Sample records for micro optical components

  1. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  2. Rapid prototyping of interfacing microcomponents for printed circuit board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2012-01-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  3. Micro guidance and control synthesis: New components, architectures, and capabilities

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1993-01-01

    New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.

  4. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  5. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    PubMed

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  6. Design, fabrication and testing of hierarchical micro-optical structures and systems

    NASA Astrophysics Data System (ADS)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems.

  7. Micro-optics for microfluidic analytical applications.

    PubMed

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  8. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  9. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  10. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  11. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  12. MOEMs, key optical components for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Dohlen, Kjetil; Burgarella, Denis; Ferrari, Marc; Buat, Veronique

    2017-11-01

    Based on the micro-electronics fabrication process, MicroOpto-Electro-Mechanical Systems (MOEMS) are under study, in order to be integrated in next-generation astronomical instruments and telescopes, especially for space missions. The main advantages of micro-optical components are their compactness, scalability, specific task customization using elementary building blocks, and they allows remote control. As these systems are easily replicable, the price of the components is decreasing dramatically when their number is increasing. The two major applications of MOEMS are Multi-Object Spectroscopy masks and Deformable Mirror systems.

  13. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  14. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  15. Development and analysis of new type microresonator with electro-optic feedback

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas; Brunius, Alfredas; Bauce, Jokubas

    2016-04-01

    Micro-resonators are fundamental components integrated in a hosts of MEMS applications: safety and stability systems, biometric sensors, switches, mechanical filters, micro-mirror devices, material characterization, gyroscopes, etc. A constituent part of the micro-resonator is a diffractive optical element (DOE). Different methods and materials are used to produce diffraction gratings for DOEs. Two-dimensional or three-dimensional periodic structures of micrometer-scale period are widely used in microsystems or their components. They can be used as elements for micro-scale synthesis, processing, and analysis of chemical and biological samples. On the other hand micro-resonator was designed using composite piezoelectric material. In case when microscopes, vibrometers or other direct measurement methods are destructive and hardly can be employed for in-situ analysis, indirect measurement of electrical signal generated by composite piezoelectric layer allows to measure natural frequency changes. Also piezoelectric layer allows to create a novel micro-resonator with controllable parameters, which could assure much higher functionality of micro-electromechanical systems. The novel micro-resonator for pollution detection is proposed. Mathematical model of the micro-resonator and its dynamical, electrical and optical characteristics are presented.

  16. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  17. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    NASA Astrophysics Data System (ADS)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  18. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  19. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  20. High speed micro scanner for 3D in-volume laser micro processing

    NASA Astrophysics Data System (ADS)

    Schaefer, D.; Gottmann, J.; Hermans, M.; Ortmann, J.; Kelbassa, I.

    2013-03-01

    Using an in-house developed micro scanner three-dimensional micro components and micro fluidic devices in fused silica are realized using the ISLE process (in-volume selective laser-induced etching). With the micro scanner system the potential of high average power femtosecond lasers (P > 100 W) is exploited by the fabrication of components with micrometer precision at scan speeds of several meters per second. A commercially available galvanometer scanner is combined with an acousto-optical and/or electro-optical beam deflector and translation stages. For focusing laser radiation high numerical aperture microscope objectives (NA > 0.3) are used generating a focal volume of a few cubic micrometers. After laser exposure the materials are chemically wet etched in aqueous solution. The laser-exposed material is etched whereas the unexposed material remains nearly unchanged. Using the described technique called ISLE the fabrication of three-dimensional micro components, micro holes, cuts and channels is possible with high average power femtosecond lasers resulting in a reduced processing time for exposure. By developing the high speed micro scanner up-scaling of the ISLE process is demonstrated. The fabricated components made out of glass can be applied in various markets like biological and medical diagnostics as well as in micro mechanics.

  1. Laser beam soldering of micro-optical components

    NASA Astrophysics Data System (ADS)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  2. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

  3. A novel method for fabrication of continuous-relief optical elements

    NASA Astrophysics Data System (ADS)

    Guo, Xiaowei; Du, Jinglei; Chen, Mingyong; Ma, Yanqin; Zhu, Jianhua; Peng, Qinjun; Guo, Yongkang; Du, Chunlei

    2005-08-01

    A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled spatial-light-modulator (SLM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of digital SLM-based lithography and enzyme etching SHSG are discussed in detail, and microlens arrays, micro axicon-lens arrays and gratings with good profile were achieved. This method is simple, cheap and the aberration in processing procedures can be in-situ corrected in the step of designing mask, so it is a practical method to fabricate continuous profile for low-volume production.

  4. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less

  5. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  6. Reconfigurable and responsive droplet-based compound micro-lenses.

    PubMed

    Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias

    2017-03-07

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.

  7. Reconfigurable and responsive droplet-based compound micro-lenses

    PubMed Central

    Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias

    2017-01-01

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505

  8. MEMS: A new approach to micro-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less

  9. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Waveguide optoelectronic components for devices used in functional processing of digital information

    NASA Astrophysics Data System (ADS)

    Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.

    1995-10-01

    The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.

  10. Optical assembly of bio-hybrid micro-robots.

    PubMed

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.

  11. Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions

    NASA Astrophysics Data System (ADS)

    Agrawal, Gautam

    A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.

  12. Application of micro- and nanotechnologies for the fabrication of optical devices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter

    1998-03-01

    The development of micro-opto-electro-mechanical systems (MOEMS) and devices no longer focuses on feasibility studies and expensive demonstrators. On the contrary, fabrication of micro-optical components is already feeding dynamic markets with a large variety of products that are more or less on the verge of inexpensive mass production. A major application area for MOEMS is, without any doubt, tele- and datacommunications, while miniature optical sensors (e.g. spectrometers and interferometers) have a growing part in many kinds of biotechnological, chemical and pharmaceutical applications. In this presentation numerous examples for optical microstructures are given that range from the field of low cost fiberoptic components to polymer waveguide elements, from fiber switches to mass-producible microlenses made of thermoplastics or glass, and from microstructured photonic bandgap materials to optical sensor tips for investigating nanostructures. It is emphasized that for realizing MOEMS very different materials have to be processed while the necessary hybrid integration demands for specific automated assembly methods. In particular, the examples given show now microtechnologies can be adapted and combined with each other to take into account the special requirements of the product.

  13. Precision topographic inspection of MOEMS by moiré interferometry

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2016-04-01

    The manufacturing of micro components is useful and necessary for eventual use in the field of MOEMS micro technologies, but, micro fabrication process inspection quality is required. The accuracy of components geometry is parameter which influences the precision of the function. Moiré topography is full-field optical technique in which the contour and shape of object surfaces is measured by means of geometric interference between two identical line gratings. The technique has found various applications in diverse fields, from biomedical to industrial, scientific applications, and miniaturized instrumentation for space applications. This method of optical scanning presented in this paper is used for precision measurement deformation or absolute forms in comparison with a reference component form, of optical or mechanical micro components, on surfaces that are of the order of mm2 and more. The optical device used allows high magnification dimensional surface inspected which allows easy processing and reaches an exceptional nanometric imprecision of measurements. This measurement technique can be used advantageously to measure the deformations generated by constraints on functional parts and the influence of these variations on the function. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard, which saves time, money and accuracy. This method of control and measurement allows real time control; speed control and the detection resolution may vary depending on the importance of defects to be measured.

  14. Self-aligned spatial filtering using laser optical tweezers.

    PubMed

    Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C

    2006-09-01

    We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.

  15. Printed Biopolymer-Based Electro-Optic Device Components

    DTIC Science & Technology

    2013-07-01

    devices and fabricated e-beam lithography-based master molds. Printed micro and nanostructures using a newly developed spin-on nanoprinting (SNAP...polymeric materials. Among the natural biopolymers , deoxyribonucleic acid (DNA) is an attractive material which can be used to make electronic and...photonic devices [2, 3]. If patterned on the micro and nanoscale using a soft lithography technique, high quality biodegradable optical devices can be

  16. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  17. Progress and profit through microtechnologies: commercial applications of MEMS/MOEMS

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Ehrfeld, Ursula

    2001-09-01

    Micro technology deals with miniaturization and integration in all areas of technology outside of microelectronics like micro mechanics, micro optics, micro acoustics, micro fluid technology, micro reaction technology and further disciplines which are focused on technical components and systems with characteristic dimensions in the micrometer range. Within a period of about ten years a multi-billion dollar market has been set up with many products for daily life. The growth rate of the market of micro technology will remain on a high level for the years to come. Mega trends resulting from fundamental human wishes for health, information, mobility and sustainable development are creating a further growing basis for micro technical products. A broad spectrum of production processes and materials has been developed to meet the requirements of a strongly diversified range of applications. For the development of new components and systems the importance of software tools for simulation of functional properties, production processes and comprehensive optimization is growing rapidly. Micro devices are meanwhile used extensively in information, automotive, and medical technologies. In addition, micro technology is generating a completely novel basis for chemical engineering, life sciences, industrial automation and optical communication, to mention only a few disciplines where future innovation will be dominated by miniaturization.

  18. Recent Developments in Microsystems Fabricated by the Liga-Technique

    NASA Technical Reports Server (NTRS)

    Schulz, J.; Bade, K.; El-Kholi, A.; Hein, H.; Mohr, J.

    1995-01-01

    As an example of microsystems fabricated by the LIGA-technique (x-ray lithography, electroplating and molding), three systems are described and characterized: a triaxial acceleration sensor system, a micro-optical switch, and a microsystem for the analysis of pollutants. The fabrication technologies are reviewed with respect to the key components of the three systems: an acceleration sensor, and electrostatic actuator, and a spectrometer made by the LIGA-technique. Aa micro-pump and micro-valve made by using micromachined tools for molding and optical fiber imaging are made possible by combining LIGA and anisotropic etching of silicon in a batch process. These examples show that the combination of technologies and components is the key to complex microsystems. The design of such microsystems will be facilitated is standardized interfaces are available.

  19. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  20. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less

  1. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  2. Diffractive optics in industry and research: novel components for optical security systems

    NASA Astrophysics Data System (ADS)

    Laakkonen, Pasi; Turunen, Jari; Pietarinen, Juha; Siitonen, Samuli; Laukkanen, Janne; Jefimovs, Konstantins; Orava, Joni; Ritala, Mikko; Pilvi, Tero; Tuovinen, Hemmo; Ventola, Kalle; Vallius, Tuomas; Kaipiainen, Matti; Kuittinen, Markku

    2005-09-01

    Design and manufacturing of diffractive optical elements (DOEs) are presented. Mass replication methods for DOEs are explained including UV-replication, micro-injection moulding and reel-to-reel production. Novel applications of diffractive optics including spectroscopic surface relief gratings, antireflection surfaces, infrared light rejection gratings, light incoupling into thin waveguides, and additive diffractive colour mixing are presented.

  3. Micro-satellites thermal control—concepts and components

    NASA Astrophysics Data System (ADS)

    Baturkin, Volodymyr

    2005-01-01

    The main idea of this paper is to present the survey of current tendencies in micro-satellites thermal control concepts that can be rational and useful for posterior missions due to intensive expansion of satellites of such type. For this purpose, the available references and lessons learned by the National Technical University of Ukraine during the elaboration of thermal control hardware for micro-satellites Magion 4, 5, BIRD and autonomous thermal control systems for interplanetary missions VEGA, PHOBOS have been used. The main parameters taken into consideration for analysis are the satellite sizes, mass, power consumption, orbit parameters, altitude control peculiarities and thermal control description. It was defined that passive thermal control concepts are widely used, excepting autonomous temperature regulation for sensitive components such as batteries, high-precision optics, and some types of sensors. The practical means for realization of passive thermal control design as multi-layer insulation, optical coatings, heat conductive elements, gaskets are briefly described.

  4. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.

    PubMed

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-02

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

  5. Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography

    PubMed Central

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-01

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389

  6. Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer

    NASA Technical Reports Server (NTRS)

    Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2015-01-01

    Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.

  7. Photonics technology development for optical fuzing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employmore » discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.« less

  8. Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses

    PubMed Central

    Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.

    2010-01-01

    Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573

  9. Experimental implementation of fiber optic bundle array wide FOV free space optical communications receiver.

    PubMed

    Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E

    2012-06-20

    A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.

  10. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics.

    PubMed

    Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R

    2013-12-01

    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.

  11. Spatial super-resolution of colored images by micro mirrors

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev

    2018-06-01

    In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.

  12. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  13. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.

  14. Magnetostrictive Micro Mirrors for an Optical Switch Matrix

    PubMed Central

    Lee, Heung-Shik; Cho, Chongdu; Cho, Myeong-Woo

    2007-01-01

    We have developed a wireless-controlled compact optical switch by silicon micromachining techniques with DC magnetron sputtering. For the optical switching operation, micro mirror is designed as cantilever shape size of 5mm×800μm×50μm. TbDyFe film is sputter-deposited on the upper side of the mirror with the condition as: Ar gas pressure below 1.2×10-9 torr, DC input power of 180W and heating temperature of up to 250°C for the wireless control of each component. Mirrors are actuated by externally applied magnetic fields for the micro application. Applied beam path can be changed according to the direction and the magnitude of applied magnetic field. Reflectivity changes, M-H curves and X-ray diffractions of sputtered mirrors are measured to determine magneto-optical, magneto-elastic properties with variation in sputtered film thickness. The deflected angle-magnetic field characteristics of the fabricated mirror are measured. PMID:28903221

  15. Micro-Structured Materials for Generation of Coherent Light and Optical Signal Processing

    DTIC Science & Technology

    2008-12-22

    Bliss, and D. Weyburne,, "GaAs optical parametric oscillator with circularly polarized and depolarized pump", Optics Letters, No. 18, Vol. 32, pp...Because we measure the space-charge field by propagating the intense green laser beam along the crystal c- axis, the polarization of the light is...ordinary. Most applications utilize light with extraordinary polarization to make use of the largest component of the nonlinear or electro-optic tensor

  16. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  17. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  18. Space micro-guidance and control - Applications and architectures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-01-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  19. Space micro-guidance and control - Applications and architectures

    NASA Astrophysics Data System (ADS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-07-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, M.F.; Maricle, S.; Mouser, R.

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse tomore » pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.« less

  1. The influence of flywheel micro vibration on space camera and vibration suppression

    NASA Astrophysics Data System (ADS)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  2. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  3. Optical and electrical interfacing technologies for living cell bio-chips.

    PubMed

    Shacham-Diamand, Y; Belkin, S; Rishpon, J; Elad, T; Melamed, S; Biran, A; Yagur-Kroll, S; Almog, R; Daniel, R; Ben-Yoav, H; Rabner, A; Vernick, S; Elman, N; Popovtzer, R

    2010-06-01

    Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell biochips where the signal is generated due to the genetic response of the cells. The solid-state platform hosts the biological component, i.e. the living cells, and integrates all the required micro-system technologies, i.e. the micro-electronics, micro-electro optics, micro-electro or magneto mechanics and micro-fluidics. The genetic response of the cells expresses proteins that generate: a. light by photo-luminescence or bioluminescence, b. electrochemical signal by interaction with a substrate, or c. change in the cell impedance. The cell response is detected by a front end unit that converts it to current or voltage amplifies and filters it. The resultant signal is analyzed and stored for further processing. In this paper we describe three examples of whole-cell bio chips, photo-luminescent, bioluminescent and electrochemical, which are based on the genetic response of genetically modified E. coli microbes integrated on a micro-fluidics MEMS platform. We describe the chip outline as well as the basic modeling scheme of such sensors. We discuss the highlights and problems of such system, from the point of view of micro-system-technology.

  4. Miniaturized CARS microendoscope probe design for label-free intraoperative imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.

    2014-03-01

    A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.

  5. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  6. Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications.

    PubMed

    Yang, Xiaogang; Lin, Xianqing; Zhao, Yong Sheng; Yan, Dongpeng

    2018-05-02

    Micro- and nanometer-sized metal-organic frameworks (MOFs) materials have attracted great attention due to their unique properties and various potential applications in photonics, electronics, high-density storage, chemo-, and biosensors. The study of these materials supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of inorganic-organic hybrid materials. In this Minireview article, we introduce recent breakthroughs in the controlled synthesis of MOF micro-/nanomaterials with specific structures and compositions, the tunable photonic and electronic properties of which would provide a novel platform for multifunctional applications. Firstly, the design strategies for MOFs based on self-assembly and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional MOF micro-/nanostructures. Their new applications including two-photon excited fluorescence, multi-photon pumped lasing, optical waveguides, nonlinear optical (NLO), and field-effect transistors are also outlined. Finally, we briefly discuss perspectives on the further development of these hybrid crystalline micro-/nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  8. Design and characterization of Ge passive waveguide components on Ge-on-insulator wafer for mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Takagi, Shinichi; Takenaka, Mitsuru

    2018-04-01

    We present the design methodology for Ge passive components including single-mode waveguide, grating couplers, multimode interferometer (MMI) couplers, and micro-ring resonators on the Ge-on-insulator wafer at a 1.95 µm wavelength. Characterizations of the fabricated Ge passive devices reveal a good consistence between the experimental and simulation results. By using the Ge micro-ring device, we also reveal that the thermo-optic coefficient in the Ge strip waveguide is 5.74 × 10-4/°C, which is much greater than that in Si.

  9. Application of an optical interferometer for measuring the surface contour of micro-components

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tay, C. J.

    2006-04-01

    The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.

  10. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  11. Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnections

    NASA Astrophysics Data System (ADS)

    Van Erps, Jurgen; Hendrickx, Nina; Bosman, Erwin; Van Daele, Peter; Debaes, Christof; Thienpont, Hugo

    2010-05-01

    Optical interconnections have gained interest over the last years, and several approaches have been presented for the integration of optics to the printed circuit board (PCB)-level. The use of a polymer optical waveguide layer appears to be the prevailing solution to route optical signals on the PCB. The most difficult issue is the efficient out-of-plane coupling of light between surface-normal optoelectronic devices (lasers and photodetectors) and PCB-integrated waveguides. The most common approach consists of using 45° reflecting micro-mirrors. The micro-mirror performance significantly affects the total insertion loss of the optical interconnect system, and hence has a crucial role on the system's bit error rate (BER) characteristics. Several technologies have been proposed for the fabrication of 45° reflector micro-mirrors directly into waveguides. Alternatively, it is possible to make use of discrete coupling components which have to be inserted into cavities formed in the PCB-integrated waveguides. In this paper, we present a hybrid approach where we try to combine the advantages of integrated and discrete coupling mirrors, i.e. low coupling loss and maintenance of the planararity of the top surface of the optical layer, allowing the lamination of additional layers or the mounting of optoelectronic devices. The micro-mirror inserts are designed through non-sequential ray tracing simulations, including a tolerance analysis, and subsequently prototyped with Deep Proton Writing (DPW). The DPW prototypes are compatible with mass fabrication at low cost in a wide variety of high-tech plastics. The DPW micro-mirror insert is metallized and inserted in a laser ablated cavity in the optical layer and in a next step covered with cladding material. Surface roughness measurements confirm the excellent quality of the mirror facet. An average mirror loss of 0.35-dB was measured in a receiver scheme, which is the most stringent configuration. Finally, the configuration is robust, since the mirror is embedded and thus protected from environmental contamination, like dust or moisture adsorption, which makes them interesting candidates for out-of-plane coupling in high-end boards.

  12. Neuroprotective and Anti-Inflammatory Effects of Rhus coriaria Extract in a Mouse Model of Ischemic Optic Neuropathy.

    PubMed

    Khalilpour, Saba; Behnammanesh, Ghazaleh; Suede, Fouad; Ezzat, Mohammed O; Muniandy, Jayadhisan; Tabana, Yasser; Ahamed, Mohamed Khadeer; Tamayol, Ali; Majid, Amin Malik Shah; Sangiovanni, Enrico; Dell'Agli, Mario; Majid, Aman Shah

    2018-04-23

    Modulating oxidative stresses and inflammation can potentially prevent or alleviate the pathological conditions of diseases associated with the nervous system, including ischemic optic neuropathy. In this study we evaluated the anti-neuroinflammatory and neuroprotective activities of Rhus coriaria ( R. coriaria) extract in vivo. The half maximal inhibitory concentration (IC 50 ) for DPPH, ABTS and β⁻carotene were 6.79 ± 0.009 µg/mL, 10.94 ± 0.09 µg/mL, and 6.25 ± 0.06 µg/mL, respectively. Retinal ischemia was induced by optic nerve crush injury in albino Balb/c mice. The anti-inflammatory activity of ethanolic extract of R. coriaria (ERC) and linoleic acid (LA) on ocular ischemia was monitored using Fluorescence Molecular Tomography (FMT). Following optic nerve crush injury, the mice treated with 400 mg/kg of ERC and LA exhibited an 84.87% and 86.71% reduction of fluorescent signal (cathepsin activity) respectively. The results of this study provide strong scientific evidence for the neuroprotective activity of the ERC, identifying LA as one of the main components responsible for the effect. ERC may be useful and worthy of further development for its adjunctive utilization in the treatment of optic neuropathy.

