Science.gov

Sample records for micro optical ct

  1. Dental imaging using laminar optical tomography and micro CT

    NASA Astrophysics Data System (ADS)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  2. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  3. MicroCT and optical coherence tomography imagistic assessment of the dental roots adhesive

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Nica, Luminita; Manescu, Adrian; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2015-03-01

    Several obturation methods are available today to study the 3D filling of the root canal. There are also several methods capable to evaluate the ability to seal apically the root canals. However, the common methods of investigation are invasive; they also lead to the destruction of the samples. If the sectioning differs slightly from the desired area, the investigation is non-conclusive regarding the micro-leakages. Also, although the use of Cone-Beam Micro Computer Tomography (CBCT) appears to be most promising for endodontic purposes, its effective radiation doses are higher than with conventional intra-oral and panoramic imaging. In contrast, enface (ef) Optical Coherence Tomography (OCT) proves to be efficient for the investigation of material defects of dental restorations, dental materials, and micro-leakage at the interfaces, where the penetration depth depends on the material. Therefore, ef OCT has been proposed in our studies as a potential tool for in vivo endodontic imaging. Twenty five recently extracted human maxillary molars were selected for the study for caries or periodontal reasons. The pulp chambers were completely opened, the dental pulp was removed, and the root canals were shaped. Silver nanoparticles were used in half of the samples in order to increase the scattering of the adhesive material in comparison with the dental roots walls. The sample teeth were then probed using Time Domain (TD) OCT working at 1300 nm. A synchrotron radiation X-Ray microCT experiment was also performed. The imagistic results pointed out the efficiency of the silver nanoparticle layer used in order to increase the scattering of the root canal adhesive scattering for the OCT non-invasive investigation. MicroCT allowed for obtaining qualitative data related to the depth penetration of the root canal adhesive into the dentin walls.

  4. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  5. Direct composite fillings: an optical coherence tomography and microCT investigation

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Borlea, Mugurel V.; Manescu, Adrian; Duma, Virgil F.; Rominu, Mihai; Podoleanu, Adrian G.

    2015-03-01

    The treatment of carious lesions requires removal of affected dental tissue thus creating cavities that are to be filled with dedicated materials. There are several methods known which are used to assess the quality of direct dental restorations, but most of them are invasive. Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. Using an en-face version of OCT, we have recently demonstrated real time thorough evaluation of quality of dental fillings. The major aim of this study was to analyses the optical performance of adhesives modified with zirconia particles in different concentrations in order to improve the contrast of OCT imaging of the interface between the tooth structure, adhesive and composite resin. The OCT investigations were validated by micro CT using synchrotron radiation. The OCT Swept Source is a valuable investigation tool for the clinical evaluation of class II direct composite restorations. The unmodified adhesive layer shows poor contrast on regular OCT investigations. Adding zirconia particles to the adhesive layer provides a better scattering which allows a better characterization and quantification of direct restorations.

  6. Non-destructive evaluation of an internal adaptation of resin composite restoration with swept-source optical coherence tomography and micro-CT.

    PubMed

    Han, Seung-Hoon; Sadr, Alireza; Tagami, Junji; Park, Sung-Ho

    2016-01-01

    Swept-source optical coherence tomography (SS-OCT) and micro-CT can be useful non-destructive methods for evaluating internal adaptation. There is no comparative study evaluating the two methods in the assessment of internal adaptation in composite restoration. The purpose of this study was to compare internal adaptation measurements of SS-OCT and micro-CT. Two cylindrical cavities were created on the labial surface of twelve bovine incisors. The 24 cavities were randomly assigned to four groups of dentin adhesives: (1) three-step etch-and-rinse adhesive, (2) two-step etch-and-rinse adhesive, (3) two-step self-etch adhesive, and (4) one-step self-etch adhesive. After application, the cavities were filled with resin composite. All restorations underwent a thermocycling challenge, and then, eight SS-OCT images were taken using a Santec OCT-2000™ (Santec Co., Komaki, Japan). The internal adaptation was also evaluated using micro-CT (Skyscan, Aartselaar, Belgium). The image analysis was used to calculate the percentage of defective spot (%DS) and compare the results. The groups were compared using one-way ANOVA with Duncan analysis at the 95% significance level. The SS-OCT and micro-CT measurements were compared with a paired t-test, and the relationship was analyzed using a Pearson correlation test at the 95% significance level. The %DS results showed that Group 3≤Group 4micro-CT images. The %DSs on micro-CT were lower than SS-OCT (p<0.05) and the Pearson correlation coefficient between SS-OCT and micro-CT was r=0.787 (p<0.05).

  7. MicroSight Optics

    ScienceCinema

    None

    2016-07-12

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  8. MicroSight Optics

    SciTech Connect

    2010-01-01

    MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.

  9. Micro-CT imaging of Randall's plaques.

    PubMed

    Williams, James C; Lingeman, James E; Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P

    2015-01-01

    Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone structure and mineral composition. High-resolution micro-CT even allows visualization of the lumens of tubule and/or vessels within Randall's plaque, on stones or in papillary biopsies, thus giving a non-destructive way to study these sites of stone adhesion. This paper also shows an example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that have grown on Randall's plaque and those that have grown on BD plugs. Thus, Randall's plaque can be distinguished by micro-CT, and this non-destructive method shows great promise in helping to elucidate the different mechanisms by which small stones are retained in the kidney during the development of nephrolithiasis. PMID:25096802

  10. Medipix-based Spectral Micro-CT

    PubMed Central

    Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  11. Pathological calcifications studied with micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rajamannan, Nalini M.; Brooks, Ellen R.; Langman, Craig B.; Pachman, Lauren M.

    2004-10-01

    The microstructure of pathological biomineral deposits has received relatively little attention, perhaps, in part because of the difficulty preparing samples for microscopy. MicroCT avoids these difficulties, and laboratory microCT results are reviewed for aortic valve calcification (human as well as a rabbit model), for human renal calculi (stones) and for calcinoses formed in juvenile dermatomyositis (JDM). In calcified aortic valves of rabbits, numerical analysis of the data shows statistically significant correlation with diet. In a large kidney stone the pattern of mineralization is clearly revealed and may provide a temporal blueprint for stone growth. In JDM calcified deposits, very different microstructures are observed and may be related to processes unique to this disease.

  12. Clinical micro-CT for dental imaging

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Cho, Min Kook; Shon, Cheol-Soon; Cho, Bong Hae; Kim, Chang Hyuk; Kim, Ho Kyung

    2009-02-01

    We exploit the development of a clinical computed microtomography (micro-CT) system for dental imaging. While the conventional dental CT simply serves implant treatment, the clinical dental micro-CT may provide clinicians with a histologic evaluation. To investigate the feasibility of the realization of a dental micro-CT, we have constructed an experimental test system which mainly consists of a microfocus x-ray source, a rotational subject holder, and a flat-panel detector. The flat-panel detector is based on a matrix-addressed photodiode array coupled to a CsI:Tl scintillator. The detective quantum efficiency (DQE) of the detector was measured as a function of magnification based on the measured modulation-transfer function (MTF) and noise-power spectrum (NPS). The best MTF and DQE performances were achieved at the magnification factor of 3. Similar tendency of the spatial resolving power in tomography was also observed with a wire phantom having a 25 μm diameter. From the investigation of tomographs reconstructed from a humanoid skull phantom, the application of magnification in the system largely reduced both signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for a fixed dose at the entrance surface of the detector, 1.2 mGy, while this setup increased the dose at the object plane from 4.7 mGy to 19.1 mGy for the magnification factor from 2 to 4, respectively. Although the quantum mottles at the high magnification factor tackled the practical use in the clinic, the information contained in the magnified CT images was quite promising.

  13. Laboratory 3D Micro-XRF/Micro-CT Imaging System

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Liu, X.

    2011-09-01

    A prototype micro-XRF laboratory system based on pinhole imaging was developed to produce 3D elemental maps. The fluorescence x-rays are detected by a deep-depleted CCD camera operating in photon-counting mode. A charge-clustering algorithm, together with dynamically adjusted exposure times, ensures a correct energy measurement. The XRF component has a spatial resolution of 70 μm and an energy resolution of 180 eV at 6.4 keV. The system is augmented by a micro-CT imaging modality. This is used for attenuation correction of the XRF images and to co-register features in the 3D XRF images with morphological structures visible in the volumetric CT images of the object.

  14. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  15. Fiber optic micro accelerometer

    SciTech Connect

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  16. Comparison of 4D-microSPECT and microCT for murine cardiac function

    PubMed Central

    Befera, Nicholas T.; Badea, Cristian T.; Johnson, G. Allan

    2014-01-01

    Purpose The objective of this study was to compare a new generation of four-dimensional (4D) microSPECT with microCT for quantitative in vivo assessment of murine cardiac function. Procedures 4D isotropic cardiac images were acquired from normal C57BL/6 mice with either microSPECT at 350-micron resolution (n=6) or microCT at 88-micron resolution (n=6). One additional mouse with myocardial infarction (MI) was scanned with both modalities. Prior to imaging, mice were injected with either 99mTc -tetrofosmin for microSPECT, or a liposomal blood pool contrast agent for microCT. Segmentation of the left ventricle (LV) was performed using Vitrea (Vital Images) software, to derive global and regional function. Results Measures of global LV function between microSPECT and microCT groups were comparable (e.g. ejection fraction=71±6%-microSPECT and 68±4%-microCT). Regional functional indices (wall motion, wall thickening, regional ejection fraction) were also similar for the two modalities. In the mouse with MI, microSPECT identified a large perfusion defect that was not evident with microCT. Conclusions Despite lower spatial resolution, microSPECT was comparable to microCT in the quantitative evaluation of cardiac function. MicroSPECT offers an advantage over microCT in the ability to evaluate myocardial perfusion radiotracer distribution and function simultaneously. MicroSPECT should be considered as an alternative to microCT and MR for preclinical cardiac imaging in the mouse. PMID:24037175

  17. Spectral optimization for micro-CT

    SciTech Connect

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2012-06-15

    Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of

  18. XRF microCT study of space objects at SSRL

    NASA Astrophysics Data System (ADS)

    Ignatyev, Konstantin; Huwig, Kathy; Harvey, Ralph; Ishii, Hope; Bradley, John; Luening, Katharina; Brennan, Sean; Pianetta, Piero

    2006-08-01

    Study of the composition and 3D chemical distribution of the particles that come from space are of great interest since they can provide information about the early stages and evolution of the solar system. The size of these samples varies with the smallest ones in the micron and even sub-micron range. X-ray fluorescence microCT (computed tomography) with focused X-ray beam can be successfully used to study these kinds of samples. This is especially important when sectioning is not feasible, or it is undesirable either due to the risk of contamination, as is the case with comet particles recently collected by the NASA Stardust mission, or the requirement for further analysis by different characterization techniques. X-ray fluorescence microCT measurements on several space samples were performed at the beamline 6-2 using the existing microprobe setup. Two mirror optical system is used for beam focusing with an additional set of KB mirrors located in the hutch near the sample to focus the beam further down to 2x4 microns. Incident X-ray energy is selected with a monochromator in the range of 5 to 20 keV. Fluorescence data was collected with Si(Li) fluorescence detector and PIN diode was used to collect attenuation data that provides additional information for fluorescence tomography reconstruction. The results of the measurements of two micrometeorites with sizes of approximately 100 microns, are presented.

  19. Classification of microcalcifications using micro-CT

    NASA Astrophysics Data System (ADS)

    Temmermans, Frederik; Jansen, Bart; Willekens, Inneke; Van de Casteele, Elke; Deklerck, Rudi; Schelkens, Peter; De Mey, Johan

    2013-09-01

    Microcalcifications are tiny spots of calcium deposit that often occur in female breasts. Microcalcifications are common in healthy woman, but they often are an early sign of breast cancer. On a mammogram; the current standard of care for breast screening; calcifications appear as tiny white dots. They may occur scattered throughout the breast or grouped in clusters. Radiologists determine the suspiciousness based upon several factors, including position, frequency, grouping, evolution compared to prior studies and shape. In this paper, we study micro-CT images of biopsy samples containing microcalcifications. The scanner delivers 3D images with a voxel size of 8.66 μm, i.e. ca. 8 times the spatial resolution of a contemporary digital mammogram. We propose an automated binary classification method of the samples, based upon shape analysis of the microcalcifications. The study is performed on a set of 50 benign and 50 malign samples preserved in paraffin. The ground truth of the classification is based upon anapathological investigation of the paraffin blocks. The results show a sensitivity, i.e. the percentage of correctly classified malign samples, of up to 98% with a specificity of 40%.

  20. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  1. Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.

    2008-02-01

    We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.

  2. Image reconstruction for hybrid true-color micro-CT.

    PubMed

    Xu, Qiong; Yu, Hengyong; Bennett, James; He, Peng; Zainon, Rafidah; Doesburg, Robert; Opie, Alex; Walsh, Mike; Shen, Haiou; Butler, Anthony; Butler, Phillip; Mou, Xuanqin; Wang, Ge

    2012-06-01

    X-ray micro-CT is an important imaging tool for biomedical researchers. Our group has recently proposed a hybrid "true-color" micro-CT system to improve contrast resolution with lower system cost and radiation dose. The system incorporates an energy-resolved photon-counting true-color detector into a conventional micro-CT configuration, and can be used for material decomposition. In this paper, we demonstrate an interior color-CT image reconstruction algorithm developed for this hybrid true-color micro-CT system. A compressive sensing-based statistical interior tomography method is employed to reconstruct each channel in the local spectral imaging chain, where the reconstructed global gray-scale image from the conventional imaging chain served as the initial guess. Principal component analysis was used to map the spectral reconstructions into the color space. The proposed algorithm was evaluated by numerical simulations, physical phantom experiments, and animal studies. The results confirm the merits of the proposed algorithm, and demonstrate the feasibility of the hybrid true-color micro-CT system. Additionally, a "color diffusion" phenomenon was observed whereby high-quality true-color images are produced not only inside the region of interest, but also in neighboring regions. It appears harnessing that this phenomenon could potentially reduce the color detector size for a given ROI, further reducing system cost and radiation dose.

  3. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  4. TLD assessment of mouse dosimetry during microCT imaging.

    PubMed

    Figueroa, Said Daibes; Winkelmann, Christopher T; Miller, H William; Volkert, Wynn A; Hoffman, Timothy J

    2008-09-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm A1 filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0 +/- 5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0 +/- 6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0 +/- 4.0 mGy and 97.0 +/- 5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0 +/- 5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  5. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent

  6. A preliminary study on a dual-modality OPT/micro-CT system

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Di, Dong; Shi, Liangliang; Wang, Jun; Hui, Hui; Yang, Xin; Tian, Jie

    2015-03-01

    Optical projection tomography (OPT) is a mesoscopic scale optical imaging technique for specimens between 1mm and 10mm. Although OPT is widely used for in vivo and ex vivo imaging, its applications in high intensity tissues such as bone and thick samples are limited due to the strong absorption of the light. In contrast, X-ray micro-CT is suitable for high intensity tissue imaging but its contrast of soft tissue is poor. Therefore, imaging tools with both strong penetration and high contrast are in great demand. To address this issue, we develop a dual-modality system integrating both OPT and micro-CT. In this paper, this dual-modality system is applied to dynamic imaging of a clearing process of a mouse paw. The clearing process is essential in OPT when imaging thick or intensity tissues since it can make high intensity tissues optically transparent. In our experiment, we scan the mouse paw with our system - before, during and after optical clearing. Each time we scan CT first and then the OPT. After acquisition, 3-dimentional volumes of OPT and CT are reconstructed separately. Then we use a rigid image registration algorithm to register these volumes. Finally, the volumes are merged together. The experimental results show our bimodal system performs better than single OPT or CT system when processing tissues with both high intensity and soft parts.

  7. Interior micro-CT with an offset detector

    SciTech Connect

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge

    2014-06-15

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three

  8. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  9. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  10. Scout-view assisted interior micro-CT.

    PubMed

    Sen Sharma, Kriti; Holzner, Christian; Vasilescu, Dragoş M; Jin, Xin; Narayanan, Shree; Agah, Masoud; Hoffman, Eric A; Yu, Hengyong; Wang, Ge

    2013-06-21

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms.

  11. Scout-view Assisted Interior Micro-CT

    PubMed Central

    Sen Sharma, Kriti; Holzner, Christian; Vasilescu, Dragoş M.; Jin, Xin; Narayanan, Shree; Agah, Masoud; Hoffman, Eric A.; Yu, Hengyong; Wang, Ge

    2013-01-01

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without a significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms. PMID:23732478

  12. Algorithm-enabled low-dose micro-CT imaging.

    PubMed

    Han, Xiao; Bian, Junguo; Eaker, Diane R; Kline, Timothy L; Sidky, Emil Y; Ritman, Erik L; Pan, Xiaochuan

    2011-03-01

    Micro-computed tomography (micro-CT) is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300-1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm, we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield images with quality comparable to that obtained with existing algorithms, while using one-sixth to one quarter of the 361-view data currently used in typical micro-CT specimen imaging.

  13. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  14. A model for clubfoot based on micro-CT data.

    PubMed

    Windisch, Gunther; Salaberger, Dietmar; Rosmarin, Walter; Kastner, Johann; Exner, Gerhard Ulrich; Haldi-Brändle, Verena; Anderhuber, Friedrich

    2007-06-01

    The pathological anatomy of idiopathic clubfoot has been investigated for more than 180 years using anatomy, computed tomography (CT), histology and microscopy. Seven idiopathic clubfeet and two normal feet of aborted fetuses were dissected in the present study, with special emphasis on the shape of the cartilage and bones. A three-dimensional (3D) micro-CT system, which generates a series of X-ray attenuation measurements, was used to produce computed reconstructed 3D data sets of each of the separated bones. Based on the micro-CT data scans a high-definition 3D colour printing system was used to make a four times enlarged clubfoot model, precisely presenting all the bony malformations. This model reflects the complexity of the anatomy of this disease and is designed to be used in the workshops of orthopaedic surgeons and physiotherapists, for training in new surgical and manipulation techniques.

  15. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  16. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    SciTech Connect

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G. Allan; Badea, Cristian T.; Kirsch, David G.

    2014-03-01

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches

  17. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  18. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  19. Micro-CT molecular imaging of tumor angiogenesis using a magnetite nano-cluster probe.

    PubMed

    Liu, Ping; Li, Jing; Zhang, Chunfu; Xu, Lisa X

    2013-06-01

    Due to its high resolution, micro-CT is desirable for molecular imaging of tumor angiogenesis. However, the sensitivity of micro-CT to contrast agents is relatively low. Therefore, the purpose of this study is to develop high micro-CT sensitive molecular imaging probes for direct visualization and dynamic monitoring of tumor angiogenesis. To this end, Arg-Gly-Asp (RGD) peptides conjugated magnetite nano clusters (RGD-MNCs) were developed by assembling individual magnetite nano particles into clusters with amphiphilic (maleimide) methoxypoly(ethylene glycol)-b-poly(lactic acid) ((Mal)mPEG-PLA) copolymer and subsequently encoding RGD peptides onto the clusters for specific targeting alpha(v)beta3 integrin. The hydrodynamic size of RGD-MNCs was about 85 nm. To test its specificity, alpha(v)beta3 positive cells (H1299) were incubated with magnetite nano clusters (MNCs), RGD-MNCs or RGD-MNCs competition with free RGD peptides. Prussian Blue staining and inductively coupled plasma optical emission spectrometer (ICP-OES) measurements indicated that the cell uptake of RGD-MNCs was significantly more than that of MNCs, which could be inhibited by free RGD peptides. For detection of tumor angiogenesis, mice bearing H1299 tumors were injected intravenously with RGD-MNCs at the dose of 400 micro mol Fe/kg. Tumor angiogenic hot spots as well as individual angiogenic vessels could be clearly manifested by micro-CT imaging 12 h post injection, which was dynamically monitored with the extension of probe circulation time. Subsequent histological studies of tumor tissues verified that RGD-MNCs registered tumor angiogenic vessels. Our study demonstrated that RGD-MNC probes fabricated in this study could be used to effectively target alpha(v)beta3 integrin. Using high resolution micro-CT in combination with the probes, tumor angiogenesis could be studied dynamically.

  20. Passive ring resonator micro-optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Venediktov, V. Yu; Filatov, Yu V.; Shalymov, E. V.

    2016-05-01

    This paper reviews recent advances in passive micro-optical gyroscopes. In the last decade, most research effort in the area of micro-optical gyros has been concentrated on a configuration that takes advantage of a single-mode passive ring resonator, which is usually fabricated using integrated optical technologies. The dimensions of such micro-optical gyros are comparable to those of micromechanical gyroscopes (area of 10 to 100 mm2) and their sensitivity is considerably better than the sensitivity of the latter, approaching that of fibre-optic and laser gyros. Moreover, microoptical gyros can be made as a single integrated circuit, like the micromechanical gyros, but they have no movable parts, in contrast to their micromechanical counterparts. We also describe the development and investigation of micro-optical gyros produced in our studies.

  1. Improving metrology for micro-optics manufacturing

    NASA Astrophysics Data System (ADS)

    Davies, Angela D.; Bergner, Brent C.; Gardner, Neil W.

    2003-11-01

    Metrology is one of the critical enabling technologies for realizing the full market potential for micro-optical systems. Measurement capabilities are currently far behind present and future needs. Much of today"s test equipment was developed for the micro-electronics industry and is not optimized for micro-optic materials and geometries. Metrology capabilities currently limit the components that can be realized, in many cases. Improved testing will be come increasingly important as the technology moves to integration where it will become important to "test early and test often" to achieve high yields. In this paper, we focus on micro-refractive components in particular, and describe measurement challenges for this class of components and current and future needs. We also describe a new micro-optics metrology research program at UNC Charlotte under the Center for Precision Metrology and the new Center for Optoelectronics and Optical Communications to address these needs.

  2. Left Ventricle Volume Measurements in Cardiac Micro-CT

    PubMed Central

    Badea, Cristian T.; Wetzel, Arthur W.; Mistry, Nilesh; Pomerantz, Stuart; Nave, Demian; Johnson, G. Allan

    2008-01-01

    Micro-CT based cardiac function estimation in small animals requires measurement of left ventricle (LV) volume at multiple time points during the cardiac cycle. Measurement accuracy depends on the image resolution, its signal and noise properties, and the analysis procedure. This work compares the accuracy of the Otsu thresholding and a region sampled binary mixture approach, for live mouse LV volume measurement using 100 micron resolution datasets. We evaluate both analysis methods after varying the volume of injected contrast agent and the number of projections used for CT reconstruction with a goal of permitting reduced levels of both x-ray and contrast agent doses. PMID:18243656

  3. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies.

  4. Replicated micro-optics for multimedia products

    NASA Astrophysics Data System (ADS)

    Salt, Martin; Rossi, Markus

    2006-04-01

    Advances in design, materials and production technology for micro-optical components have led to strong growth in their use in today's consumer products. In particular, micro-optical components produced by replication technologies such as UV embossing can now withstand the severe processing and environmental requirements of the consumer electronics industry, including lead-free IR reflow and thermal shock. With their small size and low weight, as well as the possibility of optical function not achievable by conventional optics, micro-optical components and systems are finding applications in a wide variety of products. In the field of multimedia, novel designs and new production techniques are enabling applications in key areas such as illumination and display. The extreme compactness of micro-optical components, with typical thickness under 1 mm and footprints of only some millimeters square, makes them a natural candidate for consumer products such as mobile phones, pocket projectors and displays. Advances in UV embossing technology, enabling micro-optics to be mounted over various light sources in a variety of different ways, also allow extremely compact opto-electronic modules to be realized at highly competitive prices. In this paper we summarize recent technology developments and describe a number of multimedia applications utilizing state-of-the-art micro-optics.

  5. Newt limb regeneration studied with synchrotron micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Simon, Hans-Georg; De Carlo, Francesco

    2004-10-01

    Newts are the most developed vertebrates which retain the ability as adults to regenerate missing limbs; they are, therefore, of great interest in terms understanding how such regeneration could be triggered in mammals. In this study, synchrotron microCT was used to study bone microstructure in control forelimbs and in forelimbs regenerated for periods from 37 to 85 days. The bone microstructure in newts has been largely neglected, and interesting patterns within the original bone and in the regenerating arm and hand are described. Periosteal bone formation in the regenerating arm and finger bones, delayed ossification of carpal (but not metacarpal) bones and the complex microstructure of the original carpal bones are areas where microCT reveals detail of particular interest.

  6. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  7. Acoustic emissions in rock deformation experiments under micro-CT

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Goodfellow, Sebastian D.; Moulas, Evangelos; Di Toro, Giulio; Young, Paul; Grasselli, Giovanni

    2016-04-01

    The study of acoustic emissions (AE) generated by rocks undergoing deformation has become, in the last decades, one of the most powerful tools for boosting our understanding of the mechanisms which are responsible for rock failures. AE are elastic waves emitted by the local failure of micro- or milli-metric portions of the tested specimen. At the same time, X-ray micro computed tomography (micro-CT) has become an affordable, reliable and powerful tool for imaging the internal structure of rock samples. In particular, micro-CT coupled with a deformation apparatus offers the unique opportunity for observing, without perturbing, the sample while the deformation and the formation of internal structures, such as shear bands, is ongoing. Here we present some preliminary results gathered with an innovative apparatus formed by the X-ray transparent pressure vessel called ERDμ equipped with AE sensors, an AE acquisition system and a micro-CT apparatus available at the University of Toronto. The experiment was performed on a 12 mm diameter 36 mm long porous glass sample which was cut on a 60 deg inclined plane (i.e. saw-cut sample). Etna basaltic sand with size ~1 mm was placed between the two inclined faces forming an inclined fault zone with ~2 mm thickness. The sample assembly was jacketed with a polyefin shrink tube and two AE sensors were glued onto the glass samples above and below the fault zone. The sample was then enclosed in the pressure vessel and confined with compressed air up to 3 MPa. A third AE sensor was placed outside the vessel. The sample was saturated with water and AE were generated by varying the fluid and confining pressure or the vertical force, causing deformations concentrated in the fault zone. Mechanical data and AE traces were collected throughout the entire experiment which lasted ~24 hours. At the same time multiple micro-CT 3D datasets and 2D movie-radiographies were collected, allowing the 3D reconstruction of the deformed sample at

  8. Intramyocardial capillary blood volume estimated by whole-body CT: validation by micro-CT

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Beighley, Patricia E.; Eaker, Diane R.; Zamir, Mair; Ritman, Erik L.

    2008-03-01

    Fast CT has shown that myocardial perfusion (F) is related to myocardial intramuscular blood volume (Bv) as Bv=A*F+B*F 1/2 where A,B are constant coefficients. The goal of this study was to estimate the range of diameters of the vessels that are represented by the A*F term. Pigs were placed in an Electron Beam CT (EBCT) scanner for a perfusion CT scan sequence over 40 seconds after an IV contrast agent injection. Intramyocardial blood volume (Bv) and flow (F) were calculated in a region of the myocardium perfused by the LAD. Coefficients A and B were estimated over the range of F=1-5ml/g/min. After the CT scan, the LAD was injected with Microfil (R) contrast agent following which the myocardium was scanned by micro-CT at 20μm, 4μm and 2.5 μm cubic voxel resolutions. The Bv of the intramyocardial vessels was calculated for diameter ranges d=0-5, 5-10, 10-15, 15-20μm, etc. EBCT-derived data were presented so that it could be directly compared the micro-CT data. The results indicated that the blood in vessels less than 10μm in lumen diameter occupied 0.27-0.42 of total intravascular blood volume, which is in good agreement with EBCT-based values 0.28-0.48 (R2 =0.96). We conclude that whole-body CT image data obtained during the passage of a bolus of IV contrast agent can provide a measure of the intramyocardial intracapillary blood volume.

  9. Micro-objective manipulated with optical tweezers

    SciTech Connect

    Sasaki, M.; Kurosawa, T.; Hane, K.

    1997-02-01

    A microscope is described that uses a {mu}m-sized ball lens, which is here termed micro-objective, manipulated with optical tweezers to image the side view of the arbitrary region of a sample. Since this micro-objective is small in size, it can go into a concave region to produce a local image of the inside which the conventional microscope cannot observe. Preliminary results show good lens performance from the micro-objective when combined with optical tweezers. {copyright} {ital 1997 American Institute of Physics.}

  10. Scatter corrections for cone beam optical CT

    NASA Astrophysics Data System (ADS)

    Olding, Tim; Holmes, Oliver; Schreiner, L. John

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  11. Manufacturing: 3D printed micro-optics

    NASA Astrophysics Data System (ADS)

    Juodkazis, Saulius

    2016-08-01

    Uncompromised performance of micro-optical compound lenses has been achieved by high-fidelity shape definition during two-photon absorption microfabrication. The lenses have been made directly onto image sensors and even onto the tip of an optic fibre.

  12. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  13. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  14. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-02-24

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.

  15. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  16. Micro electro mechanical system optical switching

    DOEpatents

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  17. Nondestructive Evaluation of Composites Using Micro-Focused X-Ray CT Scanner

    SciTech Connect

    Sugimoto, Sunao; Aoki, Takuya; Iwahori, Yutaka; Ishikawa, Takashi

    2005-04-09

    Micro-Focused X-Ray CT (Micro CT) Scanner has been used for nondestructive evaluation (NDE) of composite materials at Institute of Space Technology and Aeronautics, Japan Aerospace Exploration Agency. Some successful examples of NDE of composites using Micro CT will be presented in this presentation. One example is debonding of fiber/matrix interface, splitting of fiber bundle and matrix crack in carbon/carbon composite. Another example is NDE of stitched CFRP. It was easy to evaluate state of stitch fiber. It has been demonstrated that Micro CT is a powerful device for detecting small damage/flaw in composites, such as delamination, matrix crack and void.

  18. Performance evaluation of the General Electric eXplore CT 120 micro-CT using the vmCT phantom

    NASA Astrophysics Data System (ADS)

    Bahri, M. A.; Warnock, G.; Plenevaux, A.; Choquet, P.; Constantinesco, A.; Salmon, E.; Luxen, A.; Seret, A.

    2011-08-01

    The eXplore CT 120 is the latest generation micro-CT from General Electric. It is equipped with a high-power tube and a flat-panel detector. It allows high resolution and high contrast fast CT scanning of small animals. The aim of this study was to compare the performance of the eXplore CT 120 with that of the eXplore Ultra, its predecessor for which the methodology using the vmCT phantom has already been described [1].The phantom was imaged using typical a rat (fast scan or F) or mouse (in vivo bone scan or H) scanning protocols. With the slanted edge method, a 10% modulation transfer function (MTF) was observed at 4.4 (F) and 3.9-4.4 (H) mm-1 corresponding to 114 μm resolution. A fairly larger MTF was obtained by the coil method with the MTF for the thinnest coil (3.3 mm-1) equal to 0.32 (F) and 0.34 (H). The geometric accuracy was better than 0.3%. There was a highly linear (R2>0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom. A cupping effect was clearly seen on the uniform slices and the uniformity-to-noise ratio ranged from 0.52 (F) to 0.89 (H). The air CT number depended on the amount of polycarbonate surrounding the area where it was measured; a difference as high as approximately 200 HU was observed. This hindered the calibration of this scanner in HU. This is likely due to the absence of corrections for beam hardening and scatter in the reconstruction software. However in view of the high linearity of the system, the implementation of these corrections would allow a good quality calibration of the scanner in HU. In conclusion, the eXplore CT 120 achieved a better spatial resolution than the eXplore Ultra (based on previously reported specifications) and future software developments will include beam hardening and scatter corrections that will make the new generation CT scanner even more promising.

  19. Fabrication of micro-optical devices

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Marley, J.; Gal, George; Purdy, Don

    1993-01-01

    We have fabricated a variety of micro-optic components including Fresnel and non-Frensel lenses, off-axis and dispersive lenses with binary stepped contours, and analog contours. Process details for all lens designs fabricated are given including multistep photolithography for binary fabrication and grayscale mask photolithography for analog fabrication. Reactive ion etching and ion beam milling are described for the binary fabrication process, while ion beam milling was used for the analog fabrication process. Examples of micro-optic components fabricated in both Si and CdTe substrates are given.

  20. Trabecular scaffolds created using micro CT guided fused deposition modeling

    PubMed Central

    Tellis, B.C.; Szivek, J.A.; Bliss, C.L.; Margolis, D.S.; Vaidyanathan, R.K.; Calvert, P.

    2009-01-01

    Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (n=6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94±1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (p<0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing. PMID:21461176

  1. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  2. Lung imaging in rodents using dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Guo, X.; Clark, D.; Johnston, S. M.; Marshall, C.; Piantadosi, C.

