astrophysics Data System (ADS)
Uchida, Satoshi
Constant monitoring of manufacturing processes has been essential in food industry because of global expansion of microbial infection. Micro-scale dielectrophoretic method is an attractive technique for direct operation and quantitative detection of bioparticles. The electrical system is capable of rapid and simple treatments corresponding to severe legal control for food safety. In this paper, newly developed techniques are reviewed for bacterial concentration, detection and sterilization using dielectrophoresis in a micro reactor. The perspective to an integrated micro device of those components is also discussed.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.
2016-09-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Photoinduced toxicity of fluoranthene to northern leopard frogs (Rana pipiens)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monson, P.D.; Call, D.J.; Cox, D.A.
1999-02-01
Rana pipiens larvae were exposed for 48 h in a flow-through system to clean water or five concentrations of the phototoxic polycyclic aromatic hydrocarbon (PAH) fluoranthene. Following this uptake period, the larvae were divided into four groups: one for immediate tissue residue analysis, a second for residue analysis following 48 h of depuration in clean water, and two for a 48-h exposure in clean water to ultraviolet (UV) light at two different levels. At the highest treatment, mean intensity was 8.12 {+-} 0.19 {times} 10{sup 2} {micro}W/cm{sup 2}, whereas at a lower treatment the UVA intensity was 4.45 {+-} 0.05more » {times} 10{sup 2} {micro}W/cm{sup 2}. Larval frogs bioaccumulated fluoranthene in direct proportion to the water exposure concentrations, with initial whole-body PAH concentrations of 1.48, 3.53, 4.85, 11.3, and 18.7 {micro}g/g at the five treatment levels. No mortality of the animals occurred during the 48-h uptake phase. When the frogs were placed in clean water, the fluoranthene was rapidly depurated, with up to 80% lost in 48 h. Exposure to UV light following fluoranthene exposure significantly enhanced toxicity of the PAH. Median time to death decreased as the product of UVA light intensity and fluoranthene body residue increased. For larval R. Pipiens, sufficient tissue residues of fluoranthene were bioaccumulated within 48 h, at water exposure concentrations in the range of 2 to 10 {micro}g/L, to be lethal when combined with a UVA exposure simulating a fraction of summertime, midday sunlight in northern latitudes.« less
Ravi, Bolleddu; Chakraborty, Snigdha; Bhattacharjee, Mitradip; Mitra, Shirsendu; Ghosh, Abir; Gooh Pattader, Partho Sarathi; Bandyopadhyay, Dipankar
2017-01-11
Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.
Fuel-Free Synthetic Micro-/Nanomachines.
Xu, Tailin; Gao, Wei; Xu, Li-Ping; Zhang, Xueji; Wang, Shutao
2017-03-01
Inspired by the swimming of natural microorganisms, synthetic micro-/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro-/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H 2 O 2 ), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro-/nanomotors that can be powered by biocompatible fuels. Fuel-free synthetic micro-/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel-free micro-/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel-free micro-/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel-free micro-/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.
2017-01-01
The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope. PMID:28221018
Zhang, Huiyong; Zhao, Xin; Li, Jigang; Cai, Huaqing; Deng, Xing Wang; Li, Lei
2014-01-01
Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling. PMID:25516599
Real-time data-intensive computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander
2016-07-27
Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less
Bio-Optics and Bio-Inspired Optical Materials.
Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth
2017-10-25
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
NASA Astrophysics Data System (ADS)
Frank, Klaus H.; Kloevekorn, P.; Zuendorf, J.; Kessler, Manfred D.
2002-06-01
Local intra capillary HbO2 was monitored in beating hearts of 14 patients undergoing coronary bypass surgery. The spectra were measured in the epicardium of the left ventricle, supplied by the left coronary artery (LAD). All selected patients suffered form stenosis or occlusion of two to three vessels. The patients suffered from severe angina and showed hypokinesia in the angiography. Micro-light guide fibers with a diameter of 75micrometers were used for monitoring before and after bypass surgery. These light guides were connected to the Erlanger Micro Light guide Spectro Photometer EMPHO for registration. Local measurements were performed in the epicardium of the left ventricle in 25 areas 2.25cm2 each. Integrated gradient fields were plotted for each of the 14 patients before and after bypass surgery. The mean values of HbO2 in the respective areas were calculated and evaluated against the local value distribution.
NASA Astrophysics Data System (ADS)
Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária
2015-02-01
The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.
Buzzini, Patrick; Massonnet, Genevieve
2015-05-01
In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. © 2015 American Academy of Forensic Sciences.
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin
2012-03-12
A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.
Effects of high-level pulse train stimulation on retinal function.
Cohen, Ethan D
2009-06-01
We examined how stimulation of the local retina by high-level current pulse trains affected the light-evoked responses of the retinal ganglion cells. The spikes of retinal ganglion cell axons were recorded extracellularly using an in vitro eyecup preparation of the rabbit retina. Epiretinal electrical stimulation was delivered via a 500 microm inner diameter saline-filled, transparent tube positioned over the retinal surface forming the receptive field center. Spot stimuli were presented periodically to the receptive field center during the experiment. Trains of biphasic 1 ms current pulses were delivered to the retina at 50 Hz for 1 min. Pulse train charge densities of 1.3-442 microC/cm(2)/phase were examined. After pulse train stimulation with currents >or=300 microA (133 microC/cm(2)/phase), the ganglion cell's ability to respond to light was depressed and a significant time was required for recovery of the light-evoked response. During train stimulation, the ganglion cell's ability to spike following each current pulse fatigued. The current levels evoking train-evoked depression were suprathreshold to those evoking action potentials. Train-evoked depression was stronger touching the retinal surface, and in some cases impaired ganglion cell function for up to 30 min. This overstimulation could cause a transient refractory period for electrically stimulated perception in the retinal region below the electrode.
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
Factors associated with plant species richness in a coastal tall-grass prairie
Grace, James B.; Allain, Larry K.; Allen, Charles
2000-01-01
In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.
Large area silicon drift detectors for x-rays -- New results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.
Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range 75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was < 0.5%.« less
A micromachined carbon nanotube film cantilever-based energy cell
NASA Astrophysics Data System (ADS)
Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long
2012-08-01
This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm-2 when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems.
Yue, Weisheng; Li, Yan; Li, Xiaolin; Yu, Xiaohan; Deng, Biao; Liu, Jiangfeng; Wan, Tianmin; Zhang, Guilin; Huang, Yuying; He, Wei; Hua, Wei
2004-09-01
Synchrotron radiation microbeam X-ray fluorescence (micro-SXRF) was used to analyze individual aerosol particles collected at a height of 2 m above a heavy-traffic roadside in a heavy-industrial area of Shanghai. A pattern recognition technique, which took micro-SXRF spectra of single aerosol particles as its fingerprint, was used to identify the origins of the particles. The particles collected from the environmental monitoring site are mainly from metallurgic industry (26%), unleaded gasoline automobile exhaust (15%), coal combustion (10%), cement dust (10%) and motorcycle exhaust (8%).
Development of GaN-based micro chemical sensor nodes
NASA Technical Reports Server (NTRS)
Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.
2005-01-01
Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.