  13. A novel dual-detector micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas

    2005-01-01

    Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.

  14. Compact diode laser module at 1116 nm with an integrated optical isolation and a PM-SMF output

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Daniel; Hofmann, Julian; Werner, Nils; Sahm, Alexander; Paschke, Katrin

    2017-02-01

    In this work, a fiber-coupled diode laser module emitting around 1116 nm with an output power P < 60 mW is realized. As a laser light source a distributed Bragg reflector (DBR) ridge waveguide diode laser is applied. The module comprises temperature stabilizing components, a micro-lens system as well as an optical micro-isolator. At the output, a polarization-maintaining single-mode fiber (PM-SMF) with a core diameter of 5.5 μm and a standard FC/APC connector are utilized. The generated diffraction limited beam is characterized by a narrow linewidth ( δν < 10 MHz) and a high polarization extinction ratio (PER > 25 dB).

  15. Combined optical resolution photoacoustic and fluorescence micro-endoscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.

    2012-02-01

    We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.

  16. Multi terabits/s optical access transport technologies

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  17. Optical properties of in-vitro biomineralised silica.

    PubMed

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.

  18. Optical path difference microscopy with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2017-06-01

    In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

  19. Perspective and potential of smart optical materials

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.

  20. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special manipulation of the writing-reading optical beam can push holography toward storages at higher data densities, as presented by Norihiko Ishii et al (Wavefront compensation method using novel index in holographic data storage). Along a similar direction Furlan et al describe a very innovative technique for producing optical traps using novel Devil micro-lenses (Volumetric multiple optical traps produced by Devil's lenses). Vynnyk et al presented an interesting application of electron microscopy for monitoring sub-micrometric structures in 3D configurations (3D-measurement with the stereo scanning electron microscope on sub-micrometer structure). Finally, S. Rao et al present two interesting papers on integrated structures compatible with silicon technology: one describes the realisation of low-loss waveguides using amorphous silicon, a relatively novel material with many applications in very different domains (Low-loss amorphous silicon waveguid! es grown by PECVD on indium tin oxide), and one on the realisation of a electrically drivable device with affective compatibility with CMOS technology (Electro-optical modulating multistack device based on the CMOS-compatible technology of amorphous silicon). We hope that this special issue of the Journal of the European Optical Society will reflect the interest of the European Scientific Community toward these fundamental and applied topics and will demonstrate to readers some of the actual directions of research. We express our full appreciation to the authors that participated to this initiative which acts only as a primer for the vast amount of work now being undertaken in laser physics and applications in micro- and nano-systems. We would like to give a special thank to the paper reviewers for their important role in the paper selection process and all the journal staff for their very professional support, dedication and energy, which made this special issue feasible.

  1. Micro-combs: A novel generation of optical sources

    NASA Astrophysics Data System (ADS)

    Pasquazi, Alessia; Peccianti, Marco; Razzari, Luca; Moss, David J.; Coen, Stéphane; Erkintalo, Miro; Chembo, Yanne K.; Hansson, Tobias; Wabnitz, Stefan; Del'Haye, Pascal; Xue, Xiaoxiao; Weiner, Andrew M.; Morandotti, Roberto

    2018-01-01

    The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1-5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum - covering at least one octave - can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7-13] but also of optical sensors and compact light modulators [6,14]. In this framework, the demonstration of planar high-Q resonators, compatible with silicon technology [10-14], has opened up a unique opportunity for these devices to provide entirely new capabilities for photonic-integrated technologies. Indeed, it is well acknowledged by the electronics industry that future generations of computer processing chips will inevitably require an extremely high density of copper-based interconnections, significantly increasing the chip power dissipation to beyond practical levels [15-17]; hence, conventional approaches to chip design must undergo radical changes. On-chip optical networks, or optical interconnects, can offer high speed and low energy per-transferred-bit, and micro-resonators are widely seen as a key component to interface the electronic world with photonics. Many information technology industries have recently focused on the development of integrated ring resonators to be employed for electrically-controlled light modulators [14-17], greatly advancing the maturity of micro-resonator technology as a whole. Recently [11-13], the demonstration of OFC sources in micro-resonators fabricated in electronic (i.e. in complementary metal oxide semiconductor (CMOS)) compatible platforms has given micro-cavities an additional appeal, with the possibility of exploiting them as light sources in microchips. This scenario is creating fierce competition in developing highly efficient OFC generators based on micro-cavities which can radically change the nature of information transport and processing. Even in telecommunications, perhaps a more conventional environment for optical technologies, novel time-division multiplexed optical systems will require extremely stable optical clocks at ultra-high pulse repetition-rates towards the THz scale. Furthermore, arbitrary pulse generators based on OFC [18,19] are seen as one of the most promising solutions for this next generation of high-capacity optical coherent communication systems. This review will summarise the recent exciting achievements in the field of micro-combs, namely optical frequency combs based on high-Q micro-resonators, with a perspective on both the potential of this technology, as well as the open questions and challenges that remain.

  2. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more materials, such as energy transfer, charge separation, and exciton-plasmon coupling, a series of novel nanophotonic devices could be achieved for light signal manipulation. First, we provide an overview of the research evolution of organic nanophotonics, which arises from attempts to explore the photonic potentials of low-dimensional structures assembled from organic molecules. Then, recent advances in this field are described from the viewpoints of molecules, materials, and devices. Many kinds of optofunctional molecules are designed and synthesized according to the demands in high luminescence yield, nonlinear optical response, and other optical properties. Due to the weak interactions between these molecules, numerous micro- or nanostructures could be prepared via self-assembly or vapor-deposition, bringing the capabilities of light transport and confinement at the wavelength scale. The above advantages provide great possibilities in the fabrication of organic nanophotonic devices, by rationally combining these functional components to manipulate light signals. Finally, we present our views on the current challenges as well as the future development of organic nanophotonic materials and devices. This Account gives a comprehensive understanding of organic nanophotonics, including the design and fabrication of organic micro- or nanocrystals with specific photonic properties and their promising applications in functional nanophotonic components and integrated circuits.

  3. Laser figuring for the generation of analog micro-optics and kineform surfaces

    NASA Technical Reports Server (NTRS)

    Gratrix, Edward J.

    1993-01-01

    To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.

  4. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  5. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    NASA Astrophysics Data System (ADS)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  6. Nanoassembled dynamic optical waveguides and sensors based on zeolite L nanocontainers

    NASA Astrophysics Data System (ADS)

    Barroso, Álvaro; Dieckmann, Katrin; Alpmann, Christina; Buscher, Tim; Studer, Armido; Denz, Cornelia

    2015-03-01

    Although optical functional devices as waveguides and sensors are of utmost importance for metrology on the nano scale, the micro-and nano-assembly by optical means of functional materials to create such optical elements has yet not been considered. In the last years, an elegant strategy based on holographic optical tweezers (HOT) has been developed to design and fabricate permanent and dynamic three-dimensional micro- and nanostructures based on functional nanocontainers as building blocks. Nanocontainers that exhibit stable and ordered voids to hierarchically organize guest materials are especially attractive. Zeolite L are a type of porous micro-sized crystals which features a high number of strictly one-dimensional, parallel aligned nanochannels. They are highly interesting as building blocks of functional nano-and microsystems due to their potential as nanocontainers to accommodate various different guest molecules and to assemble them in specific configurations. For instance, based on zeolite L crystals, microscopic polarization sensors and chains of several microcrystals for hierarchical supramolecular organization have been realized. Here, we demonstrate the ability of nanocontainers in general, and zeolite L crystals in particular to represent the basic constituent of optical functional microsystems. We show that the capability of HOT to manipulate multitude of non-spherical microparticles in three dimensions can be exploited for the investigation of zeolite L nanocontainers as dynamic optical waveguides. Moreover, we implement as additional elements dye-loaded zeolite L to sense the guiding features of these novel waveguides with high spatial precision and microspheres to enhance the light coupling into the zeolite L waveguides. With this elaborated approach of using nanocontainers as tailored building blocks for functional optical systems a new era of bricking optical components in a lego-like style becomes feasible.

  7. A machine vision system for micro-EDM based on linux

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Wansheng; Li, Gang; Li, Zhiyong; Zhang, Yong

    2006-11-01

    Due to the high precision and good surface quality that it can give, Electrical Discharge Machining (EDM) is potentially an important process for the fabrication of micro-tools and micro-components. However, a number of issues remain unsolved before micro-EDM becomes a reliable process with repeatable results. To deal with the difficulties in micro electrodes on-line fabrication and tool wear compensation, a micro-EDM machine vision system is developed with a Charge Coupled Device (CCD) camera, with an optical resolution of 1.61μm and an overall magnification of 113~729. Based on the Linux operating system, an image capturing program is developed with the V4L2 API, and an image processing program is exploited by using OpenCV. The contour of micro electrodes can be extracted by means of the Canny edge detector. Through the system calibration, the micro electrodes diameter can be measured on-line. Experiments have been carried out to prove its performance, and the reasons of measurement error are also analyzed.

  8. Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: case studies of specific climate-relevant aerosol types

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; Águila, Ana del; Baars, Holger

    2018-04-01

    POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.

  9. Nano-stepper-driven optical shutter for applications in free-space micro-optics

    NASA Astrophysics Data System (ADS)

    Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.

    2002-09-01

    In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.

  10. Faster sensitivity and non-antimonite permanent photoresist for MEMS

    NASA Astrophysics Data System (ADS)

    Misumi, Koichi; Saito, Koji; Yamanouchi, Atsushi; Senzaki, Takahiro; Okui, Toshiki; Honma, Hideo

    2006-03-01

    Micro Electro Mechanical Systems (MEMS) is a three-dimensional micro-fabrication technology based on photolithography. The fields of application are extensive and wide-ranging. Among the applications, those that have already acquired a large market include acceleration sensors for airbags of automobiles, pressure sensors for engine control, inkjet printer heads and thin film magnetic heads. The market is expected to further expand in the optic and biology-related fields in the future. In the MEMS field, the packaging accounts for the cost, and it is difficult to standardize due to the low production volume of highly specific technology application. A typical application in the MEMS process would be to conduct plating and etching (Deep RIE) through an intermediate layer of photoresist patterns, but there are cases where the photoresist itself is left therein as a permanent film. A photoresist composed of epoxy resin as the main component can form the permanent film through a catalyst of the optical cationic polymerizating initiator. In general, the optical cationic polymerizating initiator is of onium salt with antimonite as the anion group due to the nature of the hardening rate or the exposure energy. This paper presents the development status of a high sensitivity permanent photoresist made of epoxy resin as the main component with non-antimonite optical cationic polymerizating initiator with concerns to the impact to the environment and material for packaging.

  11. Flight programs and X-ray optics development at MSFC

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.

  12. Experimental Approach for the Uncertainty Assessment of 3D Complex Geometry Dimensional Measurements Using Computed Tomography at the mm and Sub-mm Scales.

    PubMed

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A; Ontiveros, Sinué; Tosello, Guido

    2017-05-16

    The dimensional verification of miniaturized components with 3D complex geometries is particularly challenging. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile techniques. However, the establishment of CT systems' traceability when measuring 3D complex geometries is still an open issue. In this work, an alternative method for the measurement uncertainty assessment of 3D complex geometries by using CT is presented. The method is based on the micro-CT system Maximum Permissible Error (MPE) estimation, determined experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile techniques, particularly when measuring miniaturized components with complex 3D geometries and their inability to measure inner parts. To validate the presented method, the most accepted standard currently available for CT sensors, the Verein Deutscher Ingenieure/Verband Deutscher Elektrotechniker (VDI/VDE) guideline 2630-2.1 is applied. Considering the high number of influence factors in CT and their impact on the measuring result, two different techniques for surface extraction are also considered to obtain a realistic determination of the influence of data processing on uncertainty. The uncertainty assessment of a workpiece used for micro mechanical material testing is firstly used to confirm the method, due to its feasible calibration by an optical CMS. Secondly, the measurement of a miniaturized dental file with 3D complex geometry is carried out. The estimated uncertainties are eventually compared with the component's calibration and the micro manufacturing tolerances to demonstrate the suitability of the presented CT calibration procedure. The 2U/T ratios resulting from the validation workpiece are, respectively, 0.27 (VDI) and 0.35 (MPE), by assuring tolerances in the range of ± 20-30 µm. For the dental file, the E N < 1 value analysis is favorable in the majority of the cases (70.4%) and 2U/T is equal to 0.31 for sub-mm measurands (L < 1 mm and tolerance intervals of ± 40-80 µm).

  13. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  14. Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans

    1995-02-01

    The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.

  15. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less

  16. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  17. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  18. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  19. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  20. Optical properties of in-vitro biomineralised silica

    PubMed Central

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C.; Müller, Werner E. G.; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies. PMID:22934130

  1. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically trapped individual particles. In addition to the multifunctionality not previously available in a single biological monitoring system, the FOBIS offers advantages of low mass, sensitivity, accuracy, portability, low cost, compactness (the overall dimensions of the fully developed FOBIS sensor head are expected to be less than 1 by 1 by 2 cm), and immunity to electromagnetic interference at suboptical frequencies. FOBIS could be useful in a variety of laboratory and field settings in such diverse endeavors as medical, veterinary, and general biological research; medical and veterinary diagnosis monitoring of industrial bioprocesses; and analysis of biological contaminants in air, water, and food.

  2. Nondestructive sensing technologies using micro-optical elements for applications in the NIR-MIR spectral regions

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Bruch, Reinhard F.; Fritzsch, Uwe; Stock, Volker; Gessner, Thomas; Afanasyeva, Natalia I.

    2001-11-01

    The field of microtechnology is an important industrial and scientific resource for the 21st century. There is a great interest in spectroscopic sensors in the near and middle infrared (NIR-MIR) wavelength regions (1 - 2.5 micrometers ; 2.5 - 4.5 micrometers ; 4 - 6 micrometers ). The potential for cheap and small devices for nondestructive, remote sensing techniques at a molecular level has stimulated the design and development of more compact analyzer systems. Therefore we will try to build analyzers using micro optical components such as micromirrors and embossed micro gratings optimized for the above mentioned spectral ranges. Potentially, infrared sensors can be used for rapid nondestructive diagnostics of surfaces, liquids, gases, polymers and complex biological systems including proteins, blood, cells and cellular debris as well as body tissue. Furthermore, NIR-MIR microsensing spectroscopy will be utilized to monitor the chemical composition of petrochemical products like gasoline and diesel. In addition, miniature analyzers will be used for rapid measuring of food, in particular oil, starch and meat. In this paper we will present an overview of several new approaches for subsurface and surface sensing technologies based on the integration of optical micro devices, the most promising sensors for biomedical, environmental and industrial applications, data processing and evaluation algorithms for classification of the results. Both scientific and industrial applications will be discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Ch.; Weber, M.; Schöngart, M.

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), lasermore » structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.« less

  4. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-01-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  5. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  6. Polarization-dependent optical reflection ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui

    2017-03-01

    Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.

  7. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    PubMed

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Refractive microlensarray made of silver-halide sensitized gelatin (SHSG) etched by enzyme with SLM-based lithography

    NASA Astrophysics Data System (ADS)

    Guo, Xiaowei; Chen, Mingyong; Zhu, Jianhua; Ma, Yanqin; Du, Jinglei; Guo, Yongkang; Du, Chunlei

    2006-01-01

    A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled digital-micromirror-device(DMD TM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of etching SHSG with enzyme and theoretical analysis for deep etching are also discussed in detail, and the detailed quantitative experiments on the processing procedures are conducted to determine optimum technique parameters. A good linear relationship within a depth range of 4μm was experimentally obtained between exposure dose and relief depth. At last, the microlensarray with 256.8μm radius and 2.572μm depth was achieved. This method is simple, cheap and the aberration in processing procedures can be corrected in the step of designing mask, so it is a practical method to fabricate good continuous profile for low-volume production.

  9. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

  10. Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging.

    PubMed

    Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J

    2012-07-01

    We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7  μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.

  11. Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.

    2012-07-01

    We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.

  12. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  13. Design of micro-ring optical sensors and circuits for integration on optical printed circuit boards (O-PCBs)

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.

    2007-05-01

    We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.

  14. Large-area multiplexed sensing using MEMS and fiber optics

    NASA Astrophysics Data System (ADS)

    Miller, Michael B.; Clark, Richard L., Jr.; Bell, Clifton R.; Russler, Patrick M.

    2000-06-01

    Micro-electro-mechanical (MEMS) technology offers the ability to implement local and independent sensing and actuation functions through the coordinated response of discrete micro-electro-mechanical 'basis function' elements. The small size of micromechanical components coupled with the ability to reduce costs using volume manufacturing techniques opens up significant potential not only in military applications such as flight and engine monitoring and control, but in autonomous vehicle control, smart munitions, airborne reconnaissance, LADAR, missile guidance, and even in intelligent transportation systems and automotive guidance applications. In this program, Luna Innovations is developing a flexible, programmable interface which can be integrated direction with different types of MEMS sensors, and then used to multiplex many sensors ona single optical fiber to provide a unique combination of functions that will allow larger quantities of sensory input with better resolution than ever before possible.

  15. Micro-assembly of three-dimensional rotary MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Mills, James K.; Cleghorn, William L.

    2009-02-01

    We present a novel approach to construct three-dimensional rotary micro-mirrors, which are fundamental components to build 1×N or N×M optical switching systems. A rotary micro-mirror consists of two microparts: a rotary micro-motor and a micro-mirror. Both of the two microparts are fabricated with PolyMUMPs, a surface micromachining process. A sequential robotic microassembly process is developed to join the two microparts together to construct a threedimensional device. In order to achieve high positioning accuracy and a strong mechanical connection, the micro-mirror is joined to the micro-motor using an adhesive mechanical fastener. The mechanical fastener has self-alignment ability and provides a temporary joint between the two microparts. The adhesive bonding can create a strong permanent connection, which does not require extra supporting plates for the micro-mirror. A hybrid manipulation strategy, which includes pick-and-place and pushing-based manipulations, is utilized to manipulation the micro-mirror. The pick-andplace manipulation has the ability to globally position the micro-mirror in six degrees of freedom. The pushing-based manipulation can achieve high positioning accuracy. This microassembly approach has great flexibility and high accuracy; furthermore, it does not require extra supporting plates, which greatly simplifies the assembly process.

  16. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.

  17. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultralow-threshold Raman lasing with CaF2 resonators.

    PubMed

    Grudinin, Ivan S; Maleki, Lute

    2007-01-15

    We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1 microW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5x10(10). Stokes components of up to the fifth order were observed at a pump power of 160 microW, and up to the eighth order at 1 mW. A lasing threshold of 15 microW was also observed in a 100 microm CaF2 microcavity. Potential applications are discussed.

  19. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  20. Harnessing optical loss for unique microlaser functionality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Liang

    2017-05-01

    Lasers, as the key driving force in the field of optics and photonics over other photonic components, are now being significantly benefited from the studies of nanophotonics and metamaterials, broadening laser physics and device applications. The properties of light are much more beyond its simple intensity and temporal characteristics. The fruitful nature of light provides a great variety of freedoms in manipulating light for modern photonic applications, including spin (polarization), chirality, angular momentum, and spin-orbit coupling. Unfortunately, all these fundamental properties and functionalities of light have not been fully exploited in micro/nano-laser systems because the conventional principles of laser design in bulk optics cannot be easily scaled down to the micro/nano scale. The capability of creating microlasers with controlled spin/orbital information and chirality in their radiations is expected to revolutionize next generation of photonic systems for computing and communication. In this talk, I will focus on our recent effort in harnessing optical losses for unique microlaser functionalities, in particular, an orbital angular momentum (OAM) microlaser that structure and twist the lasing radiation at the microscale. The effective generation of OAM lasing, especially at a micro/nano-scale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode and its polarization state. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications.