    2012-03-01

    Dual energy CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. The purpose of this work is to investigate the use of dual energy micro-CT for the estimation of vascular, tissue, and air fractions in rodent lungs using a post-reconstruction three-material decomposition method. We have tested our method using both simulations and experimental work. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we performed experiments involving ex vivo lung imaging in which intact lungs were carefully removed from the thorax, were injected with an iodine-based contrast agent and inflated with air at different volume levels. Finally, we performed in vivo imaging studies in (n=5) C57BL/6 mice using fast prospective respiratory gating in endinspiration and end-expiration for three different levels of positive end-expiratory pressure (PEEP). Prior to imaging, mice were injected with a liposomal blood pool contrast agent. The mean accuracy values were for Air (95.5%), Blood (96%), and Tissue (92.4%). The absolute accuracy in determining all fraction materials was 94.6%. The minimum difference that we could detect in material fractions was 15%. As expected, an increase in PEEP levels for the living mouse resulted in statistically significant increases in air fractions at end-expiration, but no significant changes in end-inspiration. Our method has applicability in preclinical pulmonary studies where various physiological changes can occur as a result of genetic changes, lung disease, or drug effects.

  3. X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus.

    PubMed

    Stock, S R; Nagaraja, S; Barss, J; Dahl, T; Veis, A

    2003-01-01

    This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demipyramids, tooth epiphyses, and one tooth) was reconstructed with 17 microm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9-13 microm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cm(-1) and a minimum of approximately 2 cm(-1) away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite). The average volume fraction of mineral determined for a transverse slice of the demipyramid near where it joins an epiphysis was 0.46; for a slice 3.3 mm adoral it was 0.70. Local volume fractions of mineral approached 1, and, away from resolvable voids, considerable portions of the demipyramids had volume fractions of calcite at or below approximately 0.33. MicroCT imaging of a demipyramid before and after infiltration with a high absorptivity fluid (sodium polytungstate) confirmed the determination of the volume fractions of minerals. PMID:12576016

  4. Capillary optics for micro x-ray fluorescence analysis

    SciTech Connect

    Bjeoumikhov, A.; Langhoff, N.; Bjeoumikhova, S.; Wedell, R.

    2005-06-15

    Practically achieved parameters of capillary optics are presented. A micro x-ray fluorescence (XRF) arrangement was realized by using a microfocus x-ray tube and a capillary optic. Several examples for application of micro XRF are given. It was shown that polycapillary lenses free of the 'halo effect' well suited for micro XRF of heavy elements can be manufactured. Limits of opportunities for micro XRF applications and further development for micro XRF by using capillary optics are analyzed.

  5. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    SciTech Connect

    Ignatyev, K; Huwig, K; Harvey, R; Ishii, H; Bradley, J; Luening, K; Brennan, S; Pianetta, P

    2006-08-23

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 x 4) {micro}{sup 2} beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  6. Computerized methodology for micro-CT and histological data inflation using an IVUS based translation map.

    PubMed

    Athanasiou, Lambros S; Rigas, George A; Sakellarios, Antonis I; Exarchos, Themis P; Siogkas, Panagiotis K; Naka, Katerina K; Panetta, Daniele; Pelosi, Gualtiero; Vozzi, Federico; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I

    2015-10-01

    A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively). PMID:25771781

  7. Micro-optics for imaging.

    SciTech Connect

    Boye, Robert R.

    2010-09-01

    This project investigates the fundamental imaging capability of an optic with a physical thickness substantially less than 1 mm. The analysis assumes that post-processing can overcome certain restrictions such as detector pixel size and image degradation due to aberrations. A first order optical analysis quickly reveals the limitations of even an ideal thin lens to provide sufficient image resolution and provides the justification for pursuing an annular design. Some straightforward examples clearly show the potential of this approach. The tradeoffs associated with annular designs, specifically field of view limitations and reduced mid-level spatial frequencies, are discussed and their impact on the imaging performance evaluated using several imaging examples. Additionally, issues such as detector acceptance angle and the need to balance aberrations with resolution are included in the analysis. With these restrictions, the final results present an excellent approximation of the expected performance of the lens designs presented.

  8. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Matsui, Eisuke; Ohamatsu, Hironobu; Moriyama, Noriyuki

    2004-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5 μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. In this approach, the following things are performed: (1) extracting lung distal structures from micro CT images, (2) visualizing extracted lung microstructure in three dimensions, and (3) visualizing inside of lung distal area in three dimensions with fly-through. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. And this research succeeded in visualization of lung microstructures using micro CT images to reveal the lung distal structures from bronchiole up to alveolus.

  9. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Fujii, Masashi; Nakaya, Yoshihiro; Matsui, Eisuke; Ohmatsu, Hironobu; Moriyama, Noriyuki

    2005-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. This report states a wall area such as bronchus wall and alveolus wall about the extraction technique by using the surface thinning process to analyze the lung microstructures from micro CT images measured by the new-model micro CT system.

  10. Preliminary Experimental Results from a MARS Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Thayer, Patrick; Jin, Xin; Xu, Qiong; Bennett, James; Tappenden, Rachael; Wei, Biao; Goldstein, Aaron; Renaud, Peter; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    The Medipix All Resolution System (MARS) system is a commercial spectral/multi-energy micro-CT scanner designed and assembled by the MARS Bioimaging, Ltd. in New Zealand. This system utilizes the state-of-the-art Medipix photon-counting, energy-discriminating detector technology developed by a collaboration based at European Organization for Nuclear Research (CERN). In this paper, we report our preliminary experimental results using this system, including geometrical alignment, photon energy characterization, protocol optimization, and spectral image reconstruction. We produced our scan datasets with a multi-material phantom, and then applied ordered subset-simultaneous algebraic reconstruction technique (OS-SART) to reconstruct images in different energy ranges and principal component analysis (PCA) to evaluate spectral deviation between the energy ranges. PMID:22635175

  11. Cryostatic micro-CT imaging of transient processes

    NASA Astrophysics Data System (ADS)

    Jorgensen, Steven M.; Blank, Basil; Ritman, Erik L.

    2002-01-01

    A double walled copper vessel, 32 cc in volume, was fabricated for micro-CT scanning tissue specimens maintained at cryogenic temperature. The space between the two nested vessels was evacuated and in two opposing sides of the vessel the copper has been replaced by beryllium foil. Nitrogen gas, boiling off liquid nitrogen, is injected continuously into the top of the chamber during the scanning process. Just prior to venting from the vessel the gas is heated and directed through a narrow gap over the outside of the beryllium windows so as to maintain the beryllium windows frost free. A temperature detector within the chamber is used to control the rate of inflow of the nitrogen gas. The frozen specimen is attached to a small horizontal platform on top of a vertical stainless steel pin which exits the base of the vessel through a closely fitting hole and is attached to the computer-controlled rotating stage under the vessel. The vessel and rotation-stage assembly is mounted on a computer-controlled horizontal translation stage which can move the specimen out of the x- ray beam, from time to time, for x-ray beam calibration purposes. The purpose of this arrangement is to permit scanning of specimens that: 1) either cannot be fixed (e.g., with formalin) because of biomolecular analyses which are incompatible with prior fixation, or 2) are snap-frozen during a transient process, such as the accumulation and/or washout of radiopaque indicators distributed in microvascular or extravascular compartments, which lasts only seconds and hence is too fast for normal micro-CT methods to capture.

  12. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  13. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  14. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  15. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection. PMID:26753713

  16. Geometric calibration of a micro-CT system and performance for insect imaging.

    PubMed

    Hu, Zhanli; Gui, Jianbao; Zou, Jing; Rong, Junyan; Zhang, Qiyang; Zheng, Hairong; Xia, Dan

    2011-07-01

    Micro-CT with a high spatial resolution in combination with computer-based-reconstruction techniques is considered a powerful tool for morphological study of insects. The quality of CT images crucially depends on the precise knowledge of the scan geometry of the micro-CT system. In this paper, we have proposed a method to calculate the deviation of rotating axis for compensating deficiency of existing methods. A practical application of this geometric calibration method of the micro-CT system for insect imaging is presented. We have performed the computer-simulation study and experimental study with our prototype micro-CT system. The results demonstrate that the proposed technique is accurate and robust. In addition, we have evaluated the imaging characteristics of the detector in terms of modulation-transfer function (MTF). Finally, insect imaging performance and image reconstruction from data acquired with different energies are presented.

  17. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  18. CARDIAC MICRO-CT FOR MORPHOLOGICAL AND FUNCTIONAL PHENOTYPING OF MLP NULL MICE

    PubMed Central

    Badea, Cristian T; Hedlund, Laurence W.; Boslego Mackel, Julie F.; Mao, Lan; Rockman, Howard A.; Johnson, G. Allan

    2009-01-01

    PURPOSE Investigate the use of micro-CT for morphological and functional phenotyping of MLP null mice and compare micro-CT with M-mode echocardiography. MATERIAL AND METHODS MLP null mice and controls were imaged using both micro-CT and M-mode echocardiography. For Micro-CT imaging, we used a custom built scanner. Following a single intravenous injection of a blood pool contrast agent (Fenestra™ VC) and using a cardio-respiratory gating, we acquired eight phases of the cardiac cycle (every 15 ms) and reconstructed 3D datasets with 94 micron isotropic resolution. Wall thickness and volumetric measurements of left ventricle were performed and cardiac function was estimated. RESULTS Micro-CT and M mode echocardiography showed both morphological and functional aspects that separate MLP null mice from controls. End Diastolic and Systolic Volumes were increased significantly 3 and 5 fold respectively in the MLP null versus controls. Ejection Fraction was reduced by an average of 32% in MLP null mice. The data analysis shows that two imaging modalities provided different results partly due to the difference in anesthesia regimes. Other sources of errors for micro-CT are also analyzed. CONCLUSION Micro-CT can provide the 4D data (3D isotropic volumes over time) required for morphological and functional phenotyping in mice. PMID:17711781

  19. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    PubMed

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  20. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    SciTech Connect

    Ignatyev, Konstantin; Luening, Katharina; Brennan, Sean; Pianetta, Piero; Huwig, Kathy; Harvey, Ralph; Ishii, Hope; Bradley, John

    2007-01-19

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 x 4) {mu}m2 beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  1. Micro-CT scouting for transmission electron microscopy of human tissue specimens.

    PubMed

    Morales, A G; Stempinski, E S; Xiao, X; Patel, A; Panna, A; Olivier, K N; McShane, P J; Robinson, C; George, A J; Donahue, D R; Chen, P; Wen, H

    2016-07-01

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium-stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. PMID:26854176

  2. First X-ray Fluorescence MicroCT Results from Micrometeorites at SSRL

    NASA Astrophysics Data System (ADS)

    Ignatyev, Konstantin; Huwig, Kathy; Harvey, Ralph; Ishii, Hope; Bradley, John; Luening, Katharina; Brennan, Sean; Pianetta, Piero

    2007-01-01

    X-ray fluorescence microCT (computed tomography) is a novel technique that allows non-destructive determination of the 3D distribution of chemical elements inside a sample. This is especially important in samples for which sectioning is undesirable either due to the risk of contamination or the requirement for further analysis by different characterization techniques. Developments made by third generation synchrotron facilities and laboratory X-ray focusing systems have made these kinds of measurements more attractive by significantly reducing scan times and beam size. First results from the x-ray fluorescence microCT experiments performed at SSRL beamline 6-2 are reported here. Beamline 6-2 is a 54 pole wiggler that uses a two mirror optical system for focusing the x-rays onto a virtual source slit which is then reimaged with a set of KB mirrors to a (2 × 4) μm2 beam spot. An energy dispersive fluorescence detector is located in plane at 90 degrees to the incident beam to reduce the scattering contribution. A PIN diode located behind the sample simultaneously measures the x-ray attenuation in the sample. Several porous micrometeorite samples were measured and the reconstructed element density distribution including self-absorption correction is presented. Ultimately, this system will be used to analyze particles from the coma of comet Wild-2 and fresh interstellar dust particles both of which were collected during the NASA Stardust mission.

  3. Free-space fluorescence tomography with adaptive sampling based on anatomical information from microCT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Badea, Cristian T.; Hood, Greg; Wetzel, Arthur W.; Stiles, Joel R.; Johnson, G. Allan

    2010-02-01

    Image reconstruction is one of the main challenges for fluorescence tomography. For in vivo experiments on small animals, in particular, the inhomogeneous optical properties and irregular surface of the animal make free-space image reconstruction challenging because of the difficulties in accurately modeling the forward problem and the finite dynamic range of the photodetector. These two factors are fundamentally limited by the currently available forward models and photonic technologies. Nonetheless, both limitations can be significantly eased using a signal processing approach. We have recently constructed a free-space panoramic fluorescence diffuse optical tomography system to take advantage of co-registered microCT data acquired from the same animal. In this article, we present a data processing strategy that adaptively selects the optical sampling points in the raw 2-D fluorescent CCD images. Specifically, the general sampling area and sampling density are initially specified to create a set of potential sampling points sufficient to cover the region of interest. Based on 3-D anatomical information from the microCT and the fluorescent CCD images, data points are excluded from the set when they are located in an area where either the forward model is known to be problematic (e.g., large wrinkles on the skin) or where the signal is unreliable (e.g., saturated or low signal-to-noise ratio). Parallel Monte Carlo software was implemented to compute the sensitivity function for image reconstruction. Animal experiments were conducted on a mouse cadaver with an artificial fluorescent inclusion. Compared to our previous results using a finite element method, the newly developed parallel Monte Carlo software and the adaptive sampling strategy produced favorable reconstruction results.

  4. Temporal and spectral imaging with micro-CT

    SciTech Connect

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-08-15

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and

  5. Temporal and spectral imaging with micro-CT

    PubMed Central

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and

  6. A microPET/CT system for invivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Liang, H.; Yang, Y.; Yang, K.; Wu, Y.; Boone, J. M.; Cherry, S. R.

    2007-07-01

    A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 µm. The detector was a 5 × 5 cm2 photodiode detector incorporating 48 µm pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown.

  7. In vivo small animal micro-CT using nanoparticle contrast agents

    PubMed Central

    Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.

    2015-01-01

    Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654

  8. Automatic quantification of neo-vasculature from micro-CT

    NASA Astrophysics Data System (ADS)

    Mallya, Yogish; Narayanan, A. K.; Zagorchev, Lyubomir

    2009-02-01

    Angiogenesis is the process of formation of new blood vessels as outgrowths of pre-existing ones. It occurs naturally during development, tissue repair, and abnormally in pathologic diseases such as cancer. It is associated with proliferation of blood vessels/tubular sprouts that penetrate deep into tissues to supply nutrients and remove waste products. The process starts with migration of endothelial cells. As the cells move towards the target area they form small tubular sprouts recruited from the parent vessel. The sprouts grow in length due to migration, proliferation, and recruitment of new endothelial cells and the process continues until the target area becomes fully vascular. Accurate quantification of sprout formation is very important for evaluation of treatments for ischemia as well as angiogenesis inhibitors and plays a key role in the battle against cancer. This paper presents a technique for automatic quantification of newly formed blood vessels from Micro-CT volumes of tumor samples. A semiautomatic technique based on interpolation of Bezier curves was used to segment out the cancerous growths. Small vessels as determined by their diameter within the segmented tumors were enhanced and quantified with a multi-scale 3-D line detection filter. The same technique can be easily extended for quantification of tubular structures in other 3-D medical imaging modalities. Experimental results are presented and discussed.

  9. Determining chemical composition of materials through micro-CT images.

    PubMed

    Jussiani, Eduardo Inocente; Dos Reis, Paulo José; Appoloni, Carlos Roberto

    2016-10-01

    X-ray microtomography is a 3D non-destructive method which, through digital images, enables a view of the internal structure of samples. Recently, researchers have been extensively performing various methods in the attempt to determine the chemical composition of materials. This paper brings further insight into this matter and proposes a new experimental method for determining the internal chemical composition of samples. Using a set of standard samples, calibration curves can be created that allow to relate the average gray scale of a sample obtained through microtomographic images to the value of ρZeff(m). In this model, ρZeff(m) is the parameter that chemically characterizes a material. The exponent m is obtained by the average value obtained with standard samples, which were titanium dioxide (TiO2), calcium chloride (CaCl2), calcium hydroxide (Ca(OH)2), and calcium nitrate (Ca(NO3)2). For the samples scanning process, a Bruker SkyScan 1172 microCT was used for testing rocks, nylon, graphite, calcium carbonate (CaCO3) and aluminum samples. The experimental results achieved by this method were consistent with the theoretical values. PMID:27451140

  10. Optical-CT imaging of complex 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  11. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  12. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  13. Magnetorheological polydimethylsiloxane micro-optical resonator.

    PubMed

    Ioppolo, Tindaro; Otügen, M Volkan

    2010-06-15

    We investigate the possibility of using magnetorheological polydimethylsiloxane (MR-PDMS) spheres as micro-optical resonators. In particular, the effect of a magnetic field on the whispering gallery modes (WGM) of these resonators is studied. The applied field induces mechanical deformation, causing shifts in the WGM. The microspheres are made of PDMS with embedded magnetically polarizable particles. An analysis is carried out to estimate the WGM shifts induced by an external magnetic field. An experiment is also carried out to demonstrate the magnetic field-induced WGM shifts in an MR-PDMS microsphere. The results indicate that MR-PDMS microspheres can be used as high-Q-factor tunable optical cavities with potential applications in sensing. PMID:20548378

  14. CCD-based optical CT scanning of highly attenuating phantoms

    NASA Astrophysics Data System (ADS)

    Al-Nowais, Shamsa; Doran, Simon J.

    2009-05-01

    The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.

  15. Ionization chamber volume determination and quality assurance using micro-CT imaging

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.; Umoh, Joseph; Kron, Tomas; Holdsworth, David W.; Battista, Jerry J.

    2008-09-01

    Ion chamber dosimetry requires a high degree of precision, at all steps within the dosimetric process, in order to ensure accurate dose measurements. This work presents a novel technique for ion chamber volume determination and quality assurance, using micro-computed tomography (micro-CT). Four nominally identical Exradin A1SL chambers (0.056 cm3) (Standard Imaging, WI, USA) were imaged using a micro-CT system (GE Locus, GE Healthcare, London, Ontario) and irradiated in a 6 MV x-ray reference field. Air volumes were calculated from the CT datasets using 3D analysis software (Microview 2.1.1, General Electric Healthcare, London, Ontario). Differences in the volumes of each chamber determined using micro-CT images agreed with differences in the ionization response within 1% for each chamber. Calibration coefficients were then compared through cross-calibration with a calibrated ion chamber and from the CT-measured volumes. The average ratio of these values was found to be 0.958 ± 0.009 indicating good correlation. The results demonstrate the promise of using micro-CT imaging for the absolute volumetric characterization of ion chambers. The images have the potential to be an important clinical tool for quality assurance of ion chamber construction and integrity after routine clinical usage.

  16. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  17. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  18. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  19. Plant tissue optics: micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, David W.

    2009-08-01

    Plants have evolved unusual tissue optical properties, not surprising as creatures of light. These are astonishingly sophisticated, involving both micro- and nanostructures. Microstructures refract, scatter, and channel light in plant tissues, to produce concentrations and gradients of light within, and to remove undesired portions of the electromagnetic spectrum. Nanostructures use the different refractive indices of both cellulosic walls and bi-lipid membranes to interfere with light, multiple layers producing intense constructive coloration and reduced fluxes within tissues. In a tropical sedge now under analysis, structures may include silica. Recently discovered surface diffraction gratings produce strong directionally sensitive coloration that assist in pollinator visitation. Although some of these properties have obvious applications, most await appreciation by creative scientists to produce new useful devices.

  20. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  1. Tunable optical delay line based on micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Yundong; Wu, Yongfeng; Yu, Changqiu; Li, Hui; Zhang, Chunyu; Zhang, Tuo; Yuan, Ping

    2016-03-01

    We theoretically investigate the series-coupled double micro-ring resonator as tunable optical delay line. Tunable optical delay line can be achieved by tunable self-coupling coefficient and attenuation factor of micro-ring waveguide. Through choosing suitable parameters of structure, the series-coupled double micro-ring resonator can obtain flat delay line that mitigates the deleterious effects of group delay dispersion.

  2. CT guided diffuse optical tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  3. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  4. Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Kepshire, Dax; O'Hara, Julia A.; Dehghani, Hamid; Srinivasan, Subha; Mincu, N.; Hutchins, M.; Khayat, M.; Pogue, B. W.

    2009-02-01

    Fluorescence molecular tomography (FMT) has the potential to become a powerful quantitative research tool for pre-clinical applications such as evaluating the efficacy of experimental drugs. In this paper, we show how a time-domain FMT/microCT instrument can in principle be used to monitor volumetric fluorescence intensity over time for low fluorophore concentration levels. The experimental results we present relate to Protoporphyrin IX which has a quantum efficiency as much as two orders of magnitude lower compared to more conventional extrinsic dyes used for molecular imaging (e.g., Alexa Fluor dyes, Cyanine dyes). Our results highlight the high sensitivity of the single photon counting technology on which the optical system we have built is based. In conjunction with this system we have developed a diffuse optical fluorescence reconstruction technique that is robust and shown here to perform adequately even in cases when the contribution of noise to the data is important. Related to this, we show that the regularization scheme we have developed is reliable even for low fluorophore concentration values and that no adjustment of the regularization parameter needs to be made for different levels of noise. This generic reconstruction approach insures that images reconstructed from data sets acquired at different times and for different fluorescence levels can be compared on an equal footing.

  5. Optimization of microCT data processing for modelling of dental structures in orthodontic studies.

    PubMed

    Viecilli, R; Katona, T; Roberts, W

    2007-08-01

    Dental studies evaluating microCT output often examine resolution as a parameter that affects the data, but many other factors can influence image quality. The objective of this paper is to present the issues involved with the optimization of microCT data acquisition and processing for two biomechanical animal models. The first model evaluates surface and volumetric changes in root structure after in vitro fatigue loading of dog incisors. The second evaluates the in vivo morphometric bone and tooth responses to application of orthodontic force in inbred and transgenic mice. This type of data required specific magnification and noise control microCT settings to segment and render objects with acceptable definition. The proposed procedures enabled high definition rendering of changes in tooth and bone morphology in orthodontic studies. They also allowed for the construction of solid models for finite element analyses. PMID:17671859

  6. Hybrid spectral micro-CT: system design, implementation, and preliminary results.

    PubMed

    Bennett, James R; Opie, Alex M T; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-02-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral “interior” imaging chain integrated with a traditional wide-beam “global” imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  7. The development and validation of micro-CT of large deep frozen specimens.

    PubMed

    Kampschulte, Marian; Erdmann, Georg; Sender, Jonas; Martels, Gunhild; Böcker, Wolfgang; ElKhassawna, Thaqif; Heiß, Christian; Langheinrich, Alexanders Claus; Roeb, Elke; Roderfeld, Martin; Krombach, Gabriele Anja

    2015-01-01

    Repetitive freeze/thaw cycles lead to a progressive loss of structural and molecular integrity in deep frozen specimens. The aim of this study was to evaluate a micro-CT stage, which maintains the cryoconservation of large specimens throughout micro-CT imaging. Deep frozen ovine vertebral segments (-20 °C) were fixed in a micro-CT stage made of expanded polystyrene and cooled with dry ice (0 g, 60 g and 120 g). The temperature inside the stage was measured half-hourly over a time span of three hours with subsequent measurement of surface temperature. The method was validated in a series of 30 deep frozen vertebral specimens and in liver tissue after repetitive micro-CT scanning. Isolation without cooling resulted in defrosting. Cooling with 60 g of dry ice led to a temperature rise inside the stage (max. 5.1 °C) and on the specimen surfaces (max. -3 °C). Cooling with 120 g of dry ice resulted in a significant (p < 0.001) and sufficient lowering of the temperature inside the stage (max. -14 °C) and on the surface of the specimens (max. -13.9 °C). The surface temperature during the subsequent micro-CT validation study did not exceed -16 °C (processing time 1 h 45 min). The resolution was 33 μm isotropic voxel side length, enabling a binarization of bone microstructures. Temperature can reliably be maintained below -10 °C during a micro-CT scan by applying the described technique. The resulting spatial resolution and image quality permits a binarization of bone microstructure. PMID:25639882

  8. The development and validation of micro-CT of large deep frozen specimens.

    PubMed

    Kampschulte, Marian; Erdmann, Georg; Sender, Jonas; Martels, Gunhild; Böcker, Wolfgang; ElKhassawna, Thaqif; Heiß, Christian; Langheinrich, Alexanders Claus; Roeb, Elke; Roderfeld, Martin; Krombach, Gabriele Anja

    2015-01-01

    Repetitive freeze/thaw cycles lead to a progressive loss of structural and molecular integrity in deep frozen specimens. The aim of this study was to evaluate a micro-CT stage, which maintains the cryoconservation of large specimens throughout micro-CT imaging. Deep frozen ovine vertebral segments (-20 °C) were fixed in a micro-CT stage made of expanded polystyrene and cooled with dry ice (0 g, 60 g and 120 g). The temperature inside the stage was measured half-hourly over a time span of three hours with subsequent measurement of surface temperature. The method was validated in a series of 30 deep frozen vertebral specimens and in liver tissue after repetitive micro-CT scanning. Isolation without cooling resulted in defrosting. Cooling with 60 g of dry ice led to a temperature rise inside the stage (max. 5.1 °C) and on the specimen surfaces (max. -3 °C). Cooling with 120 g of dry ice resulted in a significant (p < 0.001) and sufficient lowering of the temperature inside the stage (max. -14 °C) and on the surface of the specimens (max. -13.9 °C). The surface temperature during the subsequent micro-CT validation study did not exceed -16 °C (processing time 1 h 45 min). The resolution was 33 μm isotropic voxel side length, enabling a binarization of bone microstructures. Temperature can reliably be maintained below -10 °C during a micro-CT scan by applying the described technique. The resulting spatial resolution and image quality permits a binarization of bone microstructure.

  9. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  10. Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research

    NASA Astrophysics Data System (ADS)

    Burk, Laurel May

    Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation

  11. Robust optic nerve segmentation on clinically acquired CT

    NASA Astrophysics Data System (ADS)

    Panda, Swetasudha; Asman, Andrew J.; DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.; Landman, Bennett A.

    2014-03-01

    The optic nerve is a sensitive central nervous system structure, which plays a critical role in many devastating pathological conditions. Several methods have been proposed in recent years to segment the optic nerve automatically, but progress toward full automation has been limited. Multi-atlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. Herein we evaluate a framework for robust and fully automated segmentation of the optic nerves, eye globes and muscles. We employ a robust registration procedure for accurate registrations, variable voxel resolution and image fieldof- view. We demonstrate the efficacy of an optimal combination of SyN registration and a recently proposed label fusion algorithm (Non-local Spatial STAPLE) that accounts for small-scale errors in registration correspondence. On a dataset containing 30 highly varying computed tomography (CT) images of the human brain, the optimal registration and label fusion pipeline resulted in a median Dice similarity coefficient of 0.77, symmetric mean surface distance error of 0.55 mm, symmetric Hausdorff distance error of 3.33 mm for the optic nerves. Simultaneously, we demonstrate the robustness of the optimal algorithm by segmenting the optic nerve structure in 316 CT scans obtained from 182 subjects from a thyroid eye disease (TED) patient population.

  12. Energy-discriminative performance of a spectral micro-CT system.

    PubMed

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristics of some known materials to calibrate the detector's photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  13. Contrast-enhanced microCT (EPIC-µCT) ex vivo applied to the mouse and human jaw joint

    PubMed Central

    Mulder, L; Lin, A S; Langenbach, G E J; Koolstra, J H; Guldberg, R E; Everts, V

    2014-01-01

    Objectives: The temporomandibular joint (TMJ) is susceptive to the development of osteoarthritis (OA). More detailed knowledge of its development is essential to improve our insight into TMJ-OA. It is imperative to have a standardized reliable three-dimensional (3D) imaging method that allows for detailed assessment of both bone and cartilage in healthy and diseased joints. We aimed to determine the applicability of a contrast-enhanced microCTCT) technique for ex vivo research of mouse and human TMJs. Methods: Equilibrium partitioning of an ionic contrast agent via µCT (EPIC-µCT) was previously applied for cartilage assessment in the knee joint. The method was ex vivo, applied to the mouse TMJ and adapted for the human TMJ. Results: EPIC-µCT (30-min immersion time) was applied to mouse mandibular condyles, and 3D imaging revealed an average cartilage thickness of 110 ± 16 µm. These measurements via EPIC-µCT were similar to the histomorphometric measures (113 ± 19 µm). For human healthy OA-affected TMJ samples, the protocol was adjusted to an immersion time of 1 h. 3D imaging revealed a significant thicker cartilage layer in joints with early signs of OA compared with healthy joints (414.2 ± 122.6 and 239.7 ± 50.5 µm, respectively). A subsequent significant thinner layer was found in human joints with late signs of OA (197.4 ± 159.7 µm). Conclusions: The EPIC-µCT technique is effective for the ex vivo assessment of 3D cartilage morphology in the mouse as well as human TMJ and allows bone–cartilage interaction research in TMJ-OA. PMID:24353248

  14. Development of CCD-based optical computed tomography and comparison with single-beam optical CT scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.

    2015-01-01

    This study reports on the development of CCD-based optical computed tomography (CT) CT-s2. A commercially available 10× fast optical computed tomography scanner (OCTOPUSTM-10X, MGS Research, Inc., Madison, CT, USA) was used for comparison. NIPAM polymer gel dosimeter was used to validate the performance of CT-s2. The gamma pass rate can reach 96.00% when using a 3% dose difference and 3 mm dose-to-agreement criteria. The results of CT-s2 are as good as those of the single-beam optical-CT scanner, but the scanning time of CT-s2 is only one-tenth of that of the single-beam optical-CT scanner.

  15. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  16. Traceable micro-CT scaling accuracy phantom for applications requiring exact measurement of distances or volumes

    SciTech Connect

    Waring, C.S.; Bax, J.S.; Samarabandu, A.; Holdsworth, D.W.; Fenster, A.; Lacefield, J.C.

    2012-10-15

    Purpose: Volumetric x-ray microcomputed tomography (CT) can be employed in a variety of quantitative research applications such as image-guided interventions or characterization of medical devices. To ensure the highest geometric fidelity of images for these applications, a phantom and image processing algorithm have been developed to calibrate the scaling accuracy of micro-CT scanners to a traceable standard and provide corrections to image voxel sizing. Methods: The calibration phantom contains six borosilicate beads whose separations have been measured to a traceable standard. An image processing algorithm compares the known separations of the beads to their separations in micro-CT images. A least-squares solution is used to determine linear scaling correction factors along each of the three scanner axes to minimize errors in the bead separations within the images by correcting the image voxel size. The correction factors were applied to images of a similar phantom with beads at different positions to evaluate the ability of the correction factors to reduce errors at points independent of the fiducial locations in the calibration phantom. The calibration phantom was used to evaluate the scaling accuracy of five different micro-CT scanners representing four different scanner models. Results: In two of the five scanners evaluated, the correction factors significantly reduced the mean error in bead separations in the images from 0.17% to 0.05% and from 0.37% to 0.07% of the actual bead separations, respectively. Scanners yielding similar voxel sizes possessed comparable geometric errors after correction using the phantom. Conclusions: Although the magnitude of the corrections is small, such corrections can be important for demanding micro-CT applications. Even if no voxel size correction is required, the phantom provides an easily implemented method to verify the geometric fidelity of micro-CT scanners to a traceable standard of measurement.

  17. Dual energy micro-CT imaging of radiation-induced vascular changes in primary mouse sarcomas

    PubMed Central

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose To evaluate the effects of radiation therapy on primary tumor vasculature using dual energy (DE) micro-computed tomography (micro-CT). Methods and Materials The Cre-loxP system was used to generate primary sarcomas with mutant Kras and p53. Unirradiated tumors were compared to tumors irradiated with 20 Gy. A long-circulating PEGylated liposomal-iodinated contrast agent was administered one day after treatment, and mice were imaged immediately after injection (day 1) and three days later (day 4) using DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically using CD31 immunofluorescence and fluorescently-labeled dextrans. Results Radiation treatment significantly decreased tumor growth (P<0.05). There was a positive correlation between CT-measurement of tumor FBV and extravasated iodine with microvascular density (MVD) (R2=0.53) and dextran accumulation (R2=0.63), respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs. 0.091, P<0.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation with dextran fractional area increasing 4.2-fold and liposomal-iodine concentration increasing 3.0-fold. Conclusions DE micro-CT is an effective tool for non-invasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment. PMID:23122984

  18. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT

    SciTech Connect

    Hupfer, Martin; Kolditz, Daniel; Nowak, Tristan; Eisa, Fabian; Brauweiler, Robert; Kalender, Willi A.