5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther
2018-02-01
In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.
FPGA Control System for the Automated Test of Microshutters
NASA Technical Reports Server (NTRS)
Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey
2008-01-01
The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light with arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao
2016-06-15
A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less
NASA Astrophysics Data System (ADS)
Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen
2011-02-01
In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.
PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism
NASA Astrophysics Data System (ADS)
Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie
2017-12-01
Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.
Fiber optic engine for micro projection display.
Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan
2010-03-01
A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.
From molecular design and materials construction to organic nanophotonic devices.
Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian
2014-12-16
CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more materials, such as energy transfer, charge separation, and exciton-plasmon coupling, a series of novel nanophotonic devices could be achieved for light signal manipulation. First, we provide an overview of the research evolution of organic nanophotonics, which arises from attempts to explore the photonic potentials of low-dimensional structures assembled from organic molecules. Then, recent advances in this field are described from the viewpoints of molecules, materials, and devices. Many kinds of optofunctional molecules are designed and synthesized according to the demands in high luminescence yield, nonlinear optical response, and other optical properties. Due to the weak interactions between these molecules, numerous micro- or nanostructures could be prepared via self-assembly or vapor-deposition, bringing the capabilities of light transport and confinement at the wavelength scale. The above advantages provide great possibilities in the fabrication of organic nanophotonic devices, by rationally combining these functional components to manipulate light signals. Finally, we present our views on the current challenges as well as the future development of organic nanophotonic materials and devices. This Account gives a comprehensive understanding of organic nanophotonics, including the design and fabrication of organic micro- or nanocrystals with specific photonic properties and their promising applications in functional nanophotonic components and integrated circuits.
Daylight control system device and method
Paton, John Douglas
2007-03-13
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system, device and method
Paton, John Douglas
2012-08-28
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system device and method
Paton, John Douglas
2009-12-01
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Short wavelength limits of current shot noise suppression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham
Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less
Miniaturized CARS microendoscope probe design for label-free intraoperative imaging
NASA Astrophysics Data System (ADS)
Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.
2014-03-01
A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.
SPring-8 BL41XU, a high-flux macromolecular crystallography beamline
Hasegawa, Kazuya; Shimizu, Nobutaka; Okumura, Hideo; Mizuno, Nobuhiro; Baba, Seiki; Hirata, Kunio; Takeuchi, Tomoyuki; Yamazaki, Hiroshi; Senba, Yasunori; Ohashi, Haruhiko; Yamamoto, Masaki; Kumasaka, Takashi
2013-01-01
SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick–Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 1013 photons s−1. A pinhole aperture is used to collimate the beam in the range 10–50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6–35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented. PMID:24121338
Micro-valve pump light valve display
Yeechun Lee.
1993-01-19
A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.
Micro-valve pump light valve display
Lee, Yee-Chun
1993-01-01
A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.
Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R
2013-12-01
The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
Gul, M Shahzeb Khan; Gunturk, Bahadir K
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Diffractive optics in industry and research: novel components for optical security systems
NASA Astrophysics Data System (ADS)
Laakkonen, Pasi; Turunen, Jari; Pietarinen, Juha; Siitonen, Samuli; Laukkanen, Janne; Jefimovs, Konstantins; Orava, Joni; Ritala, Mikko; Pilvi, Tero; Tuovinen, Hemmo; Ventola, Kalle; Vallius, Tuomas; Kaipiainen, Matti; Kuittinen, Markku
2005-09-01
Design and manufacturing of diffractive optical elements (DOEs) are presented. Mass replication methods for DOEs are explained including UV-replication, micro-injection moulding and reel-to-reel production. Novel applications of diffractive optics including spectroscopic surface relief gratings, antireflection surfaces, infrared light rejection gratings, light incoupling into thin waveguides, and additive diffractive colour mixing are presented.
ERIC Educational Resources Information Center
Al-Mashaqba, Nisreen Juma'a Hamed
2017-01-01
The purpose of this study is to investigate the extent to which the listening and speaking lessons which are presented in textbook entitled "Mosaic One Listening and speaking (Student's Book)" are characterized with appropriateness and meaningfulness in light of communicative competence and meet the Principles and features of…
Gold nanoparticles as nanosources of heat
NASA Astrophysics Data System (ADS)
Baffou, Guillaume
2018-04-01
Under illumination at their plasmonic resonance wavelength, gold nanoparticles can absorb incident light and turn into efficient nanosources of heat remotely controllable by light. This fundamental scheme is at the basis of an active field of research coined thermoplasmonics and encompasses numerous applications in physics, chemistry and biology at the micro and nano scales. Warning, no authors found for 2018Phot........48.
EPR investigation of UV light effect on calcium carbonate powders with different grain sizes.
Kabacińska, Zuzanna; Krzyminiewski, Ryszard; Dobosz, Bernadeta
2014-06-01
This study is based on investigation of calcium carbonate powders with different grain sizes exposed to UV light. Calcium carbonate is widely used in many branches of industry, e.g. as a filler for polymer materials; therefore, knowing its properties, among them also its reaction to UV light, is essential. Samples of powdered calcium carbonate with average grain sizes of 69 and 300 nm and 2.1, 6, 16, 25 µm were used in this investigation. Measurements were performed at room temperature using EPR X-band spectrometer, and they have shown the additional signals induced by the light from Hg lamp. The effect of annealing of the micro-grain samples was also studied. The spectra of four micro-grain samples after irradiation are similar, but there are differences between them and the other two powders, which could be related to the different sizes of their grains. Further studies based on these preliminary results may prove useful in research of photodegradation of CaCO3-filled materials, as well as helpful in increasing the accuracy of dating of archaeological and geological objects. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ishii, Kouken; Matsuo, Masato; Hoshi, Noriyuki; Takahashi, Shun-Suke; Kawamata, Ryota; Kimoto, Katsuhiko
2016-02-01
The objective of this study was to investigate morphologically the progression of periimplantitis around an ultraviolet (UV)-light-irradiated implant in dogs. Pure titanium implants (3.3 mm in diameter and 8 mm long) were placed into dog jawbone bilaterally. Implants on one side were irradiated with UV light for 15 minutes using a photodevice immediately before placement (UV group), whereas those on the other side were not irradiated (non-UV group). Osseointegration was confirmed 90 days after implant placement by radiography. Experimental periimplantitis was induced by the application of dental floss over 90 days. Clinical and radiographic examination and micro-computed tomography (micro-CT) were performed after 90 and 180 days, and bone resorption was measured. The bone-implant interface in tissue sections was examined by light microscopy. Bone resorption around the UV-irradiated implant was less pronounced than around the non-UV-irradiated implant in the ligature-induced periimplantitis model. Tissue section images revealed no contact and partial destruction at the bone-implant interface. Within the limitations of this preliminary investigation, it is suggested that UV-light-irradiated implants suppress spontaneous progression of periimplantitis.
NASA Astrophysics Data System (ADS)
Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2016-02-01
Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.
Method and apparatus for detection of charge on ions and particles
Fuerstenau, Stephen Douglas; Soli, George Arthur
2002-01-01
The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.
Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials
2011-09-01
possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...suffer from two damage types: matrix micro-cracks and inter- laminar delamination. When subject to fatigue loading matrix micro-cracks develop in the
Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.
Ruan, Jujun; Qin, Baojia; Huang, Jiaxin
2018-05-31
Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Andersson, Mette F; Møller, Ann M
2010-09-01
Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) in arterial blood. The objectives were to determine the level of correlation and to determine whether the methods showed agreement and evaluate them as diagnostic tests in discriminating between heavy and light smokers. The study population consisted of 37 patients. The Micro Smokerlyzer was used to measure COexp; it measures COexp in parts per million (ppm) and converts it to the percentage of haemoglobin combined with carbon monoxide (%Hb). COHb in arterial blood was measured by the ABL 725. Correlation analysis and Bland-Altman analysis were performed, and 2 x 2 contingency tables and receiver operating characteristic curve analysis were conducted. The correlation between the methods was high (rho = 0.964). Bland-Altman analysis demonstrated that the Micro Smokerlyzer underestimated COHb values. The areas under the receiver operating characteristic curves were 0.746 (ABL 725) and 0.754 (Micro Smokerlyzer) and, by comparison, no statistically significant difference was found (P = 0.815). The two methods showed a high level of correlation, but poor agreement. The Micro Smokerlyzer systematically underestimated COHb values and, in order to avoid this, we suggested an alternative algorithm for converting COexp from ppm to %Hb. The ABL 725 and Micro Smokerlyzer were fair diagnostic tests in distinguishing between heavy and light smokers, but the longer the patients' smoking cessation time, the poorer the ability as diagnostic tests.
Exploring novel structures for manipulating relativistic laser-plasma interaction
NASA Astrophysics Data System (ADS)
Ji, Liangliang
2016-10-01
The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).
Radioactive waste management and practice in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.; Rahman, M.M.
1993-12-31
A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less
Design of Light Trapping Solar Cell System by Using Zemax Program
NASA Astrophysics Data System (ADS)
Hasan, A. B.; Husain, S. A.
2018-05-01
Square micro lenses array have been designed (by using Zemax optical design program) to concentrate solar radiation into variable slits that reaching light to solar cell. This technique to increase the efficiency of solar system by trapping light due to internal reflection of light by mirrors that placed between upper and lower side of solar cell, therefore increasing optical path through the solar cell, and then increasing chance of photon absorption. The results show priority of solar system that have slit of (0.2 mm), and acceptance angle of (20°) that give acceptable efficiency of solar system.
Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
Shirai, A; Watanabe, T; Matsuki, H
2017-02-01
The low energy of UV-A (315-400 nm) is insufficient for disinfection. To improve UV-A disinfection technology, we evaluated the effect of ferulic acid (FA) addition on disinfection by UV-A light-emitting diode (LED) (350-385 nm) against various food spoilers and pathogens (seven bacteria and four fungi species). Photoantimicrobial assays were performed at FA concentrations below the MIC. The MIC of the isomerized FA, consisting of 93% cis-form and 7% trans-form, was very similar to that of the commercially available FA (trans-form). Irradiation with UV-A (1·0 J cm -2 ) in the presence of 100 mg l -1 FA resulted in enhanced reducing of all of the tested bacterial strains. A combination of UV-A (10 J cm -2 ) and 1000 mg l -1 FA resulted in enhanced reducing of Saccharomyces cerevisiae and one of the tested filamentous fungi. These results demonstrated that the combination of a short-term application of UV-A and FA at a low concentration yielded synergistic enhancement of antimicrobial activity, especially against bacteria. Microbial contamination is one of the most serious problems for foods, fruit and sugar thick juices. UV light is suitable for the nonthermal decontamination of food products by inactivating the contaminating micro-organisms. However, UV-A exposure is insufficient for disinfection. This study demonstrates that the combination of UV-A LED light (350-385 nm), which is not hazardous to human eyes and skin, and ferulic acid (FA), a known phytochemical and food additive, provides synergistic antimicrobial activity against foodborne pathogenic and spoilage micro-organisms. Therefore, FA addition to UV-A light treatment may be useful for improvement of UV-A disinfection technology to prevent food deterioration. © 2016 The Society for Applied Microbiology.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei
2013-01-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-03
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Microfluidic droplet sorting using integrated bilayer micro-valves
NASA Astrophysics Data System (ADS)
Chen, Yuncong; Tian, Yang; Xu, Zhen; Wang, Xinran; Yu, Sicong; Dong, Liang
2016-10-01
This paper reports on a microfluidic device capable of sorting microfluidic droplets utilizing conventional bilayer pneumatic micro-valves as sorting controllers. The device consists of two micro-valves placed symmetrically on two sides of a sorting area, each on top of a branching channel at an inclined angle with respect to the main channel. Changes in transmitted light intensity, induced by varying light absorbance by each droplet, are used to divert the droplet from the sorting area into one of the three outlet channels. When no valve is activated, the droplet flows into the outlet channel in the direction of the main channel. When one of the valves is triggered, the flexible membrane of valve will first be deflected. Once the droplet leaves the detection point, the deflected membrane will immediately return to its default flattened position, thereby exerting a drawing pressure on the droplet and deviating it from its original streamline to the outlet on the same side as the valve. This sorting method will be particularly suitable for numerous large-scale integrated microfluidic systems, where pneumatic micro-valves are already used. Only few structural modifications are needed to achieve droplet sorting capabilities in these systems. Due to the mechanical nature of diverting energy applied to droplets, the proposed sorting method may induce only minimal interference to biological species or microorganisms encapsulated inside the droplets that may accompany electrical, optical and magnetic-based techniques.
NASA Astrophysics Data System (ADS)
Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.
2017-09-01
We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6-7 mm within 6 s for IR illumination with an intensity of 550 mW cm-2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.
Ramli, Roszalina; Che Man, Zuraidah; Nordin, Rifqah; Abdul Karim, Fadzlina; Rashdi, Muhd Fazlynizam; Oxley, Jennie; Viet Cuong, Pham
2016-09-01
Vietnamese spend hours travelling on the road using their motorcycles. Their helmets are exposed continuously to sunlight and rain. The objectives of this study were to determine the association between the effect of photo-oxidative degradation (POD) of the outer shells and helmet age on helmet damage. The micro-structural change of the outer shell was also investigated. This was a prospective, cross sectional study recruiting injured motorcyclists from Hanoi, Vietnam hospital. The participants were interviewed by a trained researcher. The participants' helmets were collected post-crash. Initially, the helmets were examined for their type and external characteristics. A 3 cm × 3 cm cut was made on the helmet in the impacted and non-impacted areas (control). These areas were investigated for evidence of POD and presence of micro-cracks and material disintegration. 50 participants were enrolled. Sources of information included questionnaire and laboratory analyses. The helmet factors of interest were age of the helmet, exposure of helmet to sunlight and rain (duration/day) and history of previous impact. Laboratory analyses included Fourier Transform Infra Red (FTIR) for degradation and scanning electron microscopy (SEM) for micro-structural examination. Majority of the helmets was the open-face type, 40 (80.0%). 31 (62.0%) helmets aged less than three years (LTY) and 19 (38.0%) were three years old or more (MTY). 19 (61.3%) of the LTY helmets and 12 (63.2%) MTY helmets showed evidence of POD. The duration of helmet exposure to sunlight was between 93 to 6570 hours (mean 2347.74 hours; SD 1733.39). The SEM showed 15 helmets (30%) with micro-fractures, 21 helmets (42.0%) with material disintegration. Prolonged uv exposure to the ABS helmets resulted in changes in the helmet material in the form of material disintegration and microcracks and this association was statistically significant (p = 0.03). POD occurs due to routine exposure to the ultraviolet light. Prolonged uv exposure affects outer shell surface material integrity.