  1. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  2. Flight Programs and X-ray Optics Development at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin

    2012-01-01

    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.

  3. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  4. Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils

    NASA Astrophysics Data System (ADS)

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-02-01

    The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.

  5. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    PubMed

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  6. Experimental Approach for the Uncertainty Assessment of 3D Complex Geometry Dimensional Measurements Using Computed Tomography at the mm and Sub-mm Scales

    PubMed Central

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A.; Ontiveros, Sinué; Tosello, Guido

    2017-01-01

    The dimensional verification of miniaturized components with 3D complex geometries is particularly challenging. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile techniques. However, the establishment of CT systems’ traceability when measuring 3D complex geometries is still an open issue. In this work, an alternative method for the measurement uncertainty assessment of 3D complex geometries by using CT is presented. The method is based on the micro-CT system Maximum Permissible Error (MPE) estimation, determined experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile techniques, particularly when measuring miniaturized components with complex 3D geometries and their inability to measure inner parts. To validate the presented method, the most accepted standard currently available for CT sensors, the Verein Deutscher Ingenieure/Verband Deutscher Elektrotechniker (VDI/VDE) guideline 2630-2.1 is applied. Considering the high number of influence factors in CT and their impact on the measuring result, two different techniques for surface extraction are also considered to obtain a realistic determination of the influence of data processing on uncertainty. The uncertainty assessment of a workpiece used for micro mechanical material testing is firstly used to confirm the method, due to its feasible calibration by an optical CMS. Secondly, the measurement of a miniaturized dental file with 3D complex geometry is carried out. The estimated uncertainties are eventually compared with the component’s calibration and the micro manufacturing tolerances to demonstrate the suitability of the presented CT calibration procedure. The 2U/T ratios resulting from the validation workpiece are, respectively, 0.27 (VDI) and 0.35 (MPE), by assuring tolerances in the range of ± 20–30 µm. For the dental file, the EN < 1 value analysis is favorable in the majority of the cases (70.4%) and 2U/T is equal to 0.31 for sub-mm measurands (L < 1 mm and tolerance intervals of ± 40–80 µm). PMID:28509869

  7. Contribution to the development of low frequency terahertz coherent Raman micro-spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2018-06-01

    We report the construction and characterization of a coherent Raman tabletop system utilizing a novel astigmatic optical focusing geometry, a broadband nanosecond optical parametric oscillator and volumetric Bragg filters assisting 3CBCRS measuring system for the first time. In order to illustrate the versatility of the measurements and reveal the molecular information obtainable, two well-characterized chemicals were selected. Polarization sensitive epi-detected 3CBCRS spectra of liquid CCl4 and calcite crystal were recorded and analyzed. An unexpected polarization dependence of the signals of the lowest frequency modes of CCl4 was observed. The 1122 third order susceptibility component was phase flipped. The non-resonant susceptibility normalized 1122 component was found to be larger than the 1111 component for the lowest vibrational modes. This anomalous comportment was attributable to the anisotropy Raman tensor invariant in the third order nonlinear susceptibility tensor.

  8. NEMO educational kit on micro-optics at the secondary school

    NASA Astrophysics Data System (ADS)

    Flores-Arias, M. T.; Bao-Varela, Carmen

    2014-07-01

    NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.

  9. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices

    NASA Astrophysics Data System (ADS)

    Bucciarelli, A.; Mulloni, V.; Maniglio, D.; Pal, R. K.; Yadavalli, V. K.; Motta, A.; Quaranta, A.

    2018-04-01

    Over the last two decades, silk fibroin has been exploited as a versatile optical material in biological applications due to a combination of unique properties. Recently, protocols have been developed to produce a silk fibroin negative tone resist that is UV crosslinkable, thereby allowing micro and nanoscale patterning of the protein using traditional photolithographic tools. The same protocol has been applied to the silk protein sericin to develop a sericin resist. Despite the immense potential of these biomaterials to develop micro optical patterns on silicon and glass surfaces, as well as self-standing components, their refractive indexes are not well characterized. In this work, optimizing a method to obtain extremely smooth, thin films, the refractive index (RI) of fibroin and sericin proteins and resists were characterized using ellipsometry. The parameters of the Sellmeier and Cauchy dispersion laws have been determined to obtain the RI over a large wavelength range. A complete morphological study of the films has been conducted. In addition, the effect of solvent on the optical properties of silk fibroin and sericin thin films are reported, with differences in values explained by examining the change in the protein secondary structure.

  10. Fiber IFU unit for the second generation VLT spectrograph KMOS

    NASA Astrophysics Data System (ADS)

    Tomono, Daigo; Weisz, Harald; Hofmann, Reiner

    2003-03-01

    KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.

  11. Investigation of microstructure, micro-mechanical and optical properties of HfTiO{sub 4} thin films prepared by magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Michal, E-mail: michal.mazur@pwr.edu.pl; Wojcieszak, Damian; Domaradzki, Jaroslaw

    2015-12-15

    Highlights: • HfTiO{sub 4} thin films were deposited by magnetron co-sputtering. • As-prepared and annealed at 800 °C thin films were nanocrystalline. • Optical properties and hardness were investigated in relation to thin films structure. • Hardness was 3-times higher in the case of as-deposited thin films. • HfTiO{sub 4} thin films are suitable for use as optical coatings with protective properties. - Abstract: Titania (TiO{sub 2}) and hafnium oxide (HfO{sub 2}) thin films are in the focus of interest to the microelectronics community from a dozen years. Because of their outstanding properties like, among the others, high stability, highmore » refractive index, high electric permittivity, they found applications in many optical and electronics domains. In this work discussion on the hardness, microstructure and optical properties of as-deposited and annealed HfTiO{sub 4} thin films has been presented. Deposited films were prepared using magnetron co-sputtering method. Performed investigations revealed that as-deposited coatings were nanocrystalline with HfTiO{sub 4} structure. Deposited films were built from crystallites of ca. 4–12 nm in size and after additional annealing an increase in crystallites size up to 16 nm was observed. Micro-mechanical properties, i.e., hardness and elastic modulus were determined using conventional load-controlled nanoindentation testing. the annealed films had 3-times lower hardness as-compared to as-deposited ones (∼9 GPa). Based on optical investigations real and imaginary components of refractive index were calculated, both for as-deposited and annealed thin films. The real refractive index component increased after annealing from 2.03 to 2.16, while extinction coefficient increased by an order from 10{sup −4} to 10{sup −3}. Structure modification was analyzed together with optical energy band-gap, Urbach energy and using Wemple–DiDomenico model.« less

  12. A new telescope concept for space communication

    NASA Astrophysics Data System (ADS)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  13. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  14. Method of Bonding Optical Elements with Near-Zero Displacement

    NASA Technical Reports Server (NTRS)

    Robinson, David; McClelland, Ryan; Byron, Glenn; Evans, Tyler

    2012-01-01

    The International X-ray Project seeks to build an x-ray telescope using thousands of pieces of thin and flexible glass mirror segments. Each mirror segment must be bonded into a housing in nearly perfect optical alignment without distortion. Forces greater than 0.001 Newton, or displacements greater than 0.5 m of the glass, cause unacceptable optical distortion. All known epoxies shrink as they cure. Even the epoxies with the least amount of shrinkage (<0.01%) cause unacceptable optical distortion and misalignment by pulling the mirror segments towards the housing as it cures. A related problem is that the shrinkage is not consistent or predictable so that it cannot be accounted for in the setup (i.e., if all of the bonds shrunk an equal amount, there would be no problem). A method has been developed that allows two components to be joined with epoxy in such a way that reduces the displacement caused by epoxy shrinking as it cures to less than 200 nm. The method involves using ultraviolet-cured epoxy with a displacement sensor and a nanoactuator in a control loop. The epoxy is cured by short-duration exposures to UV light. In between each exposure, the nano-actuator zeroes out the displacement caused by epoxy shrinkage and thermal expansion. After a few exposures, the epoxy has cured sufficiently to prevent further displacement of the two components. Bonding of optical elements has been done for many years, but most optics are thick and rigid elements that resist micro-Newton-level forces without causing distortion. When bonding thin glass optics such as the 0.40-mm thick IXO X-ray mirrors, forces in the micro- and milli-Newton levels cause unacceptable optical figure error. This innovation can now repeatedly and reliably bond a thin glass mirror to a metal housing with less than 0.2 m of displacement (<200 nm). This is an enabling technology that allows the installation of virtually stress-free, undistorted thin optics onto structures. This innovation is applicable to the bonding of thin optical elements, or any thin/flexible structures, that must be attached in an undistorted, consistent, and aligned way.

  15. Secure communications using nonlinear silicon photonic keys.

    PubMed

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2018-02-19

    We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

  16. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    PubMed Central

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  17. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    PubMed

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  18. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  19. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  20. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  1. Femtosecond laser processing of optical fibres for novel sensor development

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee

    2017-04-01

    We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.

  2. MEMS Actuators for Improved Performance and Durability

    NASA Astrophysics Data System (ADS)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high-speed alignment capability. The superhydrophobic coatings developed for droplet containment are also discussed and measurements of contact angle are shown to affect device performance through correlation to models of bearing friction and stiffness.

  3. Optical Characterizations of VCSEL for Emission at 850 nm with Al Oxide Confinement Layers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Merwan; Pagnod-Rossiaux, Philippe; Laruelle, Francois; Landesman, Jean-Pierre; Moreac, Alain; Levallois, Christophe; Cassidy, Daniel T.

    2018-03-01

    In-plane micro-photoluminescence (μ-PL) and micro-reflectivity measurements have been performed at room temperature by optical excitation perpendicular to the surface of two different structures: a complete vertical surface-emitting laser (VCSEL) structure and a VCSEL without the upper p-type distributed Bragg reflector (P-DBR). The two structures were both laterally oxidized and measurements were made on the top of oxidized and unoxidized regions. We show that, since the photoluminescence (PL) spectra consist of the cumulative effect of InGaAs/AlGaAs multi-quantum wells (MQWs) luminescence and interferences in the DBR, the presence or not of the P-DBR and oxide layers can significantly modify the spectrum. μ-PL mapping performed on full VCSEL structures clearly shows oxidized and unoxidized regions that are not resolved with visible light optical microscopy. Finally, preliminary measurements of the degree of polarization (DOP) of the PL have been made on a complete VCSEL structure before and after an oxidation process. We obtain an image of DOP measured by polarization-resolved μ-PL. These measurements allow us to evaluate the main components of strain.

  4. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Cansizoglu, Hilal; Polat, Kazim G.; Ghandiparsi, Soroush; Kaya, Ahmet; Mamtaz, Hasina H.; Mayet, Ahmed S.; Wang, Yinan; Zhang, Xinzhi; Yamada, Toshishige; Devine, Ekaterina Ponizovskaya; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-04-01

    High-speed, high-efficiency photodetectors play an important role in optical communication links that are increasingly being used in data centres to handle higher volumes of data traffic and higher bandwidths, as big data and cloud computing continue to grow exponentially. Monolithic integration of optical components with signal-processing electronics on a single silicon chip is of paramount importance in the drive to reduce cost and improve performance. We report the first demonstration of micro- and nanoscale holes enabling light trapping in a silicon photodiode, which exhibits an ultrafast impulse response (full-width at half-maximum) of 30 ps and a high efficiency of more than 50%, for use in data-centre optical communications. The photodiode uses micro- and nanostructured holes to enhance, by an order of magnitude, the absorption efficiency of a thin intrinsic layer of less than 2 µm thickness and is designed for a data rate of 20 gigabits per second or higher at a wavelength of 850 nm. Further optimization can improve the efficiency to more than 70%.

  5. Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench

    NASA Astrophysics Data System (ADS)

    Hsieh, Jerwei; Hsiao, Sheng-Yi; Lai, Chun-Feng; Fang, Weileun

    2007-08-01

    This work presents the design concept of integrating a polymer lens, poly-Si MUMPs and single-crystal-silicon HARM structures on a SOI wafer to form a silicon optical bench. This approach enables the monolithic integration of various optical components on the wafer so as to improve the design flexibility of the silicon optical bench. Fabrication processes, including surface and bulk micromachining on the SOI wafer, have been established to realize bi-convex spherical polymer lenses with in-plane as well as out-of-plane optical axes. In addition, a micro device consisting of an in-plane polymer lens, a thick fiber holder and a mechanical shutter driven by an electrothermal actuator is also demonstrated using the present approach. In summary, this study significantly improves the design flexibility as well as the functions of SiOBs.

  6. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  7. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  8. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  9. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  10. Design of micro bending deformer for optical fiber weight sensor

    NASA Astrophysics Data System (ADS)

    Ula, R. K.; Hanto, D.; Waluyo, T. B.; Adinanta, H.; Widiyatmoko, B.

    2017-04-01

    The road damage due to excessive load is one of the causes of accidents on the road. A device to measure weight of the passing vehicles needs to be planted in the road structure. Thus, a weight sensor for the passing vehicles is required. In this study, we designed a weight sensor for a static load based on a power loss due to a micro bending on the optical fiber flanked on a board. The following main components are used i.e. LED 1310 nm as a light source, a multimode fiber optic as a transmission media and a power meter for measuring power loss. This works focuses on obtaining a suitable deformer design for weight sensor. Experimental results show that deformer design with 1.5 mm single side has level of accuracy as 4.32% while the design with 1.5 mm double side has level of accuracy as 98.77%. Increasing deformer length to 2.5 mm gives 71.18% level of accuracy for single side, and 76.94% level of accuracy for double side. Micro bending design with 1.5 mm double side has a high sensitivity and it is also capable of measuring load up to 100 kg. The sensor designed has been tested for measuring the weight of motor cycle, and it can be upgraded for measuring heavy vehicles.

  11. Methods of both destructive and non-destructive metrology of GRIN optical elements

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2015-05-01

    Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.

  12. MOEMS Modeling Using the Geometrical Matrix Toolbox

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2005-01-01

    New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.

  13. Lab-on-Fiber devices as an all around platform for sensing

    NASA Astrophysics Data System (ADS)

    Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A.

    2013-12-01

    "Lab-on-Fiber" technology is an emerging field envisioning a novel class of advanced, multifunctional photonic devices and components arising from the integration onto optical fibers of different materials at micro and nano-scale with suitable physical, chemical and biological properties. This new fascinating and intriguing research field thus proposes a new technological platform where functionalized materials, devices and components are constructed, embedded all together in a single optical fiber providing the necessary physical connections and light matter interaction, exploitable in both communication and sensing applications. This technological innovation would open the way for the creation of a novel technological world completely integrated in a single optical fiber conferring unique and unprecedented performances and functionality degree. Although, the benefits provided by such a technology can be easily understood, many research efforts are, however, required to translate the vision in a technological reality. Indeed, the main issue to address concerns the identification and definition of viable fabrication methodologies, routes and strategies enabling the integration of a large set of functional materials at sub wavelength scale onto non conventional substrates as the case of optical fibers.

  14. Local x-ray structure analysis of optically manipulated biological micro-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  15. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  16. Study on micro-bend light transmission performance of novel liquid-core optical fiber

    NASA Astrophysics Data System (ADS)

    Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng

    2007-01-01

    With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.

  17. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  18. Analysis of creating an innovative micro-lens made of polydimethylsiloxane polymer on the end of the optical fibers

    NASA Astrophysics Data System (ADS)

    Zboril, O.; Cubik, J.; Nedoma, J.; Fajkus, M.; Novak, M.; Jargus, J.; Stratil, T.; Vasinek, V.

    2017-10-01

    The article describes a method for fabrication of polymer optical micro-lenses using polydimethylsiloxane (PDMS) at the end of optical fibers. PDMS is an optically clear substance having a refractive index very similar to the optical fibers. Therefore it is an interesting material for optical purposes. PDMS is characterized by resistance to electromagnetic interference (EMI), enabling the use in electromagnetically noisy environments. These lenses could be used for example for the security applications. For the manufacture of the micro-lenses is used Sylgard silicone elastomer 184. When applied to the end of conventional optical fiber is cured by treatment at 100 °C +/- 5 °C. Authors performed a series of experimental measurements. The optical characteristics of the treated fibers compared with conventional fibers without micro-lenses. The fibers provided with optical lenses made of PDMS may be used for security applications, in the visible light communication (VLC) or as a microprobe.

  19. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  20. Quantum communications system with integrated photonic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson

    Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on themore » Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.« less

  1. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    PubMed

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  2. CONFERENCE NOTE: European Optical Society, Topical Meeting Optical Metrology and Nanotechnology, Engelberg, Switzerland, 27 30 March 1994

    NASA Astrophysics Data System (ADS)

    1993-01-01

    This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.

  3. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or reset beam. The operating conditions were studied to generate two stable states between the VCSOA pair. The entire functionality test was implemented with free space optical components.

  4. Development of a standardized differential-reflective bioassay for microbial pathogens

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jay; Auld, J. R. X.; Smith, James E.

    2008-04-01

    This research examines standardizing a method for the rapid/semi-automated identification of microbial contaminates. It introduces a method suited to test for food/water contamination, serology, urinalysis and saliva testing for any >1 micron sized molecule that can be effectively bound to an identifying marker with exclusivity. This optical biosensor method seeks to integrate the semi-manual distribution of a collected sample onto a "transparent" substrate array of binding sites that will then be applied to a standard optical data disk and run for analysis. The detection of most microbe species is possible in this platform because the relative scale is greater than the resolution of the standard-scale digital information on a standard CD or DVD. This paper explains the critical first stage in the advance of this detection concept. This work has concentrated on developing the necessary software component needed to perform highly sensitive small-scale recognition using the standard optical disk as a detection platform. Physical testing has made significant progress in demonstrating the ability to utilize a standard optical drive for the purposes of micro-scale detection through the exploitation of CIRC error correction. Testing has also shown a definable trend in the optimum scale and geometry of micro-arrayed attachment sites for the technology's concept to reach achievement.

  5. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhao, Jian

    2014-06-25

    A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

  6. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  7. III-V on silicon micro-photonic circuits for frequency downconversion of RF signals

    NASA Astrophysics Data System (ADS)

    Roelkens, G.; Keyvaninia, S.; Tassaert, M.; Latkowski, S.; Bente, E.; Mariën, J.; Thomassen, L.; Baets, R.

    2017-11-01

    RF frequency downconverters are of key importance in communication satellites. Classically, this is implemented using an electronic mixer. In this paper we explore the use of photonic technology to realize the same functionality. The potential advantages of such an approach compared to the classical microwave solutions are that it is lighter weight, has lower power consumption and can be made smaller if photonic technology is used. An additional advantage is the fact that the optical local oscillator (LO) reference can easily be transported over longer distances than the equivalent LO signal in the microwave domain due to the large bandwidth and low loss and dispersion of optical fiber. Another big advantage is that one can envision the use of short pulse trains as the LO - starting off from a sinusoidal RF reference - in order to exploit subsampling. Subsampling avoids the need for high frequency LO references, which is especially valuable if a downconversion over several 10s of GHz is required. In this paper we present the operation principle of such a photonic frequency downconverter and describe the performance of the developed micro-photonic building blocks required for this functionality. These micro-photonic building blocks are implemented on a III-V semiconductor-on-silicon photonic platform. The components include a micro-photonic hybridly modelocked laser, a 30GHz electroabsorption modulator and an intermediate frequency (1.5GHz) photodetector.

  8. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  9. The application of micro-lesson in optics teaching

    NASA Astrophysics Data System (ADS)

    Yuan, Suzhen; Mao, Xuefeng; Lu, Yongle; Wang, Yan; Luo, Yuan

    2017-08-01

    In order to improve students' ability on self-study, this paper discusses the application of micro-lesson as a supplementary way in the course of optics teaching. Both geometric optics and wave optics require a lot of demos, fortunately, micro-lesson just meets this requirement. Nowadays, college education focuses on quality education, so the new nurture scheme of most universities shortened the class hours. However, the development of students and the social needs also require students to have a solid foundation. The effective way to solve this contradiction is to improve the efficiency of classroom teaching and provide the repeatable learning form, micro-lesson.

  10. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  11. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  12. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  13. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  14. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    PubMed Central

    Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos

    2016-01-01

    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032

  15. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  16. Fiber optic engine for micro projection display.

    PubMed

    Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan

    2010-03-01

    A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.