    2012-02-15

    Purpose: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. Methods: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. Results: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. Conclusions: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of

  19. Single energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-08-01

    A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.

  20. The impact of spectral filtration on image quality in micro-CT system.

    PubMed

    Ren, Liqiang; Ghani, Muhammad U; Wu, Di; Zheng, Bin; Chen, Yong; Yang, Kai; Wu, Xizeng; Liu, Hong

    2016-01-01

    This paper aims to evaluate the impact of spectral filtration on image quality in a microcomputed tomography (micro-CT) system. A mouse phantom comprising 11rods for modeling lung, muscle, adipose, and bones was scanned with 17 s and 2min, respectively. The current (μA) for each scan was adjusted to achieve identical entrance exposure to the phantom, providing a baseline for image quality evaluation. For each region of interest (ROI) within specific composition, CT number variations, noise levels, and contrast-to-noise ratios (CNRs) were evaluated from the reconstructed images. CT number variations and CNRs for bone with high density, muscle, and adipose were compared with theoretical predictions. The results show that the impact of spectral filtration on image quality indicators, such as CNR in a micro-CT system, is significantly associated with tissue characteristics. The findings may provide useful references for optimizing the scanning parameters of general micro-CT systems in future imaging applications. PMID:26894340

  1. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  2. Novel approach for quantification of porosity for biomaterial implants using microcomputed tomography (microCT).

    PubMed

    Hiu-Yan, Yeung; Ling, Qin; Kwong-Man, Lee; Ming, Zhang; Kwok-Sui, Leung; Chun-yiu, Cheng Jack

    2005-11-01

    Porous bioceramics have been widely investigated in orthopaedic tissue engineering. Attention has been given to manufacturing of a porous bioceramic that mimics the trabecular bone structure for proper bone regeneration. With the advance of biomedical imaging through microcomputed tomography (microCT), this study attempted to quantify the pore structure of different bioceramics. Two bioceramic blocks (BSC and ChronOS) were synthesized by two methods. The specification claimed the porosity of the bioceramic ranged from 40% to 70%. Six blocks of each bioceramic were evaluated by conventional water immersion method and microCT. The pore size and connectivity were evaluated with standardized protocols. By the water immersion method, the porosity of BSC and ChronOS was 60.4% and 74.7%, respectively. The three-dimensional results of microCT showed that BSC porosity was 26.2% and ChronOS was 60.0%. The pore connectivity was evaluated to be 2.6 for BSC and 39.7 for ChronOS. ChronOS had functional pores with 200 microm to 400 microm in diameter (87.8%+/-0.5%), which is significantly more than 52.8%+/-11.5% of pores in BSC (p<0.05). Providing information on the functional pores objectively, the microCT evaluation serves as a good standard for specification of the bioceramic-related implants.

  3. A hybrid registration-based method for whole-body micro-CT mice images.

    PubMed

    Qu, Xiaochao; Gao, Xueyuan; Xu, Xianhui; Zhu, Shouping; Liang, Jimin

    2016-07-01

    The widespread use of whole-body small animal in vivo imaging in preclinical research has proposed the new demands on imaging processing and analysis. Micro-CT provides detailed anatomical structural information for continuous detection and different individual comparison, but the body deformation happened during different data acquisition needs sophisticated registration. In this paper, we propose a hybrid method for registering micro-CT mice images, which combines the strengths of point-based and intensity-based registration methods. Point-based non-rigid method using thin-plate spline robust point matching algorithm is utilized to acquire a coarse registration. And then intensity-based non-rigid method using normalized mutual information, Halton sampling and adaptive stochastic gradient descent optimization is used to acquire precise registration. Two accuracy metrics, Dice coefficient and average surface distance are used to do the quantitative evaluation. With the intra- and intersubject micro-CT mice images registration assessment, the hybrid method has been proven capable of excellent performance on micro-CT mice images registration.

  4. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  5. Method for correction of rotation errors in Micro-CT System

    NASA Astrophysics Data System (ADS)

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Zhao, Gengyan; Lv, Hanyu; Xu, Linyan; Xu, Ying; Hu, Xiaotang

    2016-04-01

    In Micro-CT (Computed Tomography) system, a series of projection data of sample are collected by the detector as the precision stage rotates step by step. However, the accuracy of projection images is limited by rotation errors during the acquisition process. Therefore, evaluating the performance of precision rotary stage and developing corresponding compensation method are necessary in Micro-CT system. In this paper, a metered system is designed which is composed of four precision capacitive sensors, a precision machined steel cylinder and four flexible hinges. Based on the metered system, a method to calibrate and correct the errors when the precision stage turns is proposed. Firstly, the theoretical analysis is proposed and the imperfect situations are considered. And then, the method has been applied to correct experimental data taken from a microscope type of Micro-CT system. Successful results are shown through evaluating MTF (Modulation Transfer Function) of Micro-CT system. Lastly, a sample of tungsten wire is scanned and the reconstructed images are compared before and after using the calibrated method.

  6. 4D micro-CT for cardiac and perfusion applications with view under sampling

    NASA Astrophysics Data System (ADS)

    Badea, Cristian T.; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan

    2011-06-01

    Micro-CT is commonly used in preclinical studies to provide anatomical information. There is growing interest in obtaining functional measurements from 4D micro-CT. We report here strategies for 4D micro-CT with a focus on two applications: (i) cardiac imaging based on retrospective gating and (ii) pulmonary perfusion using multiple contrast injections/rotations paradigm. A dual source micro-CT system is used for image acquisition with a sampling rate of 20 projections per second. The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent. Fast scanning of free breathing mice is achieved using retrospective gating. The ECG and respiratory signals are used to sort projections into ten cardiac phases. The pulmonary perfusion protocol uses a conventional contrast agent (Isovue 370) delivered by a micro-injector in four injections separated by 2 min intervals to allow for clearance. Each injection is synchronized with the rotation of the animal, and each of the four rotations is started with an angular offset of 22.5 from the starting angle of the previous rotation. Both cardiac and perfusion protocols result in an irregular angular distribution of projections that causes significant streaking artifacts in reconstructions when using traditional filtered backprojection (FBP) algorithms. The reconstruction involves the use of the point spread function of the micro-CT system for each time point, and the analysis of the distribution of the reconstructed data in the Fourier domain. This enables us to correct for angular inconsistencies via deconvolution and identify regions where data is missing. The missing regions are filled with data from a high quality but temporally averaged prior image reconstructed with all available projections. Simulations indicate that deconvolution successfully removes the streaking artifacts while preserving temporal information. 4D cardiac micro-CT in a mouse was performed with adequate image quality at isotropic

  7. MicroPET/CT Colonoscopy in long-lived Min mouse using NM404

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew B.; Halberg, Richard B.; Schutten, Melissa M.; Weichert, Jamey P.

    2009-02-01

    Colon cancer is a leading cause of death in the US, even though many cases are preventable if tumors are detected early. One technique to promote screening is Computed Tomography Colonography (CTC). NM404 is a second generation phospholipid ether analogue which has demonstrated selective uptake and prolonged retention in 43/43 types of malignant tumors but not inflammatory sites or premalignant lesions. The purpose of this experiment was to evaluate (SWR x B6 )F1.Min mice as a preclinical model to test MicroPET/CT dual modality virtual colonoscopy. Each animal was given an IV injection of 124I-NM404 (100 uCi) 24, 48 and 96 hours prior to scanning on a dedicated microPET/CT system. Forty million counts were histogrammed in 3D and reconstructed using an OSEM 2D algorithm. Immediately after PET acquisition, a 93 m volumetric CT was acquired at 80 kVp, 800 uA and 350 ms exposures. Following CT, the mouse was sacrificed. The entire intestinal tract was excised, washed, insufflated, and scanned ex vivo A total of eight tissue samples from the small intestine were harvested: 5 were benign adenomas, 2 were malignant adenocarcinomas, and 1 was a Peyer's patch (lymph tissue) . The sites of these samples were positioned on CT and PET images based on morphological cues and the distance from the anus. Only 1/8 samples showed tracer uptake. several hot spots in the microPET image were not chosen for histology. (SWR x B6)F1.Min mice develop benign and malignant tumors, making this animal model a strong candidate for future dual modality microPET/CT virtual colonography studies.

  8. Micro-CT of Carotid Arteries: A Tool for Experimental Studies

    SciTech Connect

    Mohr, Andreas; Wenke, Ruediger; Roemer, Frank W.; Lynch, John A.; Gatzka, Christian; Priebe, Markus; Guermazi, Ali; Grigorian, Mikayel; Heller, Martin; Mueller-Huelsbeck, Stefan

    2004-11-15

    Micro-computed tomography (micro-CT) is a high-resolution, nondestructive tool for two- and three-dimensional imaging and quantification. The ability of this technique to assess atherosclerosis of the carotid artery was evaluated in three human cadaver samples based on the original axial acquisitions, multiplanar reconstructions and volume rendering techniques. Quantitative analysis included the calculation of: (1) the original lumen perimeter, original lumen area, plaque area, residual lumen area, calcified area and gross sectional area reduction of the vascular lumen from two-dimensional slices; (2) the total tissue volume, soft tissue volume and calcified tissue volume from the three-dimensional data set. This preliminary study demonstrates the potential of micro-CT as a supplementary method for the two- and three-dimensional ex vivo evaluation of carotid atherosclerosis.

  9. Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Bouchet, A.; Colabella, L.; Omar, S.; Ballarre, J.; Pastore, J.

    2016-04-01

    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials.

  10. Scanning multiple samples simultaneously in tube-based microCT systems

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Rajamannan, N. M.; Spelsberg, T. C.; Malayannan, S.; Riaz, R.; Polavarapu, M.; Hsu, E. L.; Hsu, W., K.; Chen, Yan; Zhang, Ming

    2010-09-01

    The world-wide explosion of commercial microComputed Tomography (microCT) system emplacement has led to dayin, day-out access to laboratory scanners. Most biologically-oriented microCT facilities must characterize large numbers of samples rapidly at moderate spatial resolution (e.g., 10-20 μm isotropic volume elements, voxels). Scanning multiple specimens simultaneously is one efficient solution. Sample positioning is critical if the region of interest of each specimen is to be imaged without increasing the number of slices recorded (i.e., data acquisition and reconstruction times). Three very different, multiple sample data acquisitions are reported: mouse heart tissue calcification, rat spinal fusion and mouse tibial bone cancer models

  11. Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna

    2008-09-01

    Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.

  12. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.

    2014-01-01

    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 k

  13. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  14. First small-animal in-vivo phase-contrast micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Pauwels, B.; Bruyndonckx, P.; Liu, X.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Bech, M.; Pfeiffer, F.; Sasov, A.

    2012-10-01

    We have developed a compact grating-based in-vivo phase-contrast micro-CT system with a rotating gantry. The 50 W microfocus x-ray source operates with 20 to 50 kV peak energy. The length of the rotating interferometer is around 47 cm. Pixel size in the object is 30 micron; the field of view is approx. 35 mm in diameter, suited to image a mouse. The interferometer consists of three gratings: an absorption grating close to the x-ray source, a phase grating to introduce a π/2 phase shift and an absorption analyzer grating positioned at the first fractional Talbot distance. Numerous drives and actuators are used to provide angular and linear grating alignment, phase stepping and object/gantry precision positioning. Phantom studies were conducted to investigate performance, accuracy and stability of the scanner. In particular, the influences of gantry rotation and of temperature fluctuations on the interferometric image acquisition were characterized. Also dose measurements were performed. The first imaging results obtained with the system show the complementary nature of phase-contrast micro-CT images with respect to absorption-based micro-CT. Future improvements, necessary to optimize the scanner for in-vivo small-animal CT scanning on a regular and easy-to-use basis, are also discussed.

  15. MEMS: A new approach to micro-optics

    SciTech Connect

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  16. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    PubMed

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions. PMID:26240030

  17. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    PubMed

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions.

  18. 4D micro-CT-based perfusion imaging in small animals

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  19. Interpreting pathologies in extant and extinct archosaurs using micro-CT

    PubMed Central

    Garwood, Russell J.; Lowe, Tristan; Withers, Philip J.; Manning, Phillip L.

    2015-01-01

    Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth. Unfortunately, most palaeopathological studies are confined to external morphological interpretations due to the destructive nature of traditional methods of study. This limits the degree of reliable diagnosis and interpretation possible. X-ray MicroTomography (micro-CT, XMT) provides a non-destructive means of analysing the internal three-dimensional structure of pathologies in both extant and extinct individuals, at higher resolutions than possible with medical scanners. In this study, we present external and internal descriptions of pathologies in extant and extinct archosaurs using XMT. This work demonstrates that the combination of external/internal diagnosis that X-ray microtomography facilitates is crucial when differentiating between pathological conditions. Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes. Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies. Micro-CT is an increasingly accessible tool, which will provide key insights for correctly interpreting vertebrate pathologies in the future. PMID:26246971

  20. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly.

  1. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587

  2. Replicating micro-optical structures using soft embossing technique

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobing; Tan, Jin-Yi; De Smet, Jelle; Joshi, Pankaj; Islamaj, Esma; Cuypers, Dieter; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo; De Smet, Herbert

    2014-10-01

    In this article we report the fabrication of large arrays of micro-optical gratings using soft embossing with elastic Polydimethylsiloxane (PDMS) molds and ultra-violet (UV) curable resins. Three different kinds of resins are used to replicate the master gratings in a process akin to a roll to roll process. The optical surface profiling measurements show that the dimensions of the replicated gratings closely approximate those of the master gratings. Optical diffractions of these gratings are also measured and analyzed.

  3. Micro- and Nanotechnologies for Optical Neural Interfaces

    PubMed Central

    Pisanello, Ferruccio; Sileo, Leonardo; De Vittorio, Massimo

    2016-01-01

    In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles. PMID:27013939

  4. Grinding aspheric and freeform micro-optical molds

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  5. Optical assembly of bio-hybrid micro-robots.

    PubMed

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.

  6. Optical assembly of bio-hybrid micro-robots.

    PubMed

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots. PMID:25681045

  7. Experimental Rock Deformation under micro-CT: ERDμ

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Zhao, Qi; Biryukov, Anton; Grasselli, Giovanni

    2015-04-01

    sequestration it would be extremely useful understanding the impact of the gas-water-rock reactions on the rock elastic properties. Potentially, the imaging of the internal structure and fluid distribution in the sample, combined with the measurement of 1/Q, could serve to this goal helping subsurface monitoring and surveying. This is the primary purpose of our research: uncovering the relationships between i) saturation and dissolution-precipitation, and ii) the elastic properties of a rock. The present contribution reports the design of a new high-pressure X-Ray transparent vessel which can fit and perform measurements inside the X-Ray computed tomography apparatus (μCT) installed at the University of Toronto. Hence, the scientist can measure changes in 1/Q in the sample and, simultaneously, link them to saturation variations, or precipitation-dissolution of minerals. We discuss how the use of the μCT will allow shedding light on the physics of 1/Q, and present the preliminary results obtained with the new vessel in the μCT. This technological development, together with the results already obtained, will enrich the knowledge of seismic wave attenuation mechanisms for partially saturated rocks to aid geophysical methods.

  8. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  9. Parallel approach to MEMS and micro-optics interferometric testing

    NASA Astrophysics Data System (ADS)

    Kujawińska, M.; Beer, S.; Gastinger, K.; Gorecki, C.; Haugholt, K. H.; Józwik, M.; Lambelet, P.; Paris, R.; Styk, A.; Zeitner, U.

    2011-08-01

    The paper presents the novel approach to an interferometric, quantitative, massive parallel inspection of MicroElectroMechanicalSystems (MEMS), MicroOptoElectroMechanical Systems (MOEMS) and microoptics arrays. The basic idea is to adapt a micro-optical probing wafer to the M(O)EMS wafer under test. The probing wafer is exchangeable and contains one of the micro-optical interferometer arrays based on: (1) a low coherent interferometer array based on a Mirau configuration or (2) a laser interferometer array based on a Twyman-Green configuration. The optical, mechanical, and electro-optical design of the system and data analysis concept based on this approach is presented. The interferometer arrays are developed and integrated at a standard test station for micro-fabrication together with the illumination and imaging modules and special mechanics which includes scanning and electrostatic excitation systems. The smart-pixel approach is applied for massive parallel electro-optical detection and data reduction. The first results of functional tests of the system are presented. The concept is discussed in reference to the future M(O)EMS and microoptics manufacturers needs and requirements.

  10. Contrast Agents for Quantitative MicroCT of Lung Tumors in Mice

    PubMed Central

    Lalwani, Kush; Giddabasappa, Anand; Li, Danan; Olson, Peter; Simmons, Brett; Shojaei, Farbod; Arsdale, Todd Van; Christensen, James; Jackson-Fisher, Amy; Wong, Anthony; Lappin, Patrick B; Eswaraka, Jeetendra

    2013-01-01

    The identification and quantitative evaluation of lung tumors in mouse models is challenging and an unmet need in preclinical arena. In this study, we developed a noninvasive contrast-enhanced microCTCT) method to longitudinally evaluate and quantitate lung tumors in mice. Commercially available μCT contrast agents were compared to determine the optimal agent for visualization of thoracic blood vessels and lung tumors in naïve mice and in non-small-cell lung cancer models. Compared with the saline control, iopamidol and iodinated lipid agents provided only marginal increases in contrast resolution. The inorganic nanoparticulate agent provided the best contrast and visualization of thoracic vascular structures; the density contrast was highest at 15 min after injection and was stable for more than 4 h. Differential contrast of the tumors, vascular structures, and thoracic air space by the nanoparticulate agent enabled identification of tumor margins and accurate quantification. μCT data correlated closely with traditional histologic measurements (Pearson correlation coefficient, 0.995). Treatment of ELM4–ALK mice with crizotinib yielded 65% reduction in tumor size and thus demonstrated the utility of quantitative μCT in longitudinal preclinical trials. Overall and among the 3 agents we tested, the inorganic nanoparticulate product was the best commercially available contrast agent for visualization of thoracic blood vessels and lung tumors. Contrast-enhanced μCT imaging is an excellent noninvasive method for longitudinal evaluation during preclinical lung tumor studies. PMID:24326223

  11. Development of a combined microSPECT/CT system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  12. Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis

    PubMed Central

    Dalton, Nancy D.; Gu, Yusu; Chao, Chieh-Ju; Peterson, Kirk L.; Knowlton, Kirk U.

    2016-01-01

    Objectives To address the question as to whether echocardiographic and/or microcomputed tomography (microCT) analysis can be utilized to assess the extent of Coxsackie B virus (CVB) induced myocarditis in the absence of left ventricular dysfunction in the mouse. Background Viral myocarditis is a significant clinical problem with associated inflammation of the myocardium and myocardial injury. Murine models of myocarditis are commonly used to study the pathophysiology of the disease, but methods for imaging the mouse myocardium have been limited to echocardiographic assessment of ventricular dysfunction and, to a lesser extent, MRI imaging. Methods Using a murine model of myocarditis, we used both echocardiography and microCT to assess the extent of myocardial involvement in murine myocarditis using both wild-type mice and CVB cleavage-resistant dystrophin knock-in mice. Results Areas of increased echogenicity were only observed in the myocardium of Coxsackie B virus infected mice. These echocardiographic abnormalities correlated with the extent of von Kossa staining (a marker of membrane permeability), inflammation, and fibrosis. Given that calcium phosphate uptake as imaged by von Kossa staining might also be visualized using microCT, we utilized microCT imaging which allowed for high-resolution, 3-dimensional images of radiodensities that likely represent calcium phosphate uptake. As with echocardiography, only mice infected with Coxsackie B virus displayed abnormal accumulation of calcium within individual myocytes indicating increased membrane permeability only upon exposure to virus. Conclusions These studies demonstrate new, quantitative, and semi-quantitative imaging approaches for the assessment of myocardial involvement in the setting of viral myocarditis in the commonly utilized mouse model of viral myocarditis. PMID:27486657

  13. Recent Progress Validating the HADES Model of LLNL's HEAF MicroCT Measurements

    SciTech Connect

    White, W. T.; Bond, K. C.; Lennox, K. P.; Aufderheide, M. B.; Seetho, I. M.; Roberson, G. P.

    2014-07-17

    This report compares recent HADES calculations of x-ray linear attenuation coefficients to previous MicroCT measurements made at Lawrence Livermore National Laboratory’s High Energy Applications Facility (HEAF). The chief objective is to investigate what impact recent changes in HADES modeling have on validation results. We find that these changes have no obvious effect on the overall accuracy of the model. Detailed comparisons between recent and previous results are presented.

  14. A method to quantify and visualize femoral head intraosseous arteries by micro-CT.

    PubMed

    Qiu, Xing; Shi, Xiaotian; Ouyang, Jun; Xu, Dachuan; Zhao, Dewei

    2016-08-01

    We describe a technique for perfusing a barium sulphate suspension into the intraosseous artery. Following the perfusion of abarium sulphate suspension into 14 fresh lower limbs of Chinese cadavers, micro-CT scanning was applied to digitize, quantify and visualize the intraosseous arteries in the human femoral heads. Then, the femoral heads were removed and subjected to micro-CT scanning. The data were imported into the amira and mimics programs to reconstruct and quantify the intraosseous arteries. The femoral head intraosseous artery lengths, areas, volumes, and femoral head bone volumes were quantified. The artery densities and artery ratios were calculated and analysed with independent-samples t-tests. The intraosseous vasculature volume renderings were displayed as screenshots and videos made with amira. Many intraosseous artery study technologies were compared. The barium sulphate suspension was milky white in colour. The perfusion of the barium sulphate suspension followed by micro-CT scanning provided a good representation of the intraosseous artery. The femoral head intraosseous artery lengths, areas and volumes, and the femoral head bone volumes were displayed as the X¯±S . No differences were observed between the left and right femoral head intraosseous arteries in terms of the artery densities or artery ratios. The volume renderings and 3-D orthogonal projections displayed the overall distributions of the intraosseous arteries. The videos clearly demonstrated the entry sites of the nutrition-carrying arteries, their courses and branches, and the intraosseous arterial anastomoses. Our technique is the simplest and least time-consuming method of producing accurate vascular three-dimensional reconstructions. The perfusion of a barium sulphate suspension into intraosseous arteries combined with micro-CT scanning can deliver high-resolution 3-D digitized data and images of intraosseous arteries. This technique does not require bone decalcification or bone

  15. Micro-computed tomography (CT) based assessment of dental regenerative therapy in the canine mandible model

    NASA Astrophysics Data System (ADS)

    Khobragade, P.; Jain, A.; Setlur Nagesh, S. V.; Andreana, S.; Dziak, R.; Sunkara, S. K.; Sunkara, S.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2015-03-01

    High-resolution 3D bone-tissue structure measurements may provide information critical to the understanding of the bone regeneration processes and to the bone strength assessment. Tissue engineering studies rely on such nondestructive measurements to monitor bone graft regeneration area. In this study, we measured bone yield, fractal dimension and trabecular thickness through micro-CT slices for different grafts and controls. Eight canines underwent surgery to remove a bone volume (defect) in the canine's jaw at a total of 44 different locations. We kept 11 defects empty for control and filled the remaining ones with three regenerative materials; NanoGen (NG), a FDA-approved material (n=11), a novel NanoCalcium Sulfate (NCS) material (n=11) and NCS alginate (NCS+alg) material (n=11). After a minimum of four and eight weeks, the canines were sacrificed and the jaw samples were extracted. We used a custombuilt micro-CT system to acquire the data volume and developed software to measure the bone yield, fractal dimension and trabecular thickness. The software used a segmentation algorithm based on histograms derived from volumes of interest indicated by the operator. Using bone yield and fractal dimension as indices we are able to differentiate between the control and regenerative material (p<0.005). Regenerative material NCS showed an average 63.15% bone yield improvement over the control sample, NCS+alg showed 55.55% and NanoGen showed 37.5%. The bone regeneration process and quality of bone were dependent upon the position of defect and time period of healing. This study presents one of the first quantitative comparisons using non-destructive Micro-CT analysis for bone regenerative material in a large animal with a critical defect model. Our results indicate that Micro-CT measurement could be used to monitor invivo bone regeneration studies for greater regenerative process understanding.

  16. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    PubMed Central

    Zhao, Jintao; Hu, Xiaodong; Zou, Jing; Hu, Xiaotang

    2015-01-01

    The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration. PMID:26371008

  17. A multi-resolution approach to retrospectively-gated cardiac micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Johnson, G. A.; Badea, C. T.

    2014-03-01

    In preclinical research, micro-CT is commonly used to provide anatomical information; however, there is significant interest in using this technology to obtain functional information in cardiac studies. The fastest acquisition in 4D cardiac micro-CT imaging is achieved via retrospective gating, resulting in irregular angular projections after binning the projections into phases of the cardiac cycle. Under these conditions, analytical reconstruction algorithms, such as filtered back projection, suffer from streaking artifacts. Here, we propose a novel, multi-resolution, iterative reconstruction algorithm inspired by robust principal component analysis which prevents the introduction of streaking artifacts, while attempting to recover the highest temporal resolution supported by the projection data. The algorithm achieves these results through a unique combination of the split Bregman method and joint bilateral filtration. We illustrate the algorithm's performance using a contrast-enhanced, 2D slice through the MOBY mouse phantom and realistic projection acquisition and reconstruction parameters. Our results indicate that the algorithm is robust to under sampling levels of only 34 projections per cardiac phase and, therefore, has high potential in reducing both acquisition times and radiation dose. Another potential advantage of the multi-resolution scheme is the natural division of the reconstruction problem into a large number of independent sub-problems which can be solved in parallel. In future work, we will investigate the performance of this algorithm with retrospectively-gated, cardiac micro-CT data.

  18. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  19. Micro-optical-mechanical system photoacoustic spectrometer

    DOEpatents

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  20. Bone vascularization and bone micro-architecture characterizations according to the μCT resolution

    NASA Astrophysics Data System (ADS)

    Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.

  1. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  2. Micro-CT Analysis of Radiation-Induced Osteopenia and Bone Hypovascularization in Rat.

    PubMed

    Michel, Guillaume; Blery, Pauline; Pilet, Paul; Guicheux, Jérôme; Weiss, Pierre; Malard, Olivier; Espitalier, Florent

    2015-07-01

    Treatment of carcinomas of the upper aerodigestive tract often requires external radiation therapy. However, radiation affects all the components of bone, with different degrees of sensitivity, and may produce severe side effects such as mandibular osteoradionecrosis (ORN). Intraosseous vascularization is thought to be decreased after irradiation, but its impact on total bone volume is still controversial. The aim of this study was to compare intraosseous vascularization, cortical bone thickness, and total bone volume in a rat model of ORN versus nonirradiated rats, using a micro-computed tomography (micro-CT) analysis after intracardiac injection of a contrast agent. The study was performed on 8-week-old Lewis 1A rats (n = 14). Eleven rats underwent external irradiation on the hind limbs by a single 80-Gy dose. Three rats did not receive irradiation and served as controls for statistical analysis. Eight weeks after the external irradiation, all the animals received a barium sulfate intracardiac injection under general anesthesia. All samples were analyzed with the micro-computed tomography system at a resolution of 5.5 μm. The images were later processed to create 3D reconstructions and study vascularization, bone volume, and cortical thickness. Data from irradiated and nonirradiated rats were compared using the Kruskal-Wallis test. No animal died after irradiation. Nineteen irradiated tibias and six nonirradiated tibias were included for micro-CT analysis. The vessel percentage was significantly lower in irradiated bones (p = 0.0001). The distance between the vessels, a marker of vascular destruction, was higher after irradiation (p = 0.001). The vessels were also more altered distally after irradiation (p = 0.028). Cortical thickness was severely decreased after irradiation, sometimes even reduced to zero. Both trabecular and cortical structures were destroyed after irradiation, with wide bone gaps. Finally, both total bone volume (p = 0.0001) and cortical

  3. Integrated optical interrogation of micro-structures

    DOEpatents

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  4. Hybrid micro-/nanogels for optical sensing and intracellular imaging

    PubMed Central

    Wu, Weitai; Zhou, Shuiqin

    2010-01-01

    Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications. PMID:22110866

  5. Characterization of operating parameters of an in vivo micro CT system

    NASA Astrophysics Data System (ADS)

    Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2016-03-01

    The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.

  6. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    PubMed Central

    2014-01-01

    Background Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. Methods The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Results Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. Conclusions This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications. PMID:24393444

  7. The Use of Micro-CT with Image Segmentation to Quantify Leakage in Dental Restorations

    PubMed Central

    Carrera, Carola A.; Lan, Caixia; Escobar-Sanabria, David; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective To develop a method for quantifying leakage in composite resin restorations after curing, using non-destructive X-ray micro-computed tomography (micro-CT) and image segmentation. Methods Class-I cavity preparations were made in 20 human third molars, which were divided into 2 groups. Group I was restored with Z100 and Group II with Filtek LS. Micro-CT scans were taken for both groups before and after they were submerged in silver nitrate solution (AgNO3 50%) to reveal any interfacial gap and leakage at the tooth restoration interface. Image segmentation was carried out by first performing image correlation to align the before- and after-treatment images and then by image subtraction to isolate the silver nitrate penetrant for precise volume calculation. Two-tailed Student’s t-test was used to analyze the results, with the level of significance set at p<0.05. Results All samples from Group I showed silver nitrate penetration with a mean volume of 1.3 ± 0.7 mm3. In Group II, only 2 out of the 10 restorations displayed infiltration along the interface, giving a mean volume of 0.3 ± 0.3 mm3. The difference between the two groups was statistically significant (p < 0.05). The infiltration showed non-uniform patterns within the interface. Significance We have developed a method to quantify the volume of leakage using non-destructive micro-CT, silver nitrate infiltration and image segmentation. Our results confirmed that substantial leakage could occur in composite restorations that have imperfections in the adhesive layer or interfacial debonding through polymerization shrinkage. For the restorative systems investigated in this study, this occurred mostly at the interface between the adhesive system and the tooth structure. PMID:25649496

  8. Micro-CT features of intermediate gunshot wounds covered by textiles.

    PubMed

    Giraudo, Chiara; Fais, Paolo; Pelletti, Guido; Viero, Alessia; Miotto, Diego; Boscolo-Berto, Rafael; Viel, Guido; Montisci, Massimo; Cecchetto, Giovanni; Ferrara, Santo Davide

    2016-09-01

    The analysis of gunshot residue (GSR) on the clothing and the underlying skin of the victim may play an important role in the reconstruction of the shooting incident. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of firearm wounds experimentally produced on human skin covered by textiles. Firing trials were performed on 60 sections of human calves enveloped by a single layer of fabric (cotton or jeans or leather or nylon) and 15 controls consisting of bare calves. Experimental firings were conducted in a ballistic laboratory at three different muzzle-to-target distances (5, 15, and 30 cm), using a .32 ACP pistol (Beretta Mod. 81) loaded with full-jacketed bullets coming from the same production lot (7.65 × 17 mm, Browning SR). The visual inspection revealed the classic pattern of GSR distribution on the fabrics and the skin of control samples, while only a dark ring around the entrance lesion was identified on the skin beneath the fabrics. Micro-CT analysis showed the presence of radiopaque material on all entrance wounds, with a statistically significant difference between cases and controls. No differences were found among specimens covered by fabrics, with regard to the firing distance and the type of clothing. No GSR-like deposits were detected in exit wounds. Our results suggest that micro-CT analysis may be a useful screening tool for differentiating entry from exit gunshot wounds when the covering textiles are contaminated, damaged, or missing. PMID:27325255

  9. Micro-CT features of intermediate gunshot wounds covered by textiles.

    PubMed

    Giraudo, Chiara; Fais, Paolo; Pelletti, Guido; Viero, Alessia; Miotto, Diego; Boscolo-Berto, Rafael; Viel, Guido; Montisci, Massimo; Cecchetto, Giovanni; Ferrara, Santo Davide

    2016-09-01

    The analysis of gunshot residue (GSR) on the clothing and the underlying skin of the victim may play an important role in the reconstruction of the shooting incident. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of firearm wounds experimentally produced on human skin covered by textiles. Firing trials were performed on 60 sections of human calves enveloped by a single layer of fabric (cotton or jeans or leather or nylon) and 15 controls consisting of bare calves. Experimental firings were conducted in a ballistic laboratory at three different muzzle-to-target distances (5, 15, and 30 cm), using a .32 ACP pistol (Beretta Mod. 81) loaded with full-jacketed bullets coming from the same production lot (7.65 × 17 mm, Browning SR). The visual inspection revealed the classic pattern of GSR distribution on the fabrics and the skin of control samples, while only a dark ring around the entrance lesion was identified on the skin beneath the fabrics. Micro-CT analysis showed the presence of radiopaque material on all entrance wounds, with a statistically significant difference between cases and controls. No differences were found among specimens covered by fabrics, with regard to the firing distance and the type of clothing. No GSR-like deposits were detected in exit wounds. Our results suggest that micro-CT analysis may be a useful screening tool for differentiating entry from exit gunshot wounds when the covering textiles are contaminated, damaged, or missing.