NASA Astrophysics Data System (ADS)
Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki
2007-02-01
We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.
Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C.
Liu, Guigen; Sheng, Qiwen; Dam, Dustin; Hua, Jiong; Hou, Weilin; Han, Ming
2017-04-01
We report a fiber-optic micro-heater based on a miniature crystalline silicon Fabry-Perot interferometer (FPI) fusion spliced to the endface of a single-mode fiber. The silicon FPI, having a diameter of 100 μm and a length of 10 or 200 μm, is heated by a 980 nm laser diode guided through the lead-in fiber, leading to a localized hot spot with a temperature that can be conveniently tuned from the ambient temperature to >1000°C in air. In the meantime, using a white light system operating in the 1550 nm wavelength window where the silicon is transparent, the silicon FPI itself also serves as a thermometer with high resolution and high speed for convenient monitoring and precise control of the heater temperature. Due to its small size, high temperature capability, and easy operation, the micro-heater is attractive for applications in a variety of fields, such as biology, microfluidics system, mechanical engineering, and high-temperature optical sensing. As an example, the application of this micro-heater as a micro-boiler and micro-bubble generator has been demonstrated.
High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.
Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun
2017-05-15
We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.
Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi
2012-10-01
Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.
Large area silicon drift detectors for x-rays -- New results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.
Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range {minus}75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was <0.5%.« less
[A micro-silicon multi-slit spectrophotometer based on MEMS technology].
Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen
2009-06-01
A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.
Wafer integrated micro-scale concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun
2017-09-01
Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.
Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S
1989-01-01
Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029
Ramírez, María Soledad; Traglia, German Matías; Pérez, Jorgelina Fernanda; Müller, Gabriela Leticia; Martínez, María Florencia; Golic, Adrián Ezequiel; Mussi, María Alejandra
2015-05-01
Minocycline (MIN) and tigecycline (TIG) are antibiotics currently used for treatment of multidrug-resistant nosocomial pathogens. In this work, we show that blue light, as well as white light, modulates susceptibility to these antibiotics in a temperature-dependent manner. The modulation of susceptibility by light depends on the content of iron; an increase in iron results in a reduction in antibiotic susceptibility both under light and in the dark, though the effect is more pronounced in the latter condition. We further provide insights into the mechanism by showing that reduction in susceptibility to MIN and TIG induced by light is likely triggered by the generation of (1)O2, which, by a yet unknown mechanism, would ultimately lead to the activation of resistance genes such as those coding for the efflux pump AdeABC. The clinical relevance of these results may lie in surface-exposed wound infections, given the exposure to light in addition to the relatively low temperatures recorded in this type of lesion. We further show that the modulation of antibiotic susceptibility occurs not only in Acinetobacter baumannii but also in other micro-organisms of clinical relevance such as Escherichia coli and Staphylococcus aureus. Overall, our findings allow us to suggest that MIN and TIG antibiotic treatments may be improved by the inclusion of an iron chelator, in addition to keeping the wounds in the dark, a condition that would increase the effectiveness in the control of infections involving these micro-organisms. © 2015 The Authors.
Micro-FTIR Spectroscopy of Experimentally Shocked Basaltic Andesite (SP Flow, AZ)
NASA Astrophysics Data System (ADS)
Johnson, J. R.; Jaret, S.; Glotch, T. D.; Sims, M.
2017-12-01
As part of an ongoing systematic study of experimental shock transformations in plagioclase using micro-Raman and micro-FTIR thermal infrared hyperspectral imaging and point spectroscopy [1-7], we report new micro-FTIR results on experimentally shocked, fine-grained basaltic andesite from SP Flow (AZ). This sample has relatively high primary glass content and an average plagioclase composition of labradorite/bytownite. The powder propellant gun at the Johnson Space Center was used to conduct the original shock experiments at peak pressures from 15 to 60 GPa [6-8], from which <10 mm fragments were recovered. Polished thin sections were made from portions of these fragments, and micro-FTIR point spectra were collected from 400-4000 cm-1 (2.5-25 µm) using a spot size of 40 x 40 mm at 8 cm-1 spectral sampling. Micro-FTIR hyperspectral maps of thin sections were acquired using the same instrument equipped with a 16 pixel HgCdTe linear array detector to provide spectra between 7000 and 715 cm-1 (1.4-14.0 µm) at 25 µm/pixel and 8 cm-1 spectral sampling (see figure for color composite and band depth images from unshocked sample). Micro-FTIR results show that the unshocked sample is dominated by the glassy matrix (light green in the color composite), with contributions from plagioclase and pyroxene. Initial analyses suggest that the SP Flow samples become dominantly amorphous at relatively low shock pressures, reflective of the high primary glass content and consistent with macro-scale spectra from [7]. Results from additional shock pressures and Raman spectra will be presented at the conference. Future work will include (1) Raman and FTIR analyses of basalt from Grand Falls (AZ), which has minimal primary glass content and relatively higher calcic plagioclase than SP Flow; and (2) comparison of these basalts to results from shocked plagioclase and to similar analyses of naturally shocked samples from Ries and Lonar Craters. [1] Jaret, S. et al., 11th Internat. GeoRaman Conf., #5095, 2014; [2] Jaret, S., et al., LPSC # 2056, 2015; [3] Jaret, S., et al., LPSC #1530, 2016; [4] Jaret, S., et al., LPSC, abs. #2484, 2017; [5] Jaret, S., et al. GSA, abstract #267947, 2015; [6] Johnson, J., et al., Amer. Mineral., 88, 1575-1582, 2003; [7] Johnson, J., Icarus 221 359-364, 2012; [8] Johnson, J., et al., Amer. Mineral., 92, 1148-1157, 2007.
Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes
2001-06-01
vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers
Beyreis, Marlena; Wagner, Andrej; Pichler, Martin; Neureiter, Daniel
2016-01-01
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC. PMID:27957497
Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi
2017-06-01
The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.
Lazzari, Barbara; Caprera, Andrea; Cestaro, Alessandro; Merelli, Ivan; Del Corvo, Marcello; Fontana, Paolo; Milanesi, Luciano; Velasco, Riccardo; Stella, Alessandra
2009-06-29
Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.
Expression patterns of micro-RNAs 146a, 181a, and 155 in subacute sclerosing panencephalitis.