  17. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  18. System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation

    NASA Technical Reports Server (NTRS)

    Red-Horse, J. R.; Marek, E. L.; Levine-West, M.

    1993-01-01

    The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.

  19. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High Quality 3D Photonics using Nano Imprint Lithography of Fast Sol-gel Materials.

    PubMed

    Bar-On, Ofer; Brenner, Philipp; Siegle, Tobias; Gvishi, Raz; Kalt, Heinz; Lemmer, Uli; Scheuer, Jacob

    2018-05-18

    A method for the realization of low-loss integrated optical components is proposed and demonstrated. This approach is simple, fast, inexpensive, scalable for mass production, and compatible with both 2D and 3D geometries. The process is based on a novel dual-step soft nano imprint lithography process for producing devices with smooth surfaces, combined with fast sol-gel technology providing highly transparent materials. As a concrete example, this approach is demonstrated on a micro ring resonator made by direct laser writing (DLW) to achieve a quality factor improvement from one hundred thousand to more than 3 million. To the best of our knowledge this also sets a Q-factor record for UV-curable integrated micro-ring resonators. The process supports the integration of many types of materials such as light-emitting, electro-optic, piezo-electric, and can be readily applied to a wide variety of devices such as waveguides, lenses, diffractive elements and more.

  1. Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.

    PubMed

    Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y

    2009-09-14

    Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

  2. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, Irina; Huang, Rong; Graber, Timothy

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and deliversmore » to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.« less

  3. Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 degrees micro-reflector.

    PubMed

    Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn

    2009-11-09

    A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.

  4. Micro-resonators based on integrated polymer technology for optical sensing

    NASA Astrophysics Data System (ADS)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  5. From optics testing to micro optics testing

    NASA Astrophysics Data System (ADS)

    Brock, Christian; Dorn, Ralf; Pfund, Johannes

    2017-10-01

    Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

  6. UniSat-5: a space-based optical system for space debris monitoring

    NASA Astrophysics Data System (ADS)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for commercially available RF equipment, allows for an affordable, stand-alone system for digital imaging in space. The space debris observation will work in pair with the attitude determination system, as well as the orbit determination system. UniSat-5 micro-satellite will be launched during Q4 2012 by a Kosmotras DNEPR LV, and it will be injected in a Sun Synchronous Orbit. UniSat-5 will be a the first university satellite for space debris monitoring, and it will test the technology for the future design of a formation flight for on orbit optical debris detection. This paper deals with the space debris observation system boarded on UniSat-5 and the observation strategies adopted considering the mission proposed.

  7. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  8. Polarizing Beam Splitter: A New Approach Based on Transformation Optics

    NASA Astrophysics Data System (ADS)

    Mueller, Jonhatan; Wegener, Martin

    Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.

  9. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  10. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  11. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  12. Micro electro mechanical system optical switching

    DOEpatents

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  13. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towardsmore » dense integration of photonic components on the mainstream complementary metal–oxide–semiconductor platform.« less

  14. Micro sculpting technology using DPSSL

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun

    2003-11-01

    Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.

  15. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  16. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    NASA Astrophysics Data System (ADS)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  17. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    PubMed Central

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  18. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture

    NASA Astrophysics Data System (ADS)

    Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard

    2017-04-01

    Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price point of Multi Spectral Imaging (MSI) sensors. Specific designs of the Corning microHSI™ SHARK visNIR turn-key system are presented along with salient performance characteristics. Initial focus market areas include precision agriculture and historic and recent microHSI™ SHARK prototype test results are presented.

  19. Simultaneous detection of rotational and translational motion in optical tweezers by measurement of backscattered intensity.

    PubMed

    Roy, Basudev; Bera, Sudipta K; Banerjee, Ayan

    2014-06-01

    We describe a simple yet powerful technique of simultaneously measuring both translational and rotational motion of mesoscopic particles in optical tweezers by measuring the backscattered intensity on a quadrant photodiode (QPD). While the measurement of translational motion by taking the difference of the backscattered intensity incident on adjacent quadrants of a QPD is well known, we demonstrate that rotational motion can be measured very precisely by taking the difference between the diagonal quadrants. The latter measurement eliminates the translational component entirely and leads to a detection sensitivity of around 50 mdeg at S/N of 2 for angular motion of a driven microrod. The technique is also able to resolve the translational and rotational Brownian motion components of the microrod in an unperturbed trap and can be very useful in measuring translation-rotation coupling of micro-objects induced by hydrodynamic interactions.

  20. Standard measurement procedures for the characterization of fs-laser optical components

    NASA Astrophysics Data System (ADS)

    Starke, Kai; Ristau, Detlev; Welling, Herbert

    2003-05-01

    Ultra-short pulse laser systems are considered as promising tools in the fields of precise micro-machining and medicine applications. In the course of the development of reliable table top laser systems, a rapid growth of ultra-short pulse applications could be observed during the recent years. The key for improving the performance of high power laser systems is the quality of the optical components concerning spectral characteristics, optical losses and the power handling capability. In the field of ultra-short pulses, standard measurement procedures in quality management have to be validated in respect to effects induced by the extremely high peak power densities. The present work, which is embedded in the EUREKA-project CHOCLAB II, is predominantly concentrated on measuring the multiple-pulse LIDT (ISO 11254-2) in the fs-regime. A measurement facility based on a Ti:Sapphire-CPA system was developed to investigate the damage behavior of optical components. The set-up was supplied with an improved pulse energy detector discriminating the influence of pulse-to-pulse energy fluctuations on the incidence of damage. Aditionally, a laser-calorimetric measurement facility determining the absorption (ISO 11551) utilizing a fs-Ti:Sapphire laser was accomplished. The investigation for different pulse durations between 130 fs and 1 ps revealed a drastic increase of absorption in titania coatings for ultra-short pulses.

  1. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  2. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.

    PubMed

    Sung, Seung-Yong; Lee, Yong-Gu

    2008-03-03

    Optical forces on a micro-bubble were computed using the Finite Difference Time Domain method. Non-paraxial Gaussian beam equation was used to represent the incident laser with high numerical aperture, common in optical tweezers. The electromagnetic field distribution around a micro-bubble was computed using FDTD method and the electromagnetic stress tensor on the surface of a micro-bubble was used to compute the optical forces. By the analysis of the computational results, interesting relations between the radius of the circular trapping ring and the corresponding stability of the trap were found.

  3. MicroSight Optics

    ScienceCinema

    None

    2018-05-16

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  4. MicroSight Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  5. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    NASA Astrophysics Data System (ADS)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  6. III-V Semiconductor Optical Micro-Ring Resonators

    NASA Astrophysics Data System (ADS)

    Grover, Rohit; Absil, Philippe P.; Ibrahim, Tarek A.; Ho, Ping-Tong

    2004-05-01

    We describe the theory of optical ring resonators, and our work on GaAs-AlGaAs and GaInAsP-InP optical micro-ring resonators. These devices are promising building blocks for future all-optical signal processing and photonic logic circuits. Their versatility allows the fabrication of ultra-compact multiplexers/demultiplexers, optical channel dropping filters, lasers, amplifiers, and logic gates (to name a few), which will enable large-scale monolithic integration for optics.

  7. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  8. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  9. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  10. Micro-optical elements produced using an photo-embossing technique in photopolymers

    NASA Astrophysics Data System (ADS)

    O'Neill, Feidhlim T.; Rowsome, Ita C.; Carr, Alun J.; Daniels, Stephen M.; Gleeson, Michael R.; Kelly, John V.; Close, Ciara; Lawrence, Justin R.; Sheridan, John T.

    2005-09-01

    Micro-optical devices are very important in current high-tech consumer items. The development of future products depends on both the evolution of fabrication techniques and on the development of new low cost mass production methods. Polymers offer ease of fabrication and low cost and are therefore excellent materials for the development of micro-optical devices. Polymer optical devices include passive optical elements, such as microlens arrays and waveguides, as well as active devices such as polymer based lasers. One of the most important areas of micro-optics is that of microlens design, manufacture and testing. The wide diversity of fabrication methods used for the production of these elements indicates their importance. One of these fabrication techniques is photo-embossing. The use of the photo-embossing technique and a photopolymer holographic recording material will be examined in this paper. A discussion of current attempts to model the fabrication process and a review of the experimental method will be given.

  11. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.

    PubMed

    Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping

    2015-08-10

    We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

  12. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Guan, Y. C.; Zheng, H. Y.

    2017-12-01

    Rough surface features induced by laser irradiation have been a challenging for the fabrication of micro/nano scale features. In this work, we propose hybrid ultrasonic vibration polishing method to improve surface quality of microcraters produced by femtosecond laser irradiation on cemented carbide. The laser caused rough surfaces are significantly smoothened after ultrasonic vibration polishing due to the strong collision effect of diamond particles on the surfaces. 3D morphology, SEM and AFM analysis has been conducted to characterize surface morphology and topography. Results indicate that the minimal surface roughness of Ra 7.60 nm has been achieved on the polished surfaces. The fabrication of microcraters with smooth surfaces is applicable to molding process for mass production of micro-optical components.

  13. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.

    PubMed

    Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  14. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  15. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    NASA Astrophysics Data System (ADS)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  16. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    PubMed

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  17. Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui

    2018-01-01

    The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.

  18. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    PubMed

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  19. Reversible nano-lithography for commercial approaches

    NASA Astrophysics Data System (ADS)

    Park, Jae Hong; Jang, Hyun Ik; Kim, Woo Choong; Yun, Hae S.; Park, Jun Yong; Jeon, Seok Woo; Kim, Hee Yeoun; Ahn, Chi Won

    2016-04-01

    The methodology suggested in this research provides the great possibility of creating nanostructures composed of various materials, such as soft polymer, hard polymer, and metal, as well as Si. Such nanostructures are required for a vast range of optical and display devices, photonic components, physical devices, energy devices including electrodes of secondary batteries, fuel cells, solar cells, and energy harvesters, biological devices including biochips, biomimetic or biosimilar structured devices, and mechanical devices including micro- or nano-scale sensors and actuators.

  20. Experimental exploration of the hydrodynamic effect polishing machinability for different types of material

    NASA Astrophysics Data System (ADS)

    Peng, W. Q.; Li, Y.; Wang, Z.; Li, S. Y.

    2018-01-01

    Hydrodynamic effect polishing (HEP), in which the material removal relies on the chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize automatic level smooth surface without surface/subsurface damage. The machinability of different types of optical material (such as monocrystalline silicon and crystalline quartz, amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece surfaces before and after being polished by HEP was observed by atomic force microscopy. The experimental results show the surface roughness of monocrystalline silicon and quartz, amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and bumpy structures have been removed clearly. However the surface roughness has increased from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By comparison, we can conclude that excellent performance is shown when HEP is applied on the optical material structure with a single monocrystalline or amorphous component. However the ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials such as Zerodur glass. The micro unevenness increases gradually along with polishing process due to the different material removal of the monocrystalline and amorphous component.

  1. New ultraportable display technology and applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  2. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  3. Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber

    NASA Technical Reports Server (NTRS)

    Wang, A.; Murphy, K. A.; Wang, G. Z.; Vengsarkar, A. M.; Claus, R. O.

    1990-01-01

    We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber. A crosstalk of 15 dB with an insertion loss of 1.2 dB was obtained.

  4. Grinding aspheric and freeform micro-optical molds

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  5. Hadamard spectrometer for passive LWIR standoff surveillance

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Mohammad, Najeeb; Jamroz, Wes; Soltani, Mohammed; Chaker, Mohamed; Haddad, Emile; Laou, Philips; Paradis, Suzanne

    2007-06-01

    Based on the principle of the Integrated Optical Spectrometer (IOSPEC), a waveguide-based, longwave infrared (LWIR) dispersive spectrometer with multiple input slits for Hadamard spectroscopy was designed and built intended for passive standoff chemical agent detection in 8 to 12μm spectral range. This prototype unit equips with a three-inch input telescope providing a field-of-view of 1.2 degrees, a 16-microslit array (each slit 60 μm by 1.8 mm) module for Hadamard binary coding, a 2-mm core ZnS/ZnSe/ZnS slab waveguide with a 2 by 2 mm2 optical input and micro-machined integrated optical output condensor, a Si micro-machined blazing grating, a customized 128-pixel LWIR mercury-cadmium-telluride (MCT) LN2 cooled detector array, proprietary signal processing technique, software and electronics. According to the current configuration, it was estimated that the total system weight to be ~4 kg, spectral resolution <4cm -1 and Noise Equivalent Spectral Radiance (NESR) <10 -8 Wcm -2 sr -1cm -1 in 8 to 12 μm. System design and preliminary test results of some components will be presented. Upon the arrival of the MCT detector array, the prototype unit will be further tested and its performance validated in fall of 2007.

  6. Modular high power diode lasers with flexible 3D multiplexing arrangement optimized for automated manufacturing

    NASA Astrophysics Data System (ADS)

    Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens

    2018-02-01

    A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.

  7. On-chip photonic tweezers for photonics, microfluidics, and biology

    NASA Astrophysics Data System (ADS)

    Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît

    2017-04-01

    Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.

  8. Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field

    NASA Astrophysics Data System (ADS)

    Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin

    2018-05-01

    A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.

  9. Holographic optical tweezers for object manipulations at an air-liquid surface.

    PubMed

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  10. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    NASA Astrophysics Data System (ADS)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  11. Performance analysis and material dependence of micro holographic optical elements as couplers for fiber optic communication

    NASA Astrophysics Data System (ADS)

    Ambadiyil, Sajan; Prasannan, G.; Sathyan, Jithesh; Ajith Kumar, P. T.

    2005-01-01

    Holographic Optical Elements (HOEs) are gaining much importance and finding newer and better applications in areas of optical fiber communication and optical information processing systems. In contrast to conventional HOEs, optical communication and information systems require smaller and efficient elements of desired characteristics and transfer functions. Such Micro Holographic Optical Elements (MHOEs) can either be an HOE, recorded with two narrow beams of laser light or a segment cut from a larger HOE (SHOEs), and recorded in the conventional manner. In this study, micro holographic couplers, having specific focusing and diffraction characteristics were recorded in different holographic recording media such as silver halide and dichromated gelatin. Wavelength response of the elements was tested at 633 nm and 442 nm. Variation in diffraction efficiency/coupling factor, and insertion loss of the elements were studied. The paper reports in detail about the above results and related design considerations.

  12. Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.

    2008-02-01

    We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.

  13. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  14. An Optically Accessible Pyrolysis Microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; David, Donald E.; Ellison, Barney; Daily, John W.

    2016-06-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions. (This work has been published in J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily. An Optically Accessible Pyrolysis Micro-Reactor. Review of Scientific Instruments, 87(1):014101, 2016.)

  15. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  16. Ultra-precise micro-motion stage for optical scanning test

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Jianhuan; Jiang, Nan

    2009-05-01

    This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2

  17. Design of fluidic self-assembly bonds for precise component positioning

    NASA Astrophysics Data System (ADS)

    Ramadoss, Vivek; Crane, Nathan B.

    2008-02-01

    Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.

  18. Direct laser writing for micro-optical devices using a negative photoresist.

    PubMed

    Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru

    2017-12-11

    Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

  19. Compact silicon photonics-based multi laser module for sensing

    NASA Astrophysics Data System (ADS)

    Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.

    2018-02-01

    A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. D.; Fiorito, R. B.; Corbett, J.

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40–80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as anmore » optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less

  1. Micro-Laser Range Finder Development: Using the Monolithic Approach

    DTIC Science & Technology

    1999-02-01

    components can be joined together, optically aligned to form the laser cavity and then sliced to produce MLC modules . This batch process can greatly reduce...the overall fabrication costs of the µLRF system. The MLC module is ultra-compact. Its overall size is approximately 56 mm (L) x 3 mm (W) x 3 mm (H) as...MLC module is placed on a laser pallet for stiffness, mechanical stability. The laser pallet size is selected as part of the integration design

  2. FDTD Simulation of Novel Polarimetric and Directional Reflectance and Transmittance Measurements from Optical Nano- and Micro-Structured Materials

    DTIC Science & Technology

    2012-03-22

    structures and lead to better designs. 84 Appendix A. Particle Swarm Optimization Algorithm In order to validate the need for a new BSDF model ...24 9. Hierarchy representation of a subset of ScatMech BSDF library model classes...polarimetric BRDF at λ=4.3μm of SPP structures with Λ=1.79μm (left), 2μm (middle) and 2.33μm (right). All components are normalized by dividing by s0

  3. Direct printing of micro/nanostructures by femtosecond laser excitation of nanocrystals

    NASA Astrophysics Data System (ADS)

    Shou, Wan; Pan, Heng

    2017-02-01

    Direct writing using single or multiple energized beams (e.g. laser, ion or electron beams) provides high feature resolution (<1μm) compared with other solution-based printing methods (e.g. inkjet printing). There have been extensive researches on micro/nano additive manufacturing methods employing laser (or optical) and ion/electron beams. Many of these processes utilize specially designed photosensitive materials consisting of additives and effective components. Due to the presence of additive (such as polymer and binders), the effective components are relatively low resulting in high threshold for device operation. In order to direct print functional devices at low cost, there has been extensive research on laser processing of pre-synthesized nanomaterials for non-polymer functional device manufacturing. Pre-synthesized nanocrystals can have better control in the stoichiometry and crystallinity. In addition, pre-synthesis process enjoys the flexibility in material choice since a variety of materials can be synthesized. Femtosecond laser assembly and deposition of nanomaterials can be a feasible 3D micro/nano additive manufacturing approach, although mechanisms leading to assembly and deposition have not been fully understood. In this paper, we propose a mechanism for 2D and 3D deposition of nanocrystals by laser excitation with moderate peak intensities(1011-1012 W/cm2). It is postulated that laser induced charging is responsible for the deposition. The scheme paves the way for laser selective electrophoretic deposition as a micro/nanoscale additive manufacturing approach.

  4. Investigation of optical information for a single micro grating device combined with MATA by SMart process

    NASA Astrophysics Data System (ADS)

    Tsai, Chien-Chung; Huang, Yi-Chao; Yang, Tsa-Hsien; Chen, Jen-Chieh

    2006-01-01

    The concentric circles type and saw-tooth type of micro grating device based upon the diffraction theory are proposed in this study. The geometry dimension of micro optical device is 200 × 200 μm2, the interval of grating is 4 μm, and the depth is 0.75 μm. The Micro Array Thermal Actuator, MATA, is applied to drive the micro grating device, and the pre-elevating structure is designed to lift the micro grating device by the residual stress of polysilicon combined with metal. The micro grating device is fabricated by Surface Micromachining for applications and research technology platform, SMart, common process. The incident ray of He-Ne laser focused by a lens which focal length is 250 mm is applied to be the light source for the experiment, and then analyzes the optical information of the outgoing ray. From the experimental results, the basic optical features are examined based upon the concentric circles type and saw-tooth type of micro grating device, respectively. The outgoing ray angle of central spot is 60° in theory. The measurements are 59.475° for the concentric circles type and 59.88° for the saw-tooth type. The outgoing ray angle of the first stripe is 46.9° in theory, and 46.81° for the concentric circles type and 46.67° for the saw-tooth type are measured from the experiment. The variation of outgoing ray angle is smaller than 1% compared the measurement results with theory of diffraction on the central spot and first stripe characteristics. The work successfully demonstrates the micro grating device with highly accurate performance by the verification of optical information. All of the efforts will be contributed to Controlled Blazed Diffraction micro grating device, CBDMG, and that will be the main device of Integrate Opto-Electronics applied on display to develop in the future.

  5. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  6. Micro knife-edge optical measurement device in a silicon-on-insulator substrate.

    PubMed

    Chiu, Yi; Pan, Jiun-Hung

    2007-05-14

    The knife-edge method is a commonly used technique to characterize the optical profiles of laser beams or focused spots. In this paper, we present a micro knife-edge scanner fabricated in a silicon-on-insulator substrate using the micro-electromechanical-system technology. A photo detector can be fabricated in the device to allow further integration with on-chip signal conditioning circuitry. A novel backside deep reactive ion etching process is proposed to solve the residual stress effect due to the buried oxide layer. Focused optical spot profile measurement is demonstrated.