  10. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  11. Analysis of the optical force in the Micro Ring Resonator.

    PubMed

    Einat, Avigdor; Levy, Uriel

    2011-10-10

    We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect.

  12. Analysis of the optical force in the Micro Ring Resonator.

    PubMed

    Einat, Avigdor; Levy, Uriel

    2011-10-10

    We study the optical force in a micro ring resonator coupled to a bus waveguide, using the coupled mode theory and a numerical Finite Element Method. We show that the resonance enhancement of the force is diminished by the opposing contributions of the attractive and the repulsive forces related to the symmetric and the anti symmetric modes in the coupling region. We show that this limiting factor can be removed by adding asymmetry to the system, e.g. by modifying one of the waveguides. Furthermore, we study for the first time a combined system in which the micro ring resonator is coupled to a one dimensional photonic crystal waveguide. This modified geometry allows further enhancement of the optical force via the combination of optical resonances and slow light effect. PMID:21997050

  13. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  14. Whole-body imaging of a hypercholesterolemic female zebrafish by using synchrotron X-ray micro-CT.

    PubMed

    Seo, Eunseok; Lim, Jae-Hong; Seo, Seung Jun; Lee, Sang Joon

    2015-02-01

    Zebrafish has been used as a powerful model system in biological and biomedical studies studying development and diseases. Comparative, functional, and developmental studies on zebrafish morphology require precise visualization of 3D morphological structures. Few methods that can visualize whole-volume of zebrafish tissues are available because optical bio-imaging methods are limited by pigmentation and hard tissues. To overcome these limitations, the 3D microstructures of a hypercholesterolemic zebrafish model are visualized using synchrotron X-ray micro-computed tomography (SR-μCT). The model spatial resolution ranged from sub- to several microns. The microstructures of various zebrafish organs are observed by combining high-contrast staining (osmium tetroxide and uranyl acetate) and embedding a protocol to enhance the image contrast of soft tissues. Furthermore, blood vessels are identified using a barium sulfate injection technique. The internal organs and cells, such as liver, intestine, oocytes, and adipocytes, of a hypercholesterolemic zebrafish are compared with those of normal organs and cells. The SR-μCT is useful for understanding the pathogenesis of circulatory vascular diseases by detecting the modifications in the 3D morphological structures of the whole body of the zebrafish. This bio-imaging technique can be readily used to study other disease models.

  15. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  16. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  17. Estimating mineral changes in enamel formation by ashing/BSE and microCT.

    PubMed

    Schmitz, J E; Teepe, J D; Hu, Y; Smith, C E; Fajardo, R J; Chun, Y-H P

    2014-03-01

    Enamel formation produces the most highly mineralized tissue in the human body. The growth of enamel crystallites is assisted by enamel proteins and proteinases. As enamel formation progresses from secretory to maturation stages, the composition of the matrix with its mineral and non-mineral components dynamically changes in an inverse fashion. We hypothesized that appropriately calibrated micro-computed tomography (µCT) technology is suitable to estimate the mineral content (weight and/or density) and volume comparable in accuracy with that for directly weighed and sectioned enamel. Different sets of mouse mandibular incisors of C57BL/6 mice were used for dissections and µCT reconstructions. Calibration phantoms corresponding to the range of enamel mineral densities were used. Secretory-stage enamel contained little mineral and was consequently too poor in contrast for enamel volumes to be accurately estimated by µCT. Maturation-stage enamel, however, showed remarkable correspondence for total mineral content per volume where comparisons were possible between and among the different analytical techniques used. The main advantages of the µCT approach are that it is non-destructive, time-efficient, and can monitor changes in mineral content of the most mature enamel, which is too physically hard to dissect away from the tooth.

  18. Automated assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Eberhardt, Ramona; Scheller, Torsten; Tittelbach, Guenther; Guyenot, Volker

    1998-01-01

    In the field of microsystem technologies one future trend is recognized. Manufacturing microsystems monolithically is becoming less reasonable and practicable with increasing applications and complexity. Assembly processes will be needed for the majority of microsystems due to difficulties arising in manufacturing complex structure out of one piece, the need for components to be manufactured by different processes, or simply to connect the microsystem with the macroscopic environment. Additionally, high production output at competitive costs is attainable only by replacing manual assembly with new automatic handling, positioning and joining technologies. To assist in development of microassembly processes, techniques from macroassembly technology may be transferred. Especially in microoptics existing know-how from macroscopic lens-assemblies might be transferred. The microsystem presented a microoptical beam forming system consisting of one SELFOC- and two GRIN- microlenses joined by adhesive bonding, fixed in a protection-mount, which serves additionally as a coupling unit of a multimode fiber, and finally adjusted to a laser diode at a defined distance according to an optical design. Besides complications due to the sensitive optical surfaces and the small and varying geometries of the system components, there is the additional requirement of high accuracies, of 0.1 to 2 micrometers and down to 1 arcsec, needed to realize the optical function of the microsystem. The assembly system, based on a six-axis-precision robot accurate to less than 1 micrometers , consists of a modular designed tool changing system, specially-adapted, self- adjusting grippers, several sensors to monitor positioning, dosage devices to dispense measured quantities of adhesive, in the range of nanoliters, and a specially designed assembly platform to clamp microparts of different geometries.

  19. Yeast metabolic state identification using micro-fiber optics spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  20. Compressive sampling based interior reconstruction for dynamic carbon nanotube micro-CT.

    PubMed

    Yu, Hengyong; Cao, Guohua; Burk, Laurel; Lee, Yueh; Lu, Jianping; Santago, Pete; Zhou, Otto; Wang, Ge

    2009-01-01

    In the computed tomography (CT) field, one recent invention is the so-called carbon nanotube (CNT) based field emission x-ray technology. On the other hand, compressive sampling (CS) based interior tomography is a new innovation. Combining the strengths of these two novel subjects, we apply the interior tomography technique to local mouse cardiac imaging using respiration and cardiac gating with a CNT based micro-CT scanner. The major features of our method are: (1) it does not need exact prior knowledge inside an ROI; and (2) two orthogonal scout projections are employed to regularize the reconstruction. Both numerical simulations and in vivo mouse studies are performed to demonstrate the feasibility of our methodology. PMID:19923686

  1. A Concept for Zero-Alignment Micro Optical Systems

    SciTech Connect

    DESCOUR, MICHAEL R.; KOLOLUOMA,TERHO; LEVEY,RAVIV; RANTALA,JUHA T.; SHUL,RANDY J.; WARREN,MIAL E.; WILLISON,CHRISTI LEE

    1999-09-16

    We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).

  2. Micro optical spatial and spectral elements (MOSSE)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Pradeep; Yilmaz, Yigit O.; Johnson, Eric G.

    2009-08-01

    Interference transmission filters that have a defect layer incorporated photonic crystal structure provide a narrow transmission notch within a wide stop band. The location and width of transmission notch can be tuned by changing the thickness of the defect layer. In this paper, we propose and implement interference filters with defect layers patterned with diffractive optical elements. The spectral transmission is a function of the local defect layer thickness while the spatial transmission follows contours of equal optical thickness. The novel devices have multiplexed spectral and spatial transmission characteristics. Alternating layers of silicon oxide (SiOx) and silicon nitride (SixNy) were grown onto a clean silicon substrate using plasma enhanced chemical vapor deposition (PECVD). A thick defect layer of SiOx was grown and the wafer was removed from the growth chamber. The wafer was then patterned with charge 2, 8-level vortex structures on a GCA 6300 g-line stepper tool. The devices were interrogated with a collimated beam from a tunable laser source that operates from 1520 nm to 1630 nm. The spectral transmission was measured by separately illuminating each level of diffractive element and the spatial transmission was imaged on to a CCD camera. Spectral transmission peaks whose location varies as a function of level height were obtained. The spatial transmission profiles consist of triangular zones with wavelength dependent orientation. The elements have potential applications in hyper spectral imaging, pupil filtering, and engineered illumination systems.

  3. Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization

    PubMed Central

    Clark, Darin; Badea, Alexandra; Liu, Yilin; Johnson, G. Allan; Badea, Cristian T.

    2013-01-01

    Micro-CT can play an important role in preclinical studies of cardiovascular disease because of its high spatial and temporal resolution. Quantitative analysis of 4D cardiac images requires segmentation of the cardiac chambers at each time point, an extremely time consuming process if done manually. To improve throughput this study proposes a pipeline for registration-based segmentation and functional analysis of 4D cardiac micro-CT data in the mouse. Following optimization and validation using simulations, the pipeline was applied to in vivo cardiac micro-CT data corresponding to 10 cardiac phases acquired in C57BL/6 mice (n = 5). After edge-preserving smoothing with a novel adaptation of 4D bilateral filtration, one phase within each cardiac sequence was manually segmented. Deformable registration was used to propagate these labels to all other cardiac phases for segmentation. The volumes of each cardiac chamber were calculated and used to derive stroke volume, ejection fraction, cardiac output, and cardiac index. Dice coefficients and volume accuracies were used to compare manual segmentations of two additional phases with their corresponding propagated labels. Both measures were, on average, >0.90 for the left ventricle and >0.80 for the myocardium, the right ventricle, and the right atrium, consistent with trends in inter- and intra-segmenter variability. Segmentation of the left atrium was less reliable. On average, the functional metrics of interest were underestimated by 6.76% or more due to systematic label propagation errors around atrioventricular valves; however, execution of the pipeline was 80% faster than performing analogous manual segmentation of each phase. PMID:22971564

  4. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed. PMID:10093033

  5. Ultrafast laser-based micro-CT system for small-animal imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Kieffer, Jean-Claude; Nees, John; Chen, Liming; Toth, R.; Hou, Bixue; Kincaid, Russell E., Jr.; Coman, Ioana L.; Lipson, Edward D.; Mourou, Gerard

    2004-05-01

    We investigated ultrafast laser-based x-ray (ULX) source as an attractive alternative to a microfocal x-ray tube used in micro-CT systems. The laser pulse duration was in the 30 fs-200 fs range, the repetition rate in the 10 Hz - 1 kHz range. A number of solid targets including Ge, Mo, Rh, Ag, Sn, Ba, La, Nd with matching filters was used. We optimized conditions for x-rays generation and measured: x-ray spectra, conversion efficiency (from laser light to x-rays), x-ray fluence, effective x-ray focal spot size and spatial resolution, contrast resolution and radiation dose. Good quality projection images of small animals in single-and dual-energy mode were obtained. ULX generates narrow x-ray spectra that consist mainly of characteristic lines that can be easily tailored (by changing laser beam target) to the imaging task, (e.g. to maximize contrast while minimizing radiation dose). X-ray fluence can exceed fluence produced by conventional microfocal tube with 10 μm focal-spot hence allowing for faster scans with very high spatial resolution. Changing the laser target, and thus matching the characteristic emission lines with the investigated animal's thickness and composition, can be done quickly and easily. Using narrow emission lines for imaging, instead of broad bremsstrahlung, offers superior dose utilization and limits beam-hardening effects. Employing two narrow emission lines-above and below the absorption edge of a contrast agent-in quick succession allows dual-energy-subtraction micro-CT for imaging with a contrast medium. Dual-energy-subtraction is not practical with a microfocal tube. Compact, robust, ultrafast lasers are commercially available, and their characteristics are rapidly improving. We plan to construct a prototype in vivo ultrafast laser-based micro-CT system.

  6. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  7. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    PubMed Central

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383

  8. A micro-computed tomography technique to study the quality of fibre optics embedded in composite materials.

    PubMed

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven.

  9. First 3D reconstruction of the rhizocephalan root system using MicroCT

    NASA Astrophysics Data System (ADS)

    Noever, Christoph; Keiler, Jonas; Glenner, Henrik

    2016-07-01

    Parasitic barnacles (Cirripedia: Rhizocephala) are highly specialized parasites of crustaceans. Instead of an alimentary tract for feeding they utilize a system of roots, which infiltrates the body of their hosts to absorb nutrients. Using X-ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction, we document the spatial organization of this root system, the interna, inside the intact host and also demonstrate its use for morphological examinations of the parasites reproductive part, the externa. This is the first 3D visualization of the unique root system of the Rhizocephala in situ, showing how it is related to the inner organs of the host. We investigated the interna from different parasitic barnacles of the family Peltogastridae, which are parasitic on anomuran crustaceans. Rhizocephalan parasites of pagurid hermit crabs and lithodid crabs were analysed in this study.

  10. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  11. Optically driven Archimedes micro-screws for micropump application.

    PubMed

    Lin, Chih-Lang; Vitrant, Guy; Bouriau, Michel; Casalegno, Roger; Baldeck, Patrice L

    2011-04-25

    Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven micropump action in a microfluidic channel is demonstrated with a non-optimized flow rate of 6 pL/min. The optofluidic properties of such type of Archimedes micro-screws are quantitatively described by the conservation of momentum that occurs when the laser photons are reflected on the helical micro-screw surface.

  12. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  13. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  14. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  15. Feature space optical coherence tomography based micro-angiography

    PubMed Central

    Zhang, Anqi; Wang, Ruikang K.

    2015-01-01

    Current optical coherence tomography (OCT) based micro-angiography is prone to noise that arises from static background. This work presents a novel feature space based optical micro-angiography (OMAG) method (fsOMAG) that can effectively differentiate flow signal from static background in the feature space. fsOMAG consists of two steps. In the first step a classification map is generated that provides criterion for classification in the second step to extract functional blood flow from experimental data set. The performance of fsOMAG is examined through phantom experiments and in-vivo human retinal imaging, and compared with the existing OMAG. The results indicate its potential for clinical applications. PMID:26137391

  16. Modeling and measurement of a micro-optic beam deflector

    NASA Technical Reports Server (NTRS)

    Milster, Tom D.; Wong, J. Nan

    1992-01-01

    The use is studied of a unity-magnification micro-optic beam deflector. The defelector consists of two arrays of positively powered lenslets. The lenslets on each array are arranged in a square grid. Design criteria are based on usefulness in optical data storage devices. The deflector is designed to operate over a + or - 1.6 range of deflection angles. Modeling results are compared with interferometric analysis of the wavefront from a single lenslet pair. The results indicate that the device is nearly diffraction limited, but there are substantial wavefront errors at the edges and corners of the lenslets.

  17. Micro-optical elements for optical wireless applications

    NASA Astrophysics Data System (ADS)

    Jin, Xian; Guerrero, Daniel; Klukas, Richard; Holzman, Jonathan F.

    2013-09-01

    Customized high-contact-angle microlenses are presented for optical wireless communication (OWC) and optical wireless location (OWL) applications. These microlenses are fabricated by way of an electro-dispensing technique to establish wide field-of-views (FOVs). Each microlens is formed from dispensed UV-curable polymer with pressurecontrol defining the microlens volume and a voltage on the metal needle tip defining the microlens shape (by way of electrowetting). UV curing is then applied. Microlenses with FOVs up to 90° are fabricated for high-density integration above a CMOS imaging sensor for wide-FOV operation in emerging OWC and OWL applications. Both theoretical raytracing analyses and experimental imaging results are presented with good agreement.

  18. Optical coherence tomography-based micro-particle image velocimetry.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Iftimia, Nicusor; Hammer, Daniel X; Nedyalkov, Ivaylo; Wosnik, Martin; Legner, Hartmut

    2013-11-15

    We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.

  19. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  20. Micro-optical imaging concepts for an intraocular vision aid

    NASA Astrophysics Data System (ADS)

    Eix, Ilos; Stork, Wilhelm; Muller-Glaser, Klaus D.

    2004-03-01

    About 10 million people around the world are suffering from blindness, where the path of light is disturbed due to an opaque, irreversible damaged, and inoperable cornea. Although vision is not given to this group of population, the retina is still intact. To date, there is no artificial implant which is able to replace the natural cornea. The work presented here describes an approach to build and implant a micro-optical and microelectronic system to be used as an intraocular vision aid. By overcoming the disturbed light path, it yields to an improved visual acuity of the patient. The main aspect of this bio-mimetic system is to transfer information representing the patient's field of view to the retina. An image of the field of view is captured in real-time outside the eye. After employing data processing, it is wireless transferred to the implanted part of the vision aid. From there, the information emerging from a micro display is imaged to the retina via a micro-optical system. The limited display resolution available inside the eye and the limited dimensions of the eyeball build the constrains of the optical system. A combination of a spatial light modulator together with an imaging lens system realizes intelligent spatial information distribution schemes onto the retina. This ensures a high outcome of visual acuity in the central region of the retina. Various retinal acuities can be realized. The employment of in-vivo adjustment mechanisms of the focal plane is discussed.

  1. Microstructure Characterization by Means of X-ray Micro-CT and Nanoindentation Measurements

    NASA Astrophysics Data System (ADS)

    Rajczakowska, Magdalena; Stefaniuk, Damian; Łydżba, Dariusz

    2015-03-01

    The aim of this paper is to present an example of the material microstructure characterization with the use of X-ray micro-CT and nanoindentation measurements. Firstly, the current scope of application of the aforementioned techniques is provided within different fields of science. Then, background of each of the methods is presented. The methodology of X-ray micro-CT is described with the emphasis on the Beer's law formulation. In addition, the basics of the nanoindentation technique are outlined and major formulas for the hardness and Young's modulus calculation are given. Finally, example results for a concrete sample are presented. The microstructure of the selected material is firstly characterized in terms of geometry using the results from the microtomograhy measurements, e.g., porosity and attenuation profiles, pore and aggregate size distribution, shape factor of pores, etc. Next, the results of the nanoindentation tests are provided, namely the hardness and Young's modulus versus the height of the sample. The influence of the number of tests and statistical analysis on the final results is underlined.

  2. Submicrometer structure of sea urchin tooth via remote synchrotron microCT imaging

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rack, Alexander

    2014-09-01

    Remote electron microscopy sessions are featured at a number of imaging centers. Similarly, many synchrotron light sources offer routine "mail-in" crystallography and powder diffractometry. At imaging beam lines, small numbers of (preliminary) scans are sometimes performed by staff, in the absence of the investigator, to demonstrate feasibility of the proposed study or as an industrial service. In the 1990s, one of us (SRS) participated in processing experiments where samples were couriered between Georgia Tech and SSRL and synchrotron microCT followed the spatial distribution of densification. Here, the authors report results of remote microCT experiments, i.e., where the investigator who knows the sample interacts via the web with the beam line scientist operating the apparatus and provides real-time feedback on where to scan based upon radiographs and on the most recent reconstructions. Local tomography imaged sea urchin teeth with 350 nm isotropic volume element (voxel) at beam line ID-19, ESRF. Sea urchin teeth form by growing parallel plates of high Mg calcite, each of which is 2-5 μm away from its neighbors, and very high Mg calcite columns later link the plates. The remote imaging session focused on tooth positions where the columns were just forming, and column shapes and dimensions were measured, something which has previously only been done with destructive sample preparation and scanning electron microscopy. The experiments were successful despite a separation of 4,400 miles and seven time zones.

  3. Bone Micro-CT Assessments in an Orchidectomised Rat Model Supplemented with Eurycoma longifolia

    PubMed Central

    Ramli, Rosmaliza; Khamis, Mohd Fadhli; Shuid, Ahmad Nazrun

    2012-01-01

    Recent studies suggested that Eurycoma longifolia, a herbal plant, may have the potential to treat osteoporosis in elderly male. This study aimed to determine the effects of Eurycoma longifolia supplementation on the trabecular bone microarchitecture of orchidectomised rats (androgen-deficient osteoporosis model). Forty-eight-aged (10–12 months old) Sprague Dawley rats were divided into six groups of sham-operated (SHAM), orchidectomised control (ORX), orchidectomised + 7 mg/rat testosterone enanthate (TEN) and orchidectomised + Eurycoma longifolia 30 mg/kg (EL30), orchidectomised + Eurycoma longifolia 60 mg/kg (EL60), orchidectomised + Eurycoma longifolia 90 mg/kg (EL90). Rats were euthanized following six weeks of treatment. The left femora were used to measure the trabecular bone microarchitecture using micro-CT. Orchidectomy significantly decreased connectivity density, trabecular bone volume, and trabecular number compared to the SHAM group. Testosterone replacement reversed all the orchidectomy-induced changes in the micro-CT parameters. EL at 30 and 60 mg/kg rat worsened the trabecular bone connectivity density and trabecular separation parameters of orchidectomised rats. EL at 90 mg/kg rat preserved the bone volume. High dose of EL (90 mg/kg) may have potential in preserving the bone microarchitecture of orchidectomised rats, but lower doses may further worsen the osteoporotic changes. PMID:22952556

  4. Robust separation of visceral and subcutaneous adipose tissues in micro-CT of mice.

    PubMed

    Shi, Bibo; Xie, Shuisheng; Berryman, Darlene; List, Ed; Liu, Jundong

    2013-01-01

    One of the common practices in obesity and diabetes studies is to measure the volumes and weights of various adipose tissues, among which, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) play critical yet different physiological roles in mouse aging. In this paper, a robust two-stage VAT/SAT separation framework for micro-CT mouse data is proposed. The first stage is to distinguish adipose from other tissue types, including background, soft tissue and bone, through a robust mixture of Gaussian model. Spatial recognition relevant to anatomical locations is carried out in the second step to determine whether the adipose is visceral or subcutaneous. We tackle this problem through a novel approach that relies on evolving the abdominal muscular wall to keep VAT/SAT separated. The VAT region of interest (ROI) is also automatically set up through an atlas based skeleton matching procedure. The results of our method are compared with VAT/SAT delineations by human experts, and a high classification accuracy is demonstrated on eight micro-CT mouse volume sets.

  5. Optimizing synchrotron microCT for high-throughput phenotyping of zebrafish

    NASA Astrophysics Data System (ADS)

    La Rivière, Patrick J.; Clark, Darin; Rojek, Alexandra; Vargas, Phillip; Xiao, Xianghui; DeCarlo, Francesco; Kindlmann, Gordon; Cheng, Keith

    2010-09-01

    We are creating a state-of-the-art 2D and 3D imaging atlas of zebrafish development. The atlas employs both 2D histology slides and 3D benchtop and synchrotron micro CT results. Through this atlas, we expect to document normal and abnormal organogenesis, to reveal new levels of structural detail, and to advance image informatics as a form of systems biology. The zebrafish has become a widely used model organism in biological and biomedical research for studies of vertebrate development and gene function. In this work, we will report on efforts to optimize synchrotron microCT imaging parameters for zebrafish at crucial developmental stages. The aim of these studies is to establish protocols for high-throughput phenotyping of normal, mutant and diseased zebrafish. We have developed staining and embedding protocols using different heavy metal stains (osmium tetroxide and uranyl acetate) and different embedding media (Embed 812 and glycol methacrylate). We have explored the use of edge subtraction and multi-energy techniques for contrast enhancement and we have examined the use of different sample-detector distances with unstained samples to explore and optimize phase-contrast enhancement effects. We will report principally on our efforts to optimize energy choice for single- and multi-energy studies as well as our efforts to optimize the degree of phase contrast enhancement.

  6. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  7. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  8. In Vivo MicroCT Monitoring of Osteomyelitis in a Rat Model

    PubMed Central

    Stadelmann, Vincent A.; Potapova, Inga; Camenisch, Karin; Nehrbass, Dirk; Richards, R. Geoff; Moriarty, T. Fintan

    2015-01-01

    Infection associated with orthopedic implants often results in bone loss and requires surgical removal of the implant. The aim of this study was to evaluate morphological changes of bone adjacent to a bacteria-colonized implant, with the aim of identifying temporal patterns that are characteristic of infection. In an in vivo study with rats, bone changes were assessed using in vivo microCT at 7 time points during a one-month postoperative period. The rats received either a sterile or Staphylococcus aureus-colonized polyetheretherketone screw in the tibia. Bone-implant contact, bone fraction, and bone changes (quiescent, resorbed, and new bone) were calculated from consecutive scans and validated against histomorphometry. The screw pullout strength was estimated from FE models and the results were validated against mechanical testing. In the sterile group, bone-implant contact, bone fraction, and mechanical fixation increased steadily until day 14 and then plateaued. In the infected group, they decreased rapidly. Bone formation was reduced while resorption was increased, with maximum effects observed within 6 days. In summary, the model presented is capable of evaluating the patterns of bone changes due to implant-related infections. The combined use of longitudinal in vivo microCT imaging and image-based finite element analysis provides characteristic signs of infection within 6 days. PMID:26064928

  9. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation

    SciTech Connect

    Jensen, Michael D.; Hrinivich, W. Thomas; Jung, Jongho A.; Holdsworth, David W.; Drangova, Maria; Chen, Jeff; Wong, Eugene

    2013-08-15

    Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 × 2 to 60 × 60 mm{sup 2} were measured using EBT2 film in the center of a 70 × 70 × 22 mm{sup 3} solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 × 50 × 50 mm{sup 3}. A calibrated Farmer ion chamber in a 70 × 70 × 20 mm{sup 3} solid water block was used to measure the output of three field sizes: 50 × 50, 40 × 40, and 30 × 30 mm{sup 2}. Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%–20%) from 3.9 to

  10. Prospective respiratory-gated micro-CT of free breathing rodents.

    PubMed

    Ford, Nancy L; Nikolov, Hristo N; Norley, Chris J D; Thornton, Michael M; Foster, Paula J; Drangova, Maria; Holdsworth, David W

    2005-09-01

    Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 microm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end

  11. Visualization of 3D osteon morphology by synchrotron radiation micro-CT

    PubMed Central

    Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G

    2011-01-01

    Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the

  12. Micro-CT applications to Seismic Monitoring of EOR and Carbon Sequestration Sites

    NASA Astrophysics Data System (ADS)

    Mur, A. J.; Crandall, D.; Purcell, C. C.; Bromhal, G. S.; Soong, Y.; Warzinski, R.; McClendon, B.; Harbert, W.

    2011-12-01

    In order to monitor a CO2 injection site with reflection seismic and VSP surveying, the dynamic rock matrix must be thoroughly understood. We present our results and approach to upscale micro-scale rock matrix properties to reservoir scale and seismic frequency ranges based on theoretical rock wave propagation models and show the richness of useful data produced by micro computed tomography (CT). We have acquired and processed CT images of limestone, sandstone and synthetic samples to gain understanding of 3-D pore orientation, pore volume distribution and pore surface area geometry from 1.25 to 4 micrometer-per-pixel resolution. By comparing CT scans from before and after timed CO2 exposures(Figure 1 shows dissolution along high aspect ratio crack in limestone sample), rock density and pore volume changes relative to time are quantified. In a 19% porosity limestone sample, our analysis identifies and describes over twelve thousand pores in a 26 cubic millimeter volume at a resolution of 3.92 micron/pixel. We produce a digital rock mesh with which we simulate fluid flow in the matrix. As opposed to large scale plume predictions, this small scale flow model helps predict how CO2 will be distributed in a zone that is under a constant flux of CO2. By observing available reactive surface area of the porosity and mass change over a series of time increments, we chemically model limestone-CO2 interactions to predict how, over time, a carbonate reservoir will change due to storage of CO2. This porosity and density change model is applied to a larger-scale reservoir model that detects the presence of CO2 density signatures using AVO (amplitude variation with offset) and VSP (vertical seismic profile) techniques. This application produces theoretical seismic volumes of uncompromised future reservoirs that can be compared to repeat surveys for leak detection.

  13. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  14. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  15. Enamel pearls in permanent dentition: case report and micro-CT evaluation

    PubMed Central

    Versiani, MA; Cristescu, RC; Pécora, JD; de Sousa-Neto, MD

    2013-01-01

    Objectives: To investigate the frequency, position, number and morphology of enamel pearls (EPs) using micro-CTCT) and to report a case of an EP mimicking an endodontic–periodontic lesion. Methods: Cone beam CT (CBCT) was performed in a patient to evaluate a radio-opaque nodule observed on the left maxillary first molar during the radiographic examination. Additionally, 23 EPs were evaluated regarding frequency, position, number and morphology by means of µCT. The results were statistically compared using the Student’s t-test for independent samples. Results: 1 pearl was presented in 13 specimens, while 5 specimens presented 2 pearls. The most frequent location of the EPs was the furcation between the disto-buccal and the palatal roots of the maxillary molars. Overall, the mean major diameter, volume and surface area were 1.98 ± 0.85 mm, 1.76 ± 1.36 mm3 and 11.40 ± 7.59 mm2, respectively, with no statistical difference between maxillary second and third molars (p > 0.05). In the case report, CBCT revealed an EP between the disto-buccal and the palatal roots of the maxillary first left molar associated with advanced localized periodontitis. The tooth was referred for extraction. Conclusions: EPs, located generally in the furcation area, were observed in 0.74% of the sample. The majority was an enamel–dentin pearl type and no difference was found in maxillary second and third molars regarding diameter, volume and surface area of the pearls. In this report, the EP mimicked an endodontic–periodontic lesion and was a secondary aetiological factor in the periodontal breakdown. PMID:23520396

  16. Enamel and dentin mineralization in familial hypophosphatemic rickets: a micro-CT study

    PubMed Central

    Costa, F W G; Soares, E C S; Williams, J R; Fonteles, C S R

    2015-01-01

    Objectives: The aim of the present study was to analyse the mineralization pattern of enamel and dentin in patients affected by X-linked hypophosphatemic rickets (XLHR) using micro-CTCT), and to associate enamel and dentin mineralization in primary and permanent teeth with tooth position, gender and the presence/absence of this disease. Methods: 19 teeth were collected from 5 individuals from the same family, 1 non-affected by XLHR and 4 affected by XLHR. Gender, age, tooth position (anterior/posterior) and tooth type (deciduous/permanent) were recorded for each patient. Following collection, teeth were placed in 0.1% thymol solution until µCT scan. Projection images were reconstructed and analysed. A plot profile describing the greyscale distance relationship in µCT images was achieved through a line bisecting each tooth in a region with the presence of enamel and dentin. The enamel and dentin mineralization densities were measured and compared. Univariate ANOVA and post hoc Tukey tests were used for all comparisons. Results: Teeth of all affected patients presented dentin with a different mineralization pattern compared with the teeth of healthy patients with dentin defects observed next to the pulp chambers. Highly significant differences were found for gray values between anterior and posterior teeth (p < 0.05), affected and non-affected (p < 0.05), as well as when position and disease status were considered (p < 0.05). Conclusions: In conclusion, the mineralization patterns of dentin differed when comparing teeth from patients with and without FHR, mainly next to pulp chambers where areas with porosity and consequently lower mineral density and dentin defects were found. PMID:25651274

  17. Optical microsystems with microchip lasers and micro-optics

    NASA Astrophysics Data System (ADS)

    Fulbert, Laurent R.; Molva, Engin; Marty, Jeannine; Thony, Philippe; Rabarot, Marc; Ferrand, Bernard

    1999-03-01

    The microchip laser is the most compact and the simplest diode pumped solid state laser, with a typical dimension of 0.5 mm3. In spite of the extreme simplicity of this concept which was described in sixties, the first devices have been realized much later in eighties, in different laboratories in the world. The main advantage of the microchip laser is its ability to be fabricated with collective fabrication processes, using techniques such as currently used in microelectronics, allowing a low cost mass production with a good reproducibility and reliability. The microchip lasers are very simple to use without any optical alignment and any maintenance. They foretell a true technical revolution in the domain of solid state lasers which should be opened to high volume and low cost markets. They have many different industrial applications in large markets such as: automotive, laser marking and material processing, environmental and medical applications, public works, telecommunications, etc.

  18. Design and fabrication of space variant micro optical elements

    NASA Astrophysics Data System (ADS)

    Srinivasan, Pradeep

    A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles

  19. Micro-CT imaging: Developing criteria for examining fetal skeletons in regulatory developmental toxicology studies - A workshop report.