Yiş, Uluç; Tüfekçi, Uğur Kemal; Genç, Şermin; Çarman, Kürşat Bora; Bayram, Erhan; Topçu, Yasemin; Kurul, Semra Hız
2015-01-01
Subacute sclerosing panencephalitis is caused by persistent brain infection of mutated virus, showing inflammation, neurodegeneration, and demyelination. Although many factors are emphasized in the pathogenesis of subacute sclerosing panencephalitis, the exact mechanism of neurodegeneration remains unknown. Micro-RNAs are small, noncoding RNAs that regulate gene expression at the posttranscriptional levels. Micro-RNAs are essential for normal immune system development; besides they are also implicated in the pathogenesis of many chronic inflammatory disorders. The aim of this study is to investigate the expression patterns of micro-RNAs 146a, 181a, and 155 in peripheral blood mononuclear cells of patients with subacute sclerosing panencephalitis. We enrolled 39 patients with subacute sclerosing panencephalitis and 41 healthy controls. Quantitative analysis of micro-RNAs 146a, 181a, and 155 were performed using specific stem-loop primers followed by real-time polymerase chain reaction. All of 3 micro-RNAs were upregulated in subacute sclerosing panencephalitis patients. In addition, the level of micro-RNA 155 expression was higher in stage 3 patients. But, micro-RNA 146a and 181a expression levels showed no association or correlation with clinically relevant data. Alteration of peripheral blood mononuclear cell micro-RNAs in subacute sclerosing panencephalitis may shed new light on the pathogenesis of disease and may contribute to the aberrant systemic rise in mRNA levels in subacute sclerosing panencephalitis. © The Author(s) 2014.
Hyperspectral imaging and multivariate analysis in the dried blood spots investigations
NASA Astrophysics Data System (ADS)
Majda, Alicja; Wietecha-Posłuszny, Renata; Mendys, Agata; Wójtowicz, Anna; Łydżba-Kopczyńska, Barbara
2018-04-01
The aim of this study was to apply a new methodology using the combination of the hyperspectral imaging and the dry blood spot (DBS) collecting. Application of the hyperspectral imaging is fast and non-destructive. DBS method offers the advantage also on the micro-invasive blood collecting and low volume of required sample. During experimental step, the reflected light was recorded by two hyperspectral systems. The collection of 776 spectral bands in the VIS-NIR range (400-1000 nm) and 256 spectral bands in the SWIR range (970-2500 nm) was applied. Pixel has the size of 8 × 8 and 30 × 30 µm for VIS-NIR and SWIR camera, respectively. The obtained data in the form of hyperspectral cubes were treated with chemometric methods, i.e., minimum noise fraction and principal component analysis. It has been shown that the application of these methods on this type of data, by analyzing the scatter plots, allows a rapid analysis of the homogeneity of DBS, and the selection of representative areas for further analysis. It also gives the possibility of tracking the dynamics of changes occurring in biological traces applied on the surface. For the analyzed 28 blood samples, described method allowed to distinguish those blood stains because of time of apply.
Driving platform for OLED lighting investigations
NASA Astrophysics Data System (ADS)
Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael
2006-08-01
OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.
Advanced Micro/Nanostructures for Lithium Metal Anodes
Zhang, Rui; Li, Nian‐Wu; Cheng, Xin‐Bing; Yin, Ya‐Xia
2017-01-01
Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of micro/nanostructured lithium metal anodes are proposed to address these issues in lithium metal batteries. With the unique surface, pore, and connecting structures of different nanomaterials, lithium plating/stripping processes have been regulated. Thus the electrochemical properties and lithium morphologies have been significantly improved. These micro/nanostructured lithium metal anodes shed new light on the future applications for lithium metal batteries. PMID:28331792
Self-organized internal architectures of chiral micro-particles
NASA Astrophysics Data System (ADS)
Provenzano, Clementina; Mazzulla, Alfredo; Pagliusi, Pasquale; De Santo, Maria P.; Desiderio, Giovanni; Perrotta, Ida; Cipparrone, Gabriella
2014-02-01
The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.
Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart
2018-02-01
To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements can be cured through a restoration up to 2.7-mm thickness, depending on the kind of CAD-CAM material. A high-irradiance LCU only has a limited effect on the maximum thickness of the polymer-ceramic CAD-CAM material that can be cured through. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Transparent Solar Concentrator for Flat Panel Display
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung
2012-06-01
A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.
Applications of X-Ray Micro-Beam for Data Collection.
Sanishvili, Ruslan; Fischetti, Robert F
2017-01-01
Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.
Photoresist Design for Elastomeric Light Tunable Photonic Devices
Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S.
2016-01-01
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation. PMID:28773646
Photoresist Design for Elastomeric Light Tunable Photonic Devices.
Nocentini, Sara; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S
2016-06-29
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation.
Reichert, Christof; Kästner, Sabine B R; Hopster, Klaus; Rohn, Karl; Rötting, Anna K
2014-11-01
To evaluate the use of a micro-lightguide tissue spectrophotometer for measurement of tissue oxygenation and blood flow in the small and large intestines of horses under anesthesia. 13 adult horses without gastrointestinal disease. Horses were anesthetized and placed in dorsal recumbency. Ventral midline laparotomy was performed. Intestinal segments were exteriorized to obtain measurements. Spectrophotometric measurements of tissue oxygenation and regional blood flow of the jejunum and pelvic flexure were obtained under various conditions that were considered to have a potential effect on measurement accuracy. In addition, arterial oxygen saturation at the measuring sites was determined by use of pulse oximetry. 12,791 single measurements of oxygen saturation, relative amount of hemoglobin, and blood flow were obtained. Errors occurred in 381 of 12,791 (2.98%) measurements. Most measurement errors occurred when surgical lights were directed at the measuring site; covering the probe with the surgeon's hand did not eliminate this error source. No measurement errors were observed when the probe was positioned on the intestinal wall with room light, at the mesenteric side, or between the mesenteric and antimesenteric side. Values for blood flow had higher variability, and this was most likely caused by motion artifacts of the intestines. The micro-lightguide spectrophotometry system was easy to use on the small and large intestines of horses and provided rapid evaluation of the microcirculation. Results indicated that measurements should be performed with room light only and intestinal motion should be minimized.
Gallo, I B; Braud, A; Zanatta, A R
2013-11-18
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I(13/2)→<4I(15/2) transition (due to Er3 ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions. According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual micro-electronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
NASA Astrophysics Data System (ADS)
Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.
2016-12-01
Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.
Non-linear macro evolution of a dc driven micro atmospheric glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn
2015-10-15
We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less
Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard
2014-01-01
Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific information about genes or microRNAs is quick and easily accessible. Hence, this platform can support the ongoing OS research and biomarker discovery. Database URL: http://osteosarcoma-db.uni-muenster.de. © The Author(s) 2014. Published by Oxford University Press.
Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard
2014-01-01
Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific information about genes or microRNAs is quick and easily accessible. Hence, this platform can support the ongoing OS research and biomarker discovery. Database URL: http://osteosarcoma-db.uni-muenster.de PMID:24865352
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
Harnessing Solar Energy Using Photosynthetic and Organic Pigments
NASA Astrophysics Data System (ADS)
Fitzsimons, Toby Ryan
Fossil fuels are a finite energy resource that must be supplemented or replaced by more stable forms of electrical energy. Solar technology research strives to supplement and provide eventual replacement for fossil fuel technology. This experiment focused on the use of natural pigments as photo-sensitizers in the current generation of solar cells called dye sensitized solar cells (DSSCs). Pigments from purified chlorophyll a, chlorophyll b, chlorophyll a/b, crude spinach (Spinacia oleracea) extract, phycocyanin, and chlorophyllin were used to construct DSSCs and evaluated, along with a control containing no pigment, for solar energy conversion. The anode of the solar cells consisted of titanium dioxide (TiO2) plates soaked in pigment solutions for twenty-four hours. The plates were assembled, along with an electrolyte sandwiched between cells, and a platinum-coated counter plate that functioned as the cathode. A gasket seal was placed between the plates and held together with rubber bands. The DSSCs were each tested for a maximum power (Pmax) point and a resistor was selected that corresponded to the resistance at that point. The cells were randomly placed into a power block assembly located in an environmental chamber with lighting that provided an average of 27,590 lumens at the surface of DSSCs. With appropriate resistors in place, the cells were subjected to twelve-hour days and twelve-hour nights for ten days, and measurements were recorded every ten minutes. Data were collected to obtain values for voltage in millivolts (mV), current in microamps (microA), and power in microwatts (microW), as well as beginning and ending efficiencies in converting light to usable energy. Voltages were substantially higher during the day than at night for all pigments, except for the control, indicating that the pigments functioned as DSSCs. Hence, only daytime values were used for data analysis. Voltage during the ten-day experiment ranged from 3.99 to 274 mV; current ranged from 0.0180 to 41.9 microA, and power ranged from 0.00 to 11.3 microW. Chlorophyllin had the highest peak and least voltage (274 and 161 mV), highest peak and least current (41.9 and 21.8 microA), and highest peak and least power (11.3 and 4.84 microW). The ranking of the pigments for peak voltage was: Chlorophyllin = Crude Extract ≥ Chlorophyll a = Chlorophyll a/b ≥ Phycocyanin = Chlorophyll b > Control. The ranking for least voltage was: Chlorophyllin > Phycocyanin ≥ Chlorophyll a/b ≥ Crude Extract ≥ Chlorophyll b ≥ Chlorophyll a ≥ Control. Ranking for peak and least values were similar for current and power. Solar energy conversion (efficiency in converting light energy to usable energy in watts per square meter) for all treatments ranged from 0.000595 to 0.0217% at the beginning of the experiment, and was highest in cells constructed with chlorophyllin. Based on rankings from peak and ending voltage values, as well as other measurements, it was concluded that DSSCs constructed with chlorophyllin performed the best and lasted the longest as photo-sensitizers, compared to other pigments used in this investigation. The DSSCs constructed with crude extract performed almost as well as those constructed with chlorophyllin at the beginning of the experiment, but degradation of this naturally-made pigment may have prevented these cells from sustaining solar energy conversion for more than a few days. Other pigments demonstrated conversion values higher than those of control DSSCs which contained no pigments. The results from this project provide evidence that DSSCs can produce useable energy. More research is needed to enhance and prolong the efficiency of DSSCs in solar energy conversion.
Simakov, Oleg; Larsson, Tomas A; Arendt, Detlev
2013-09-01
Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.
Photo-induced micro-mechanical optical switch
Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.
2002-01-01
An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.
Siqueira, José F; Rôças, Isabela N; Andrade, Arnaldo F B; de Uzeda, Milton
2003-02-01
A 16S rDNA-based polymerase chain reaction (PCR) method was used to detect Peptostreptococcus micros in primary root canal infections. Samples were collected from 50 teeth having carious lesions, necrotic pulps, and different forms of periradicular diseases. DNA extracted from the samples was amplified using the PCR assay, which yielded a specific fragment of P. micros 16S rDNA. P. micros was detected in 6 of 22 root canals associated with asymptomatic chronic periradicular lesions (27.3%), 2 of 8 teeth with acute apical periodontitis (25%), and 6 of 20 cases of acute periradicular abscess (30%). In general, P. micros was found in 14 of 50 cases (28%). There was no correlation between the presence of P. micros and the occurrence of symptoms. Findings suggested that P. micros can be involved in the pathogenesis of different forms of periradicular lesions.
Predicting Active Users' Personality Based on Micro-Blogging Behaviors
Hao, Bibo; Guan, Zengda; Zhu, Tingshao
2014-01-01
Because of its richness and availability, micro-blogging has become an ideal platform for conducting psychological research. In this paper, we proposed to predict active users' personality traits through micro-blogging behaviors. 547 Chinese active users of micro-blogging participated in this study. Their personality traits were measured by the Big Five Inventory, and digital records of micro-blogging behaviors were collected via web crawlers. After extracting 845 micro-blogging behavioral features, we first trained classification models utilizing Support Vector Machine (SVM), differentiating participants with high and low scores on each dimension of the Big Five Inventory. The classification accuracy ranged from 84% to 92%. We also built regression models utilizing PaceRegression methods, predicting participants' scores on each dimension of the Big Five Inventory. The Pearson correlation coefficients between predicted scores and actual scores ranged from 0.48 to 0.54. Results indicated that active users' personality traits could be predicted by micro-blogging behaviors. PMID:24465462
Azevedo, Creuza da Silva
2010-06-01
This paper deals with organization management in a new perspective, stressing the micro-social aspects and the role of individuals in the process of implementing change in public health organizations such as hospitals. Following the paths of French psychosociology, the article approaches the imaginary, intersubjective and collective dimensions of these organizations, highlighting the ways hospitals' directors and employees engage themselves in a struggle for power, affiliation and recognition. An essentially interactive and intersubjective activity, management is examined in the light of psychoanalysis's leadership function. It seems crucial to take into account the directors' potential structuring role in order to understand the organizational changing processes. Nevertheless, the mounting crisis in Rio de Janeiro public health services does not favor change and the building of personal bonds, but disruption, dismantle of institutional affiliations. In this scenario, the management structuring function and the director's social and psychological mediating role lose ground.
High-speed fixed-target serial virus crystallography
Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim; Sutton, Geoff; Harlos, Karl; Walter, Thomas S.; Meyer, Jan; Fischer, Pontus; Duman, Ramona; Vartiainen, Ismo; Reime, Bernd; Warmer, Martin; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Sauter, Nicholas K.; Kotecha, Abhay; Kelly, James; Rowlands, David J.; Sikorsky, Marcin; Nelson, Silke; Damiani, Daniel S.; Alonso-Mori, Roberto; Ren, Jingshan; Fry, Elizabeth E.; David, Christian; Stuart, David I.; Wagner, Armin; Meents, Alke
2017-01-01
We report a method for serial X-ray crystallography at X-ray free electron lasers (XFELs), which allows for full use of the current 120 Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micro-patterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery we were able to determine the crystal structures of a picornavirus, bovine enterovirus 2 (BEV2), and the cytoplasmic polyhedrosis virus type 18 polyhedrin. Total data collection times were less than 14 and 10 minutes, respectively. Our method requires only micrograms of sample and will therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for the most efficient use of the limited beamtime available at XFELs and should enable a substantial increase in sample throughput at these facilities. PMID:28628129
Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection.