  7. Embossing of optical document security devices

    NASA Astrophysics Data System (ADS)

    Muke, Sani

    2004-06-01

    Embossing in the transparent window area of polymer banknotes, such as those seen on the Australian, New Zealand and Romanian currencies, have enormous potential for the development of novel optical security devices. The intaglio printing process can provide an efficient means for embossing of optical security structures such as micro lenses. Embossed micro lens arrays in the transparent window of a polymer banknote can be folded over a corresponding printed image array elsewhere on the note to reveal a series of moire magnified images. Analysis of samples of embossed micro lenses showed that the engraving side and impression side had a similar embossed profile. The embossed micro lens profiles were modelled using Optalix-LX commercial optical ray tracing software in order to determine the focal length of the lenses and compare with the focal length of desired embossed lenses. A fundamental understanding of how the polymer deforms during the embossing process is critical towards developing a micro lens embossing tool which can achieve the desired embossed micro lenses. This work also looks at extending the early research of the Intaglio Research Group (IRG) to better understand the embossibility of polymer substrates such as biaxially oriented polypropylene (BOPP).

  8. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    NASA Astrophysics Data System (ADS)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  9. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    NASA Astrophysics Data System (ADS)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  10. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  11. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  12. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    NASA Astrophysics Data System (ADS)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  13. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    NASA Astrophysics Data System (ADS)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  14. Design and characterization of a hybrid-integrated MEMS scanning grating spectrometer

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Schenk, Harald

    2013-03-01

    Grating spectrometer, like the well-established Czerny-Turner, are based on an optical design consisting of several components. Typically at least two slits, two mirrors, the grating stage and a detector are required. There has been much work to reduce this effort, setups using only one mirror (Ebert - Fastie) or the replacement of the entrance slit through the use of thin optical fibers as well as integrated electronic detector arrays instead of a moving grating and an exit slit and single detector device have been applied. Reduced effort comes along with performance limitations: Either the optical resolution or throughput is affected or the use of the system is limited to the availability of detectors arrays with reasonable price. Components in micro opto electro mechanical systems (MOEMS-) technology and spectroscopic systems based thereon have been developed to improve this situation. Miniaturized scanning gratings fabricated on bonded silicon on insulator (BSOI-) wafers were used to design grating spectrometer for the near infrared requiring single detectors only. Discrete components offer flexibility but also need for adjustment of two mirrors, grating stage, fiber mount and the detector with its slit and optionally a second slit in the entrance area. Further development leads towards the integration of the slits into the MOEMS chip, thus less effort for adjustment. Flexibility might be reduced as adjustments of the optical design or grating spacing would require a new chip with own set of masks. Nevertheless if extreme miniaturization is desired this approach seems to be promising. Besides this, high volume production might be able for a comparable low price. A new chip was developed offering grating, two slits and a cavity for the detector chip. The optical design was adjusted to a planar arrangement of grating and slits. A detector buried in a chip cavity required a new mounting strategy. Other optical components were optimized and fabricated then the systems was assembled with electronics and software adjusted to the new design including some new features like integrated position sensors. A first test of systems to grant function of all components is presented. Further work will be aimed at improved performance like higher resolution and lower SNR.

  15. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Young, C; Mizaikoff, B

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensingmore » applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for overall at least maintaining, or ideally improving the achievable sensitivity.« less

  17. Micro-Optical Distributed Sensors for Aero Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Otugen, V.

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  18. [Development of Micro-Spectrometer with a Function of Timely Temperature Compensation].

    PubMed

    Bao, Jian-guang; Liu, Zheng-kun; Chen, Huo-yao; Lin, Ji-ping; Fu, Shao-jun

    2015-05-01

    Temperature drift will be brought to Micro-Spectrometer used for demodulating the Varied Line-Space(VLS) grating position sensor on aircraft due to high-low temperature shock. We successfully made a Micro-Spectrometer, for the VLS grating position sensor on aircraft, which still have stable output under temperature shock enviro nment. In order to present a real time temperature compensation scheme, the effects temperature change has on Micro-Spectrometer are analyzed and the traditional cross Czerny-Turner (C-T)optical structure is optimized. Both optical structures are analyzed by optics design software ZEMAX and proved that comparedwithtraditional cross C-T optical structure, the newone can accomplish not only smaller spectrum drift but also spectrum drift with better linearity. Based on the new optical structure. The scheme of using reference wavelength to accomplish real time temperature compensation was proposed and a Micro-fiber Spectrometer was successfully manufactured, whith is with Volume of 80 mm X 70 mmX 70 mm, integration time of 8 ~1 000 ms and FullWidthHalfMaximum(FWHM) of 2 nm. Experiments show that the new spectrometer meets the design requirement. Under high temperature in the range of nearly 60 °C, the standard error of wavelength of this new spectrometer is smaller than 0. 1 nm, and the maximum error of wavelength is 0. 14 nm, which is much smaller than required 0. 3 nm. Innovations of this paper are the schemeof real time temperature compensation, the new cross C-T optical structure and a Micro-fiber Spectrometer based on it.

  19. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  20. Analysis of optical route in a micro high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  1. Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiyun; Ma, Zetao; Zhang, Xuhui

    2014-06-02

    2-μm micro-disks containing InGaN/GaN quantum wells supported on a tiny Si nanotip are fabricated via microsphere lithography followed by dry and wet etch processes. The micro-disks are studied by photoluminescence at both room-temperature and 10 K. Optically pumped blue lasing at room-temperature is observed via whispering-gallery modes (WGMs) with a lasing threshold as low as 8.43 mJ/cm{sup 2}. Optical resonances in the micro-disks are studied through numerical computations and finite-difference time-domain simulations. The WGMs are further confirmed through the measured broadband transmission spectrum, whose transmission minima coincide well with predicted WGM frequencies.

  2. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  3. Direct laser writing of polymer micro-ring resonator ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-04-01

    With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.

  4. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect.

    PubMed

    Qiu, Ciyuan; Yang, Yuxing; Li, Chao; Wang, Yifang; Wu, Kan; Chen, Jianping

    2017-12-06

    All-optical signal processing avoids the conversion between optical signals and electronic signals and thus has the potential to achieve a power efficient photonic system. Micro-scale all-optical devices for light manipulation are the key components in the all-optical signal processing and have been built on the semiconductor platforms (e.g., silicon and III-V semiconductors). However, the two-photon absorption (TPA) effect and the free-carrier absorption (FCA) effect in these platforms deteriorate the power handling and limit the capability to realize complex functions. Instead, silicon nitride (Si 3 N 4 ) provides a possibility to realize all-optical large-scale integrated circuits due to its insulator nature without TPA and FCA. In this work, we investigate the physical dynamics of all-optical control on a graphene-on-Si 3 N 4 chip based on thermo-optic effect. In the experimental demonstration, a switching response time constant of 253.0 ns at a switching energy of ~50 nJ is obtained with a device dimension of 60 μm × 60 μm, corresponding to a figure of merit (FOM) of 3.0 nJ mm. Detailed coupled-mode theory based analysis on the thermo-optic effect of the device has been performed.

  5. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh

    2009-08-01

    We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.

  6. Microwave platform as a valuable tool for characterization of nanophotonic devices

    PubMed Central

    Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel

    2016-01-01

    The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058

  7. Laser Micromachining Fabrication of THz Components

    NASA Technical Reports Server (NTRS)

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  8. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  9. Micro-patterning and characterization of PHEMA-co-PAM-based optical chemical sensors for lab-on-a-chip applications.

    PubMed

    Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R; Meldrum, Deirdre R

    2012-10-01

    We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O(2)) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes.

  10. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin

    2018-06-01

    Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.

  11. Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Xiao, Huifu; Li, Dezhao; Liu, Zilong; Han, Xu; Chen, Wenping; Zhao, Ting; Tian, Yonghui; Yang, Jianhong

    2018-03-01

    In this paper, we propose and experimentally demonstrate an integrated optical device that can implement the logical function of priority encoding from a 4-bit electrical signal to a 2-bit optical signal. For the proof of concept, the thermo-optic modulation scheme is adopted to tune each micro-ring resonator (MRR). A monochromatic light with the working wavelength is coupled into the input port of the device through a lensed fiber, and the four input electrical logic signals regarded as pending encode signals are applied to the micro-heaters above four MRRs to control the working states of the optical switches. The encoding results are directed to the output ports in the form of light. At last, the logical function of priority encoding with an operation speed of 10 Kbps is demonstrated successfully.

  12. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    PubMed

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  13. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  14. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  15. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  16. Development of optics with micro-LED arrays for improved opto-electronic neural stimulation

    NASA Astrophysics Data System (ADS)

    Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond

    2013-03-01

    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec­ tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).

  17. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  18. Hot gas path component having near wall cooling features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheetmore » to bond it to at least a portion of the exterior surface of the hot gas path component.« less

  19. Demonstrator study for micro-ranging-laser device

    NASA Astrophysics Data System (ADS)

    Henkel, Hartmut; Bernhardt, Bodo; Pereira do Carmo, J.

    2017-11-01

    Within ESA's Innovation Triangle Initiative (ITI) a demonstrator breadboard for a micro-ranging-laser device "MYLRAD" has been developed. Its working principle is the measurement of the round-trip delay time of a laser beam as a phase shift. The demonstrator consists of the laser diode (30 mW, square wave AM), optics, APD detector, narrowband preamplifier, limiter, and a phase digitiser based on a novel noise-shaping synchroniser (NSS) circuit; this works without ADCs and can be built from rad-hard components for space. The system timing and the digitiser algorithm are performed by an FPGA. The demonstrator has been tested at ranges from 1 m to 30 m. With a static non-cooperative target an RMS noise of 1 mm at a result rate of 60 Hz was reached. The demonstrator needs less than 2.5 W power.

  20. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  1. Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Dam, Dustin; Hua, Jiong; Hou, Weilin; Han, Ming

    2017-04-01

    We report a fiber-optic micro-heater based on a miniature crystalline silicon Fabry-Perot interferometer (FPI) fusion spliced to the endface of a single-mode fiber. The silicon FPI, having a diameter of 100 μm and a length of 10 or 200 μm, is heated by a 980 nm laser diode guided through the lead-in fiber, leading to a localized hot spot with a temperature that can be conveniently tuned from the ambient temperature to >1000°C in air. In the meantime, using a white light system operating in the 1550 nm wavelength window where the silicon is transparent, the silicon FPI itself also serves as a thermometer with high resolution and high speed for convenient monitoring and precise control of the heater temperature. Due to its small size, high temperature capability, and easy operation, the micro-heater is attractive for applications in a variety of fields, such as biology, microfluidics system, mechanical engineering, and high-temperature optical sensing. As an example, the application of this micro-heater as a micro-boiler and micro-bubble generator has been demonstrated.

  2. Optical increase of photo-integrated micro- and nano-periodic susceptibility lattices

    NASA Astrophysics Data System (ADS)

    Smirnov, Vitaly A.; Vostrikova, Liubov I.

    2015-03-01

    It is demonstrated that the nonlinear photo-integrated micro- and nano-periodic second-order susceptibility lattices with very small amplitudes which were preliminarily recorded using bi-chromatic powerful laser light in amorphous glass materials can be increased up to some orders of magnitude under the action of a simple coherent monochromatic radiation. The optical increase of the small lattices takes place independent of the polarization and direction of propagation of the optical amplifying radiation and is achieved at various wavelengths. The observed phenomenon is not be explained only by nonlinear wave interaction in medium and also may be related to the microscopic asymmetry processes of the optical transitions between local centers in an isotropic medium that leads to the appearance and growth of the all-optically induced small micro- and nano-periodic electrical charges separations inside the sample. Possible mechanisms that may be responsible for the observed effects in the studied phosphate glasses are discussed.

  3. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  4. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Zhang, Chonglei; Min, Changjun; Yuan, X.-C.

    2016-12-01

    We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.

  5. Time-domain measurement of optical transport in silicon micro-ring resonators.

    PubMed

    Pernice, Wolfram H P; Li, Mo; Tang, Hong X

    2010-08-16

    We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.

  6. Micro/Nanofibre Optical Sensors: Challenges and Prospects

    PubMed Central

    Tong, Limin

    2018-01-01

    Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.

  7. Resonant optical transducers for in-situ gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  8. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  9. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  10. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    NASA Astrophysics Data System (ADS)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  11. High-performance optical projection controllable ZnO nanorod arrays for microweighing sensors.

    PubMed

    Wang, Hongbo; Jiang, Shulan; Zhang, Lei; Yu, Bingjun; Chen, Duoli; Yang, Weiqing; Qian, Linmao

    2018-03-08

    Optical microweighing sensors are an essential component of micro-force measurements in physical, chemical, and biological detection fields, although, their limited detection range (less than 15°) severely hinders their wide application. Such a limitation is mainly attributed to the essential restrictions of traditional light reflection and optical waveguide modes. Here, we report a high-performance optical microweighing sensor based on the synergistic effects of both a new optical projection mode and a ZnO nanorod array sensor. Ascribed to the unique configuration design of this sensing method, this optical microweighing sensor has a wide detection range (more than 80°) and a high sensitivity of 90 nA deg -1 , which is much larger than that of conventional microcantilever-based optical microweighing sensors. Furthermore, the location of the UV light source can be adjusted within a few millimeters, meaning that the microweighing sensor does not need repetitive optical calibration. More importantly, for low height and small incident angles of the UV light source, we can obtain highly sensitive microweighing properties on account of the highly sensitive ZnO nanorod array-based UV sensor. Therefore, this kind of large detection range, non-contact, and non-destructive microweighing sensor has potential applications in air quality monitoring and chemical and biological detection.

  12. Photonic integrated circuits based on novel glass waveguides and devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhang, Deng; Pan, Weijian; Rowe, Helen; Benson, Trevor; Loni, Armando; Sewell, Phillip; Furniss, David; Seddon, Angela B.

    2006-04-01

    Novel materials, micro-, nano-scale photonic devices, and 'photonic systems on a chip' have become important focuses for global photonics research and development. This interest is driven by the rapidly growing demand for broader bandwidth in optical communication networks, and higher connection density in the interconnection area, as well as a wider range of application areas in, for example, health care, environment monitoring and security. Taken together, chalcogenide, heavy metal fluoride and fluorotellurite glasses offer transmission from ultraviolet to mid-infrared, high optical non-linearity and the ability to include active dopants, offering the potential for developing optical components with a wide range of functionality. Moreover, using single-mode large cross-section glass-based waveguides as an optical integration platform is an elegant solution for the monolithic integration of optical components, in which the glass-based structures act both as waveguides and as an optical bench for integration. We have previously developed a array of techniques for making photonic integrated circuits and devices based on novel glasses. One is fibre-on-glass (FOG), in which the fibres can be doped with different active dopants and pressed onto a glass substrate with a different composition using low-temperature thermal bonding under mechanical compression. Another is hot-embossing, in which a silicon mould is placed on top of a glass sample, and hot-embossing is carried out by applying heat and pressure. In this paper the development of a fabrication technique that combines the FOG and hot-embossing procedures to good advantage is described. Simulation and experimental results are presented.

  13. Forward light scatter analysis of the eye in a spatially-resolved double-pass optical system.

    PubMed

    Nam, Jayoung; Thibos, Larry N; Bradley, Arthur; Himebaugh, Nikole; Liu, Haixia

    2011-04-11

    An optical analysis is developed to separate forward light scatter of the human eye from the conventional wavefront aberrations in a double pass optical system. To quantify the separate contributions made by these micro- and macro-aberrations, respectively, to the spot image blur in the Shark-Hartmann aberrometer, we develop a metric called radial variance for spot blur. We prove an additivity property for radial variance that allows us to distinguish between spot blurs from macro-aberrations and micro-aberrations. When the method is applied to tear break-up in the human eye, we find that micro-aberrations in the second pass accounts for about 87% of the double pass image blur in the Shack-Hartmann wavefront aberrometer under our experimental conditions. © 2011 Optical Society of America

  14. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    PubMed Central

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383

  15. Spectroscopic analysis of XIV century wall paintings from Patriarchate of Peć Monastery, Serbia

    NASA Astrophysics Data System (ADS)

    Marić-Stojanović, M.; Bajuk-Bogdanović, D.; Uskoković-Marković, S.; Holclajtner-Antunović, I.

    2018-02-01

    The Church of the Holy Mother of God Hodegetria in Peć is decorated with wall paintings that date from the beginning of the 14th century. In terms of style they correspond to Byzantine wall paintings from the epoch of Paleologos. The painting technique and pigment pallete has been examined on micro fragments in thin cross-sections by means of optical microscopy (OM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and micro- Raman spectroscopy. Use of the fresco technique and two supporting plaster layers was noted on the majority of samples, while in large blue painted areas, a combination of fresco and secco techniques was used. The SEM-EDS results showed the presence of Ca as the main component of plaster besides the traces of Si and Mg. In some samples egg white as a binder was identified. The paint film is often multilayered. Twelve pigments were identified, mainly natural earth pigments such as red ochre, yellow ochre and green earth. A mixture of pigments was used for attaining desirable optical and aesthetical impressions. As decay product only weddelite was detected in many preparatory and painted samples.

  16. Second-generation Micro-Spec: a medium-resolution spectrometer-on-a-chip for submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Barrentine, Emily M.; Bulcha, Berhanu T.; Ehsan, Negar; Hess, Larry A.; Noroozian, Omid; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel Harvey

    2018-01-01

    This work reports on the design of a second-generation Micro-Spec (µ-Spec), a direct-detection spectrometer which integrates all the components of a diffraction-grating spectrometer onto a ~10-cm2 chip by means of superconducting microstrip transmission lines on a monocrystalline silicon substrate. The second-generation µ-Spec is designed to operate with a resolving power of 512 over the 500-1000 µm (300-600 GHz) wavelength range, a band of interest for several spectroscopic applications in astrophysics and the study of the early (z > 8) Universe. High-altitude balloon missions would provide the first testbed to demonstrate the µ-Spec technology in a space-like environment and would represent an economically viable venue for multiple observation campaigns.A brief overview of each instrument subsystem will be provided. Emphasis will be given to the design of the spectrometer’s two-dimensional diffractive region, through which the light of different wavelengths is focused on the kinetic inductance detectors along the focal plane. An optical design optimized for balloon missions through an optimization process that satisfies specific requirements on spectrometer’s size, operating spectral range and optical performance is presented in terms of geometric layout, spectral purity and efficiency.

  17. Advanced nano lithography via soft materials-derived and reversible nano-patterning methodology for molding of infrared nano lenses

    NASA Astrophysics Data System (ADS)

    Park, Jae Hong; Jang, Hyun Ik; Park, Jun Yong; Jeon, Seok Woo; Kim, Woo Choong; Kim, Hee Yeoun; Ahn, Chi Won

    2015-03-01

    The methodology suggested in this research provides the great possibility of creating nanostructures composed of various materials, such as soft polymer, hard polymer, and metal, as well as Si. Such nanostructures are required for a vast range of optical and display devices, photonic components, physical devices, energy devices including electrodes of secondary batteries, fuel cells, solar cells, and energy harvesters, biological devices including biochips, biomimetic or biosimilar structured devices, and mechanical devices including micro- or nano-scale sensors and actuators.

  18. Micromirror Arrays for Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, E.J.

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ({lambda}/20), high fill factor (> 95%), large stroke (5-10 {micro}m), and pixel size {approx}-200 {micro}m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed.

  19. [Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].

    PubMed

    Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun

    2016-03-01

    Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  20. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    PubMed

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  1. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    NASA Astrophysics Data System (ADS)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  2. Micro-optical fiber probe for use in an intravascular Raman endoscope.

    PubMed

    Komachi, Yuichi; Sato, Hidetoshi; Aizawa, Katsuo; Tashiro, Hideo

    2005-08-01

    We believe that we have developed the narrowest optical-fiber Raman probe ever reported, 600 microm in total diameter, that can be inserted into coronary arteries. The selection of suitable optical fibers, filters, and a processing method is discussed. Custom-made filters attached to the front end of a probe eliminate the background Raman signals of the optical fiber itself. The experimental evaluation of various optical fibers is carried out for the selection of suitable fibers. Measurement of the Raman spectra of an atherosclerotic lesion of a rabbit artery in vitro demonstrates the excellent performance of the micro-Raman probe.

  3. Micro-patterning and characterization of PHEMA-co-PAM-based optical chemical sensors for lab-on-a-chip applications

    PubMed Central

    Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R.; Meldrum, Deirdre R.