    PubMed

    Solomon, Howard M; Makris, Susan L; Alsaid, Hasan; Bermudez, Oscar; Beyer, Bruce K; Chen, Antong; Chen, Connie L; Chen, Zhou; Chmielewski, Gary; DeLise, Anthony M; de Schaepdrijver, Luc; Dogdas, Belma; French, Julian; Harrouk, Wafa; Helfgott, Jonathan; Henkelman, R Mark; Hesterman, Jacob; Hew, Kok-Wah; Hoberman, Alan; Lo, Cecilia W; McDougal, Andrew; Minck, Daniel R; Scott, Lelia; Stewart, Jane; Sutherland, Vicki; Tatiparthi, Arun K; Winkelmann, Christopher T; Wise, L David; Wood, Sandra L; Ying, Xiaoyou

    2016-06-01

    During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology. PMID:26930635

  20. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  1. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  2. Meso-/micro-optical system interface coupling solutions.

    SciTech Connect

    Armendariz, Marcelino G.; Kemme, Shanalyn A.; Boye, Robert R.

    2005-10-01

    Optoelectronic microsystems are more and more prevalent as researchers seek to increase transmission bandwidths, implement electrical isolation, enhance security, or take advantage of sensitive optical sensing methods. Board level photonic integration techniques continue to improve, but photonic microsystems and fiber interfaces remain problematic, especially upon size reduction. Optical fiber is unmatched as a transmission medium for distances ranging from tens of centimeters to kilometers. The difficulty with using optical fiber is the small size of the core (approximately 9 {micro}m for the core of single mode telecommunications fiber) and the tight requirement on spot size and input numerical aperture (NA). Coupling to devices such as vertical cavity emitting lasers (VCSELs) and photodetectors presents further difficulties since these elements work in a plane orthogonal to the electronics board and typically require additional optics. This leads to the need for a packaging solution that can incorporate dissimilar materials while maintaining the tight alignment tolerances required by the optics. Over the course of this LDRD project, we have examined the capabilities of components such as VCSELs and photodetectors for high-speed operation and investigated the alignment tolerances required by the optical system. A solder reflow process has been developed to help fulfill these packaging requirements and the results of that work are presented here.

  3. Image-Guided Radiotherapy Using a Modified Industrial Micro-CT for Preclinical Applications

    PubMed Central

    Felix, Manuela C.; Fleckenstein, Jens; Kirschner, Stefanie; Hartmann, Linda; Wenz, Frederik; Brockmann, Marc A.

    2015-01-01

    Purpose/Objective Although radiotherapy is a key component of cancer treatment, its implementation into pre-clinical in vivo models with relatively small target volumes is frequently omitted either due to technical complexity or expected side effects hampering long-term observational studies. We here demonstrate how an affordable industrial micro-CT can be converted into a small animal IGRT device at very low costs. We also demonstrate the proof of principle for the case of partial brain irradiation of mice carrying orthotopic glioblastoma implants. Methods/Materials A commercially available micro-CT originally designed for non-destructive material analysis was used. It consists of a CNC manipulator, a transmission X-ray tube (10–160 kV) and a flat-panel detector, which was used together with custom-made steel collimators (1–5 mm aperture size). For radiation field characterization, an ionization chamber, water-equivalent slab phantoms and radiochromic films were used. A treatment planning tool was implemented using a C++ application. For proof of principle, NOD/SCID/γc−/− mice were orthotopically implanted with U87MG high-grade glioma cells and irradiated using the novel setup. Results The overall symmetry of the radiation field at 150 kV was 1.04±0.02%. The flatness was 4.99±0.63% and the penumbra widths were between 0.14 mm and 0.51 mm. The full width at half maximum (FWHM) ranged from 1.97 to 9.99 mm depending on the collimator aperture size. The dose depth curve along the central axis followed a typical shape of keV photons. Dose rates measured were 10.7 mGy/s in 1 mm and 7.6 mGy/s in 5 mm depth (5 mm collimator aperture size). Treatment of mice with a single dose of 10 Gy was tolerated well and resulted in central tumor necrosis consistent with therapeutic efficacy. Conclusion A conventional industrial micro-CT can be easily modified to allow effective small animal IGRT even of critical target volumes such as the brain. PMID:25993010

  4. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    SciTech Connect

    Lau, A; Ahmad, S; Chen, Y; Ren, L; Liu, H; Yang, K

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.

  5. Synchrotron-Based Micro-CT Imaging of the Human Lung Acinus

    SciTech Connect

    Litzlbauer, H.; Korbel, K; Kline, T; Jorgensen, S; Eaker, D; Bohle, R; Ritman, E; Langheinrich, A

    2010-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, N = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4 {micro}m){sup 3} voxel size. The lung functional unit (acinus, N = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intra-acinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 {+-} 29.2 mm{sup 3} (range, 92.5-171.3 mm{sup 3}) and the mean acinar surface was calculated with 1012 {+-} 26 cm{sup 2}. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 {+-} 0.04 mm to 0.34 {+-} 0.06 mm (P < 0.001) and remains constant after the seventh generation (P < 0.5). The length of each generation ranges between 0.52 and 0.93 mm and did not show significant differences between the second and eleventh generation. The branching angle between daughter branches varies between 113-degree and 134-degree without significant differences between the generations (P < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT.

  6. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone.

    PubMed

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  7. Percolating length scales from topological persistence analysis of micro-CT images of porous materials

    NASA Astrophysics Data System (ADS)

    Robins, Vanessa; Saadatfar, Mohammad; Delgado-Friedrichs, Olaf; Sheppard, Adrian P.

    2016-01-01

    Topological persistence is a powerful and general technique for characterizing the geometry and topology of data. Its theoretical foundations are over 15 years old and efficient computational algorithms are now available for the analysis of large digital images. We explain here how quantities derived from topological persistence relate to other measurements on porous materials such as grain and pore-size distributions, connectivity numbers, and the critical radius of a percolating sphere. The connections between percolation and topological persistence are explored in detail using data obtained from micro-CT images of spherical bead packings, unconsolidated sand packing, a variety of sandstones, and a limestone. We demonstrate how persistence information can be used to estimate the percolating sphere radius and to characterize the connectivity of the percolating cluster.

  8. Micro-optical designs for angular confinement in solar cells

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Feuermann, Daniel; Mashaal, Heylal

    2015-01-01

    We identify and evaluate a variety of efficient and feasible micro-optics for confining the radiative emission of solar cells. The key criteria used for assessing viable designs are (1) high optical efficiency for both the transmission of impinging solar beam radiation and the external recycling of isotropic cell luminescent emission; (2) liberal optical tolerance; (3) compactness and (4) being amenable to fabrication from existing materials and manufacturing processes. Both imaging and nonimaging candidate designs are presented, and their superiority to previous proposals is quantified. The strategy of angular confinement for boosting cell open-circuit voltage-thereby enhancing conversion efficiency-is limited to cells where radiative recombination is the dominant carrier recombination pathway. Optical systems that restrict the angular range for emission of cell luminescence must, by reciprocity, commensurately restrict the angular range for the collection of solar radiation. This, in turn, mandates the introduction of concentrators, but not for the objective of delivering concentrated flux onto the cell. Rather, the optical system must project an acceptably uniform spatial distribution of solar flux onto the cell surface at a nominal averaged irradiance of 1 sun.

  9. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  10. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues. PMID:24437605

  11. Contrast agent comparison for three-dimensional micro-CT angiography: A cadaveric study.

    PubMed

    Kingston, Mitchell J; Perriman, Diana M; Neeman, Teresa; Smith, Paul N; Webb, Alexandra L

    2016-07-01

    Barium sulfate and lead oxide contrast media are frequently used for cadaver-based angiography studies. These contrast media have not previously been compared to determine which is optimal for the visualisation and measurement of blood vessels. In this study, the lower limb vessels of 16 embalmed Wistar rats, and four sets of cannulae of known diameter, were injected with one of three different contrast agents (barium sulfate and resin, barium sulfate and gelatin, and lead oxide combined with milk powder). All were then scanned using micro-computed tomography (CT) angiography and 3-D reconstructions generated. The number of branching generations of the rat lower limb vessels were counted and compared between the contrast agents using ANOVA. The diameter of the contrast-filled cannulae, were measured and used to calculate the accuracy of the measurements by comparing the bias and variance of the estimates. Intra- and inter-observer reliability were calculated using intra-class correlation coefficients. There was no significant difference (mean difference [MD] 0.05; MD 95% confidence interval [CI] -0.83 to 0.93) between the number of branching generations for barium sulfate-resin and lead oxide-milk powder. Barium sulfate-resin demonstrated less bias and less variance of the estimates (MD 0.03; standard deviation [SD] 1.96 mm) compared to lead oxide-milk powder (MD 0.11; SD 1.96 mm) for measurements of contrast-filled cannulae scanned at high resolution. Barium sulfate-resin proved to be more accurate than lead oxide-milk powder for high resolution micro-CT scans and is preferred due to its non-toxicity. This technique could be applied to any embalmed specimen model. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27075920

  12. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.

    PubMed

    Renghini, Chiara; Komlev, Vladimir; Fiori, Fabrizio; Verné, Enrica; Baino, Francesco; Vitale-Brovarone, Chiara

    2009-05-01

    The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phenomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3-D) radiographic imaging technique, able to achieve a spatial resolution close to 1 microm(3). The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorption according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris-HCl.

  13. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  14. Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments

    SciTech Connect

    Amenitsch, H.; Rappolt, M.; Sartori, B.; Laggner, P.; Cojoc, D.; Ferrari, E.; Garbin, V.; Di Fabrizio, E.; Burghammer, M.; Riekel, Ch.

    2007-01-19

    In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.

  15. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  16. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    SciTech Connect

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe; Lu, Hongbin

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  17. Active investigation of material damage under load using micro-CT

    NASA Astrophysics Data System (ADS)

    Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.

    2015-03-01

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.

  18. Scanning electron microscope and micro-CT evaluation of cranial sutures in health and disease.

    PubMed

    Anderson, Peter J; Netherway, David J; David, David J; Self, Peter

    2006-09-01

    Current knowledge of suture biology has been ascertained as a result of morphological studies of normal cranial sutures (and rarely those undergoing craniosynostosis). These were initially undertaken often using histological investigations, or more recently using CT scans, as investigative tools, but have often used animal models. However, recent technological advances have provided the potential to refine our understanding of the ultrastructure by the use of new advanced scanning technology, which offers the possibility of more detailed resolution. Our aim was to undertake detailed scans of normal, fusing and fused sutures from patients with craniosynosotosis affecting different sutures, to study the detailed structure at different stages of the fusion process using a modern micro-CT scanner and a microanalytical scanning electron microscope. We wished to include in our study all the human sutures because previous studies have mostly been undertaken using the sagittal suture. Ten sutures from seven patients have revealed a complex ultra-structural arrangement. The different patterns of bone ridging seen on the ectocranial and endocranial surfaces of the fused sagittal suture were not repeated on closer inspection of either fused coronal or lambdoid sutures. Elemental analysis confirmed that the amount of calcium increased and the amount of carbon decreased as sampled areas moved away from the suture margin. We conclude that scanning allowed detailed assessment and revealed the complex arrangement of the structure of the human cranial sutures and those undergoing the process of craniosynostosis, with some differences in final structure depending on the affected suture.

  19. Micro-optical elements functioning in non-visible spectral range

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Andy Z. Z.; Bergström, Andreas; Huo, Vicky Z. J.; Almqvist, Susanne; Kaplan, Wlodek; Andersson, Jan Y.

    2010-05-01

    Nowadays novel micro-fabrication and wafer-based manufacturing approach allows realizing micro-optics in a way scientists have dreamt for generations, in particular, utilizing nano-imprint lithography as fabrication tooling enables greatly accelerating the micro-optics technology to its frontier. In this report, we present wafer-scale fabrication of various types of micro-optical elements based on photoresist, benzocyclobutene, photocurable imprint resist, and semiconductor materials by using thermal reflow, reactive ion etching, and imprint techniques. Especially, several concave or convex 3-dimensional micro-optical structures shaped by imprint method are detailed. These micro-optical elements can be monolithically or hybrid integrated onto optoelectronics devices, such as photodetectors and emitters as optical beam focuser, collimator, filter, or anti-reflectance elements. As application examples, polymer microlenses were integrated directly on the top of UV dual functional devices and quantum dot long wavelength infrared photodetectors, respectively.

  20. Contributed Review: Optical micro- and nanofiber pulling rig

    NASA Astrophysics Data System (ADS)

    Ward, J. M.; Maimaiti, A.; Le, Vu H.; Chormaic, S. Nic

    2014-11-01

    We review the method of producing adiabatic optical micro- and nanofibers using a hydrogen/oxygen flame brushing technique. The flame is scanned along the fiber, which is being simultaneously stretched by two translation stages. The tapered fiber fabrication is reproducible and yields highly adiabatic tapers with either exponential or linear profiles. Details regarding the setup of the flame brushing rig and the various parameters used are presented. Information available from the literature is compiled and further details that are necessary to have a functioning pulling rig are included. This should enable the reader to fabricate various taper profiles, while achieving adiabatic transmission of ˜99% for fundamental mode propagation. Using this rig, transmissions ranging from 85% to 95% for higher order modes in an optical nanofiber have been obtained.

  1. Contributed review: optical micro- and nanofiber pulling rig.

    PubMed

    Ward, J M; Maimaiti, A; Le, Vu H; Chormaic, S Nic

    2014-11-01

    We review the method of producing adiabatic optical micro- and nanofibers using a hydrogen/oxygen flame brushing technique. The flame is scanned along the fiber, which is being simultaneously stretched by two translation stages. The tapered fiber fabrication is reproducible and yields highly adiabatic tapers with either exponential or linear profiles. Details regarding the setup of the flame brushing rig and the various parameters used are presented. Information available from the literature is compiled and further details that are necessary to have a functioning pulling rig are included. This should enable the reader to fabricate various taper profiles, while achieving adiabatic transmission of ∼99% for fundamental mode propagation. Using this rig, transmissions ranging from 85% to 95% for higher order modes in an optical nanofiber have been obtained. PMID:25430090

  2. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    SciTech Connect

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  3. Synchrotron-based Micro-CT Imaging of the Human Lung Acinus

    PubMed Central

    Litzlbauer, Horst Detlef; Korbel, Kathrin; Kline, Timothy L.; Jorgensen, Steven M.; Eaker, Diane R.; Bohle, Rainer M.; Ritman, Erik L.; Langheinrich, Alexander C.

    2012-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact 3-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, n = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4μm)3 voxel size. The lung functional unit (acinus, n = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intraacinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 ± 29.2 mm3 (range 92.5 – 171.3 mm3) and the mean acinar surface was calculated with 1012 ± 26 cm2. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 ± 0.04 mm to 0.34 ± 0.06 mm (p < 0.001) and remains constant after the 7th generation (p < 0.5). The length of each generation ranges between 0.52 – 0.93 mm and did not show significant differences between the second and 11th generation. The branching angle between daughter branches varies between 113–134° without significant differences between the generations (p < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT. PMID:20687188

  4. Micro-CT Imaging of Rat Bone and Lumber Vertebra using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Takao; Yuasa, Tetsyua; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.

    2009-03-01

    Micro-tomographic imaging with a spatial resolution on the micrometer scale offers owes a high potential to perform certain types of measurements that were not feasible with other techniques or conventional laboratory methods. The synchrotron X-ray source gives substantial advantages because of its high brilliance and continuous X-ray spectrum. Based on this, visualized the microstructure of rat bone and lumber vertebra was visualized using 20, 25 and 30 keV synchrotron X-rays. We utilized the data which was acquired at different energies for multi-model imaging and to estimate the Ca/P ratio. Up to now there has been no research carried out using these images for the estimation of the calcium content, with synchrotron X-rays. The results are based on the analysis of images and gray values obtained at different energies. We introduce this new method in order to measure the calcium content by means of high resolution synchrotron micro-CT.

  5. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.

    PubMed

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistic model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  6. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.

    PubMed

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistic model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful.

  7. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  8. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    PubMed Central

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  9. Taxonomy and nomenclature of some mainland SE-Asian Coeliccia species (Odonata, Platycnemididae) using micro-CT analysis.

    PubMed

    Steinhoff, Philip O M; Uhl, Gabriele

    2015-01-01

    The taxonomic status of some mainland Southeast Asian Coeliccia species is evaluated. The following synonymies are presented: C. acco is a junior synonym of C. pyriformis; C. tomokunii that of C. scutellum; C.onoi that of C. cyanomelas. C. scutellum hainanense is promoted to species level, C. hainanense. Redescriptions of the holotype of C. pyriformis and of the lectotypes of C. scutellum and C. hainanense are presented with illustrations. The male genital ligulae were examined by means of non-destructive X-ray micro-computed tomography (micro-CT) and subsequent 3D-reconstruction. The advantage of virtual types generated by micro-CT analysis, particularly for the examination of internal structures, is discussed. PMID:26701563

  10. Laser figuring for the generation of analog micro-optics and kineform surfaces

    NASA Technical Reports Server (NTRS)

    Gratrix, Edward J.

    1993-01-01

    To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.

  11. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  12. Optical Levitation of Micro-Scale Particles in Air

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Weiland, Kenneth E.

    2004-01-01

    Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.

  13. Raman microspectroscopy of optically trapped micro- and nanoobjects

    NASA Astrophysics Data System (ADS)

    Jonáš, Alexandr; Ježek, Jan; Šerý, Mojmír; Zemánek, Pavel

    2008-12-01

    We describe and characterize an experimental system for Raman microspectroscopy of micro- and nanoobjects optically trapped in aqueous suspensions with the use of a single-beam gradient optical trap (Raman tweezers). This system features two separate lasers providing light for the optical trapping and excitation of the Raman scattering spectra from the trapped specimen, respectively. Using independent laser beams for trapping and spectroscopy enables optimizing the parameters of both beams for their respective purposes. Moreover, it is possible to modulate the position of the trapped object relative to the Raman beam focus for maximizing the detected Raman signal and obtaining spatially resolved images of the trapped specimen. Using this experimental system, we have obtained Raman scattering spectra of individual optically confined micron and sub-micron sized polystyrene beads and baker's yeast cells. Sufficiently high signal-to-noise ratio of the spectra could be achieved using a few tens of milliwatts of the Raman beam power and detector integration times on the order of seconds.

  14. Optical Readout of Micro-Accelerometer Code Features

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Polosky, Marc A.; Shagam, Richard N.; Sullivan, Charles T.

    1999-07-08

    Micromachine accelerometers offer a way to enable critical functions only when a system encounters a particular acceleration environment. This paper describes the optical readout of a surface micromachine accelerometer containing a unique 24-bit code. The readout uses waveguide-based optics, which are implemented as a photonic integrated circuit (PIC). The PIC is flip-chip bonded over the micromachine, for a compact package. The shuttle moves 500 {micro}m during readout, and each code element is 17 {micro}m wide. The particular readout scheme makes use of backscattered radiation from etched features in the accelerometer shuttle. The features are etched to create corner reflectors that return radiation back toward the source for a one bit. For a zero bit, the shuttle is not etched, and the radiation scatters forward, away from the detector. This arrangement provides a large signal difference between a one and zero signal, since the zero signal returns virtually no signal to the detector. It is thus superior to schemes that interrogate the code vertically, which have a limited contrast between a one and a zero. Experimental results are presented for mock shuttle features etched into a silicon substrate. To simulate the shuttle moving under a fixed PIC, a commercially available waveguide source was scanned over the mock code.

  15. Micro-optics for high-efficiency optical performance and simplified tracking for concentrated photovoltaics (CPV).

    SciTech Connect

    Sinclair, Michael B.; Filatov, Anton; Lentine, Anthony L.; Sweatt, William C.; Nielson, Gregory N.; Okandan, Murat; Jared, Bradley Howell

    2010-02-01

    Micro-optical 5mm lenses in 50mm sub-arrays illuminate arrays of photovoltaic cells with 49X concentration. Fine tracking over {+-}10{sup o} FOV in sub-array allows coarse tracking by meter-sized solar panels. Plastic prototype demonstrated for 400nm < {lambda} < 1600 nm. We have designed a solar collector that will be composed of 50-mm-diameter sub-arrays, each containing {approx}100 5-mm plastic micro-lenses. Each micro-lens illuminates a stack of about four 0.7mm PV cells that collect sunlight from 400nm to 1600 nm with a theoretical efficiency approaching 50%. Each sub-array has internal solar tracking and alignment over a {+-}10{sup o} field, so a large array of sub-arrays only needs to coarsely track the sun. The refractive lenses in the design are thin so the optical transmission can be >90% and the optics will weigh very little. There are other optical properties incorporated in this design that help the photovoltaic cells to operate very efficiently. We are building a pre-prototype system now, and will describe our progress at the conference.

  16. Assessment of optical CT as a future QA tool for synchrotron x-ray microbeam therapy

    NASA Astrophysics Data System (ADS)

    McErlean, Ciara M.; Bräuer-Krisch, Elke; Adamovics, John; Doran, Simon J.

    2016-01-01

    Synchrotron microbeam radiation therapy (MRT) is an advanced form of radiotherapy for which it is extremely difficult to provide adequate quality assurance. This may delay or limit its clinical uptake, particularly in the paediatric patient populations for whom it could be especially suitable. This study investigates the extent to which new developments in 3D dosimetry using optical computed tomography (CT) can visualise MRT dose distributions, and assesses what further developments are necessary before fully quantitative 3D measurements can be achieved. Two experiments are reported. In the first cylindrical samples of the radiochromic polymer PRESAGE® were irradiated with different complex MRT geometries including multiport treatments of collimated ‘pencil’ beams, interlaced microplanar arrays and a multiport treatment using an anthropomorphic head phantom. Samples were scanned using transmission optical CT. In the second experiment, optical CT measurements of the biologically important peak-to-valley dose ratio (PVDR) were compared with expected values from Monte Carlo simulations. The depth-of-field (DOF) of the optical CT system was characterised using a knife-edge method and the possibility of spatial resolution improvement through deconvolution of a measured point spread function (PSF) was investigated. 3D datasets from the first experiment revealed excellent visualisation of the 50 μm beams and various discrepancies from the planned delivery dose were found. The optical CT PVDR measurements were found to be consistently 30% of the expected Monte Carlo values and deconvolution of the microbeam profiles was found to lead to increased noise. The reason for the underestimation of the PVDR by optical CT was attributed to lack of spatial resolution, supported by the results of the DOF characterisation. Solutions are suggested for the outstanding challenges and the data are shown already to be useful in identifying potential treatment anomalies.

  17. Three-Dimensional Quantification of Calcium Salt-Composite Resorption (CSC) In Vitro by Micro-computed Tomography (Micro-CT)

    NASA Astrophysics Data System (ADS)

    Winkler, T.; Dai, X. Y.; Mielke, G.; Vogt, S.; Buechner, H.; Schantz, J. T.; Harder, Y.; Machens, H. G.; Morlock, M. M.; Schilling, A. F.

    2014-04-01

    The commonly applied cell-based, two-dimensional (2D) in vitro resorption assays for biomaterials are limited in a variety of cases, including high initial roughness of material surface, uncontrollable solubilization (or resorption) of the entire material surface, or complex three-dimensional (3D) structure of the bioactive material itself. All these make the accurate assessment and successful selection of the optimal bone substitute material difficult. In vivo, micro-computed tomography (micro-CT) has been widely applied for the analysis of bone physiology and pathology, as well as for the 3D analysis of scaffolds for bone tissue engineering. In this study, we show that micro-CT can also be applied for the in vitro analysis of osteoclast-mediated resorption of biomaterials. For our experiments, we chose a calcium salt-composite (composite of calcium sulphate (CSC), calcium carbonate, glycerin-1,2,3-tripalmiate), which evades common 2D in vitro resorption analysis as a result of its high surface roughness and material composition. Human osteoclasts were differentiated from precursor cells on the surface of the material for 28 days. Cells were analyzed for expression of tartrate-resistant acid phosphatase 5b (TRAP5b), multinuclearity, and size. Volumetric analysis of resorption was performed by micro-CT. Multinucleated osteoclasts developed on the surface of the material. TRAP5b expression of the cells on CSC was comparable with TRAP5b expression of cells cultivated on dentin for the first 3 weeks of culture. At day 28, TRAP5b expression, cell number, and size of the TRAP+ cells were reduced on the CSC when compared with cells on dentin. Volumetric anaylsis by micro-CT showed a strong cellular effect on resorption of CSC. We consider micro-CT to be a promising technique for 3D quantification of cell-based resorption that will allow the study of cellular resorption of materials in vitro, which were up to now confined to animal experimental analysis.

  18. Imagistic evaluation of direct dental restoration: en face OCT versus SEM and microCT

    NASA Astrophysics Data System (ADS)

    Negruţiu, Meda L.; Sinescu, Cosmin; Topala, Florin; Ionita, Ciprian; Marcauteanu, Corina; Petrescu, Emanuela L.; Podoleanu, Adrian G.

    2011-06-01

    There are several methods known which are used to assess the quality of direct dental restorations, but most of them are invasive. These lead to the destruction of the probes and often no conclusion could be drawn in respect to the existence of any microleakage in the investigated areas of interest. Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. Using an en-face version of OCT, we have recently demonstrated real time thorough evaluation of quality of dental fillings. The purpose of this in vitro study was to validate the en face OCT imagistic evaluation of direct dental restoration by using scanning electron microscopy (SEM) and microcomputer tomography (μCT). Teeth after several treatment methods are imaged in order to detect material defects and to asses the marginal adaptation at the dental hard tissue walls. SEM investigations evidenced the nonlinear aspect of the interface between the filling material and the buccal and lingual walls in some samples. The results obtained by μCT revealed also some material defects inside the fillings and at the interfaces with the rootcanal walls. The advantages of the OCT method consist in non-invasiveness and high resolution. En face OCT investigations permit to visualize a more complex stratificated structure at the interface filling material/dental hard tissue and in the apical region.

  19. Rotational micro-CT using a clinical C-arm angiography gantry

    SciTech Connect

    Patel, V.; Hoffmann, K. R.; Ionita, C. N.; Keleshis, C.; Bednarek, D. R.; Rudin, S.

    2008-10-15

    Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp/mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp/mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 {mu}m pixel, resolution >10 lp/mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 {mu}m pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 {mu}m diameter) are approximately 192{+-}21 and 313{+-}38 {mu}m for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA

  20. Applications of Non-Imaging Micro-Optic Systems

    NASA Astrophysics Data System (ADS)

    Baker, Katherine Anne

    While imaging optics necessarily transmit a clear image of an object, non-imaging optics manipulate light in many different ways. Two important applications are illumination and concentration. In this thesis, I cover an application in each of these areas involving small-scale optics. Extremely low birth weight infants typically require intubation, but existing laryngoscopes for viewing the airway are not suited to this population. Small commercial cameras can fit within the required geometry, but need high illumination with low heating. Repurposing the mechanical structure of the laryngoscope as a waveguide for an LED source meets both these requirements. Concentrator photovoltaic systems accept sunlight over a large aperture and focus it to a proportionally small photovoltaic cell. This kind of configuration allows the cost of expensive but highly efficient multijunction cells to be amortized over a large area module, resulting in cost-effective, high efficiency systems. A prior design from our lab uses a lenslet array and mirrored micro-prisms to concentrate sunlight within a glass waveguide. This enables high efficiency concentration with a compact form factor compatible with mass fabrication and eliminating problems associated with discrete PV cells. I first adapt the basic planar concentrator design for specific applications. One-dimensional polar tracking is an attractive design space, and either passive optical tracking or mechanical micro-tracking can be used to adapt the concentrator for this framework. The concentrator can also be used in solar thermal rather than photovoltaic applications with the addition of an output coupler. I also address a completely different approach to concentrator tracking. This non-imaging system is nonlinear, implementing a reactive cladding layer to enable the system to self-track the sun. I present design studies to quantify the requirements of such a material, then present a candidate materials system to meet these

  1. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  2. Micro particle launcher/cleaner based on optical trapping technology.

    PubMed

    Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-04-01

    Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  3. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  4. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    NASA Astrophysics Data System (ADS)

    Ni, Y. C.; Jan, M. L.; Chen, K. W.; Cheng, Y. D.; Chuang, K. S.; Fu, Y. K.

    2006-12-01

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET ® R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of "cupping" in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  5. HECTOR: A 240kV micro-CT setup optimized for research

    NASA Astrophysics Data System (ADS)

    Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc

    2013-10-01

    X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.

  6. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a ~9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that

  7. Self-calibration of a cone-beam micro-CT system

    SciTech Connect

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  8. A Preliminary Study on Sinus Fungus Ball with MicroCT and X-Ray Fluorescence Technique

    PubMed Central

    Jiang, Zidong; Zhang, Kai; Huang, Wanxia; Yuan, Qingxi

    2016-01-01

    Background Sinus fungus ball, an accumulation of fungal dense concretions, is a common disease in practice, and might cause fatal complications or lead to death once converted into invasive type. Early preoperative diagnosis of this disease can lead to appropriate treatment for patients and prevent multiple surgical procedures. Up to now, the diagnostic criteria of sinus fungus ball have been defined and computed tomography (CT) scan was considered as a valuable preoperative diagnostic tool. However, the sensitivity of clinical CT is only about 62%. Thus, investigating the factors which influence sensitivity is necessary for clinical CT to be a more valuable preoperative diagnosis tool. Furthermore, CT scan usually presents micro-calcifications or spots with metallic density in sinus fungus ball. Previous literatures show that there are some metallic elements such as calcium and zinc in fungus ball, and they concluded that endodontic treatment has a strong correlation with the development of maxillary sinus fungus ball and zinc ion was an exogenous risk factor. But the pathogenesis of sinus fungus ball still remains unclear because fungus ball can also develop in other non-maxillary sinuses or the maxillary sinus without root canal treatment. Is zinc ion the endogenous factor? Study on this point might be also helpful for investigating the pathogenesis of sinus fungus ball. In this paper, we tried to investigate the factors which influence the sensitivity of clinical CT by imaging sinus fungus ball with microCT. The origin of zinc ion was also studied through elements test for different fungal ball samples using x-ray fluorescence technique. Methods Specimens including fungal ball material and sinus mucosa from patients confirmed by pathological findings were extracted after surgery. All fungal ball specimens came from sphenoid sinus, ethmoidal sinus and maxillary sinus with or without previous endodontic treatment respectively. All of them were imaged by microCT

  9. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  10. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness.

  11. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. PMID:26722834

  12. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    SciTech Connect

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  13. Feasibility of a dual wavelength laser optical CT scanner with in-air gel readout

    NASA Astrophysics Data System (ADS)

    Ramm, D.; Rutten, T. P.

    2015-01-01

    Net optical attenuation in optical CT scanning is usually determined by pre and postirradiation scans. Replacement of the pre-irradiation scan by a scan of different wavelength, acquired concurrently with the post irradiation scan is proposed. This would result in greater practicality of gel dosimetry and potentially improved image quality. This study indicates that the approach may be viable, however experimental investigation is required for analysis of the prospective benefits of removing inter-scan variations.

  14. A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system.

    PubMed

    Sengle, Gerhard; Tufa, Sara F; Sakai, Lynn Y; Zulliger, Martin A; Keene, Douglas R

    2013-04-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content.

  15. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT – a case study

    PubMed Central

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-01-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some “less important” structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations. PMID:26238773

  16. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT--a case study.

    PubMed

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-01-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some "less important" structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations. PMID:26238773

  17. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT - a case study

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Scholtz, Gerhard; Hou, Xianguang

    2015-08-01

    The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some “less important” structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations.

  18. GPU-based iterative reconstruction with total variation minimization for micro-CT

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Johnson, G. A.; Badea, C. T.

    2010-04-01

    Dynamic imaging with micro-CT often produces poorly-distributed sets of projections, and reconstructions of this data with filtered backprojection algorithms (FBP) may be affected by artifacts. Iterative reconstruction algorithms and total variation (TV) denoising are promising alternatives to FBP, but may require running times that are frustratingly long. This obstacle can be overcome by implementing reconstruction algorithms on graphics processing units (GPU). This paper presents an implementation of a family of iterative reconstruction algorithms with TV denoising on a GPU, and a series of tests to optimize and compare the ability of different algorithms to reduce artifacts. The mathematical and computational details of the implementation are explored. The performance, measured by the accuracy of the reconstruction versus the running time, is assessed in simulations with a virtual phantom and in an in vivo scan of a mouse. We conclude that the simultaneous algebraic reconstruction technique with TV minimization (SART-TV) is a time-effective reconstruction algorithm for producing reconstructions with fewer artifacts than FBP.