Cao, Moyuan; Xiao, Jiasheng; Yu, Cunming; Li, Kan; Jiang, Lei
2015-09-09
Harvesting micro-droplets from fog is a promising method for solving global freshwater crisis. Different types of fog collectors have been extensively reported during the last decade. The improvement of fog collection can be attributed to the immediate transportation of harvested water, the effective regeneration of the fog gathering surface, etc. Through learning from the nature's strategy for water preservation, the hydrophobic/hydrophilic cooperative Janus system that achieved reinforced fog collection ability is reported here. Directional delivery of the surface water, decreased re-evaporation rate of the harvested water, and thinner boundary layer of the collecting surface contribute to the enhancement of collection efficiency. Further designed cylinder Janus collector can facilely achieve a continuous process of efficient collection, directional transportation, and spontaneous preservation of fog water. This Janus fog harvesting system should improve the understanding of micro-droplet collection system and offer ideas to solve water resource crisis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ku, Nai-Lun; Chen, Yi-Yung; Hsieh, Wei-Che; Whang, Allen Jong-Woei
2012-02-01
Due to the energy crisis, the principle of green energy gains popularity. This leads the increasing interest in renewable energy such as solar energy. Thus, how to collect the sunlight for indoor illumination becomes our ultimate target. With the environmental awareness increasing, we use the nature light as the light source. Then we start to devote the development of solar collecting system. The Natural Light Guiding System includes three parts, collecting, transmitting and lighting part. The idea of our solar collecting system design is a concept for combining the buildings with a combination of collecting modules. Therefore, we can use it anyplace where the sunlight can directly impinges on buildings with collecting elements. In the meantime, while collecting the sunlight with high efficiency, we can transmit the sunlight into indoor through shorter distance zone by light pipe where we needs the light. We proposed a novel design including disk-type collective lens module. With the design, we can let the incident light and exit light be parallel and compressed. By the parallel and compressed design, we make every output light become compressed in the proposed optical structure. In this way, we can increase the ratio about light compression, get the better efficiency and let the energy distribution more uniform for indoor illumination. By the definition of "KPI" as an performance index about light density as following: lm/(mm)2, the simulation results show that the proposed Concentrator is 40,000,000 KPI much better than the 800,000 KPI measured from the traditional ones.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.
2017-10-01
We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.
Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods
NASA Astrophysics Data System (ADS)
Prasad, Neena; Karthikeyan, Balasubramanian
2018-06-01
Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.
NASA Technical Reports Server (NTRS)
Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey
2015-01-01
Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.
Qiu, Xuejun; Huang, Hanchuan; Huang, Zhitong; Zhuang, Zhengfei; Guo, Zhouyi; Liu, Songhao
2017-01-01
Red light-emitting diodes (LED) were used to irradiate the isolated hypertension hemoglobin (Hb) and Raman spectra difference was recorded using confocal micro-Raman spectroscopy. Differences were observed between the controlled and irradiated Hb by comparing the spectra records. The Raman spectrum at the 1399 cm -1 band decreased following prolonged LED irradiation. The intensity of the 1639 cm -1 band decreased dramatically in the first five minutes and then gradually increased in a time-dependent manner. This observation indicated that LED irradiation increased the ability of oxygen binding in Hb. The appearance of the heme aggregation band at 1399 cm -1 , in addition to the oxygen marker band at 1639 cm -1 , indicated that, in our study, 30 min of irradiation with 15.0 mW was suitable for inhibiting heme aggregation and enhancing the oxygen-carrying capacity of Hb. Principal component analysis showed a one-to-one relationship between irradiated Hb at different time points and the corresponding Raman spectra. Our approach could be used to analyze the hemoglobin from patients with confocal micro-Raman spectroscopy and is helpful for developing new nondrug hypertension therapy.
Bamba, Sonya; Rocha, Karolinne M; Ramos-Esteban, Jerome C; Krueger, Ronald R
2009-06-01
To report the incidence of and factors associated with rainbow glare after laser in situ keratomileusis (LASIK) flap creation with a 60 kHz femtosecond laser. Department of Refractive Surgery, Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. Consecutive patients having LASIK by the same surgeon were questioned during postoperative examinations or by telephone about postoperative rainbow glare (radiating colors around a white light at night). Femtosecond laser (IntraLase) settings included pulse frequency 60 kHz, flap thickness 90 to 110 mum, and spot/line separation 8 mum. Raster energy was 0.8 microJ (75% of eyes) and 1.0 to 1.1 microJ (25%). Excimer laser ablation was performed with the LADAR 4000 or 6000 platform using custom or conventional treatments. Of 260 consecutive patients, 256 (98.5%) were successfully contacted. Fifteen patients (28 eyes) reported postoperative rainbow glare (5.8%), described as 4 to 12 bands of color around a white light, with 6 bands most common. The symptom did not correlate with refractive error, age, or sex but was more frequent at 1.0 microJ or 1.1 microJ raster energy (11.6%) than at 0.8 microJ (4.1%). The incidence followed a bimodal distribution, with the first grouping due to inadequate alignment and higher energy just after laser installation and the second just before a later maintenance service call. Rainbow glare is a mild optical side effect of femtosecond LASIK. In this study, higher raster energy levels and length of time between service calls were associated with the occurrence of rainbow glare.
Fast and slow UV-photoresponse in n-type GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, R.; Koynov, S.; Brogueira, P.
1999-07-01
The photocurrent decay in n-type GaN films prepared by low-pressure chemical vapor deposition (LPCVD) was measured in the ms-to-s time range using steady-state UV light and in the {micro}s time regime using short high-power pulses from higher harmonics of a Nd:YAG laser. A power law time dependence is observed with exponents ranging from {minus}0.1 to {minus}0.3, which is an indication of a broad distribution of trapping states inside the band gap. Combining Hall effect results and the magnitude of the initial slope of the photocurrent decay they estimate a mobility-lifetime product of 2.1 x 10{sup {minus}4} cm{sup 2}/V for photogeneratedmore » electrons at times below a few {micro}s. Slow transients might be a handicap for applications of GaN in UV detectors.« less
Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun
2009-04-01
Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.
Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie
2009-10-01
MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.
The application of digital image plane holography technology to identify Chinese herbal medicine
NASA Astrophysics Data System (ADS)
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.
Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro
2016-01-01
At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.
The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium
Zhou, Lei; Guo, Zehong; Rong, Mingdeng; Liu, Xiangning; Lai, Chunhua; Ding, Xianglong
2013-01-01
Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation. PMID:23861853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongjin, E-mail: wangyj@njupt.edu.cn; Zhu, Guixia; Gao, Xumin
We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junctionmore » InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.« less
Design and fabrication of an elliptical micro-lens array with grating for laser safety
NASA Astrophysics Data System (ADS)
Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.
2015-10-01
With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.