    2012-01-01

    We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O2) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes. PMID:23175599

  4. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  5. PDSM characterization for fabrication of free-space OXC optical components

    NASA Astrophysics Data System (ADS)

    Argueta, Victor; Fitzpatrick, Brianna

    2017-11-01

    In 2007 Dr Khine et al published a paper where they presented a technique using thermoplastics and PDMS to create microfluidic patterns1. Their technique involves printing a pattern in a polystyrene sheet using a laser printer. Once the pattern is transfer the polystyrene sheets they are heated to reduce their size. By printing the same pattern of the plastic sheets before heating, it is possible to control the height up to 80 μm and the width as thin as 65 μm1, 2. This technique is attractive to be used in optical fabrication due to its versatility, low cost and fast prototyping. However, in order to fabricate optical systems, we will need to control the refractive index of PDMS to allow design of basic optical components like waveguides, beam splitter, or diffuse reflectors; or more complex structures like interferometers, optical microfluidic lab-on-chip, micro-lens arrays. Several techniques exist to control the refractive index for PDMS either by controlling the curing temperature, the ratio between the base and curing agent, or by curing using UV light3-5. In this paper, we present the changes on refractive index by changing the curing temperature for different base/reaction agent ratios. We then apply these results to fabricate an optical component for a free-space optical cross-connect (OXC). Optical cross-connects are an important network element for constructing the next generation of optical networks, where provisioning (reconfiguration), scalability, and fast restoration will be needed6-8. The main attraction of all-optical switching is that it enables routing of optical data signals without the need for conversion to electrical signals, and therefore, is independent of data rate and data protocols. We have proposed previously9, 11 a new approach for an OXC. Our architecture is a free-space 3-D while still using digital MEMS. Our system is based on the optical White cell12, which consists of three spherical mirrors among which light can circulate. In Section II, we will briefly mention the basic characteristics of the binary White cell OXC configuration. Section III we will introduce the changes induced on curing PDMS, our SDD design and its fabrication for two different beam displacements. Finally, in Section IV, we will present the summary and conclusions of our work.

  6. Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-06-01

    A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.

  7. Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-07-01

    A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.

  8. Laser etching of austenitic stainless steels for micro-structural evaluation

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  9. Vertical comb-drive microscanner with 4x4 array of micromirrors for phase-shifting Mirau microinterferometry

    NASA Astrophysics Data System (ADS)

    Bargiel, Sylwester; Lullin, Justine; Lemoal, Patrice; Perrin, Stéphane; Passilly, Nicolas; Albero, Jorge; Froehly, Luc; Lardet-Vieudrin, Franck; Gorecki, Christophe

    2016-04-01

    In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.

  10. Precision optical device of freeform defects inspection

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2015-09-01

    This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.

  11. Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tanne, Jean-Francois

    2001-12-01

    SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.

  12. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  13. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  14. Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

    NASA Astrophysics Data System (ADS)

    Summitt, Christopher Ryan

    The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4-6]. These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool's high NA optics. To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality. The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree slope to form the coupler surface. In this method, instead of using an entire exposure in a pixelated manner, only a portion of the Gaussian profile is used, allowing a reduced surface roughness and better control of the surface shape than previously possible with this low NA beam. The surface figure of the mirror is well controlled below 0.04 waves in root-mean-square (RMS) at 1.55 mum wavelength, with mirror angle of 45+/-1 degrees. The coupling efficiency is evaluated using a set of polymer waveguides fabricated on the same substrate as the complete proof of concept device. Device insertion loss was measured using a custom built optical test station and a detailed loss analysis was completed to characterize the optical coupling efficiency of the mirror. Surface roughness and angle were also experimentally confirmed. This process opens up a pathway towards large volume fabrication of free-form and high aspect ratio optical components which have not yet pursued, along with well-defined optical structures on a single substrate. In this dissertation, in Chapter 1, we provide an overview of optical surface fabrication in conjunction with current state of the art on fabrication of free form surfaces in macro and microscopic length scale. The need for optical interconnects is introduced and fabrication methods of micro-optical couplers are reviewed in Chapter 2. In Chapter 3, the complete fabrication process of a mirror based coupler is presented including a custom alignment procedure. In Chapter 4, we provide the integration procedure of the optical couplers with waveguides. In Chapter 5, the alignment of two-lithographic methods is discussed. In Chapter 6, we provide the fabrication procedure used for the waveguides. In Chapter 7, the experimental evaluation and testing of the optical coupler is described. We present a custom test station used for angle verification and optical coupler efficiency measurement. In Chapter 8, a detailed loss analysis of the device is presented including suggestions for future reductions in loss. Conclusions and future work considerations are addressed in Chapter 9.

  15. Coupling structures for out-of-plane coupling in optical PCBs

    NASA Astrophysics Data System (ADS)

    Hendrickx, N.; Van Erps, J.; Bosman, E.; Thienpont, H.; Van Daele, P.

    2008-04-01

    Coupling structures are critical building blocks that have a big influence on the performance of board-level optical interconnections. 45° micro-mirrors deflect the light beam over 90° and are used for out-of-plane coupling in single layer structures and out-of-plane and inter-plane coupling in multilayer structures. Two different approaches are being presented: a micro-mirror that is directly integrated with the multimode waveguides and a discrete coupling element that can be plugged into a cavity in the optical layer. The advantage of the integrated micro-mirror is the high achievable alignment accuracy. The discrete couplers on the other hand have the advantage that they can be characterized and measured prior to the insertion into the optical layer. Both mirror configurations are discussed and the performance is evaluated at wavelength 850nm.

  16. Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji

    2018-02-01

    Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.

  17. An optically accessible pyrolysis microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.

    2016-01-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  18. An optically accessible pyrolysis microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraban, J. H.; Ellison, G. Barney; David, D. E.

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  19. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  20. Directly driven source of multi-gigahertz, sub-picosecond optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.

    2015-10-20

    A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less

  1. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.

    PubMed

    Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel

    2016-12-07

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd 3+ :YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.

  2. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method

    PubMed Central

    Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel

    2016-01-01

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844

  3. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  4. Nanolayered microlenses in theory and practice

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, James; Oder, Tom; Zhou, Chuanhong; Merlo, Cory; Hetzel, Connor; Bagheri, Cameron; Petrus, Joshua; Mazzocco, Anthony

    2014-05-01

    Co-extruded layered polymer films with structurally designed optical dispersion are used as ``blanks'' from which micro lenses have been fabricated using grey-scale photo-lithography followed by plasma etching. We describe the materials and processing as well as techniques used to characterize the micro lenses and the physical optics theory used to model their measured behavior.

  5. Study of cylindrical optical micro-structure technology used in infrared laser protection

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li

    2016-10-01

    The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0

  6. Optical sensors for electrical elements of a medium voltage distribution network

    NASA Astrophysics Data System (ADS)

    De Maria, Letizia; Bartalesi, Daniele; Serragli, Paolo; Paladino, Domenico

    2012-04-01

    The aging of most of the components of the National transmission and distribution system can potentially influence the reliability of power supply in a Medium Voltage (MV) network. In order to prevent possible dangerous situations, selected diagnostic indicators on electrical parts exploiting reliable and potentially low-cost sensors are required. This paper presents results concerning two main research activities regarding the development and application of innovative optical sensors for the diagnostic of MV electrical components. The first concerns a multi-sensor prototype for the detection of pre-discharges in MV switchboards: it is the combination of three different types of sensors operating simultaneously to detect incipient failure and to reduce the occurrence of false alarms. The system is real-time controlled by an embedded computer through a LabView interface. The second activity refers to a diagnostic tool to provide significant real-time information about early aging of MV/Low Voltage (LV) transformers by means of its vibration fingerprint. A miniaturized Optical Micro-Electro-Mechanical System (MEMS) based unit has been assembled for vibration measurements, wireless connected to a remote computer and controlled via LabView interface. Preliminary comparative tests were carried out with standard piezoelectric accelerometers on a conventional MV/LV test transformer under open circuit and in short-circuited configuration.

  7. Hygroscopicity and volatility of semi-volatile organic components in optical levitated single organic/inorganic aqueous aerosol droplet

    NASA Astrophysics Data System (ADS)

    Cai, C.; Zhao, C.

    2017-12-01

    Quantifying the gas/particle partitioning of organic compounds is of great significance to the understanding of atmospheric aerosol indirect effect. Accurate determination of the hygroscopicities and vapor pressures of semi-volatile organic compounds (SVOC) is of crucial importance in studying their partitioning behavior into atmospheric aerosol, as current published vapor pressures results of compounds of interest (usually with vapor pressures smaller than 0.01 Pa) vary by several orders of magnitude. On the other hand, influences on SVOCs evaporation from participation of inorganic species remains ambiguous. In this study we present quantitative investigation of hygroscopicities and volatilities of single aerosol droplets in an aerosol optical tweezers. The trapped droplet (3-7 µm radii) in the aerosol optical tweezers acts as a micro cavity, which stimulates the cavity enhanced Raman spectroscopy (CERS) signal. Size and composition of the particle are calculated from Mie fit to the positions of the "whispering gallery modes" in the CERS fingerprint. Hygroscopic behaviors and SVOC pure component vapor pressure can then be extracted from the correlation between the changing droplet radius and solute concentration (derived from experimentally determined RI real part). We will further present the influences between mass transfer on the gas-particle interface and within the droplet.

  8. High Sensitivity Optomechanical Reference Accelerometer over 10 kHz

    DTIC Science & Technology

    2014-06-05

    bandwidth of 10 kHz and is traceable. We have incorporated a Fabry-P erot fiber-optic micro-cavity that is currently capable of measuring the test-mass...10 kHz- bandwidth requires displacement detection sensitivities at levels of 10 16 m= Hz p . Optical detection schemes, such as Fabry-P erot ...based micro- mirror Fabry-P erot cavity19,20 was built to operate in reflec- tion as the optical sensor. The mechanical oscillator ground platform and

  9. Optical zoom lens module using MEMS deformable mirrors for portable device

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  10. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  11. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  12. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbabi, Amir; Horie, Yu; Ball, Alexander J.

    2015-05-07

    Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or largemore » numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.« less

  13. Micro-optical artificial compound eyes.

    PubMed

    Duparré, J W; Wippermann, F C

    2006-03-01

    Natural compound eyes combine small eye volumes with a large field of view at the cost of comparatively low spatial resolution. For small invertebrates such as flies or moths, compound eyes are the perfectly adapted solution to obtaining sufficient visual information about their environment without overloading their brains with the necessary image processing. However, to date little effort has been made to adopt this principle in optics. Classical imaging always had its archetype in natural single aperture eyes which, for example, human vision is based on. But a high-resolution image is not always required. Often the focus is on very compact, robust and cheap vision systems. The main question is consequently: what is the better approach for extremely miniaturized imaging systems-just scaling of classical lens designs or being inspired by alternative imaging principles evolved by nature in the case of small insects? In this paper, it is shown that such optical systems can be achieved using state-of-the-art micro-optics technology. This enables the generation of highly precise and uniform microlens arrays and their accurate alignment to the subsequent optics-, spacing- and optoelectronics structures. The results are thin, simple and monolithic imaging devices with a high accuracy of photolithography. Two different artificial compound eye concepts for compact vision systems have been investigated in detail: the artificial apposition compound eye and the cluster eye. Novel optical design methods and characterization tools were developed to allow the layout and experimental testing of the planar micro-optical imaging systems, which were fabricated for the first time by micro-optics technology. The artificial apposition compound eye can be considered as a simple imaging optical sensor while the cluster eye is capable of becoming a valid alternative to classical bulk objectives but is much more complex than the first system.

  14. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  15. Chalcogenide glass sensors for bio-molecule detection

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong

    2017-02-01

    Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.

  16. Light Manipulation in Organic Photovoltaics

    PubMed Central

    Ou, Qing‐Dong

    2016-01-01

    Organic photovoltaics (OPVs) hold great promise for next‐generation photovoltaics in renewable energy because of the potential to realize low‐cost mass production via large‐area roll‐to‐roll printing technologies on flexible substrates. To achieve high‐efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade‐off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano‐structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry‐induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers. PMID:27840805

  17. Optical inspection of hidden MEMS structures

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  18. Catastrophe Optics Method to Determine the Micro-Nano Size Profiles at TPL of Liquid Films on a Solid Surface

    NASA Technical Reports Server (NTRS)

    Chao, David F.; McQuillen, J. B.; Sankovic, J. M.; Zhang, Nengli

    2009-01-01

    As discovered by recent studies, what directly affects the wetting and spreading is curvature in micro-region rather than the macroscopic contact angle. Measuring the profile of the micro-region becomes an important research topic. Recently, catastrophe optics has been applied to this kind of measurements. Optical catastrophe occurring in far field of waves of liquid-refracted laser beam implies a wealth of information about the liquid spreading not only for liquid drops but also for films. When a parallel laser beam passes through a liquid film on a slide glass at three-phase-line (TPL), very interesting optical image patterns occur on a screen far from the film. An analysis based on catastrophe optics discloses and interprets the formation of these optical image patterns. The analysis reveals that the caustic line manifested as the bright-thick line on the screen implies the lowest hierarchy of optical catastrophes, called fold caustic. This optical catastrophe is produced by the inflexion line on liquid surface at the liquid foot, which is formed not only in the spreading of drops but also in spreading of films. The generalized catastrophe optics method enables to identify the edge profiles and determine the edge foot height of liquid films. Keywords: Crossover region, Inflexion line, liquid edge foot, Catastrophe optics, Caustic and diffraction

  19. Integration of micro-/nano-/quantum-scale photonic devices: scientific and technological considerations

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun

    2004-08-01

    Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.

  20. Optical single photons on-demand teleported from microwave cavities

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Sh; Vitali, D.; Tombesi, P.

    2013-03-01

    We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.

  1. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  2. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils.

    PubMed

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-03-14

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  3. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    PubMed Central

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-01-01

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring. PMID:28335436

  4. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    NASA Astrophysics Data System (ADS)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  5. Ultraprecision finishing of micro-aspherical surface by ultrasonic assisted polishing; Technical Digest

    NASA Astrophysics Data System (ADS)

    Suzuki, Hirofumi; Kawamori, Ryota; Yamamoto, Yuji; Miyabara, Mitsuru; Okino, Tadashi; Hijikata, Yoshio; Moriwaki, Toshimichi

    2005-05-01

    Micro aspherical glass lenses are required for electronic devices, optical devices and advanced optical fiber transmission equipments. The glass lenses are manufactured by glass molding method by using micro ceramics dies such as tungsten carbide or silicon carbide (1). Therefore molding dies are most important and they were ground by ultra-precision grinding method with diamond wheel. Recently, the wavelength of used laser is becoming shorter and then the accuracies of the micro molding die are required to be much more precise (2). In this paper, ultrasonic assisted polishing methods/systems were developed in order to finish micro aspherical dies that were ground with micro diamond wheel. In the polishing experiments, the molding die of tungsten carbide was polished with diamond abrasives to test the basic polishing characteristics and the aspheric die was polished with proposed ultrasonic assisted polishing method.

  6. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  7. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  8. Fiber-optic sensor applications in civil and geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  9. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  10. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    NASA Astrophysics Data System (ADS)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  11. Self-folding micropatterned polymeric containers.

    PubMed

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  12. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    PubMed

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  13. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  14. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo

    2011-05-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  15. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    NASA Astrophysics Data System (ADS)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.

  16. Simulation of MEMS for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.

  17. Transmittance of optical materials from 0.17 micro to 3.0 micro.

    PubMed

    McCarthy, D E

    1967-11-01

    The transmittance of thirty-one optical materials is given from 0.17, micro to 3.0 micro. Included are NaCl, KBr, CsBr, CsI, CaF(2), BaF(2), NaF, TlBr, TICL, KRS-5, KRS-6, T-12, KC, CuC, T O(2), ADP, KDP, SrTiO(3), GaP, CaCO(3), CdSe, As(2)S(3), ruby, Al(2)O(3), Irtran 1-6, and quartz. All are synthetic with the exception of CaCO(3). In many cases, the short wavelength cutoff of the synthetic materials is less than that which has been reported for naturally occurring materials.

  18. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A.

    2018-02-01

    Quantitative measurement of blood flow velocity in capillaries is challenging due to their small size (around 5-10 μm), and the discontinuity and single-file feature of RBCs flowing in a capillary. In this work, we present a phase-resolved Optical Coherence Tomography (OCT) method for accurate measurement of the red blood cell (RBC) speed in cerebral capillaries. To account for the discontinuity of RBCs flowing in capillaries, we applied an M-mode scanning strategy that repeated A-scans at each scanning position for an extended time. As the capillary size is comparable to the OCT resolution size (3.5×3.5×3.5μm), we applied a high pass filter to remove the stationary signal component so that the phase information of the dynamic component (i.e. from the moving RBC) could be enhanced to provide an accurate estimate of the RBC axial speed. The phase-resolved OCT method accurately quantifies the axial velocity of RBC's from the phase shift of the dynamic component of the signal. We validated our measurements by RBC passage velocimetry using the signal magnitude of the same OCT time series data. These proposed method of capillary velocimetry proved to be a robust method of mapping capillary RBC speeds across the micro-vascular network.

  19. Electrodeposition of Gold to Conformally Fill High Aspect Ratio Nanometric Silicon Grating Trenches: A Comparison of Pulsed and Direct Current Protocols

    PubMed Central

    Znati, Sami A.; Chedid, Nicholas; Miao, Houxun; Chen, Lei; Bennett, Eric E.; Wen, Han

    2016-01-01

    Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures. PMID:27042384

  20. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2003-12-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  1. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2004-01-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  2. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.

    PubMed

    Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng

    2018-05-01

    Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D micro-lenses for free space intra-chip coupling in photonic-integrated circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.

    2017-02-01

    The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.

  4. Hard and flexible optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.

    2007-02-01

    We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.

  5. A novel optical system design of light field camera

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Li, Wenhua; Hao, Chenyang

    2016-01-01

    The structure of main lens - Micro Lens Array (MLA) - imaging sensor is usually adopted in optical system of light field camera, and the MLA is the most important part in the optical system, which has the function of collecting and recording the amplitude and phase information of the field light. In this paper, a novel optical system structure is proposed. The novel optical system is based on the 4f optical structure, and the micro-aperture array (MAA) is used to instead of the MLA for realizing the information acquisition of the 4D light field. We analyze the principle that the novel optical system could realize the information acquisition of the light field. At the same time, a simple MAA, line grating optical system, is designed by ZEMAX software in this paper. The novel optical system is simulated by a line grating optical system, and multiple images are obtained in the image plane. The imaging quality of the novel optical system is analyzed.

  6. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  7. Micro-drive and headgear for chronic implant and recovery of optoelectronic probes.

    PubMed

    Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien

    2017-06-05

    Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.

  8. Optical coherence tomography based angiography [Invited

    PubMed Central

    Chen, Chieh-Li; Wang, Ruikang K.

    2017-01-01

    Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography. PMID:28271003

  9. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.

    2009-06-15

    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less

  10. Apparatus and method for creating a photonic densely-accumulated ray-point

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.

  11. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.

  12. High aperture off-axis parabolic mirror applied in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.

    2018-04-01

    An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.

  13. Full-frame, programmable hyperspectral imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Steven P.; Graff, David L.

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less

  14. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    PubMed

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  15. Diamond High Assurance Security Program: Trusted Computing Exemplar

    DTIC Science & Technology

    2002-09-01

    computing component, the Embedded MicroKernel Prototype. A third-party evaluation of the component will be initiated during development (e.g., once...target technologies and larger projects is a topic for future research. Trusted Computing Reference Component – The Embedded MicroKernel Prototype We...Kernel The primary security function of the Embedded MicroKernel will be to enforce process and data-domain separation, while providing primitive

  16. Design and simulation of a planar micro-optic free-space receiver

    NASA Astrophysics Data System (ADS)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  17. Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-07-01

    A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.

  18. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

    PubMed Central

    Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies. PMID:25401023

  19. Optical wireless communications for micromachines

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  20. Bio-Optics and Bio-Inspired Optical Materials.

    PubMed

    Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2017-10-25

    Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.

  1. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s

    PubMed Central

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-01-01

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653

  2. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.