  19. Micro-CT analysis of myocardial blood supply in young and adult rats

    NASA Astrophysics Data System (ADS)

    Schaefer, Heather M.; Beighley, Patricia E.; Eaker, Diane R.; Vercnocke, Andrew J.; Ritman, Erik L.

    2009-02-01

    This study addresses whether the vasculature grows in proportion to the myocardium as the rat heart develops. The volume of myocardium and coronary vessels were estimated from micro-CT images of the hearts injected with Microfil(R) contrast agent. Young (n=5) and adult (n=5) hearts were scanned, resulting in 3D images comprised of 20μm on-a-side cubic voxels. The myocardial muscle and vessel lumen volumes were measured for all vessels 40 to 320μm in diameter by an erosion and dilation method applied to the binary images in which the contrast in the vessels were assigned "1" and all non-opacified entities were assigned "0". The average total muscle volume increases by 50%, 129.4 to 237.4mm3, from young to adult rats, while the luminal volume increases by 10%, 16.6 to 18.6mm3. The vessel volume is 12% of the total muscle volume in young and 8% in adults. For a given vessel volume, the muscle volume in the young is 82% of the muscle volume in adults. We conclude that as the heart matures, the myocardium grows more rapidly than the vasculature. This may result in greater angles of separation between vessel branches, and the increase in myocardial coronary volume. The ratio suggests either higher blood flow velocity or a lower metabolic rate in adults.

  20. Micro-CT evaluation of the marginal fit of CAD/CAM all ceramic crowns

    NASA Astrophysics Data System (ADS)

    Brenes, Christian

    Objectives: Evaluate the marginal fit of CAD/CAM all ceramic crowns made from lithium disilicate and zirconia using two different fabrication protocols (model and model-less). METHODS: Forty anterior all ceramic restorations (20 lithium disilicate, 20 zirconia) were fabricated using a CEREC Bluecam scanner. Two different fabrication methods were used: a full digital approach and a printed model. Completed crowns were cemented and marginal gap was evaluated using Micro-CT. Each specimen was analyzed in sagittal and trans-axial orientations, allowing a 360° evaluation of the vertical and horizontal fit. RESULTS: Vertical measurements in the lingual, distal and mesial views had and estimated marginal gap from 101.9 to 133.9 microns for E-max crowns and 126.4 to 165.4 microns for zirconia. No significant differences were found between model and model-less techniques. CONCLUSION: Lithium disilicate restorations exhibited a more accurate and consistent marginal adaptation when compared to zirconia crowns. No statistically significant differences were observed when comparing model or model-less approaches.

  1. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    NASA Astrophysics Data System (ADS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  2. Ultrafast micro-CT for in vivo small animal imaging and industrial applications

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A new, ultra-fast microCT instrument with scanning+reconstruction cycle under 50 seconds for full 3D-volume has been created. The scanner based on the scanning geometry with static object and rotation of source-camera pair(s), which allows using it for industrial applications as well as for low-dose in-vivo imaging of small laboratory animals where rotation of the object is not acceptable. Acquisition part contains two pairs of x-ray sources and cameras for data collection from complementary directions simultaneously. Reconstruction engine (cone-beam reconstruction by modified Feldkamp algotithm) includes 1, 2 or 4 dual Intel-Xeon computers working in parallel under control of the host PC through local network. The instrument specifications are following: voxel size is 48 or 96 um for corresponding 1024x1024x1024 or 512x512x512 reconstruction array; scanning time with parallel reconstruction is 50 seconds for 96um resolution. X-ray sources peak energy can be adjusted in the range of 20-65kV. Typical scanning dose is 0.4Gy. The scanner itself is a compact desktop instrument, which contains all x-ray parts and necessary shielding for safe operations in the normal laboratory environments.

  3. Active investigation of material damage under load using micro-CT

    SciTech Connect

    Navalgund, Megha Mishra, Debasish; Manoharan, V.; Zunjarrao, Suraj

    2015-03-31

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress.

  4. Development of a Beam Hardening Correction Method for a microCT Scanner Prototype

    SciTech Connect

    Kikushima, J.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.

    2010-12-07

    The radiographic projections acquired with a microCT were simulated and then corrected for beam hardening effects using the linearized signal to equivalent thickness (LSET) method. This procedure requires a calibration signal for each pixel obtained from a set of images with filters of increasing thickness. The projections are corrected by converting the signal to an equivalent thickness using interpolation over the calibration images. The method was validated using simulated projections of different phantoms. Two calibration sets were simulated using aluminum and water filters of thicknesses ranging from 0 to 5 mm and from 0 to 50 mm, respectively. A simulation of the phantoms' projections using a monoenergetic beam was also obtained to establish the relative intensity on the tomographic images when no cupping artifacts are present. Comparison between corrected and uncorrected tomographic images shows that the LSET method effectively corrects the cupping artifact. Streaking artifacts correction with the LSET method shows better results than with the traditional water correction method. Results are independent of the two calibration materials used.

  5. Development of a Beam Hardening Correction Method for a microCT Scanner Prototype

    NASA Astrophysics Data System (ADS)

    Kikushima, J.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.

    2010-12-01

    The radiographic projections acquired with a microCT were simulated and then corrected for beam hardening effects using the linearized signal to equivalent thickness (LSET) method. This procedure requires a calibration signal for each pixel obtained from a set of images with filters of increasing thickness. The projections are corrected by converting the signal to an equivalent thickness using interpolation over the calibration images. The method was validated using simulated projections of different phantoms. Two calibration sets were simulated using aluminum and water filters of thicknesses ranging from 0 to 5 mm and from 0 to 50 mm, respectively. A simulation of the phantoms' projections using a monoenergetic beam was also obtained to establish the relative intensity on the tomographic images when no cupping artifacts are present. Comparison between corrected and uncorrected tomographic images shows that the LSET method effectively corrects the cupping artifact. Streaking artifacts correction with the LSET method shows better results than with the traditional water correction method. Results are independent of the two calibration materials used.

  6. Fast X-ray micro-CT for real-time 4D observation

    NASA Astrophysics Data System (ADS)

    Takano, H.; Yoshida, K.; Tsuji, T.; Koyama, T.; Tsusaka, Y.; Kagoshima, Y.

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  7. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    NASA Astrophysics Data System (ADS)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p < 0.05). (5) BV/TV of both femur and tibia were clearly related to maximum load and Young’s modulus (r = 0.66-0.87, p < 0.05). Similarly, trabecular vBMD and BV/TV of the femur and tibia were clearly related to Young’s modulus (r = 0.73-0.89, p < 0.05). These indicated that BV/TV and Tb.Sp were more sensitive than other parameters for evaluating bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore

  8. Angioarchitectural Changes in Subacute Cerebral Venous Thrombosis. A Synchrotron-based Micro- and Nano-CT Study

    SciTech Connect

    E Stolz; M Yeniguen; M Kreisel; M Kampschulte; S Doenges; D Sedding; E Ritman; T Gerriets; A Langheinrich

    2011-12-31

    It is well known that recanalization of thrombosed cerebral sinuses occurs early but without marked influence on the long-term outcome and on final venous infarct volume on magnetic resonance imaging. To better understand the possible microvascular mechanisms behind these clinical observations, we evaluated the sequels of subacute superior sagittal sinus (SSS) thrombosis in rats using micro- and nano-CT imaging of the same specimen to provide large volume and high resolution CT image data respectively. SSS thrombosis was induced in 11 animals which were euthanized after 6 h (n = 4) or 6 weeks (n = 7). Eight sham-operated rats served as controls. After infusion of contrast into the vasculature of the brains, these were isolated and scanned using micro-, nano-, and synchrotron-based micro-CT ((8 {mu}m{sup 3}), (900 nm){sup 3}, and (1.9 {mu}m{sup 3}) voxel sizes). The cross-sectional area of the superior sagittal sinus, microvessels and cortical veins were quantified. Tissue sections were stained against VEGF antigen. Immunohistochemistry was confirmed using quantitative rtPCR. SSS thrombosis led to a congestion of the bridging veins after 6 h. After 6 weeks, a network of small vessels surrounding the occluded SSS was present with concurrent return towards the diameter of the draining bridging veins of controls. This microvascular network connected to cortical veins as demonstrated by nano- and synchrotron-based micro-CT. Also the volume fraction and number of cortical veins increased significantly. Immunohistochemistry in the region of the microsvascular network demonstrated a strong immunoreactivity against VEGF, confirmed by rtPCR. The sequel of subacute SSS thrombosis induced a network of microvessels ('venogenesis') draining the bridging veins. Also the volume fraction of cortical veins increased significantly.

  9. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  10. MEMS compatible illumination and imaging micro-optical systems

    NASA Astrophysics Data System (ADS)

    Bräuer, A.; Dannberg, P.; Duparré, J.; Höfer, B.; Schreiber, P.; Scholles, M.

    2007-01-01

    The development of new MOEMS demands for cooperation between researchers in micromechanics, optoelectronics and microoptics at a very early state. Additionally, microoptical technologies being compatible with structured silicon have to be developed. The microoptical technologies used for two silicon based microsystems are described in the paper. First, a very small scanning laser projector with a volume of less than 2 cm 3, which operates with a directly modulated lasers collimated with a microlens, is shown. The laser radiation illuminates a 2D-MEMS scanning mirror. The optical design is optimized for high resolution (VGA). Thermomechanical stability is realized by design and using a structured ceramics motherboard. Secondly, an ultrathin CMOS-camera having an insect inspired imaging system has been realized. It is the first experimental realization of an artificial compound eye. Micro-optical design principles and technology is used. The overall thickness of the imaging system is only 320 μm, the diagonal field of view is 21°, and the f-number is 2.6. The monolithic device consists of an UV-replicated microlens array upon a thin silica substrate with a pinhole array in a metal layer on the back side. The pitch of the pinholes differs from that of the lens array to provide individual viewing angle for each channel. The imaging chip is directly glued to a CMOS sensor with adapted pitch. The whole camera is less than 1mm thick. New packaging methods for these systems are under development.

  11. Micro-resonators coupled to atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Kitching, John

    2010-03-01

    Recently there has been a convergence of ideas between the fields of solid-state and atomic physics -- examples range from using atoms for quantum simulation of condensed-matter Hamiltonians to physically coupling atoms with solid-state devices such as micro-resonators. In this talk, we discuss an experimental proposal involving an array of cooled microcantilevers coupled to a sample of ultracold atoms trapped near a microfabricated surface [1]. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, we describe the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonators, along with a protocol for entangling two or more cantilevers on the atom chip using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this system for tests of quantum mechanics at macroscopic scales or quantum information processing will be discussed. [4pt] [1] A. Geraci and J. Kitching, Phys. Rev. A 80, 032317 (2009)

  12. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Bera, Bijoyendra; Mitra, Sushanta K; Vick, Douglas

    2011-07-01

    Berea sandstone is the building block for reservoirs containing precious hydrocarbon fuel. In this study, we comprehensively reveal the microstructure of Berea sandstone, which is often treated as a porous material with interconnected micro-pores of 2-5 μm. This has been possible due to the combined application of micro-computed tomography (CT) and focused ion beam (FIB)-scanning electron microscopy (SEM) on a Berea sample. While the use of micro-CT images are common for geological materials, the clubbing and comparison of tomography on Berea with state-of-the-art microstructure imaging techniques like FIB-SEM reveals some unforeseen features of Berea microstructure. In particular, for the first time FIB-SEM has been used to understand the micro-structure of reservoir rock material like Berea sandstone. By using these characterization tools, we are able to show that the micro-pores (less than 30 μm) are absent below the solid material matrix, and that it has small interconnected pores (30-40 μm) and large crater-like voids (100-250 μm) throughout the bulk material. Three-dimensional pore space reconstructions have been prepared from the CT images. Accordingly, characterization of Berea sandstone specimen is performed by calculation of pore-structure volumes and determination of porosity values.

  13. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  14. X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees.

    PubMed

    Cochard, H; Delzon, S; Badel, E

    2015-01-01

    As current methods for measuring xylem embolism in trees are indirect and prone to artefacts, there is an ongoing controversy over the capacity of trees to resist or recover from embolism. The debate will not end until we get direct visualization of the vessel content. Here, we propose desktop X-ray microtomography (micro-CT) as a reference direct technique to quantify xylem embolism and thus validate more widespread measurements based upon either hydraulic or acoustic methods. We used desktop micro-CT to measure embolism levels in dehydrated or centrifuged shoots of laurel - a long-vesseled species thought to display daily cycles of embolism formation and refilling. Our direct observations demonstrate that this Mediterranean species is highly resistant to embolism and is not vulnerable to drought-induced embolism in a normal range of xylem tensions. We therefore recommend that embolism studies in long-vesseled species should be validated by direct methods such as micro-CT to clear up any misunderstandings on their physiology.

  15. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  16. Three-dimensional analysis of mesiobuccal root canal of Japanese maxillary first molar using Micro-CT.

    PubMed

    Yamada, Masashi; Ide, Yoshinobu; Matsunaga, Satoru; Kato, Hiroshi; Nakagawa, Kan-Ichi

    2011-01-01

    The objective of this study was to three-dimensionally observe the morphological characteristics of mesiobuccal root canals of Japanese maxillary first molars using microcomputed tomography (Micro-CT) and classify root canal variations. This study used 90 maxillary first molars. Three-dimensional reconstruction was performed using data obtained by Micro-CT, and cross-sections of the root canals were observed. Moreover, the root canal morphology was classified by the configuration and root canal diameter, and was evaluated for occurrence using the classification by Weine et al. (1969) as a reference. Overall, single root canals were observed in 44.4%, incomplete separation root canals in 22.3%, and completely separate root canals (upper and lower separation root canals) in 33.3%. Mesiobuccal root canals often had intricate configurations, and accessory root canals (lateral canals and apical ramifications) were observed in most of the mesiobuccal root canals (76.7%), irrespective of whether there were ramifications of the main root canals. While there were no marked differences in the incidence of root canal ramifications between this study and earlier reports, the incidence of accessory root canals was higher in this study. This result may be explained by the far more superior visualization ability of Micro-CT than conventional methods, which allowed the detection of microscopic apical ramifications previously difficult to observe. PMID:21701120

  17. Evaluation of Mucociliary Clearance by Three Dimension Micro-CT-SPECT in Guinea Pig: Role of Bitter Taste Agonists

    PubMed Central

    Ortiz, Jose Luis; Ortiz, Amparo; Milara, Javier; Armengot, Miguel; Sanz, Celia; Compañ, Desamparados; Morcillo, Esteban; Cortijo, Julio

    2016-01-01

    Different image techniques have been used to analyze mucociliary clearance (MCC) in humans, but current small animal MCC analysis using in vivo imaging has not been well defined. Bitter taste receptor (T2R) agonists increase ciliary beat frequency (CBF) and cause bronchodilation but their effects in vivo are not well understood. This work analyzes in vivo nasal and bronchial MCC in guinea pig animals using three dimension (3D) micro-CT-SPECT images and evaluates the effect of T2R agonists. Intranasal macroaggreggates of albumin-Technetium 99 metastable (MAA-Tc99m) and lung nebulized Tc99m albumin nanocolloids were used to analyze the effect of T2R agonists on nasal and bronchial MCC respectively, using 3D micro-CT-SPECT in guinea pig. MAA-Tc99m showed a nasal mucociliary transport rate of 0.36 mm/min that was increased in presence of T2R agonist to 0.66 mm/min. Tc99m albumin nanocolloids were homogeneously distributed in the lung of guinea pig and cleared with time-dependence through the bronchi and trachea of guinea pig. T2R agonist increased bronchial MCC of Tc99m albumin nanocolloids. T2R agonists increased CBF in human nasal ciliated cells in vitro and induced bronchodilation in human bronchi ex vivo. In summary, T2R agonists increase MCC in vivo as assessed by 3D micro-CT-SPECT analysis. PMID:27723827

  18. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating

    PubMed Central

    Badea, Cristian T.; Schreibmann, Eduard; Fox, Tim

    2008-01-01

    Recent advances in murine cardiac studies with three-dimensional cone beam micro-computed tomography (CT) have used either prospective or retrospective gating technique. While prospective gating ensures the best image quality and the highest resolution, it involves longer sampling times and higher radiation dose. Sampling is faster and the radiation dose can be reduced with retrospective gating but the image quality is affected by the limited number of projections with an irregular angular distribution which complicate the reconstruction process, causing significant streaking artifacts. This work involves both prospective and retrospective gating in sampling. Deformable registration is used between a high quality image set acquired with prospective gating with the multiple data sets during the cardiac cycle obtained using retrospective gating. Tests were conducted on a four-dimensional (4D) cardiac mouse phantom and after optimization, the method was applied to in vivo cardiac micro-CT data. Results indicate that, by using our method, the sampling time can be reduced by a factor of 2.5 and the radiation dose can be reduced 35% compared to the prospective sampling while the image quality can be maintained. In conclusion, we proposed a novel solution to 4D cine cardiac micro-CT based on a combined prospective with retrospective gating in sampling and deformable registration post reconstruction that mixed the advantages of both strategies. PMID:18491508

  19. Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions

    PubMed Central

    Vandeghinste, Bert; Vandenberghe, Stefaan; Vanhove, Chris; Staelens, Steven; Van Holen, Roel

    2013-01-01

    The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The reconstructed images were then semi-automatically segmented. Segmentations of high- and low-dose protocols were compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with 1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative reconstruction is used. PMID:23840893

  20. Tooth fracture risk analysis based on a new finite element dental structure models using micro-CT data.

    PubMed

    Chen, G; Fan, W; Mishra, S; El-Atem, A; Schuetz, M A; Xiao, Y

    2012-10-01

    The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.

  1. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging.

    PubMed

    Kirschner, Stefanie; Felix, Manuela C; Hartmann, Linda; Bierbaum, Miriam; Maros, Máté E; Kerl, Hans U; Wenz, Frederik; Glatting, Gerhard; Kramer, Martin; Giordano, Frank A; Brockmann, Marc A

    2015-04-01

    Small animal imaging is of increasing relevance in biomedical research. Studies systematically assessing the diagnostic accuracy of contrast-enhanced in vivo micro-CT of orthotopic glioma xenografts in mice do not exist. NOD/SCID/γc(-/-) mice (n = 27) underwent intracerebral implantation of 2.5 × 10(6) GFP-Luciferase-transduced U87MG cells. Mice underwent bioluminescence imaging (BLI) to detect tumor growth and afterwards repeated contrast-enhanced (300 µl Iomeprol i.v.) micro-CT imaging (80 kV, 75 µAs, 360° rotation, 1,000 projections, 33 s scan time, resolution 40 × 40 × 53 µm, 0.5 Gy/scan). Presence of tumors, tumor diameter and tumor volume in micro-CT were rated by two independent readers. Results were compared with histological analyses. Six mice with tumors confirmed by micro-CT received fractionated irradiation (3 × 5 Gy every other day) using the micro-CT (5 mm pencil beam geometry). Repeated micro-CT scans were tolerated well. Tumor engraftment rate was 74 % (n = 20). In micro-CT, mean tumor volume was 30 ± 33 mm(3), and the smallest detectable tumor measured 360 × 620 µm. The inter-rater agreement (n = 51 micro-CT scans) for the item tumor yes/no was excellent (Spearman-Rho = 0.862, p < 0.001). Sensitivity and specificity of micro-CT were 0.95 and 0.71, respectively (PPV = 0.91, NPV = 0.83). BLI on day 21 after tumor implantation had a sensitivity and specificity of 0.90 and 1.0, respectively (PPV = 1.0, NPV = 0.5). Maximum tumor diameter and volume in micro-CT and histology correlated excellently (tumor diameter: 0.929, p < 0.001; tumor volume: 0.969, p < 0.001, n = 17). Irradiated animals showed a large central tumor necrosis. Longitudinal contrast enhanced micro-CT imaging of brain tumor growth in live mice is feasible at high sensitivity levels and with excellent inter-rater agreement and allows visualization of radiation effects.

  2. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  3. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  4. Delayed Contrast Enhancement Imaging of a Murine Model for Ischemia Reperfusion with Carbon Nanotube Micro-CT

    PubMed Central

    Burk, Laurel M.; Wang, Ko-Han; Wait, John Matthew; Kang, Eunice; Willis, Monte; Lu, Jianping; Zhou, Otto; Lee, Yueh Z.

    2015-01-01

    We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8–12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate

  5. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    SciTech Connect

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  6. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    PubMed

    Burk, Laurel M; Wang, Ko-Han; Wait, John Matthew; Kang, Eunice; Willis, Monte; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2015-01-01

    We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate

  7. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature.

    PubMed

    Ferrara, Maria Antonietta; Dardano, Principia; De Stefano, Luca; Rea, Ilaria; Coppola, Giuseppe; Rendina, Ivo; Congestri, Roberta; Antonucci, Alessandra; De Stefano, Mario; De Tommasi, Edoardo

    2014-01-01

    Some natural structures show three-dimensional morphologies on the micro- and nano-scale, characterized by levels of symmetry and complexity well far beyond those fabricated by best technologies available. This is the case of diatoms, unicellular microalgae, whose protoplasm is enclosed in a nanoporous microshell, made of hydrogenated amorphous silica, called frustule. We have studied the optical properties of Arachnoidiscus sp. single valves both in visible and ultraviolet range. We found photonic effects due to diffraction by ordered pattern of pores and slits, accordingly to an elaborated theoretical model. For the first time, we experimentally revealed spatial separation of focused light in different spots, which could be the basis of a micro-bio-spectrometer. Characterization of such intricate structures can be of great inspiration for photonic devices of next generation.

  8. Optical Properties of Diatom Nanostructured Biosilica in Arachnoidiscus sp: Micro-Optics from Mother Nature

    PubMed Central

    Ferrara, Maria Antonietta; Dardano, Principia; De Stefano, Luca; Rea, Ilaria; Coppola, Giuseppe; Rendina, Ivo; Congestri, Roberta; Antonucci, Alessandra; De Stefano, Mario; De Tommasi, Edoardo

    2014-01-01

    Some natural structures show three-dimensional morphologies on the micro- and nano- scale, characterized by levels of symmetry and complexity well far beyond those fabricated by best technologies available. This is the case of diatoms, unicellular microalgae, whose protoplasm is enclosed in a nanoporous microshell, made of hydrogenated amorphous silica, called frustule. We have studied the optical properties of Arachnoidiscus sp. single valves both in visible and ultraviolet range. We found photonic effects due to diffraction by ordered pattern of pores and slits, accordingly to an elaborated theoretical model. For the first time, we experimentally revealed spatial separation of focused light in different spots, which could be the basis of a micro-bio-spectrometer. Characterization of such intricate structures can be of great inspiration for photonic devices of next generation. PMID:25076045

  9. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  10. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  11. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  12. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  13. Synthesis and CT imaging of gold nanostructures with tunable optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Feng, Chao; Deng, Yida; Liu, Lei; Wu, Yating; Zhong, Cheng; Hu, Wenbin

    2014-09-01

    With a slight modification of typical seed-mediated synthesis of gold nanoparticles (GNPs), a wide range of aspect ratios for nanorods, spherical and dumbbell-like GNPs were synthesized. Their unique optical properties such as localized surface plasmon resonance related to the distinct morphologies were investigated. On the basis of the preparation condition for short gold nanorods (GNRs), by varying the amounts of ascorbic acid, the morphological transition from rod to dumbbell occurred and the growth mechanism was proposed. Compared with conventional iodine-based contrast agents, GNPs exhibited preferable x-ray CT imaging effect, and are good candidates for x-ray CT contrast agents in biomedical applications.

  14. Micro CT Analysis of Spine Architecture in a Mouse Model of Scoliosis

    PubMed Central

    Gao, Chan; Chen, Brian P.; Sullivan, Michael B.; Hui, Jasmine; Ouellet, Jean A.; Henderson, Janet E.; Saran, Neil

    2015-01-01

    Objective: Mice homozygous for targeted deletion of the gene encoding fibroblast growth factor receptor 3 (FGFR3−/−) develop kyphoscoliosis by 2 months of age. The first objective of this study was to use high resolution X-ray to characterize curve progression in vivo and micro CT to quantify spine architecture ex vivo in FGFR3−/− mice. The second objective was to determine if slow release of the bone anabolic peptide parathyroid hormone related protein (PTHrP-1-34) from a pellet placed adjacent to the thoracic spine could inhibit progressive kyphoscoliosis. Materials and methods: Pellets loaded with placebo or PTHrP-1-34 were implanted adjacent to the thoracic spine of 1-month-old FGFR3−/− mice obtained from in house breeding. X rays were captured at monthly intervals up to 4 months to quantify curve progression using the Cobb method. High resolution post-mortem scans of FGFR3−/− and FGFR3+/+ spines, from C5/6 to L4/5, were captured to evaluate the 3D structure, rotation, and micro-architecture of the affected vertebrae. Un-decalcified and decalcified histology were performed on the apical and adjacent vertebrae of FGFR3−/− spines, and the corresponding vertebrae from FGFR3+/+ spines. Results: The mean Cobb angle was significantly greater at all ages in FGFR3−/− mice compared with wild type mice and appeared to stabilize around skeletal maturity at 4 months. 3D reconstructions of the thoracic spine of 4-month-old FGFR3−/− mice treated with PTHrP-1-34 revealed correction of left/right asymmetry, vertebral rotation, and lateral displacement compared with mice treated with placebo. Histologic analysis of the apical vertebrae confirmed correction of the asymmetry in PTHrP-1-34 treated mice, in the absence of any change in bone volume, and a significant reduction in the wedging of intervertebral disks (IVD) seen in placebo treated mice. Conclusion: Local treatment of the thoracic spine of juvenile FGFR3−/− mice with a bone anabolic

  15. Developments in Pursuit of a Micro-Optic Gyroscope

    SciTech Connect

    VAWTER, GREGORY A.; ZUBRZYCKI, WALTER J.; PEAKE, GREGORY M.; ALFORD, CHARLES; HARGETT, TERRY; SALTERS, BETTY; HUDGENS, JAMES J.; KINNEY, RAGON D.

    2003-03-01

    necessary for a resonant micro-optical gyro. We individually designed an AlGaAs distributed Bragg reflector laser; GaAs phase modulator and GaAs photodiode detector. Furthermore, we have fabricated a breadboard gyroscope, which was used to confirm modeling and evaluate signal processing and control circuits.

  16. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with

  17. 3D image analysis of plants using electron tomography and micro-CT.

    PubMed

    Mineyuki, Yoshinobu

    2014-11-01

    help to promote MT bundling. Cell plate attachment to the parental wall leads to the fusion of the newly formed middle lamellae in the cell plate to the middle lamella of parental cell wall, and a three-way junction is created. Air space develops from the three-way junction. To determine 3D arrangement of cells and air spaces, we used X-ray micro-CT at the SPring-8 synchrotron radiation facility. Using micro-CT available in BL20XU (8 keV, 0.2 µm/pixel), we were able to elucidate ∼90% of the cortical cell outlines in the hypocotyl-radicle axis of arabidopsis seeds [4] and to analyze cell geometrical properties. As the strength of the system X-ray is too strong for seed survival, we used another beam line BL20B2 (10-15 keV, 2.4-2.7 µm/pixel) to examine air space development during seed imbibition [4,5]. Using this system, we were able to detect air space development at the early imbibition stages of seeds without causing damage during seed germination. AcknowledgmentThe author would like to thank Dr. Ichirou Karahara (Univ. Toyama), Dr. L. Andrew Staehelin (Univ. Colorado), Ms. Naoko Kajimura, Dr. Akio Takaoka (Osaka Univ.), Dr. Kazuyo Misaki, Dr. Shigenobu Yonemura (RIKEN CDB), Dr. Kazuyoshi Murata (NIP), Dr. Kentaro Uesugi, Dr. Akihisa Takeuchi, Dr. Yoshio Suzuki (JASRI), Dr. Miyuki Takeuchi, Dr. Daisuke Tamaoki, Dr. Daisuke Yamauchi, and Ms. Aki Fukuda (Univ. Hyogo) for their collaborations in the work presented here. PMID:25359847

  18. Design and fabrication issues in the development of monolithic micro-optical systems

    SciTech Connect

    Rajic, S.; Egert, C.M.

    1995-12-01

    The micro-sensor field is presently proliferating with various designs and approaches. The author have recently been involved with several mini/micro optical systems which have pointed out several trends in design and fabrication that are somewhat more important to these smaller optical systems. These include: material choices, alignment strategies, fabrication methods, and freedom and complexity of the optical designs. Their recent experience indicates that since mini/micro optical systems are likely to be produced in much higher number, that traditional fabrication methods could prove exorbitantly expensive. Deterministic fabrication methods employing inherently self-aligning features are well worth investigating. This is particularly true for monolithic systems that fall into that grey area between mini and truly micro optical systems. This forum will allow the examination of three such recent systems with respect to design and fabrication.

  19. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT.

    PubMed

    Wong, Michael D; Maezawa, Yoshiro; Lerch, Jason P; Henkelman, R Mark

    2014-06-01

    The International Mouse Phenotyping Consortium (IMPC) plans to phenotype 20,000 single-gene knockout mice to gain an insight into gene function. Approximately 30% of these knockout mouse lines will be embryonic or perinatal lethal. The IMPC has selected three-dimensional (3D) imaging to phenotype these mouse lines at relevant stages of embryonic development in an attempt to discover the cause of lethality using detailed anatomical information. Rate of throughput is paramount as IMPC production centers have been given the ambitious task of completing this phenotyping project by 2021. Sifting through the wealth of data within high-resolution 3D mouse embryo data sets by trained human experts is infeasible at this scale. Here, we present a phenotyping pipeline that identifies statistically significant anatomical differences in the knockout, in comparison with the wild type, through a computer-automated image registration algorithm. This phenotyping pipeline consists of three analyses (intensity, deformation, and atlas based) that can detect missing anatomical structures and differences in volume of whole organs as well as on the voxel level. This phenotyping pipeline was applied to micro-CT images of two perinatal lethal mouse lines: a hypomorphic mutation of the Tcf21 gene (Tcf21-hypo) and a knockout of the Satb2 gene. With the proposed pipeline we were able to identify the majority of morphological phenotypes previously published for both the Tcf21-hypo and Satb2 mutant mouse embryos in addition to novel phenotypes. This phenotyping pipeline is an unbiased, automated method that highlights only those structural abnormalities that survive statistical scrutiny and illustrates them in a straightforward fashion.

  20. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    PubMed Central

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an

  1. Micro-CT Study of Rhynchonkos stovalli (Lepospondyli, Recumbirostra), with Description of Two New Genera.

    PubMed

    Szostakiwskyj, Matt; Pardo, Jason D; Anderson, Jason S

    2015-01-01

    The Early Permian recumbirostran lepospondyl Rhynchonkos stovalli has been identified as a possible close relative of caecilians due to general similarities in skull shape as well as similar robustness of the braincase, a hypothesis that implies the polyphyly of extant lissamphibians. In order to better assess this phylogenetic hypothesis, we studied the morphology of the holotype and three specimens previously attributed to R. stovalli. With the use of micro-computed x-ray tomography (μCT) we are able to completely describe the external and internal cranial morphology of these specimens, dramatically revising our knowledge of R. stovalli and recognizing two new taxa, Aletrimyti gaskillae gen et sp. n. and Dvellacanus carrolli gen et sp. n. The braincases of R. stovalli, A. gaskillae, and D. carrolli are described in detail, demonstrating detailed braincase morphology and new information on the recumbirostran supraoccipital bone. All three taxa show fossorial adaptations in the braincase, sutural articulations of skull roof bones, and in the lower jaw, but variation in cranial morphology between these three taxa may reflect different modes of head-first burrowing behaviors and capabilities. We revisit the homology of the supraoccipital, median anterior bone, and temporal bone of recumbirostrans, and discuss implications of alternate interpretations of the homology of these elements. Finally, we evaluate the characteristics previously used to unite Rhynchonkos stovalli with caecilians in light of these new data. These proposed similarities are more ambiguous than previous descriptions suggest, and result from the composite nature of previous descriptions, ambiguities in external morphology, and functional convergence between recumbirostrans and caecilians for head-first burrowing.

  2. Micro-CT Study of Rhynchonkos stovalli (Lepospondyli, Recumbirostra), with Description of Two New Genera

    PubMed Central

    Szostakiwskyj, Matt; Pardo, Jason D.; Anderson, Jason S.