Why the developing world is the perfect market place for solid state lighting
NASA Astrophysics Data System (ADS)
Schultz, Christoph; Platonova, Inna; Doluweera, Ganesh; Irvine-Halliday, Dave
2008-08-01
Much has been written about the daily challenge for survival faced by countless millions of developing world families and the overdeveloped world has offered a number of solutions by which those at the base of the economic pyramid (BOP) can help themselves. Light Up The World (LUTW), the global leader in bringing Renewable Energy (RE) based Solid State Lighting (SSL) to the developing world, offers yet another solution, and one that comes with a very high probability of success. In this paper we discuss: the critical role played by micro credit (banking for the poor); a typical example of a developing world community and their lighting needs and expenditures; how SSL can contribute positively to all eight of the Millennium Development Goals; the micro and macroeconomics of SSL at the BOP, its numerous societal benefits and its potential perverse outcomes; and thought there will always be a role for the donation based model, it is only through the market model that safe, healthy and affordable SSL will reach the majority of the BOP, such are the staggering numbers involved. LUTW's fundamental goal, through the facilitation of RE based SSL, is to improve the quality of life of those, who through no fault of their own, find themselves trapped in a cycle of poverty.
Hansen, Anthony D.
1990-01-01
An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.
Campobello, D; Lindström, J; Di Maggio, R; Sarà, M
2017-01-01
The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.
Campobello, D.; Lindström, J.; Di Maggio, R.; Sarà, M.
2017-01-01
The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales. PMID:28319183
MicroSIFT News. October 1980 ((and)) October 1981.
ERIC Educational Resources Information Center
Marler, Jerilyn, Ed.
1981-01-01
This document comprises the first two issues of a newsletter published by the Microcomputer Software and Information for Teachers (MicroSIFT) Clearinghouse, which is a project designed to establish effective procedures for the collection, evaluation, and dissemination of materials and information, and develop a flexible user support and technical…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... in excess of the micro-purchase threshold to the Federal Procurement Data Center which collects, processes, and disseminates official statistical data on Federal contracting. Contracting officers insert...) Number, in solicitations they expect will result in contracts in excess of the micro-purchase threshold...
NASA Astrophysics Data System (ADS)
McClatchy, David M., III; Rizzo, Elizabeth J.; Meganck, Jeff; Kempner, Josh; Vicory, Jared; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2017-12-01
A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 μm for a 1.2 min scan. The SLI system, spanning wavelengths 490 nm to 800 nm and spatial frequencies up to 1.37 mm-1 , was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, μs\\prime and phase function parameter, γ, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7 mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS.
Factors Affecting the Discharge of Micro-Plastic Fibers from Household Laundry
NASA Astrophysics Data System (ADS)
Lange, N.
2017-12-01
Every day millions of loads of laundry are done in in the United States alone. Many, if not most, include synthetic fibers. During washing, micro-plastic fibers are released from the fabric, and discharged into the wastewater. These fibers have been detected in fresh water throughout the world and all of the oceans. These micro-plastic fibers are an emerging environmental contaminant that can adversely affect wildlife and are highly bio-accumulated in aquatic food-chains. Additionally, like other plastics, micro-fibers are not readily biodegraded and persist in the environment for a long time. In this research, I explored the effect of the way we wash clothes on the amount of micro-plastic fibers that are shed by common clothing materials containing man-made fibers. I collected discharge samples from wash and rinse cycles of a washing machine. I collected samples from a control wash using no detergent and then repeated five times. Next, I repeated the experiment five times using four different types of detergent. Large amounts of micro-plastic fibers were released during all wash cycles. However, the numbers decreased during the later rinse cycles. The use of laundry detergent increased the number of micro-plastic fibers released into the wash-water. Deep cleaning detergents produced over ten times more fibers than the no-detergent control. The gentlest detergent only released two times more fibers than the control. Therefore, it would be possible to affect the number of fibers released into the wastewater simply by selection of detergent. The ultimate goal of my research is to develop an optimized detergent that minimizes the number of micro-plastic fibers generated by washing and still effectively clean clothes.
Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng
2016-01-01
The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.
X-ray Micro-Tomography of Ablative Heat Shield Materials
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.
2016-01-01
X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-01
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Zhao, Zhehao; Yu, Siran; Li, Min; Gui, Xin; Li, Ping
2018-03-21
In this study, the presence of microRNAs in coconut water was identified by real-time polymerase chain reaction (PCR) based on the results of high-throughput small RNA sequencing. In addition, the differences in microRNA content between immature and mature coconut water were compared. A total of 47 known microRNAs belonging to 25 families and 14 new microRNAs were identified in coconut endosperm. Through analysis using a target gene prediction software, potential microRNA target genes were identified in the human genome. Real-time PCR showed that the level of most microRNAs was higher in mature coconut water than in immature coconut water. Then, exosome-like nanoparticles were isolated from coconut water. After ultracentrifugation, some particle structures were seen in coconut water samples using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate fluorescence staining. Subsequent scanning electron microscopy observation and dynamic light scattering analysis also revealed some exosome-like nanoparticles in coconut water, and the mean diameters of the particles detected by the two methods were 13.16 and 59.72 nm, respectively. In conclusion, there are extracellular microRNAs in coconut water, and their levels are higher in mature coconut water than in immature coconut water. Some exosome-like nanoparticles were isolated from coconut water, and the diameter of these particles was smaller than that of animal-derived exosomes.
miR-7 Increases Cisplatin Sensitivity of Gastric Cancer Cells Through Suppressing mTOR
Lian, Yan-Jun; Dai, Xiang; Wang, Yuan-Jie
2017-01-01
MicroRNAs have been reported to play an important role in diverse biological processes and cancer progression. MicroRNA-7 has been observed to be downregulated in human gastric cancer tissues, but the function of microRNA-7 in gastric cancer has not been well investigated. In this study, we demonstrate that the expression of microRNA-7 was significantly downregulated in 30 pairs of human gastric cancer tissues compared to adjacent normal tissues. Enforced expression of microRNA-7 inhibited cell proliferation and migration abilities of gastric cancer cells, BGC823 and SGC7901. Furthermore, microRNA-7 targeted mTOR in gastric cancer cells. In human clinical specimens, mTOR was higher expressed in gastric cancer tissues compared with adjacent normal tissues. More interestingly, microRNA-7 also sensitizes gastric cancer cells to cisplatin (CDDP) by targeting mTOR. Collectively, our results demonstrate that microRNA-7 is a tumor suppressor microRNA and indicate its potential application for the treatment of human gastric cancer in future. PMID:28693382
Application of interleaved flyback micro inverter in a grid connected system
NASA Astrophysics Data System (ADS)
Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam
2018-04-01
The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.
Micro-gun based on laser pulse propulsion.
Yu, Haichao; Li, Hanyang; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2017-11-24
This paper proposes a novel "micro-gun" structure for laser pulse propulsion. The "micro-bullets" (glass microspheres) are irradiated by a laser pulse with a 10 ns duration in a dynamic process. Experimental parameters such as the microsphere diameter and the laser pulse energy are varied to investigate their influence on laser pulse propulsion. The energy field and spatial intensity distribution in the capillary tube were simulated using a three-dimensional finite-difference time-domain method. The experimental results demonstrate that the propulsion efficiency is dependent on the laser pulse energy and the microsphere size. The propulsion modes and sources of the propelling force were confirmed through direct observation and theoretical calculation. Waves also generated by light-pressure and thermal expansions assisted the propulsion.
A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection
NASA Astrophysics Data System (ADS)
Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao
2018-05-01
Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.
High temperature x-ray micro-tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.
2016-07-27
There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrixmore » composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.« less