    PubMed

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-04-29

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

  3. EDITORIAL: Special section: Selected papers from OMS'05, the 1st Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2006-07-01

    OMS'05 is the first international conference wholly dedicated to optical microsystems. It was organized by the European Optical Society (EOS) in the frame of its international topical meeting activity and was held in Italy, September 2005, amidst the wonderful scenery of the Island of Capri. A possible definition of an optical microsystem is a complex system, able to perform one or more sensing and actuation functions, where optical devices are integrated in a smart way with electronic, mechanical and sensing components by taking advantage of the progress in micro- and nano-technologies. The increasing interest in this field arises from the expected applications that would significantly improve the quality of life. The list of possibilities offered by the optical microsystem enabling technologies is very long and seems to increase day by day. We are not only thinking about the next generation of optical telecommunication networks and computers, but also about low-cost, compact microsystems for environmental monitoring, in order to improve safety in the avionic and automotive fields, medical diagnostics and proteomic/genomic studies, or just finding general applications in several industrial fields. The goal of the conference was to involve scientists and young researchers from the main public and private laboratories, giving them the opportunity to present new scientific results and compare their know-how in the exciting and emerging field of optical microsystems. We believe that we succeeded in this. More than 200 scientists from all over the world attended the conference. We had more than 100 oral presentations and approximately 20 from the keynote lectures and invited speeches. It was an opportunity to define the most recent progress carried out in the field and to outline the possible road-map leading to the expected results in the industrial and social fields. We strongly believe that research and technology are closely interconnected at present and cannot move forward separately. Thus, we wanted the meeting to encourage the cross-fertilization of ideas of all the people involved and active in the areas of optics, photonics, microelectronics and materials, by gathering together theoreticians, experimentalists and those interested in industrial applications. For these reasons the conference programme focused on fundamental as well as more applied topics. Photonic crystals, non-linear and quantum optics in micro-devices, nanophotonic-based devices, silicon-based optoelectronics and MOEMS, microsensors, biochips and the new characterization methods for materials and devices were among the hot topics of the conference. Special emphasis was also given to industrial applications and to technologies enabling the production of microsytems and their sub-components. In this special section of Journal of Optics A: Pure and Applied Optics, a series of interesting papers has been collected, reporting progress in the different aspects of microsystems design, production, characterization and testing. The papers embrace most of the various topics that were debated during the conference. We hope that these papers will not only report the most up-to-date research progress made in this field, but will also involve and stimulate everyone working in these areas to continue in the effort of developing more and better optical microsystems in the future. We would like to thank all the members of the Scientific and Industrial Committees for the high scientific content of the meeting and the European Optical Society for its support of the conference organization.

  4. The wavefront compensation of free space optics utilizing micro corner-cube-reflector arrays

    NASA Astrophysics Data System (ADS)

    You, Shengzui; Yang, Guowei; Li, Changying; Bi, Meihua; Fan, Bing

    2018-01-01

    The wavefront compensation effect of micro corner-cube-reflector arrays (MCCRAs) in modulating retroreflector (MRR) free-space optical (FSO) link is investigated theoretically and experimentally. Triangular aperture of MCCRAs has been optically characterized and studied in an indoor atmospheric turbulence channel. The use of the MCCRAs instead of a single corner-cube reflector (CCR) as the reflective device is found to improve dramatically the quality of the reflected beam spot. We draw a conclusion that the MCCRAs can in principle yield a powerful wavefront compensation in MRR FSO communication links.

  5. Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer.

    PubMed

    Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.

  6. A polarization measurement method for the quantification of retardation in optic nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko

    2008-02-01

    The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.

  7. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  8. Spectroscopy and DFT studies of uranyl carbonate, rutherfordine, UO2CO3: a model for uranium transport, carbon dioxide sequestration, and seawater species

    NASA Astrophysics Data System (ADS)

    Kalashnyk, N.; Perry, D. L.; Massuyeau, F.; Faulques, E.

    2017-12-01

    Several optical microprobe experiments of the anhydrous uranium carbonate—rutherfordine—are presented in this work and compared to periodic density functional theory results. Rutherfordine is the simplest uranyl carbonate and constitutes an ideal model system for the study of the rich uranium carbonate family relevant for environmental sustainability. Micro-Raman, micro-reflectance, and micro-photoluminescence (PL) spectroscopy studies have been carried out in situ on native, micrometer-sized crystals. The sensitivity of these techniques is sufficient to analyze minute amounts of samples in natural environments without using x-ray analysis. In addition, very intense micro-PL and micro-reflectance spectra that were not reported before add new results on the ground and excited states of this mineral. The optical gap value determined experimentally is found at about 2.6-2.8 eV. Optimized geometry, band structure, and phonon spectra have been calculated. The main vibrational lines are identified and predicted by this theoretical study. This work is pertinent for optical spectroscopy, for identification of uranyl species in various environmental settings, and for nuclear forensic analysis.

  9. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  10. Broadband athermal waveguides and devices for datacom and telecom applications

    NASA Astrophysics Data System (ADS)

    He, Liuqing; Guo, Yuhao; Han, Zhaohong; Wada, Kazumi; Kimerling, Lionel C.; Michel, Jurgen; Agarwal, Anuradha M.; Li, Guifang; Zhang, Lin

    2018-02-01

    The high temperature sensitivity of silicon material limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependence-wavelength-shift (TDWS) micro-ring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide which shows a low effective thermos-optical coefficient (TOC) of +/-1×10-6/K at 1400 nm to 1700 nm. The proposed waveguide shows low-loss performance of 0.01 dB/cm and stable broadband-athermal ability when it's applied in micro-ring resonators, and the optical loss of micro-ring resonator with a radius of 100 μm using this waveguide is 0.02 dB/cm.

  11. Estimate of the effect of micro-vibration on the performance of the Algerian satellite (Alsat-1B) imager

    NASA Astrophysics Data System (ADS)

    Serief, Chahira

    2017-11-01

    Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.

  12. A review of the promises and challenges of micro-concentrator photovoltaics

    NASA Astrophysics Data System (ADS)

    Domínguez, César; Jost, Norman; Askins, Steve; Victoria, Marta; Antón, Ignacio

    2017-09-01

    Micro concentrator photovoltaics (micro-CPV) is an unconventional approach for developing high-efficiency low-cost PV systems. The micrifying of cells and optics brings about an increase of efficiency with respect to classical CPV, at the expense of some fundamental challenges at mass production. The large costs linked to miniaturization under conventional serial-assembly processes raise the need for the development of parallel manufacturing technologies. In return, the tiny sizes involved allows exploring unconventional optical architectures or revisiting conventional concepts that were typically discarded because of large material consumption or high bulk absorption at classical CPV sizes.

  13. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    PubMed

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  14. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  15. The initial design of LAPAN's IR micro bolometer using mission analysis process

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.

    2016-11-01

    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  16. Micro Solar Cells with Concentration and Light Trapping Optics

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph

    2013-03-01

    Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293

  17. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  18. Small optical inter-satellite communication system for small and micro satellites

    NASA Astrophysics Data System (ADS)

    Iwamoto, Kyohei; Nakao, Takashi; Ito, Taiji; Sano, Takeshi; Ishii, Tamotsu; Shibata, Keiichi; Ueno, Mitsuhiro; Ohta, Shinji; Komatsu, Hiromitsu; Araki, Tomohiro; Kobayashi, Yuta; Sawada, Hirotaka

    2017-02-01

    Small optical inter-satellite communication system to be installed into small and micro satellites flying on LEO are designed and experimentally verified of its fundamental functions. Small, light weighted, power efficient as well as usable data transmission rate optical inter-satellite communication system is one of promising approach to provide realtime data handling and operation capabilities for micro and small satellite constellations which have limited conditions of payload. Proposed system is designed to connect satellites with 4500 (km) long maximum to be able to talk with ground station continuously by relaying LEO satellites even when they are in their own maneuvers. Connecting satellites with 4500 (km) long with keeping steady data rate, accurate pointing and tracking method will be one of a crucial issue. In this paper, we propose a precious pointing and tracking method and system with a miniature optics and experimentally verified almost 10 (μrad) of pointing accuracy with more than 500 (mrad) of angular coverage.

  19. DPSSL for direct dicing and drilling of dielectrics

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Schwagmeier, M.

    2007-02-01

    New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.

  20. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

  1. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  2. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress

    PubMed Central

    Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Kirchhoff, Johanna; Tannert, Astrid; Samek, Ota; Zemánek, Pavel

    2018-01-01

    Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments. PMID:29783713

  3. A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Xie, Huimin

    2017-11-01

    A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.

  4. APOGEE fiber development and FRD testing

    NASA Astrophysics Data System (ADS)

    Brunner, Sophia; Burton, Adam; Crane, Jeff; Zhao, Bo; Hearty, Fred R.; Wilson, John C.; Carey, Larry; Leger, French; Skrutskie, Mike; Schiavon, Ricardo; Majewski, Steven R.

    2010-07-01

    Development of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph has motivated thorough investigation into the properties and performance of optical fibers. The fiber selected for APOGEE is a step index, multi-mode fiber, developed by PolyMicro, with a 120μm low OH, fused silica core, 25μm cladding, and 10μm buffer. The instrument design includes a 40 meter fiber run, connecting the spectrograph to the 2.5m Sloan Digital Sky Survey (SDSS) telescope, and an additional 2.5 meter fiber segment located within the instrument dewar, a vacuum-sealed, cryogenic environment. This light path is convoluted and includes many transitions and connections where the beam is susceptible irrevocable loss. To optimize the spectrograph performance it is necessary to minimize the losses incurred in the fiber system, especially those resulting in focal ratio degradation (FRD). The focus of this research has been to identify potential sources of loss and where applicable, select material components to minimize this effect. There is little previous documented work concerning the performance of optical fibers within this wavelength band (1.5-1.7μm). Consequently, the following includes comprehensive explanations of the APOGEE fiber system components, our experimental design and optical test bed set-up, beam alignment procedures, fiber terminating and polishing techniques, and results from our examination of FRD as correlated with source wavelength, fiber length and termination, and environmental conditions.

  5. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.

    PubMed

    Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J

    2010-12-01

    Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. High dynamic grayscale lithography with an LED-based micro-image stepper

    NASA Astrophysics Data System (ADS)

    Eckstein, Hans-Christoph; Zeitner, Uwe D.; Leitel, Robert; Stumpf, Marko; Schleicher, Philipp; Bräuer, Andreas; Tünnermann, Andreas

    2016-03-01

    We developed a novel LED projection based direct write grayscale lithography system for the generation of optical surface profiles such as micro-lenses, diffractive elements, diffusors, and micro freeforms. The image formation is realized by a LCoS micro-display which is illuminated by a 405 nm UV High Power LED. The image on the display can be demagnified from factors 5x to 100x with an exchangeable lens. By controlling exposure time and LED power, the presented technique enables a highly dynamic dosage control for the exposure of h-line sensitive photo resist. In addition, the LCoS micro-display allows for an intensity control within the micro-image which is particularly advantageous to eliminate surface profile errors from stitching and limited homogeneity from LED illumination. Together with an accurate calibration of the resist response this leads to a superior low surface error of realized profiles below <0.2% RMS. The micro-display is mounted on a 3-axis (XYθ) stage for precise alignment. The substrate is brought into position with an air bearing stage which addresses an area of 500 × 500 mm2 with a positioning accuracy of <100 nm. As the exposure setup performs controlled motion in the z-direction the system to maintain the focal distance and lithographic patterning on non-planar surfaces to some extent. The exposure concept allows a high structure depth of more than 100 μm and a spatial resolution below 1 μm as well as the possibility of very steep sidewalls with angles larger than >80°. Another benefit of the approach is a patterning speed up to 100 cm2/h, which allows fabricating large-scale optics and microstructures in an acceptable time. We present the setup and show examples of micro-structures to demonstrate the performance of the system, namely a refractive freeform array, where the RMS surface deviation does not exceed 0.2% of the total structure depth of 75 μm. Furthermore, we show that this exposure tool is suitable to generate diffractive optical elements as well as freeform optics and arrays with a high aspect ratio and structure depth showing a superior optical performance. Lastly we demonstrate a multi-level diffraction grating on a curved substrate.

  7. Photoactuators for Direct Optical-to-Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation.

    PubMed

    Hu, Ying; Li, Zhe; Lan, Tian; Chen, Wei

    2016-12-01

    Photoactuators with integrated optical-to-mechanical energy conversion capacity have attracted growing research interest in the last few decades due to their unique features of remote control and their wide applications ranging from bionic robots, biomedical devices, and switches to motors. For the photoactuator design, the energy conversion route and structure assembly are two important parts, which directly affect the performance of the photoactuators. In particular, the architectural designs at the molecular, nano-, micro-, and macro- level, are found to play a significant role in accumulating molecular-scale strain/stress to macroscale strain/stress. Here, recent progress on photoactuators based on photochemical and photothermal effects is summarized, followed by a discussion of the important assembly strategies for the amplification of the photoresponsive components at nanoscale to macroscopic scale motions. The application advancement of current photoactuators is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    PubMed

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  9. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-11-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  10. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  11. Optical imagery and spectrophotometry of CTB 80

    NASA Technical Reports Server (NTRS)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1989-01-01

    Narrow-band imagery and spectrophotometry of the central region of CTB 80 are presented. The images show weak forbidden O III and ubiquitous filamentary forbidden S II and H-alpha emission from the extended radio lobes in which the core is embedded. The data indicate that the extended component is shock heated. Balmer line-dominated emission is observed around the perimeter of the core. Assuming that the volume of the radio shell is similar to the volume of the thermal shell, it is found that a magnetic field of about 600 microG and a cosmic-ray proton-to-electron ratio of about 200 are required to explain the pressure and synchrotron volume emissivity in the radio shell. It is suggested that the optical emission form the core of CTB 80 arises behind shocks which are being driven into a magnetized thermal plasma by the confined relativistic wind from PSR 1951+32.

  12. A study of optical design of power-saving backlight module with external illuminance

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Tzeng, Yih-Fong

    2014-05-01

    In backlight modules, the light guide plate (LGP) is a key component for performance and also facilitates access to develop LGPs on its own. In this research, we propose a newly developed method: LEDs with freeform as a lighting source, are employed to integrate and manipulate the specially designed and optimized 3D-like pattern distribution of the micro features in order to obtain the required optical characteristics at maximal performance. In this research propose the concept of Light Guide Film(LGF) at the back side of Back Light Unit(BLU). This new design may induce the exterior light ,then improve the power-saving of existent BLU. Two design models are reseated: One is design for 14 inch LCD monitor of notebook computer, which might improve 21% compared to traditional one. Another is designed for 3.5 inch LCD for mobile phone display ,which might improve 15% compared to traditional one.

  13. Developments in photonic and mm-wave component technology for fiber radio

    NASA Astrophysics Data System (ADS)

    Iezekiel, Stavros

    2013-01-01

    A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum­ wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly­ modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self­ oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.

  14. Electrostatically Driven Large Aperture Micro-Mirror Actuator Assemblies for High Fill-Factor, Agile Optical Phase Arrays

    DTIC Science & Technology

    2015-06-18

    platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam

  15. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  16. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  17. Modular separation-based fiber-optic sensors for remote in situ monitoring.

    PubMed

    Dickens, J; Sepaniak, M

    2000-02-01

    A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.

  18. The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet

    NASA Astrophysics Data System (ADS)

    Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan

    2018-01-01

    Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.

  19. Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology

    NASA Astrophysics Data System (ADS)

    Ogudo, Kingsley A.; Snyman, Lukas W.; Polleux, Jean-Luc; Viana, Carlos; Tegegne, Zerihun

    2014-06-01

    Si Avalanche based LEDs technology has been developed in the 650 -850nm wavelength regime [1, 2]. Correspondingly, small micro-dimensioned detectors with pW/μm2 sensitivity have been developed for the same wavelength range utilizing Si-Ge detector technology with detection efficiencies of up to 0.85, and with a transition frequencies of up to 80 GHz [3] A series of on-chip optical links of 50 micron length, utilizing 650 - 850 nm propagation wavelength have been designed and realized, utilizing a Si Ge radio frequency bipolar process. Micron dimensioned optical sources, waveguides and detectors were all integrated on the same chip to form a complete optical link on-chip. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, silicon nitride based waveguides, and state of the art Si-Ge bipolar detector technologies were used as key design strategies. Best performances show optical coupling from source to detector of up to 10GHz and - 40dBm total optical link budget loss with a potential transition frequency coupling of up to 40GHz utilizing Si Ge based LEDs. The technology is particularly suitable for application as on-chip optical links, optical MEMS and MOEMS, as well as for optical interconnects utilizing low loss, side surface, waveguide- to-optical fiber coupling. Most particularly is one of our designed waveguide which have a good core axis alignment with the optical source and yield 10GHz -30dB on-chip micro-optical links as shown in Fig 9 (c). The technology as developed has been appropriately IP protected.

  20. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings

    PubMed Central

    2011-01-01

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications. PMID:22039893

  1. Silicon technology-based micro-systems for atomic force microscopy/photon scanning tunnelling microscopy.

    PubMed

    Gall-Borrut, P; Belier, B; Falgayrettes, P; Castagne, M; Bergaud, C; Temple-Boyer, P

    2001-04-01

    We developed silicon nitride cantilevers integrating a probe tip and a wave guide that is prolonged on the silicon holder with one or two guides. A micro-system is bonded to a photodetector. The resulting hybrid system enables us to obtain simultaneously topographic and optical near-field images. Examples of images obtained on a longitudinal cross-section of an optical fibre are shown.

  2. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.

  3. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties

    DTIC Science & Technology

    2014-01-01

    using both UV –vis spectroscopy for ensemble measurements and optical micro- spectrophotometry for individual superlattice electric fi elds at...lated data). The red-shift seen between the micro-spectropho- tometer measurements (Figure 3 b) and the UV –vis ensemble measurements (Figure 3 a...the measurements. Using UV –vis spectroscopy ( Figure 3 a), red- shifting of the superlattices’ bulk LSPR with decreased nano- particle spacing is

  4. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-02-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.

  5. Illumination analysis of LAPAN's IR micro bolometer

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2016-10-01

    We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.

  6. Design and prototyping of self-centering optical single-mode fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s-1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem for robustness according to the FEA model. Finally connector-assemblies are made with the alignment system and we show that an insertion loss down to 0.1 dB is achievable. The prototypes are subsequently used as a sacrificial master for mould fabrication through electroplating with the goal of low-cost replication through hot embossing.

  7. Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Rube, Martin; Cox, Benjamin; Melzer, Andreas; Dholakia, Kishan

    2014-02-01

    Raman spectroscopy has proven to be a powerful tool for discriminating between normal and abnormal tissue types. Fiber based Raman probes have demonstrated its potential for in vivo disease diagnostics. Combining Raman spectroscopy with Magnetic Resonance Imaging (MRI) opens up new avenues for MR guided minimally invasive optical biopsy. Although Raman probes are commercially available, they are not compatible with a MRI environment due to the metallic components which are used to align the micro-optic components such as filters and lenses at the probe head. Additionally they are not mechanically compatible with a typical surgical environment as factors such as sterility and length of the probe are not addressed in those designs. We have developed an MRI compatible fiber Raman probe with a disposable probe head hence maintaining sterility. The probe head was specially designed to avoid any material that would cause MR imaging artefacts. The probe head that goes into patient's body had a diameter <1.5 mm so that it is compatible with biopsy needles and catheters. The probe has been tested in MR environment and has been proven to be capable of obtaining Raman signal while the probe is under real-time MR guidance.

  8. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  9. Optical printed circuit board (O-PCB) and VLSI photonic integrated circuits: visions, challenges, and progresses

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.

    2006-09-01

    A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.

  10. Modeling and measurement of a micro-optic beam deflector

    NASA Technical Reports Server (NTRS)

    Milster, Tom D.; Wong, J. Nan

    1992-01-01

    The use is studied of a unity-magnification micro-optic beam deflector. The defelector consists of two arrays of positively powered lenslets. The lenslets on each array are arranged in a square grid. Design criteria are based on usefulness in optical data storage devices. The deflector is designed to operate over a + or - 1.6 range of deflection angles. Modeling results are compared with interferometric analysis of the wavefront from a single lenslet pair. The results indicate that the device is nearly diffraction limited, but there are substantial wavefront errors at the edges and corners of the lenslets.

  11. Micro-Randomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions

    PubMed Central

    Klasnja, Predrag; Hekler, Eric B.; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A.