    2015-01-01

    The Early Permian recumbirostran lepospondyl Rhynchonkos stovalli has been identified as a possible close relative of caecilians due to general similarities in skull shape as well as similar robustness of the braincase, a hypothesis that implies the polyphyly of extant lissamphibians. In order to better assess this phylogenetic hypothesis, we studied the morphology of the holotype and three specimens previously attributed to R. stovalli. With the use of micro-computed x-ray tomography (μCT) we are able to completely describe the external and internal cranial morphology of these specimens, dramatically revising our knowledge of R. stovalli and recognizing two new taxa, Aletrimyti gaskillae gen et sp. n. and Dvellacanus carrolli gen et sp. n. The braincases of R. stovalli, A. gaskillae, and D. carrolli are described in detail, demonstrating detailed braincase morphology and new information on the recumbirostran supraoccipital bone. All three taxa show fossorial adaptations in the braincase, sutural articulations of skull roof bones, and in the lower jaw, but variation in cranial morphology between these three taxa may reflect different modes of head-first burrowing behaviors and capabilities. We revisit the homology of the supraoccipital, median anterior bone, and temporal bone of recumbirostrans, and discuss implications of alternate interpretations of the homology of these elements. Finally, we evaluate the characteristics previously used to unite Rhynchonkos stovalli with caecilians in light of these new data. These proposed similarities are more ambiguous than previous descriptions suggest, and result from the composite nature of previous descriptions, ambiguities in external morphology, and functional convergence between recumbirostrans and caecilians for head-first burrowing. PMID:26061187

  3. Micro CT imaging assessment for spatial distribution of magnetic nanoparticles in an ex vivo thrombolysis model

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Sheng; Chao, Tsi-Chian; Tu, Shu-Ju

    2012-03-01

    In recent nanotechnology development, iron-based magnetic nanoparticles (MNPs) have been used in several investigations on biomedical research for small animal experiments. Their important applications include targeted drug delivery for therapeutic purpose, contrast agent for magnetic resonance imaging, and hyperthermia treatment for tumors. These MNPs can be guided by an external magnetic field due to their physical characteristics of superparamagnetism. In a recent report, authors indicated that covalently bound recombinant tissue plasminogen activator (rtPA) to MNP (MNPrtPA) with preserved enzyme activity may be guided by a bar magnet and induce target thrombolysis in an embolic model in rats. Delivery of rtPA by binding the thrombolytic drug to MNPs will improve the possibility of the drug to be delivered under magnetic guidance and retained in a local targeted area in the circulation system. In this work, an ex vivo intravascular thrombolysis model was developed to study the impact of external magnetic field on the penetration of MNP-rtPA in the blood clot samples. The samples were then scanned by a micro CT system for quantification. Images of MNPs show strong contrast with their surrounding blood clot materials. The optimum drug loading was found when 0.5 mg/ml rtPA is conjugated with 10 mg SiO2-MNP where 98% drug was attached to the carrier with full retention of its thrombolytic activity. Effective thrombolysis with tPA bound to SiO2-MNP under magnetic guidance was demonstrated in our ex vivo model where substantial reduction in time for blood clot lysis was observed compared with control groups without magnetic field application.

  4. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging.

    PubMed

    Hogg, James C; McDonough, John E; Suzuki, Masaru

    2013-05-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV₁ that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD. PMID:23648907

  5. Pore-scale simulation of carbonate dissolution in micro-CT images

    NASA Astrophysics Data System (ADS)

    Pereira Nunes, J. P.; Blunt, M. J.; Bijeljic, B.

    2016-02-01

    We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime - Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.

  6. Micro-CT Study of Rhynchonkos stovalli (Lepospondyli, Recumbirostra), with Description of Two New Genera.

    PubMed

    Szostakiwskyj, Matt; Pardo, Jason D; Anderson, Jason S

    2015-01-01

    The Early Permian recumbirostran lepospondyl Rhynchonkos stovalli has been identified as a possible close relative of caecilians due to general similarities in skull shape as well as similar robustness of the braincase, a hypothesis that implies the polyphyly of extant lissamphibians. In order to better assess this phylogenetic hypothesis, we studied the morphology of the holotype and three specimens previously attributed to R. stovalli. With the use of micro-computed x-ray tomography (μCT) we are able to completely describe the external and internal cranial morphology of these specimens, dramatically revising our knowledge of R. stovalli and recognizing two new taxa, Aletrimyti gaskillae gen et sp. n. and Dvellacanus carrolli gen et sp. n. The braincases of R. stovalli, A. gaskillae, and D. carrolli are described in detail, demonstrating detailed braincase morphology and new information on the recumbirostran supraoccipital bone. All three taxa show fossorial adaptations in the braincase, sutural articulations of skull roof bones, and in the lower jaw, but variation in cranial morphology between these three taxa may reflect different modes of head-first burrowing behaviors and capabilities. We revisit the homology of the supraoccipital, median anterior bone, and temporal bone of recumbirostrans, and discuss implications of alternate interpretations of the homology of these elements. Finally, we evaluate the characteristics previously used to unite Rhynchonkos stovalli with caecilians in light of these new data. These proposed similarities are more ambiguous than previous descriptions suggest, and result from the composite nature of previous descriptions, ambiguities in external morphology, and functional convergence between recumbirostrans and caecilians for head-first burrowing. PMID:26061187

  7. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the body. Combining micro-CT with Digital Video Library systems, and linking this to Big Data, will change the way researchers, entomologist, and the public search and use anato...

  8. NEMO educational kit on micro-optics at the secondary school

    NASA Astrophysics Data System (ADS)

    Flores-Arias, M. T.; Bao-Varela, Carmen

    2014-07-01

    NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.

  9. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  10. MicroPET/CT assessment of FDG uptake in brain after long-term methylphenidate treatment in nonhuman primates.

    PubMed

    Zhang, X; Newport, G D; Callicott, R; Liu, S; Thompson, J; Berridge, M S; Apana, S M; Slikker, W; Wang, C; Paule, M G

    2016-01-01

    Methylphenidate (MPH) is a psychostimulant commonly used for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Since the long-term effects of this drug on the central nervous system (CNS) are not well understood, we conducted microPET/CT scans on young adult male rhesus monkeys (n=4/group) to gather information on brain metabolism using the uptake of [(18)F]Fluoro-2-deoxy-2-d-glucose (FDG) as a marker. Approximately two-year old, male rhesus monkeys were treated orally with MPH twice per day, five days per week (M-F) over a 6-year period. Subjects received MPH at either 2.5 or 12.5mg/kg/dose or vehicle (Prang). To minimize the acute effects of MPH on FDG uptake, microPET/CT scans were scheduled on Mondays before their first daily dosing of the week (approximately 68h since their last treatment). FDG (370±8.88MBq) was injected intravenously and 30min later microPET/CT images were obtained over 60min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum and cerebellum were converted into Standard Uptake Values (SUVs). Compared to the control group, the uptake of FDG in the cerebellum was significantly decreased in both the low and high dose groups. These preliminary data demonstrate that microPET imaging is capable of distinguishing differences in retention of FDG in the brains of NHPs treated chronically with MPH and suggests that this approach may provide a minimally invasive biomarker for exploring the effects of chronic MPH treatment on aspects of brain function. PMID:27307090

  11. Internal morphology of the nonsyndromic prematurely fused sagittal suture in the human skull--A preliminary micro-CT study.

    PubMed

    Nowaczewska, W; Ziółkowski, G; Dybała, B

    2015-10-01

    Although nonsyndromic craniosynostosis (NSC) of the sagittal suture is a well-known type of craniosynostosis, little is currently known about the internal morphology of this prematurely fused suture in modern humans. Recently, micro-computed tomography (micro-CT) has been applied as a new tool for the quantitative evaluation of cranial suture morphology. However, so far there are only a small number of reports concerning studies of the internal morphology of prematurely fused sagittal suture in humans using micro-CT. The primary aim of this study was to examine the internal morphology of a completely obliterated sagittal suture in NSC. Two modern human skulls were used in this study: a skull of a child (aged 10 ± 2.5 years) displaying NSC of the sagittal suture and a skull of an adult showing non-prematurely completely obliterated sagittal suture. Quantitative variables of the sagittal sutures were assessed using method proposed by the authors. Porosity, and relative thickness of three bone layers in two examined skulls (inner cortical, diploë and outer cortical) were analysed using micro-CT in three equal sections of the sagittal suture. In the case of the prematurely fused suture, there were statistically significant differences mainly in the mean values of the porosity, thickness and relative thickness of the diploë between the anterior part and the two other parts (central and posterior) of this suture. Significant differences were also observed in some of the analysed variables between the sections of the sagittal suture of the skull with NSC and the normal skull. PMID:26122169

  12. MicroPET/CT assessment of FDG uptake in brain after long-term methylphenidate treatment in nonhuman primates.

    PubMed

    Zhang, X; Newport, G D; Callicott, R; Liu, S; Thompson, J; Berridge, M S; Apana, S M; Slikker, W; Wang, C; Paule, M G

    2016-01-01

    Methylphenidate (MPH) is a psychostimulant commonly used for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Since the long-term effects of this drug on the central nervous system (CNS) are not well understood, we conducted microPET/CT scans on young adult male rhesus monkeys (n=4/group) to gather information on brain metabolism using the uptake of [(18)F]Fluoro-2-deoxy-2-d-glucose (FDG) as a marker. Approximately two-year old, male rhesus monkeys were treated orally with MPH twice per day, five days per week (M-F) over a 6-year period. Subjects received MPH at either 2.5 or 12.5mg/kg/dose or vehicle (Prang). To minimize the acute effects of MPH on FDG uptake, microPET/CT scans were scheduled on Mondays before their first daily dosing of the week (approximately 68h since their last treatment). FDG (370±8.88MBq) was injected intravenously and 30min later microPET/CT images were obtained over 60min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum and cerebellum were converted into Standard Uptake Values (SUVs). Compared to the control group, the uptake of FDG in the cerebellum was significantly decreased in both the low and high dose groups. These preliminary data demonstrate that microPET imaging is capable of distinguishing differences in retention of FDG in the brains of NHPs treated chronically with MPH and suggests that this approach may provide a minimally invasive biomarker for exploring the effects of chronic MPH treatment on aspects of brain function.

  13. Micro-optical coherence tomography of the mammalian cochlea.

    PubMed

    Iyer, Janani S; Batts, Shelley A; Chu, Kengyeh K; Sahin, Mehmet I; Leung, Hui Min; Tearney, Guillermo J; Stankovic, Konstantina M

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual's cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT's potential utility as an imaging tool in otology research. PMID:27633610

  14. New micro pore optics for x-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Zhang, Qindong; Xu, Zhao; Zhang, Zhengjun; Zhang, Zhiyong; Xu, Wei; Li, Jingwen; Wang, Jian

    2016-01-01

    Solutions of focusing pulsars X-ray is a key factor in improving the accuracy of pulsar navigation. Based on the focusing principle of lobster eye grazing incidence, new micro pore optics (MPO) for pulsar navigation which is glass-substrated X-ray MPO is researched and developed. The effective areas on MPO when single grazing incidence or double grazing incidence happens are analyzed in detail and the first generation of MPO is produced. By illumination of parallel X-ray beam with 1.49keV and 8.05keV on the MPO, it is found that the crossing focusing image can be clearly visible, and the arm of cross image of 1.49keV and 8.05keV are is respectively 30mm and 17mm in length. Moreover, the center intensity was significantly higher than the cross arm which is consistent with theoretical calculation. Besides, the angular resolution of first generation of MPO with 8.05keV parallel X-ray beam illuminated is 4.19'.

  15. Micro-optical coherence tomography of the mammalian cochlea

    PubMed Central

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  16. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue

    NASA Astrophysics Data System (ADS)

    Takehara, Hiroaki; Katsuragi, Yuji; Ohta, Yasumi; Motoyama, Mayumi; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Optical therapy and diagnostics using photoactivatable molecular tools are promising approaches in medical applications; however, a method for the delivery of light deep inside biological tissues remains a challenge. Here, we present a method of illumination and detection of light using implantable micro-optical semiconductor devices. Unlike in conventional transdermal light delivery methods using low-energy light (>620 nm or near-infrared light), in our method, high-energy light (470 nm) can also be used for illumination. Implanted submillimeter-sized light-emitting diodes were found to provide sufficient illumination (0.6-4.1 mW/cm2), and a complementary metal-oxide-semiconductor image sensor enabled the detection of fluorescence signals.

  17. In-vivo x-ray micro-imaging and micro-CT with the Medipix2 semiconductor detector at UniAndes

    NASA Astrophysics Data System (ADS)

    Caicedo, I.; Avila, C.; Gomez, B.; Bula, C.; Roa, C.; Sanabria, J.

    2012-02-01

    This poster contains the procedure to obtain micro-CTs and to image moving samples using the Medipix2 detector, with its corresponding results. The high granularity of the detector makes it suitable for micro-CT. We used commercial software (Octopus) to do the 3D reconstruction of the samples in the first place, and we worked on modifying free reconstruction software afterwards. Medipix has a very fast response ( ~ hundreds of nanoseconds) and high sensibility. These features allow obtaining nearly in-vivo high resolution (55m * 55m) images. We used an exposure time of 0.1 s for each frame, and the resulting images were animated. The High Energy Physics Group at UniAndes is a member of the Medipix3 collaboration. Its research activities are focused on developing set-ups for biomedical applications and particle tracking using the Medipix2 and Timepix detectors, and assessing the feasibility of the Medipix3 detector for future applications.

  18. Design of an optical system with large depth of field using in the micro-assembly

    NASA Astrophysics Data System (ADS)

    Li, Rong; Chang, Jun; Zhang, Zhi-jing; Ye, Xin; Zheng, Hai-jing

    2013-08-01

    Micro system currently is the mainstream of application and demand of the field of micro fabrication of civilian and national defense. Compared with the macro assembly, the requirements on location accuracy of the micro-assembly system are much higher. Usually the dimensions of the components of the micro-assembly are mostly between a few microns to several hundred microns. The general assembly precision requires for the sub-micron level. Micro system assembly is the bottleneck of micro fabrication currently. The optical stereo microscope used in the field of micro assembly technology can achieve high-resolution imaging, but the depth of field of the optical imaging system is too small. Thus it's not conducive to the three-dimensional observation process of the micro-assembly. This paper summarizes the development of micro system assembly at home and abroad firstly. Based on the study of the core features of the technology, a program is proposed which uses wave front coding technology to increase the depth of field of the optical imaging system. In the wave front coding technology, by combining traditional optical design with digital image processing creatively, the depth of field can be greatly increased, moreover, all defocus-related aberrations, such as spherical aberration, chromatic aberration, astigmatism, Ptzvel(field) curvature, distortion, and other defocus induced by the error of assembling and temperature change, can be corrected or minimized. In this paper, based on the study of theory, a set of optical microscopy imaging system is designed. This system is designed and optimized by optical design software CODE V and ZEMAX. At last, the imaging results of the traditional optical stereo microscope and the optical stereo microscope applied wave front coding technology are compared. The results show that: the method has a practical operability and the phase plate obtained by optimized has a good effect on improving the imaging quality and increasing the

  19. Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds.

    PubMed

    Fajardo, R J; Hernandez, E; O'Connor, P M

    2007-07-01

    Limb elements in birds have been characterized as exhibiting a reduction in trabecular bone, thinner cortices and decreased bending strength when pneumatized, yet it is unclear if these characteristics generalize to the axial skeleton. Thin section techniques, the traditional gold standard for bone structure studies, have most commonly been applied to the study of avian bone. This destructive technique, however, makes it subsequently impossible to use the same samples in experimental testing systems that allow researchers to correlate structure with the mechanical properties of the bone. Micro-computed tomography (microCT), a non-destructive X-ray imaging technique, can be used to assess the effect of pneumatization on vertebral cortical and trabecular bone through virtual extraction and structural quantification of each tissue type. We conducted a preliminary investigation of the application of microCT methods to the study of cortical and trabecular bone structure in a small sample of pneumatic and apneumatic thoracic vertebrae. The sample consisted of two similar-sized anatids, Aix sponsa (n = 7) and Oxyura jamaicensis (n = 5). Volumes of interest were created that contoured (outlined) the boundaries of the ventral cortical bone shell, the trabecular compartment and the whole centrum (cortical bone + trabecular bone), and allowed independent structural analysis of each volume of interest. Results indicated that bone volume fraction of the whole centrum was significantly higher in the apneumatic O. jamaicensis than in the pneumatized A. sponsa (A. sponsa = 36%, O. jamaicensis = 48%, P < 0.05). In contrast, trabecular bone volume fraction was similar between the two species. The ventral cortical bone shell was approximately 23% thinner (P < 0.05) in A. sponsa (0.133 mm) compared with apneumatic O. jamaicensis (0.172 mm). This case study demonstrates that microCT is a powerful non-destructive imaging technique that may be applied to the three-dimensional study of

  20. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  1. Fluorescence micro-optical sectioning tomography using acousto-optical deflector-based confocal scheme

    PubMed Central

    Qi, Xiaoli; Yang, Tao; Li, Longhui; Wang, Jiancun; Zeng, Shaoqun; Lv, Xiaohua

    2015-01-01

    Abstract. Fluorescent labeling has opened up the possibility of clarifying the complex distribution and circuit wiring of specific neural circuits for particular functions. To acquire the brain-wide fluorescently labeled neural wiring, we have previously developed the fluorescence micro-optical sectioning tomography imaging system. This employs simultaneous mechanical sectioning and confocal imaging of the slices, and is capable of acquiring the image dataset of a centimeter-sized whole-mouse brain at a voxel resolution of 1  μm. We analyze the key optical considerations for the use of an acousto-optical deflector (AOD) scanner-based confocal detection scheme in this system. As a result, the influence of confocal detection, the imaging site during sectioning, and AOD fast scan mode on signal-to-background noise ratio are described. It is shown that mechanical sectioning to separate the slice and optical sectioning by confocal detection should be combined to maximize background suppression in simultaneous fast scan imaging while sectioning system setup. PMID:26793740

  2. Volume of sealer in the apical region of teeth filled by different techniques: a micro-CT analysis.

    PubMed

    Araújo, Vanessa Lessa; Souza-Gabriel, Aline Evangelista; Cruz Filho, Antônio Miranda da; Pécora, Jesus Djalma; Silva, Ricardo Gariba

    2016-01-01

    The volume of sealer in the apical 1 mm of teeth filled using different techniques was evaluated by micro-commuted tomography (micro-CT). Sixty-four maxillary central incisors were prepared using NiTi rotary instruments. Teeth were randomly distributed into four groups according to root canal sealers (AH Plus, Endofill, Sealapex, and Sealer 26) and subdivided into two subgroups according to the filling techniques (active and passive lateral condensation; n = 8 each). Subsequently, teeth were examined using the 1174 SkyScan micro-CT device. Images were reconstructed using the NRecon software, and the sealer volume (mm3) in the apical region was analyzed using the two-way ANOVA and post-hoc Student-Newman-Keuls test (α = 0.05). The lowest volume of sealer was observed in teeth filled with Sealapex (0.100 ± 0.009) and Endofill (0.103 ± 0.010). The highest volume was observed in teeth filled with AH Plus (0.112 ± 0.008) and Sealer 26 (0.109 ± 0.018) (p > 0.05). Regarding the filling technique, a lower sealer volume was observed using the active lateral condensation technique compared with that using the passive lateral condensation technique (0.100 ± 0.010 vs. 0.111 ± 0.012) (p < 0.05). Therefore, the lowest volume of sealer was observed in teeth filled with Sealapex and Endofill using the active lateral condensation technique. PMID:27050936

  3. Imaging and 3-D dosimetry: top tips for MRI and optical CT

    NASA Astrophysics Data System (ADS)

    Doran, Simon J.

    2010-11-01

    The conference "refresher session" associated with this abstract reviews the main principles of the two most important imaging readout modalities for 3-D dosimetry: MRI and optical CT. Best practices for both these techniques are already described in several different places in the literature, but, for the uninitiated, there are a number of pitfalls. Here, I list some of the important considerations required to obtain good results from these methods and point to relevant prior work.

  4. Investigation of a low-cost optical-CT system with minimal refractive index-matching fluid

    NASA Astrophysics Data System (ADS)

    Bache, S.; Malcolm, J.; Adamovics, J.; Oldham, M.

    2015-01-01

    Optical computed tomography (optical-CT) is a method for visualizing 3dimensional dose distributions in radiochromic dosimeters. Projection images are acquired by collimating a visible light point source into parallel-beam geometry and imaging differential absorption through the sample dosimeter. Practical challenges involved in optical-CT imaging were addressed through the investigation of an in-house Fresnel-based optical-CT system with considerably less refractive index-matching fluid. The "DFOS" (Duke Fresnel-based Optical- CT System) system differed from current optical-CT systems by replacing cumbersome convex telecentric lenses with a lighter and much less expensive Fresnel system. A second major modification was the replacement of the refractive index-matching fluid bath with a solid polyurethane tank. PRESAGE radiochromic dosimeters were irradiated with orthogonal parallel-opposed treatments and dose distributions were readout by the DFOS system and compared to both treatment planning software prediction and two other in-house optical-CT systems. Gamma index passing rate at the 3%/3mm threshold in relation to Eclipse treatment planning software for the treatment was 92.2%%, compared to 96.8% and 95.6% for two other systems featuring a traditional setup. The DFOS system showed promise for 3D dosimetry, but the performance is still substantially inferior at present to the gold-standard systems.

  5. Automated quantitative characterization of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT image analysis.

    PubMed

    Brun, Francesco; Turco, Gianluca; Accardo, Agostino; Paoletti, Sergio

    2011-12-01

    Accurate image acquisition techniques and analysis protocols for a reliable characterization of tissue engineering scaffolds are yet to be well defined. To this aim, the most promising imaging technique seems to be the X-ray computed microtomography (μ-CT). However critical issues of the analysis process deal with the representativeness of the selected Volume of Interest (VOI) and, most significantly, its segmentation. This article presents an image analysis protocol that computes a set of quantitative descriptors suitable for characterizing the morphology and the micro-architecture of alginate/hydroxyapatite bone tissue engineering scaffolds. Considering different VOIs extracted from different μ-CT datasets, an automated segmentation technique is suggested and compared against a manual segmentation. Variable sizes of VOIs are also considered in order to assess their representativeness. The resulting image analysis protocol is reproducible, parameter-free and it automatically provides accurate quantitative information in addition to the simple qualitative observation of the acquired images.

  6. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    PubMed Central

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-01-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection. PMID:25511687

  7. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    SciTech Connect

    Bolch, Wesley

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  8. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  9. High-throughput multiple-mouse imaging with micro-PET/CT for whole-skeleton assessment.

    PubMed

    Yagi, Masashi; Arentsen, Luke; Shanley, Ryan M; Hui, Susanta K

    2014-11-01

    Recent studies have proven that skeleton-wide functional assessment is essential to comprehensively understand physiological aspects of the skeletal system. Therefore, in contrast to regional imaging studies utilizing a multiple-animal holder (mouse hotel), we attempted to develop and characterize a multiple-mouse imaging system with micro-PET/CT for high-throughput whole-skeleton assessment. Using items found in a laboratory, a simple mouse hotel that houses four mice linked with gas anesthesia was constructed. A mouse-simulating phantom was used to measure uniformity in a cross sectional area and flatness (Amax/Amin*100) along the axial, radial and tangential directions, where Amax and Amin are maximum and minimum activity concentration in the profile, respectively. Fourteen mice were used for single- or multiple-micro-PET/CT scans. NaF uptake was measured at eight skeletal sites (skull to tibia). Skeletal (18)F activities measured with mice in the mouse hotel were within 1.6 ± 4% (mean ± standard deviation) of those measured with mice in the single-mouse holder. Single-holder scanning yields slightly better uniformity and flatness over the hotel. Compared to use of the single-mouse holder, scanning with the mouse hotel reduced study time (by 65%), decreased the number of scans (four-fold), reduced cost, required less computer storage space (40%), and maximized (18)F usage. The mouse hotel allows high-throughput, quantitatively equivalent scanning compared to the single-mouse holder for micro-PET/CT imaging for whole-skeleton assessment of mice.

  10. Particle-Tracking Microrheology Using Micro-Optical Coherence Tomography.

    PubMed

    Chu, Kengyeh K; Mojahed, Diana; Fernandez, Courtney M; Li, Yao; Liu, Linbo; Wilsterman, Eric J; Diephuis, Bradford; Birket, Susan E; Bowers, Hannah; Martin Solomon, G; Schuster, Benjamin S; Hanes, Justin; Rowe, Steven M; Tearney, Guillermo J

    2016-09-01

    Clinical manifestations of cystic fibrosis (CF) result from an increase in the viscosity of the mucus secreted by epithelial cells that line the airways. Particle-tracking microrheology (PTM) is a widely accepted means of determining the viscoelastic properties of CF mucus, providing an improved understanding of this disease as well as an avenue to assess the efficacies of pharmacologic therapies aimed at decreasing mucus viscosity. Among its advantages, PTM allows the measurement of small volumes, which was recently utilized for an in situ study of CF mucus formed by airway cell cultures. Typically, particle tracks are obtained from fluorescence microscopy video images, although this limits one's ability to distinguish particles by depth in a heterogeneous environment. Here, by performing PTM with high-resolution micro-optical coherence tomography (μOCT), we were able to characterize the viscoelastic properties of mucus, which enables simultaneous measurement of rheology with mucociliary transport parameters that we previously determined using μOCT. We obtained an accurate characterization of dextran solutions and observed a statistically significant difference in the viscosities of mucus secreted by normal and CF human airway cell cultures. We further characterized the effects of noise and imaging parameters on the sensitivity of μOCT-PTM by performing theoretical and numerical analyses, which show that our system can accurately quantify viscosities over the range that is characteristic of CF mucus. As a sensitive rheometry technique that requires very small fluid quantities, μOCT-PTM could also be generally applied to interrogate the viscosity of biological media such as blood or the vitreous humor of the eye in situ.

  11. Particle-Tracking Microrheology Using Micro-Optical Coherence Tomography.

    PubMed

    Chu, Kengyeh K; Mojahed, Diana; Fernandez, Courtney M; Li, Yao; Liu, Linbo; Wilsterman, Eric J; Diephuis, Bradford; Birket, Susan E; Bowers, Hannah; Martin Solomon, G; Schuster, Benjamin S; Hanes, Justin; Rowe, Steven M; Tearney, Guillermo J

    2016-09-01

    Clinical manifestations of cystic fibrosis (CF) result from an increase in the viscosity of the mucus secreted by epithelial cells that line the airways. Particle-tracking microrheology (PTM) is a widely accepted means of determining the viscoelastic properties of CF mucus, providing an improved understanding of this disease as well as an avenue to assess the efficacies of pharmacologic therapies aimed at decreasing mucus viscosity. Among its advantages, PTM allows the measurement of small volumes, which was recently utilized for an in situ study of CF mucus formed by airway cell cultures. Typically, particle tracks are obtained from fluorescence microscopy video images, although this limits one's ability to distinguish particles by depth in a heterogeneous environment. Here, by performing PTM with high-resolution micro-optical coherence tomography (μOCT), we were able to characterize the viscoelastic properties of mucus, which enables simultaneous measurement of rheology with mucociliary transport parameters that we previously determined using μOCT. We obtained an accurate characterization of dextran solutions and observed a statistically significant difference in the viscosities of mucus secreted by normal and CF human airway cell cultures. We further characterized the effects of noise and imaging parameters on the sensitivity of μOCT-PTM by performing theoretical and numerical analyses, which show that our system can accurately quantify viscosities over the range that is characteristic of CF mucus. As a sensitive rheometry technique that requires very small fluid quantities, μOCT-PTM could also be generally applied to interrogate the viscosity of biological media such as blood or the vitreous humor of the eye in situ. PMID:27602733

  12. A 3D Level Sets Method for Segmenting the Mouse Spleen and Follicles in Volumetric microCT Images

    SciTech Connect

    Price, Jeffery R; Aykac, Deniz; Wall, Jonathan

    2006-01-01

    We present a semi-automatic, 3D approach for segmenting the mouse spleen, and its interior follicles, in volumetric microCT imagery. Based upon previous 2D level sets work, we develop a fully 3D implementation and provide the corresponding finite difference formulas. We incorporate statistical and proximity weighting schemes to improve segmentation performance. We also note an issue with the original algorithm and propose a solution that proves beneficial in our experiments. Experimental results are provided for artificial and real data.

  13. A novel integrated fiber-optic interferometer model and its application in micro-displacement measurement

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Xu, Long-long; Zhu, Jun; Yuan, Zhi-wen; Yu, Ying-jie; Asundi, Anand K.

    2016-11-01

    We conducted an investigation in a novel integrated fiber-optic interferometer model based on ultra-small self-focusing optical fiber probe and the method of its application in micro-displacement measurement. Firstly, we proposed the structure model of integrated fiber-optic interferometer and established its input-output mathematical model applied in micro-displacement measurement. Secondly, we established the hardware system of the integrated fiber-optic interferometer. Finally, we analyzed the fitting result of experimental data of micro-displacement measurement and some error factors and defined the linear working range. The experimental results indicate that, under the given experimental conditions, the linear measurement range, linearity and sensitivity of the integrated fiber-optic interferometer were 10 μm, 1.36% and 8.8 mv/μm respectively.

  14. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  15. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  16. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    SciTech Connect

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  17. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  18. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery

    PubMed Central

    Song, Cheol; Park, Dong Yong; Gehlbach, Peter L.; Park, Seong Jin; Kang, Jin U.

    2013-01-01

    A handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps guided by a fiber-optic common-path optical coherence tomography (CP-OCT) sensor is presented. A fiber-optic CP-OCT distance and motion sensor is integrated into the shaft of a micro-forceps. The tool tip position is manipulated longitudinally through a closed loop control using a piezoelectric motor. This novel forceps design could significantly enhance safety, efficiency and surgical outcomes. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model. As compared to freehand use, targeted grasping and peeling performance assisted by active tremor compensation, significantly improves micro-forceps user performance. PMID:23847730

  19. Design, fabrication and testing of hierarchical micro-optical structures and systems

    NASA Astrophysics Data System (ADS)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist

  20. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  1. Investigation of signal thresholding to reduce the effects of instrument noise of an EMCCD based micro-CT system

    NASA Astrophysics Data System (ADS)

    Podgorsak, Alexander R.; Bysani Krishnakumar, Sumukh; Setlur Nagesh, S. V.; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    This project investigated the signal thresholding effectiveness at reducing the instrument noise of an electron multiplying charged coupled device (EMCCD) based micro-CT system at low x-ray exposure levels. Scans of a mouse spine and an iodine phantom were taken using an EMCCD detector coupled with a micro-CT system. An iodine filter of 4 mg/cm2 area density was placed in the beam. The output signal was thresholded using some multiple of the inherent background noise. For each threshold, 100, 200, and 300 frames were summed for each projection to evaluate the effect on the reconstructed image. The projection images from the scans were compared using line profiles and their SNR. Our results indicate that, as the threshold was increased, the line profiles of the projection images showed less statistical variation, but also lower signal levels, so that the SNR of the projection images decreased as the threshold increased. When the line profile of a projection image obtained using a signal threshold is compared with one obtained using energy integrating mode, the profile obtained using thresholding had less variation than that obtained using energy integration, which indicates less instrument noise. The SNR at the edges of the scan object is higher in the thresholded images when compared with the energy integrated projection images. We conclude that thresholding the output signal from an EMCCD detector at low x-ray exposure levels is an effective method to reduce the instrument noise of an EMCCD detector.

  2. Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT

    PubMed Central

    2013-01-01

    Introduction While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as well as maculae. Results High-resolution microCT imaging of black mollies Poecilia sp. (Poeciliidae, Teleostei) and Steatocranus tinanti (Cichlidae, Teleostei) stained with phosphotungstic acid (PTA) resulted in good tissue contrast, enabling us to perform a reliable 3D reconstruction of all three sensory maculae of the inner ears. Comparison with maculae that have been 3D reconstructed based on histological serial sections and phalloidin-stained maculae showed high congruence in overall shape of the maculae studied here. Conclusions PTA staining and subsequent high-resolution contrast enhanced microCT imaging is a powerful method to obtain 3D models of fish inner ears and maculae in a fast and more reliable manner. Future studies investigating functional morphology, phylogenetic potential of inner ear features, or evolution of hearing and inner ear specialization in fishes may benefit from the use of 3D models of inner ears and maculae. PMID:24160754

  3. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  4. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  5. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  6. Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices.