    2015-01-01

    Objective This paper presents an experimental design, the micro-randomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals’ health behaviors. Micro-randomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. Methods The paper describes the micro-randomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Results Micro-randomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Conclusions Micro-randomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions’ effects, enabling creation of more effective JITAIs. PMID:26651463

  12. Compact self-aligning assemblies with refractive microlens arrays made by contactless embossing

    NASA Astrophysics Data System (ADS)

    Schulze, Jens; Ehrfeld, Wolfgang; Mueller, Holger; Picard, Antoni

    1998-04-01

    The hybrid integration of microlenses and arrays of microlenses in micro-optical systems is simplified using contactless embossing of microlenses (CEM) in combination with LIGA microfabrication. CEM is anew fabrication technique for the production of precise refractive microlens arrays. A high precision matrix of holes made by LIGA technique is used as a compression molding tool to form the microlenses. The tool is pressed onto a thermoplastic sample which is heated close to the glass transformation temperature of the material. The material bulges into the openings of the molding tool due to the applied pressure and forms lens-like spherical structures. The name refers to the fact that the surface of the microlens does not get in contact with the compression molding tool during the shaping process and optical quality of the surface is maintained. Microlenses and arrays of microlenses with lens diameters from 30 micrometers up to 700 micrometers and numerical aperture values of up to 0.25 have been fabricated in different materials. Cost-effectiveness in the production process, excellent optical performance and the feature of easy replication are the main advantages of this technique. The most promising feature of this method is the possibility to obtain self- aligned assemblies then can be further integrated into a micro-optical bench setup. The CEM fabrication method in combination with LIGA microfabrication considerably enhances the hybrid integration in micro-optical devices which results in a more cost-effective production of compact micro-opto-electro-mechanical systems.

  13. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  14. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  15. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  16. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    NASA Astrophysics Data System (ADS)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  17. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    NASA Astrophysics Data System (ADS)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  18. Characterization of passive polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.

    1999-05-01

    The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.

  19. Lensfree microscopy on a cellphone

    PubMed Central

    Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943

  20. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    NASA Astrophysics Data System (ADS)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  1. Laser Assisted Micro Wire GMAW and Droplet Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.

    2002-03-01

    Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less

  2. Cracking in dissimilar laser welding of tantalum to molybdenum

    NASA Astrophysics Data System (ADS)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  3. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    NASA Astrophysics Data System (ADS)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  4. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  5. Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.

    2010-02-01

    A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.

  6. Nanophotonics for Lab-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    Optical methods are the preferred measurement techniques for biosensors and lab-on-chip applications. Their key properties are sensitivity, selectivity and robustness. To simplify the systems and their operation, it is desirable to employ label-free optical methods, requiring the functionalization of interfaces. Evanescent electromagnetic waves are probing the optical proper ties near the interfaces, a few 100 nm deep into the sample fluid. The sensitivity of these measurements can be improved with optical micro-resonators, in particular whispering gallery mode devices. Q factors as high as 2x108 have been achieved in practice. The resulting narrow-linewidth resonances and an unexpected thermo-optic effect make it possible to detect single biomolecules using a label-free biosensor principle. Future generations of biosensors and labs-on-chip for point-of-care and high-troughput screening applications will require large numbers of parallel measurement channels, necessitating optical micro-resonators in array format produced very cost-effectively.

  7. Laser Imaging Polarimetry of Nacre.

    PubMed

    Jones, Joshua A; Metzler, Rebecca A; D'Addario, Anthony J; Burgess, Carrie; Regan, Brian; Spano, Samantha; Cvarch, Ben A; Galvez, Enrique J

    2018-03-25

    Nacre is a complex biomaterial made of aragonite-tablet bricks and organic mortar that is considerably resilient against breakage. Nacre has been studied with a wide range of laboratory techniques, leading to understanding key fundamentals, and informing the creation of bio-inspired materials. In this article we present an optical polarimetric technique to investigate nacre, taking advantage of the translucence and birefringence of its micro-components. We focus our study on three classes of mollusks that have nacreous shells: bivalve (Pinctada fucata), gastropod (Haliotis asisina and Haliotis rufescens) and cephalopod (Nautilus pompilius). We sent polarized light from a laser through thin samples of nacre and did imaging polarimetry of the transmitted light. We observed clear distinctions between the structures of bivalve and gastropod, due to the spatial variation of their birefringence. The patterns for cephalopod were more similar to bivalve than gastropod. Bleaching of the samples disrupted the transmitted light. Subsequent refilling of the bivalve and gastropod nacre samples with oil produced optical patterns similar to those of unbleached samples. In cephalopod samples we found that bleaching produced irreversible changes in the optical pattern. This article is protected by copyright. All rights reserved.

  8. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  9. Improvements in Fabrication of 3D SU-8 Prisms for Low-Coupling-Loss Interconnections Between Fibers and Waveguides

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hang; Chu, Thi-Xuan; Nguyen, Long; Nguyen, Hai-Binh; Lee, Chun-Wei; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-11-01

    Fabrication of three-dimensional (3D) SU-8 (an epoxy-based negative photoresist from MicroChem) prisms as low-loss couplers for interconnection between optical components, particularly optical fibers and silicon-on-isolator waveguides (SOI WGs), which have mismatched mode sizes, has been investigated. With an interfacial structure formed by a 3D SU-8 prism partly overlaying an SOI WG end with a portion of buried oxide (BOX) removed under the interface, low-loss coupling is ensured and the transmission efficiency can reach 70%. To fabricate these 3D SU-8 prisms, a simple method with two photolithography steps was used for SU-8 hinges and CYTOP (an amorphous fluoropolymer from AGC Chemicals) prism windows, with mild soft and hard bakes, to define the prism profiles with diluted SU-8 filled in the CYTOP prism windows. A buffered oxide etchant is used to remove BOX parts under the interfaces. Some of the fabricated structures were tested, demonstrating the contribution of overlaying SU-8 prisms to the transmission efficiency of optical interconnections between fibers and SOI WGs.

  10. NE-CAT Upgrade of the Bending Magnet Beamline 8BM at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jun; Ogata, Craig; Yang Xiaochun

    2007-01-19

    NE-CAT, North East Collaborative Access Team, bending magnet beamline (8BM) is a beamline for protein crystallography. Recently, the beamline has undergone upgrades of its x-ray optics, control system, and the addition of a robot automounter. The first crystal of the double crystal monochromator was replaced by a new design offered by Oxford Danfysik with a micro-finned, direct water-cooled crystal assembly that would provide better cooling and reduced thermal distortion, pressure induced bulge, and residual strain. Gear reduced motors were added to enhance the torque of the bender and obtain better control. For measuring displacement of the bender directly, two linearmore » variable differential transformers (LVDT) were installed to the second crystal assembly. Early optics characterization and analysis has been carried out. Besides the upgrade of the optical components, the Blu-Ice control system originally developed at SSRL has been implemented. The installation of an automated robotic sample mounting system, from the ALS, was carried out in collaboration with the engineering group at LBNL. Preliminary results are presented.« less

  11. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  12. The ultraviolet detection component based on Te-Cs image intensifier

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Zhou, Xiaoyu; Wu, Yujing; Wang, Yan; Xu, Hua

    2017-05-01

    Ultraviolet detection technology has been widely focused and adopted in the fields of ultraviolet warning and corona detection for its significant value and practical meaning. The component structure of ultraviolet ICMOS, imaging driving and the photon counting algorithm are studied in this paper. Firstly, the one-inch and wide dynamic range CMOS chip with the coupling optical fiber panel is coupled to the ultraviolet image intensifier. The photocathode material in ultraviolet image intensifier is Te-Cs, which contributes to the solar blind characteristic, and the dual micro-channel plates (MCP) structure ensures the sufficient gain to achieve the single photon counting. Then, in consideration of the ultraviolet detection demand, the drive circuit of the CMOS chip is designed and the corresponding program based on Verilog language is written. According to the characteristics of ultraviolet imaging, the histogram equalization method is applied to enhance the ultraviolet image and the connected components labeling way is utilized for the ultraviolet single photon counting. Moreover, one visible light video channel is reserved in the ultraviolet ICOMS camera, which can be used for the fusion of ultraviolet and visible images. Based upon the module, the ultraviolet optical lens and the deep cut-off solar blind filter are adopted to construct the ultraviolet detector. At last, the detection experiment of the single photon signal is carried out, and the test results are given and analyzed.

  13. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  14. Generation of micro- and nano-droplets containing immiscible solutions in view of optical studies

    NASA Astrophysics Data System (ADS)

    Nastasa, V.; Karapantsios, T.; Samaras, K.; Dafnopatidou, E.; Pradines, V.; Miller, R.; Pascu, M. L.

    2010-08-01

    The multiple resistances to treatment, developed by bacteria and malignant tumors require finding alternatives to the existing medicines and treatment procedures. One of them is strengthening the effects of cytostatics by improving the delivery method. Such a method is represented by the use of medicines as micro/nano-droplets. This method can reduce the substance consumption by generating drug micro-droplets incorporated in substances that can favour a faster localization, than the classical mode of medicine administration, to the tumor tissues. This paper contains the results concerning the generation and study of micro/nano-droplets and the generation of micro-droplets with an inner core (medicine) and a thin layer covering it. We have measured the surface tension at water/air interface and water/oil interface for a medicine (Vancomycin) and we have generated and measured droplets of medicine containing a layer of Vitamin A by using a double capillary system. The micro/nano-droplets may be produced by mixing of two immiscible solutions in particular conditions (high rotating speed and/or high pressure difference). For this we have studied the generation of emulsions of vitamin A diluted in sunflower oil and a solution of a surfactant Tween 80 in distilled water. The concentration of surfactant in water was typically 4*10-5M. We have studied in a batch stirred tank system the dependence of the droplet dimensions in emulsion, function of the mixing rotation speed, agitation time and components ratio. The droplet diameters were measured using a Malvern light scattering instrument type Mastersizer Hydro 2000M. We have obtained droplets with diameters smaller than 100 nm; the diameters distribution exhibited a peak at 65 nm.

  15. Beyond catoptrics

    NASA Astrophysics Data System (ADS)

    Götte, Jörg; Hentschel, Martina; Löffler, Wolfgang

    2013-01-01

    The laws of geometrical optics are older than physics, if we define Newton as the first physicist. The law of reflection, for example, goes back about 3000 years and is first mentioned in a book called 'Catoptrics' or 'Mirrors' [1]. The law for refraction, on the other hand, is apparently 2000 years younger, although it is traditionally attributed to Snell [2]. However, geometrical optics with its rays was superseded another 600 years later by wave optics and light beams. Whereas beams are in many respects a good approximation of rays, they are never fully localized and consist of a spread of plane-wave components to provide transverse confinement. It is precisely this spread in Fourier space which leads to deviations from the laws of reflection and refraction. Upon reflection or transmission at an interface, a light beam can thus experience a shift, either in its position or propagation direction, when compared with specular reflection or Snell's law of refraction. While the discovery of these effects is not new (2013 marks the 70th anniversary of the discovery of the Goos-Hänchen shift, though publication was delayed until 1947 [3]), there has been renewed interest in these small corrections to geometrical optics, owing to advances in precision optics and theoretical understanding. In particular, for the latter, it is only in the last few years that an agreement on analytical formulas has been reached. It is now well established that beam shifts in general can be understood as a manifestation of optical spin-orbit coupling, an emerging field of research which draws many parallels between optics and quantum mechanics. One of the earliest examples thereof is the Imbert-Fedorov effect (Fedorov's original article is featured in translation in this special issue4 [4]), a counterpart to the Goos-Hänchen shift, but directed out of the plane of incidence. Today, beam shifts are discussed within a large number of fields, such as weak measurements, geometrical phases, light's orbital angular momentum, electron vortices, ballistic electrons in graphene, neutron and other particle beams, and many more; furthermore, applications such as refractive-index (bio)sensing have been developed. They are also essential for understanding the dynamics in micro-cavities, and therefore crucial for the development of micro-lasers. This special issue contains contributions from many of these fields and provides a showcase for the importance of subtle effects in modern optics and quantum mechanics.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourdon, Christopher Jay; Olsen, Michael G.; Gorby, Allen D.

    The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particlemore » approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.« less

  17. Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se2 microcells array.

    PubMed

    Jutteau, Sebastien; Guillemoles, Jean-François; Paire, Myriam

    2016-08-20

    We study a micro-concentrated photovoltaic (CPV) system based on micro solar cells made from a thin film technology, Cu(In,Ga)Se2. We designed, using the ray-tracing software Zemax OpticStudio 14, an optical system adapted and integrated to the microcells, with only spherical lenses. The designed architecture has a magnification factor of 100× for an optical efficiency of 85% and an acceptance angle of ±3.5°, without anti-reflective coating. An experimental study is realized to fabricate the first generation prototype on a 5  cm×5  cm substrate. A mini-module achieved a concentration ratio of 72× under AM1.5G, and an absolute efficiency gain of 1.8% for a final aperture area efficiency of 12.6%.

  18. A study on micro-structural and optical parameters of InxSe1-x thin film

    NASA Astrophysics Data System (ADS)

    Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.

    2018-04-01

    Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.

  19. Optical test course teaching practice on WeChat public platform

    NASA Astrophysics Data System (ADS)

    Fu, Yuegang; Liu, Zhiying

    2017-08-01

    With the development of information technological progress, M-Learning and Micro-learning is becoming more and more popular among learners as a new micro-learning resources. Micro-curriculum is playing a more and more important role in daily learning. The students can create a new way of optical course learning through "WeChat". Under the mutual interaction of two or more parties, the use of "WeChat" can fully arouse the students' interest in learning, make the subjective initiative of students, and achieve the ultimate goal of improving the level of students. In this paper, through the analysis of the current situation of college students using the "WeChat", a new teaching model suitable for "optics" teaching is summarized, and the use of "WeChat" has been infiltrated into the teaching process, using science and technology to assist teaching. Students' interest in autonomous learning.

  20. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  1. Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Han, Kyunghun

    An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.

  2. Polarized micro-cavity organic light-emitting devices.

    PubMed

    Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk

    2009-04-27

    We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.

  3. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  4. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  5. Design and fabrication of optical homogenizer with micro structure by injection molding process

    NASA Astrophysics Data System (ADS)

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  6. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  7. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  8. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber

    PubMed Central

    Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang

    2017-01-01

    Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level. PMID:28966849

  9. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.

    PubMed

    Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang

    2017-09-01

    Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level.

  10. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  11. Micromolding of polymer waveguides

    NASA Astrophysics Data System (ADS)

    Hanemann, Thomas; Ulrich, Hermann; Ruprecht, Robert; Hausselt, Juergen H.

    1999-10-01

    In microsystem technology the fabrication of either passive or active micro optical components made from polymers becomes more and more evident with respect to the intense expanding application possibilities e.g. in telecommunication. Actually, the LIGA process developed at the FZK, Germany allows the direct fabrication of microcomponents with lateral dimensions in the micrometer range, structural details in the submicrometer range, high aspect ratios of up to several hundreds and a final average surface roughness of less than 50 nm in small up to large scales. The molding of polymer components for microoptical applications, especially in the singlemode range, is determined by the achievable maximum accuracy of the molding technique itself and of the acceptable tolerances for low damping and coupling losses. Following the LIGA and related technique e.g. mechanical microengineering we want to present in this work the fabrication of polymer singlemode waveguides using a combination of micromolding and light- curing steps.

  12. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  13. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  14. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880

  15. Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.

  16. Converged photonic data storage and switch platform for exascale disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Worrall, A.

    2017-02-01

    We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.

  17. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  18. Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining

    NASA Astrophysics Data System (ADS)

    Dutz, Franz J.; Stephan, Valentin; Marchi, Gabriele; Koch, Alexander W.; Roths, Johannes; Huber, Heinz P.

    2018-06-01

    Here, we describe a method for producing locally micro-structured fiber Bragg gratings (LMFGB) by fs-laser machining. This technique enables the precise and reproducible ablation of cladding material to create circumferential grooves inside the claddings of optical fibers. From initial ablation experiments we acquired optimized process parameters. The fabricated grooves were located in the middle of uniform type I fiber Bragg gratings. LMFBGs with four different groove widths of 48, 85, 135 and 205 μ { {m}} were produced. The grooves exhibited constant depths of about 30 μ {m} and steep sidewall angles. With the combination of micro-structures and fiber Bragg gratings, fiber optic sensor elements with enhanced functionalities can be achieved.

  19. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    NASA Astrophysics Data System (ADS)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of angular speed detection photonic sensors. In previous applications, the WGM shifts induced by the external effects were monitored by identifying and tracking individual resonance dip in the optical transmission spectrum. The success of the WGM sensors is strongly dependent on the precise and speeds tracking of the shifts of the resonant wavelengths. In this dissertation, we demonstrate the application of WGM micro-resonators for high-speed transient sensing (wide-bandwidth). To facilitate the use of the sensors for high-speed transient applications, we tune the interrogation laser using a harmonic rather than a ramp waveform and calibrate the laser response at various input frequencies and amplitudes using a Fabry-Perot interferometer. WGM shifts are tracked using a fast cross-correlation algorithm on the transmission spectra. We demonstrate dynamic force measurements up to 10 kHz using this approach. We also present a simple lumped-heat capacity thermal model to predict the laser's tuning response.

  20. Free-form machining for micro-imaging systems

    NASA Astrophysics Data System (ADS)

    Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.

    2008-02-01

    While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.

  1. American Government: An Introduction Using MicroCase with Distance Learners.

    ERIC Educational Resources Information Center

    Rosberg, William H.

    In spring 1997, a project used MicroCase, a computer-based statistical analysis and data retrieval system, to offer an American Government class to distance students at Iowa's Kirkwood Community College (KCC). Students participated in the course at one of the college's 10 learning centers via a statewide fiber-optic network. MicroCase provided the…

  2. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    PubMed

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  3. Micro-position sensor using faraday effect

    DOEpatents

    McElfresh, Michael [Livermore, CA; Lucas, Matthew [Pittsburgh, PA; Silveira, Joseph P [Tracy, CA; Groves, Scott E [Brentwood, CA

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  4. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  5. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  6. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  7. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  8. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  9. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  10. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    NASA Astrophysics Data System (ADS)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  11. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  12. JASMINE-Astrometric Map of the Galactic Bulge-

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.; Kawakatsu, Y.; Matsuhara, H.; Moda, A.; Tsuiki, A.; Utashima, M.; Ogawa, A.; Sako, N.

    2006-08-01

    We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry (JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure the distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of 4 micro-arcsec/year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with sigma/pi <0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where pi is a parallax and sigma is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. We will introduce some scientific topics which will be obtained by JASMINE. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. We adopt a 3-mirrors optical system (modified Korsch system) with a primary mirror of 0.75m. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency (JAXA). The introduction of JASMINE and the present status of the project will be shown in the presentation.

  13. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  14. Micro-fabrication method of graphite mesa microdevices based on optical lithography technology

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang

    2017-12-01

    Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm  ×  10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.

  15. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    NASA Astrophysics Data System (ADS)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  16. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.

    PubMed

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih

    2015-03-24

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.

  17. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  18. Electron-beam lithography for micro and nano-optical applications

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.

    2005-01-01

    Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.

  19. Micromirror array nanostructures for anticounterfeiting applications

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  20. Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.

    PubMed

    Shen, S C; Huang, J C

    2009-07-20

    Batch-fabrication of a micro-ball lens array (MBA) could not only reduce micro assembly costs but also replace conventional ball lenses or costly GRINs (Gradient Refractive Index) without compromising performance. Compared with conventional half-spherical micro-lenses, the MBA is a spherical micro-lens that can focus light in all directions, thus providing the flexibility required for optical applications. Current MBAs are made of SU-8 photoresist by an extrusion process rather than the traditional thermal reflow process. The aim of this study was to develop a new process for MBA batch-fabrication, performed at ambient temperature, by spin-coating SU-8 onto a silicon-wafer surface, which serves as an extrusion plate, and extruding it through a nozzle to form an MBA. The nozzle consists of a nozzle orifice and nozzle cavity, the former being defined and made from SU-8 photoresist using ultra-violet (UV) lithography, which results in good mechanical properties. In this paper, the fabrication of 4 x 4 MBAs with diameters ranging from 60 to 550 um is described. Optical measurements indicated a diameter variance within 3% and a maximum coupling efficiency of approximately 62% when the single mode fiber (SMF) was placed at a distance of 10 um from the MBA. The results of this study proved that MBA fabrication by the extrusion process can enhance the coupling efficiency.

Top