    PubMed

    Hsu, Li-Chung; Chen, Te-Chang; Yang, Yao-Tsu; Huang, Chieh-Yang; Shen, Da-Wei; Chen, Ya-Tzu; Lee, Ming-Chang M

    2013-03-21

    Micro-particle transport and switch governed by guided-wave optical interference are presented. The optical interference, occurring in a directional coupler and a multi-mode interferometer made by inverted rib waveguides, results in a specific evanescent field dependent on wavelength. Through a detailed theoretical analysis, the field of induced optical force shows a correlative pattern associated with the evanescent field. Experimental results demonstrate that 10 μm polystyrene beads are propelled with a trajectory subject to the interference pattern accordingly. By launching different wavelengths, the polystyrene beads can be delivered to different output waveguide ports. Massive micro-particle manipulation is applicable.

  7. Building a bone μCT images atlas for micro-architecture recognition

    NASA Astrophysics Data System (ADS)

    Freuchet, E.; Recur, B.; Guédon, Jp.; Kingston, A.; Autrusseau, F.; Amouriq, Y.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper, we started to investigate the relationships between bone and vessels and we also proposed to build a Bone Atlas. This study describes how to proceed for the elaboration and use of such an atlas. Here, we restricted the Atlas to legs (tibia, femur) of rats in order to work with well known geometry of the bone micro-architecture. From only 6 acquired bone, 132 trabecular bone volumes were generated using simple mathematical morphology tools. The variety and veracity of the created micro-architecture volumes is presented in this paper. Medical application and final goal would be to determinate bone micro-architecture with some angulated radiographs (3 or 4) and to easily diagnose the bone status (healthy, pathological or healing bone...).

  8. Performance of an improved first generation optical CT scanner for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  9. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  10. Effect of low-intensity pulsed ultrasound (LIPUS) on mandibular condyle growth in rats analyzed with micro-CT.

    PubMed

    Sasaki, Kyozo; Motoyoshi, Mitsuru; Horinuki, Eri; Arai, Yoshinori; Shimizu, Noriyoshi

    2016-01-01

    This study examined the effects of a bite-jumping appliance combined with low-intensity pulsed ultrasound (LIPUS) stimulation on the mandibular condyle of growing rats using micro CT (mCT) and histological examinations. Twelve Wistar rats were divided into three groups of four individuals each: Group 1 was an untreated control group, Group 2 received bite-jumping appliances, and Group 3 received bite-jumping appliances and LIPUS stimulation (15 min/day, 2 weeks) to the temporomandibular region. We measured the length and three-dimensional bone volume of each rat's mandibular condyle using mCT. The condylar cartilage was observed after the rats had been sacrificed. There was no significant difference in condylar sagittal width among the groups. The bite-jumping appliance combined with LIPUS stimulation increased the condylar major axis, mandibular sagittal length and condylar bone volume to a greater degree than use of the bite-jumping appliance alone. Histological examination demonstrated hypertrophy of the condylar cartilage layers, the fibrous layer and hypertrophic cell layer of the rats treated with bite-jumping appliances combined with LIPUS stimulation in comparison to rats treated with bite-jumping appliances alone. (J Oral Sci 58, 415-422, 2016). PMID:27665982

  11. Coregistration of datasets from a micro-SPECT/CT and a preclinical 1.5 T MRI

    NASA Astrophysics Data System (ADS)

    Dillenseger, J.-P.; Guillaud, B.; Goetz, C.; Sayeh, A.; Schimpf, R.; Constantinesco, A.; Choquet, P.

    2013-02-01

    An universal tool was designed for small animal SPECT/CT/MR coregistration. It was tested on a preclinical MRI (OPTImouse, RS2D, Bischwiller, France) and a micro-SPECT/CT (eXplore speCZT Vision 120, GE, Waukesha, USA), closed to each other, thanks to the short extension of the MRI magnet fringe field. The tool consists of a curved catheter describing many rigid loops, and fixed on a plastic sheet. During acquisitions, it is placed around the animal, in an isolated imaging cell, and filled with a solution containing iodine, copper sulfate and radioisotope. Multimodality imaging is achieved sequentially by moving the cell from one system to the other, in about 20 s. Acquisitions on phantom demonstrate the resolution accuracy of the coregistration process. Whole body trimodal SPECT/CT/MR acquisitions on live mice were coregistrated as well. A simple, cheap tool, easy to fill, could efficiently help for rigid coregistration of preclinical images, acquired on separate imaging apparatus.

  12. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  13. Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray

    SciTech Connect

    Cao Guohua; Burk, Laurel M.; Lee, Yueh Z.; Calderon-Colon, Xiomara; Sultana, Shabana; Lu Jianping; Zhou, Otto

    2010-10-15

    Purpose: Carbon nanotube (CNT) based field emission x-ray source technology has recently been investigated for diagnostic imaging applications because of its attractive characteristics including electronic programmability, fast switching, distributed source, and multiplexing. The purpose of this article is to demonstrate the potential of this technology for high-resolution prospective-gated cardiac micro-CT imaging. Methods: A dynamic cone-beam micro-CT scanner was constructed using a rotating gantry, a stationary mouse bed, a flat-panel detector, and a sealed CNT based microfocus x-ray source. The compact single-beam CNT x-ray source was operated at 50 KVp and 2 mA anode current with 100 {mu}mx100 {mu}m effective focal spot size. Using an intravenously administered iodinated blood-pool contrast agent, prospective cardiac and respiratory-gated micro-CT images of beating mouse hearts were obtained from ten anesthetized free-breathing mice in their natural position. Four-dimensional cardiac images were also obtained by gating the image acquisition to different phases in the cardiac cycle. Results: High-resolution CT images of beating mouse hearts were obtained at 15 ms temporal resolution and 6.2 lp/mm spatial resolution at 10% of system MTF. The images were reconstructed at 76 {mu}m isotropic voxel size. The data acquisition time for two cardiac phases was 44{+-}9 min. The CT values observed within the ventricles and the ventricle wall were 455{+-}49 and 120{+-}48 HU, respectively. The entrance dose for the acquisition of a single phase of the cardiac cycle was 0.10 Gy. Conclusions: A high-resolution dynamic micro-CT scanner was developed from a compact CNT microfocus x-ray source and its feasibility for prospective-gated cardiac micro-CT imaging of free-breathing mice under their natural position was demonstrated.

  14. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  15. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  16. Sensing nanometric displacement of a micro-/nano-fiber induced by optical forces by use of white light interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Weiqia; Huang, Hankai; Yu, Jianhui; Dong, Huazhuo; Chen, Zhe; Lu, Huihui

    2015-07-01

    Sensing the nanometric displacement of a micro-/nano-fiber induced by optical forces is a key technology to study optical forces and optical momentum. When the gap between a micro-/nano-fiber and glass substrate becomes down to micrometer scale or less, a white light interference was observed. The gap changes when optical force arising from the propagating pump light along the micro-/nano-fiber causes a transversal nanometric displacement of a micro-/nanofiber, resulting in movement of the interferometric fringes. Therefore this movement of the interferometric fringes can be used to sense the nanometric displacement of the micro-/nano-fiber induced by optical forces. Experimental results show that the resolutions of this method can reach 7.27nm/pixel for tilted angle 0.8o between the micro-/nano-fiber and substrate. It is concluded that the white light interferometry method is suitable for measuring the weak optical force.

  17. A new 3D information acquisition method of micro-drilling marks on ancient perforated stone bead through micro-CT.

    PubMed

    Yang, Min; Yang, Yimin; Wang, Changsui

    2011-01-01

    Drilling is one of the most complex techniques for making ancient stone or jade implement or adornment. However, related research on ancient stone or jade drilling technology lags behind, for there are rare records or discovery of the ancient drilling tools. Drilling marks are very useful information for analysis and research of the ancient drilling techniques. The traditional information acquisition methods are very difficult to apply effectively on smaller perforations. In this paper, we introduced a new nondestructive method to solve the observation difficulty problem. The ancient bead was scanned by 3D-μCT system. Then through T-FDK algorithm, improved NL-means denoising algorithm and high accurate calibration, the 3D geometrical information of micro-drilling marks on outer and inner wall of the perforation were reconstructed. The experimental results proved that this method can provide key information for the analysis of the ancient stone drilling technique and ancient jade authentication.

  18. Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria

    2012-03-01

    Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.

  19. Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum

    PubMed Central

    Gamisch, Alexander; Staedler, Yannick M.; Schönenberger, Jürg; Fischer, Gunter A.; Comes, Hans Peter

    2013-01-01

    Background The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllumbicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. Methods Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. Findings Selfing variants possess a suberect (‘displaced’) rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. Conclusions Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the

  20. Integrated resonant micro-optical gyroscope and method of fabrication

    DOEpatents

    Vawter, G. Allen; Zubrzycki, Walter J.; Guo, Junpeng; Sullivan, Charles T.

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  1. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  2. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    SciTech Connect

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  3. Sensitivity calibration procedures in optical-CT scanning of BANG®3 polymer gel dosimeters

    PubMed Central

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-01-01

    The dose response of the BANG®3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS™ laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4×4 cm2 photon fields or 6×6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6×6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG®3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752±3%, 0.0756±3%, 0.0767±3%, and 0.0759±3% cm−1 Gy−1) and the PDD matching methods (0.0768±3% and 0.0761±3% cm−1 Gy−1) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6×6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse

  4. Self optical motion-tracking for endoscopic optical coherence tomography probe using micro-beamsplitter probe

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Zhang, Jun; Chou, Lidek; Wang, Alex; Jing, Joseph; Chen, Zhongping

    2014-03-01

    Long range optical coherence tomography (OCT), with its high speed, high resolution, non-ionized properties and cross-sectional imaging capability, is suitable for upper airway lumen imaging. To render 2D OCT datasets to true 3D anatomy, additional tools are usually applied, such as X-ray guidance or a magnetic sensor. X-ray increases ionizing radiation. A magnetic sensor either increases probe size or requires an additional pull-back of the tracking sensor through the body cavity. In order to overcome these limitations, we present a novel tracking method using a 1.5 mm×1.5mm, 90/10-ratio micro-beamsplitter: 10% light through the beam-splitter is used for motion tracking and 90% light is used for regular OCT imaging and motion tracking. Two signals corresponding to these two split-beams that pass through different optical path length delays are obtained by the detector simultaneously. Using the two split beams' returned signals from the same marker line, the 2D inclination angle of each step is computed. By calculating the 2D inclination angle of each step and then connecting the translational displacements of each step, we can obtain the 2D motion trajectory of the probe. With two marker lines on the probe sheath, 3D inclination angles can be determined and then used for 3D trajectory reconstruction. We tested the accuracy of trajectory reconstruction using the probe and demonstrated the feasibility of the design for structure reconstruction of a biological sample using a porcine trachea specimen. This optical-tracking probe has the potential to be made as small as an outer diameter of 1.0mm, which is ideal for upper airway imaging.

  5. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G.; Jirasek, Andrew; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for

  6. High Resolution Imaging of Murine Myocardial Infarction With Delayed Enhancement and Cine Micro-CT

    PubMed Central

    Nahrendorf, Matthias; Badea, Cristian; Hedlund, Laurence W; Figueiredo, Jose-Luiz; Sosnovik, David E.; Johnson, G Allan; Weissleder, Ralph

    2009-01-01

    Objective To determine the feasibility of delayed enhancement µCT imaging to quantify myocardial infarct size in experimental mouse models. Methods and Results A total of 20 mice were imaged 5 or 35 days after surgical ligation of the left coronary artery, or sham surgery (n=6–7 per group). We utilized a prototype εCT which covers a 3D volume with an isotropic spatial resolution of 100 µm. A series of image acquisitions were started after a 200 µL bolus of a high molecular weight blood pool CT agent to outline the ventricles. CT imaging was continuously performed over 60 minutes, while an intravenous constant infusion with iopamidol 370 was started at a dosage of 1 mL/h. Thirty minutes after the initiation of this infusion, signal intensity in Hounsfild Units was significantly higher in the infarct than in the remote, uninjured myocardium. Cardiac morphology and motion was visualized with excellent contrast and in fine detail. In vivo CT determination of infarct extension and transmurality was in good agreement with ex vivo staining with triphenyltetrazolium chloride (5 days post MI: r2= 0.86, p < 0.01; 35 days post MI r2=0.92, p < 0.01). In addition, we detected significant left ventricular remodeling consisting of left ventricular dilation and decreased ejection fraction. Conclusion 3D cine µCT reliably and rapidly quantifies infarct size and assesses murine anatomy and physiology after coronary ligation, despite the small size and the fast movement of the mouse heart. This efficient imaging tool is a valuable addition to the current phenotyping armamentarium and will allow rapid testing of novel drugs and cell based interventions in murine models. PMID:17322414

  7. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM).

    PubMed

    Buytaert, Jan; Goyens, Jana; De Greef, Daniel; Aerts, Peter; Dirckx, Joris

    2014-08-01

    Two methods are especially suited for tomographic imaging with histological detail of macroscopic samples that consist of multiple tissue types (bone, muscle, nerve or fat): Light sheet (based) fluorescence microscopy (LSFM) and micro-computed tomography (micro-CT). Micro-CT requires staining with heavy chemical elements (and thus fixation and sometimes dehydration) in order to make soft tissue imageable when measured alongside denser structures. LSMF requires fixation, decalcification, dehydration, clearing and staining with a fluorescent dye. The specimen preparation of both imaging methods is prone to shrinkage, which is often not mentioned, let alone quantified. In this paper the presence and degree of shrinkage are quantitatively identified for the selected preparation methods/stains. LSFM delivers a volume shrinkage of 17% for bone, 56% for muscle and 62% for brain tissue. The three most popular micro-CT stains (phosphotungstic acid, iodine with potassium iodide, and iodine in absolute ethanol) deliver a volume shrinkage ranging from 10 to 56% for muscle and 27-66% for brain, while bone does not shrink in micro-CT preparation. PMID:24963987

  8. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    NASA Astrophysics Data System (ADS)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  9. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    PubMed Central

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-01-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials. PMID:25989250

  10. Sol-gel prepared glass for micro-optical elements and arrays

    NASA Astrophysics Data System (ADS)

    Haruvy, Yair; Gilath, Irith; Maniewictz, M.; Eisenberg, Naftali P.

    1997-09-01

    Sol-gel processes of metal alkoxides involve hydrolysis of the alkoxy groups and condensation to a 3-D oxide glass network. Volume reduction of the drying gel typically results in cracking, unless sufficient relaxation is allowed to take place. Further, the common shrinkage by a factor of 2.5 and higher imposes great difficulty to obtain dimensional accuracy in thus prepared micro-optical elements. The new fast sol-gel method enables facile preparation of siloxane-based glassy materials in which polymerization is completed within minutes and curing within a few hours. The optical quality of thin films obtained by the fast sol-gel method and the ease of preparation makes this method technologically and economically attractive for micro-lenses and micro-optical arrays by replication. Micro-optical arrays are highly patterned, including sharp curvatures of small radii. This necessitates to study primarily two aspects of the sol-gel replication process: (1) the chemical constitution of the sol-gel and the reaction pathway that ensures prompt adhesion to the template during the process. (2) the surface chemical adaptation of the template that allows timing of adhesion and release of the produced elements. The adaptation of this process to the desired replication is described. Thence, the results of preliminary fabrication of micro-optical elements and arrays by this method are shown and their features discussed.

  11. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  12. Development of dielectric elastomer driven micro-optical zoom lens system

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Jongkil; Chuc, Nguyen Huu; Choi, H. R.; Nam, J. D.; Lee, Y.; Jung, H. S.; Koo, J. C.

    2007-04-01

    Normally, various micro-scale devices adopt electromechanical actuators for their basic mechanical functions. Those types of actuators require a complicated power transfer system even for generating a tiny scale motion. Since the mechanical power transfer system for the micro-scale motion may require many components, the system design to fit those components into a small space is always challenging. Micro-optical zoom lens systems are recently popularly used for many portable IT devices such as digital cameras, camcorder, and cell phones, Noting the advantages of EAP actuators over the conventional electromechanical counterparts in terms of simple actuator mechanisms, a micro-optic device that is driven with the EAP actuator is introduced in the present work. EAP material selection, device design and fabrication will be also delineated.

  13. Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques.

    PubMed

    Tanaka, Yoshio; Kawada, Hiroyuki; Tsutsui, Shogo; Ishikawa, Mitsuru; Kitajima, Hiroyuki

    2009-12-21

    Dynamic micro-bead arrays offer great flexibility and potential as sensing tools in various scientific fields. Here we present a software-oriented approach for fully automated assembly of versatile dynamic micro-bead arrays using multi-beam optical tweezers combined with intelligent control techniques. Four typical examples, including the collision-free sorting of array elements by bead features, are demonstrated in real time. Control algorithms and experimental apparatus for these demonstrations are also described.

  14. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT.

    PubMed

    Agbogun, H M D; Al, Tom A; Hussein, Esam M A

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φ(d)) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φ(d) and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φ(d) values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φ(d) measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φ(d) and C(t) that reflect solute diffusion in heterogeneous porous geologic media. PMID:23298531

  15. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT.

    PubMed

    Agbogun, H M D; Al, Tom A; Hussein, Esam M A

    2013-02-01

    X-ray micro-computed tomography (micro-CT) techniques for measuring the three-dimensional (3-D) distributions of diffusion-accessible porosity (φ(d)) and temporal tracer-concentrations (C(t)) within a dolostone sample subjected to solute diffusion are developed and tested in this work. The φ(d) and C(t) measurements are based on spatially resolved changes in X-ray attenuation coefficients in sequentially acquired 3-D micro-CT datasets using two (calibration and relative) analytical approaches. The measured changes in X-ray attenuation coefficient values are a function of the mass of X-ray absorbing potassium-iodide tracer present in voxels. Mean φ(d) values of 3.8% and 6.5% were obtained with the calibration and the relative approaches, respectively. The detection limits for φ(d) measurements at individual voxel locations are 20% and 36% with the calibration and the relative methods, respectively. The detection limit for C(t) are 0.12 M and 0.22 M with the calibration and the relative approaches, respectively. Results from the calibration method are affected by a beam-hardening artifact and although results from the relative approach are not affected by the artifact, they are subject to high detection limits. This work presents a quantitative assessment of micro-CT data for studies of solute transport. Despite limitations in precision and accuracy, the method provides quantitative 3-D distributions of φ(d) and C(t) that reflect solute diffusion in heterogeneous porous geologic media.

  16. CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience

    SciTech Connect

    Schubert, Tilman Jacob, Augustinus L.; Pansini, Michele; Liu, David; Gutzeit, Andreas; Kos, Sebastian

    2013-08-01

    PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

  17. SU-E-I-84: Accuracy Comparison of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using In-Air Micro-CT Image Volume

    SciTech Connect

    Lee, Y; Fullerton, G; Goins, B

    2015-06-15

    Purpose: Tumor volume is considered as a better predictor for therapy response monitoring and tumor staging over Response Evaluation Criteria In Solid Tumors (RECIST) or World Health Organization (WHO) criteria. In this study, the accuracy of subcutaneous rodent tumor volumes using preclinical magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and ultrasound (US) equipment and with an external caliper was compared using in-air micro-CT image volume of excised tumors determined as reference tumor volume in our prior study. Methods: MR, US and micro-CT images of subcutaneous SCC4 head and neck tumor xenografts were acquired 4, 6, 9, 11 and 13 days after tumor cell inoculation. Before MR and US scans, caliper measurements were made. After tumors were excised, in-air micro-CT imaging and ex vivo caliper measurements were performed. Tumor volumes were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three image modalities and caliper, and compared with reference tumor volume by linear regression analysis as well as Bland-Altman plots. A one-way Analysis of Variance (ANOVA) test was also performed to compare volumes among caliper measurements. Results: The correlation coefficients (R2) of the regression lines for tumor volumes measured by the three imaging modalities and caliper were 0.9939, 0.9669, 0.9806, 0.9274, 0.9619 and 0.9819 for MRI, US and micro-CT, caliperbeforeMRI, caliperbeforeUS and ex vivo caliper respectively. In Bland-Altman plots, the average of tumor volume difference from reference tumor volume (bias) was significant for caliper and micro- CT, but not for MRI and US. Comparison of caliper measurements showed a significant difference (p < 0.05). Conclusion: Using the in-air micro-CT image volume, tumor volume measured by MRI was the most accurate among the three imaging modalities. In vivo caliper volume measurements showed unreliability while ex

  18. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  19. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2015-09-01

    We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.

  20. Automatic delineation of the optic nerves and chiasm on CT images

    NASA Astrophysics Data System (ADS)

    Gensheimer, Michael; Cmelak, Anthony; Niermann, Kenneth; Dawant, Benoit M.

    2007-03-01

    Delineating critical structures for radiotherapy of the brain is required for advanced radiotherapy technologies to determine if the dose from the proposed treatment will impair the functionality of the structures. Employing an automatic segmentation computer module in the radiation oncology treatment planning process has the potential to significantly increase the efficiency, cost-effectiveness, and, ultimately, clinical outcome of patients undergoing radiation therapy. In earlier work, we have shown that atlas-based segmentation of large structures such as the brainstem or the cerebellum was an achievable objective. We have also shown that smaller structures such as the optic nerves or optic chiasm were more difficult to segment automatically. In this work, we present an extension to this approach in which atlas-based segmentation is followed by a series of additional steps. We show that this new approach substantially improves our previous results. We also show that we can segment CT images alone when we previously relied on a combination of MR and CT images.

  1. How effective can optical-CT 3D dosimetry be without refractive fluid matching?

    PubMed Central

    Rankine, L; Oldham

    2013-01-01

    Achieving accurate optical CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Software has been developed to simulate optical CT 3D dosimetry for a range of scanning configurations including parallel-beam, point and converging light sources. For each configuration the efficacy of 3 refractive media were investigated: air, water, and a fluid closely matched to Presage (RI = 1.00, 1.33 and 1.49 respectively). The results revealed that the useable radius of the dosimeter (i.e. where data was within 2% of truth) reduced to 68% for water-matching, and 31% for dry-scanning in air. Point source incident ray geometry produced slightly more favourable results, although variation between the three geometries was relatively small. The required detector size however, increased by a factor six for dry-scanning, introducing cost penalties. For applications where dose information is not required in the periphery, some dry and low-viscous matching configurations may be feasible. PMID:24454520

  2. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique

    PubMed Central

    Demir, Necla; Ozturk, Atiye Nilgun; Malkoc, Meral Arslan

    2014-01-01

    Objective: To evaluate the marginal gap (MG) and absolute marginal discrepancy (MD) of full ceramic crowns with two finish line designs, shoulder and chamfer, using microcomputed tomography (micro-CT) before and after cementation. Materials and Methods: Sixty extracted human maxillary premolar teeth were divided into two groups based on the finish line design: Group I: 90° shoulder and Group II: 135° chamfer. The specimens were further grouped based on the type of full ceramic crown they received: Group A: Feldspathic Cerec inLab ceramic system, Group B: Cerec inLab aluminum oxide ceramic system and Group C: Lithium disilicate press ceramic system. Before cementation, five crowns from each group were scanned using micro-CT in two sections, sagittal and coronal, to determine the MG and MD values for four regions of the crown (sagittal buccal, sagittal lingual, coronal mesial and coronal distal). After cementation and thermal cycling, the scanning was repeated. Measurements were obtained from 10 points for each region, 80 points totally, to evaluate the MG and MD values. Files were processed using NRecon and CTAn software. Results were statistically analyzed using one- and two-way ANOVA and Tukey HSD tests (P = 0.05). Results: Full ceramic systems showed clinically acceptable marginal adaptation values. The Feldspathic Cerec inLab ceramic system generally presented the lowest variance, except in the MG values of the coronal mesial region. The MG and MD values of all ceramics increased significantly after cementation, except in the shoulder preparation design (sagittal buccal region) for MG and in the chamfer preparation design (sagittal lingual region) for MD values. Conclusions: Full-ceramic crowns showed clinically acceptable marginal adaptation values. The Feldspathic Cerec inLab ceramic system (Vitablocs Mark II) generally presented the lowest variance when compared with the other ceramics, except for the MG values on the mesial surface of the coronal section

  3. A Combined Micro-CT Imaging/Microfluidic Approach for Understating Methane Recovery in Coal Seam Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Mostaghimi, P.; Armstrong, R. T.; Gerami, A.; Lamei Ramandi, H.; Ebrahimi Warkiani, M.

    2015-12-01

    Coal seam methane is a form of natural gas stored in coal beds and is one of the most important unconventional resources of energy. The flow and transport in coal beds occur in a well-developed system of natural fractures that are also known as cleats. We use micro-Computed Tomography (CT) imaging at both dry and wet conditions to resolve the cleats below the resolution of the image. Scanning Electron Microscopy (SEM) is used for calibration of micro-CT data. Using soft lithography technique, the cleat system is duplicated on a silicon mould. We fabricate a microfluidic chip using Polydimethylsiloxane (PDMS) to study both imbibition and drainage in generated coal structures for understating gas and water transport in coal seam reservoirs. First, we use simple patterns observed on coal images to analyse the effects of wettability, cleat size and distribution on flow behaviour. Then, we study transport in a coal by injecting both distilled water and decane with a rate of 1 microliter/ min into the fabricated cleat structure (Figure 1), initially saturated with air. We repeat the experiment for different contact angles by plasma treating the microfluidic chip, and results show significant effects of wettability on the displacement efficiency. The breakthrough time in the imbibition setup is significantly longer than in the drainage. Using rapid video capturing, and high resolution microscopy, we measure the saturation of displacing fluid with respect to time. By measuring gas and liquid recovery in the outlet at different saturation, we predict relative permeability of coal. This work has important applications for optimising gas recovery and our results can serve as a benchmark in the verification of multiphase numerical models used in coal seam gas industry.

  4. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  5. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Clark, Darin P.; Ghaghada, Ketan; Moding, Everett J.; Kirsch, David G.; Badea, Cristian T.

    2013-03-01

    Tumor blood volume and vascular permeability are well established indicators of tumor angiogenesis and important predictors in cancer diagnosis, planning and treatment. In this work, we establish a novel preclinical imaging protocol which allows quantitative measurement of both metrics simultaneously. First, gold nanoparticles are injected and allowed to extravasate into the tumor, and then liposomal iodine nanoparticles are injected. Combining a previously optimized dual energy micro-CT scan using high-flux polychromatic x-ray sources (energies: 40 kVp, 80 kVp) with a novel post-reconstruction spectral filtration scheme, we are able to decompose the results into 3D iodine and gold maps, allowing simultaneous measurement of extravasated gold and intravascular iodine concentrations. Using a digital resolution phantom, the mean limits of detectability (mean CNR = 5) for each element are determined to be 2.3 mg mL-1 (18 mM) for iodine and 1.0 mg mL-1 (5.1 mM) for gold, well within the observed in vivo concentrations of each element (I: 0-24 mg mL-1, Au: 0-9 mg mL-1) and a factor of 10 improvement over the limits without post-reconstruction spectral filtration. Using a calibration phantom, these limits are validated and an optimal sensitivity matrix for performing decomposition using our micro-CT system is derived. Finally, using a primary mouse model of soft-tissue sarcoma, we demonstrate the in vivo application of the protocol to measure fractional blood volume and vascular permeability over the course of five days of active tumor growth.

  6. Impact of micronutrients supplementation on bone repair around implants: microCT and counter-torque analysis in rats

    PubMed Central

    Pimentel, Suzana Peres; Casarin, Renato Correa; Ribeiro, Fernanda Vieira; Cirano, Fabiano Ribeiro; Rovaris, Karla; Haiter, Francisco; Casati, Marcio Zaffalon

    2016-01-01

    ABSTRACT The use of natural substances and micronutritional approaches has been suggested as a therapeutic alternative to benefit the bone healing associated with no side effects. Nevertheless, the influence of micronutritional interventions with therapeutic proprieties on the bone repair has yet to be intensely evaluated, and no evidence is available exploring the impact of micronutrient supplementation on the peri-implant bone healing. Objective This study investigated the effect of micronutrients supplementation on the bone repair around implants. Material and Methods One screw-shaped titanium implant was inserted in each tibia of each rat, which were assigned to: daily administration, for 30 d, of the placebo solution (Placebo group-n:18) or micronutrients supplementation (Micronutrients group-n:18), based on calcium, magnesium, zinc, and vitamin D3 intake. After, the animals were sacrificed. One of the implants was removed by applying a counter-torque force to evaluate the force to rupture the bone-implant interface. The other implant was evaluated by microcomputed tomography (CT) examination to determine the bone-to-implant contact (BIC) and the bone volume (BV/TV). Results No statistically significant differences were observed between the groups for both counter-torque values and microCT parameters (p>0.05). Conclusion Within the limits of this study, micronutrients supplementation did not provide additional benefits to the bone healing around dental implants. PMID:27008256

  7. Micro-CT study of the anatomy of the Leafhopper Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Digital Anatomy Library, DAL, was produced to the anatomy of the glassy-winged sharpshooter adult, Homalodisca vitripennis (Hemiptera: Cicadellidae), vector of bacteria which cause Pierce’s disease of grapevines. The insect anatomy was elucidated using a high resolution Bruker Skyscan 1172 micro t...

  8. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    PubMed

    Ling, Ze-Min; Tang, Ying; Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  9. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT

    PubMed Central

    Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  10. Optical-biased modulator employing a single silicon micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Yu, Yuan

    2016-06-01

    We propose and experimentally demonstrate an optical-biased modulator employing a single silicon micro-ring resonator. By adjusting optical bias, the micro-ring modulator is capable of generating several modulation formats, namely, on-off keying, binary phase shift keying and reversed on-off keying, at the speed of 0.4 Gbit/s with extinction ratio higher than 5 dB. Compared to the previous reported bias control approaches, the optical bias proposed in this study is a novel mechanism, which can be easily conducted without complicated integrated structures or redundant electrical devices. Meanwhile, optical bias can also effectively protect the vulnerable integrated silicon devices from possible damage induced by high direct current voltage.

  11. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    PubMed

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  12. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above

  13. Details of human middle ear morphology based on micro-CT imaging of phosphotungstic acid stained samples.

    PubMed

    De Greef, Daniel; Buytaert, Jan A N; Aerts, Johan R M; Van Hoorebeke, Luc; Dierick, Manuel; Dirckx, Joris

    2015-09-01

    A multitude of morphological aspects of the human middle ear (ME) were studied qualitatively and/or quantitatively through the postprocessing and interpretation of micro-CT (micro X-ray computed tomography) data of six human temporal bones. The samples were scanned after phosphotungstic acid staining to enhance soft-tissue contrast. The influence of this staining on ME ossicle configuration was shown to be insignificant. Through postprocessing, the image data were converted into surface models, after which the approaches diverged depending on the topics of interest. The studied topics were: the ME ligaments; morphometric and mechanical parameters of the ossicles relating to inertia and the ossicular lever arm ratio; the morphology of the distal incus; the contact surface areas of the tympanic membrane (TM) and of the stapes footplate; and the thickness of the TM, round window of the cochlea, ossicle joint spaces, and stapedial annular ligament. Some of the resulting insights are relevant in ongoing discussions concerning ME morphology and mechanical functions, while other results provide quantitative data to add to existing data. All findings are discussed in the light of other published data and many are relevant for the construction of mechanical finite element simulations of the ME.

  14. Micro-CT Characterization on the Meso-Structure of Three-Dimensional Full Five-Directional Braided Composite

    NASA Astrophysics Data System (ADS)

    Ya, Jixuan; Liu, Zhenguo; Wang, Yuanhang

    2016-09-01

    The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.

  15. A method to correct for spectral artifacts in optical-CT dosimetry

    PubMed Central

    Pierquet, Michael; Jordan, Kevin; Oldham, Mark

    2011-01-01

    The recent emergence of radiochromic dosimeters with low inherent light-scattering presents the possibility of fast 3D dosimetry using broad-beam optical computed tomography (optical-CT). Current broad beam scanners typically employ either a single or a planar array of light-emitting diodes (LED) for the light source. The spectrum of light from LED sources is polychromatic and this, in combination with the non-uniform spectral absorption of the dosimeter, can introduce spectral artifacts arising from preferential absorption of photons at the peak absorption wavelengths in the dosimeter. Spectral artifacts can lead to large errors in the reconstructed attenuation coefficients, and hence dose measurement. This work presents an analytic method for correcting for spectral artifacts which can be applied if the spectral characteristics of the light source, absorbing dosimeter, and imaging detector are known or can be measured. The method is implemented here for a PRESAGE® dosimeter scanned with the DLOS telecentric scanner (Duke Large field-of-view Optical-CT Scanner). Emission and absorption profiles were measured with a commercial spectrometer and spectrophotometer, respectively. Simulations are presented that show spectral changes can introduce errors of 8% for moderately attenuating samples where spectral artifacts are less pronounced. The correction is evaluated by application to a 16 cm diameter PRESAGE® cylindrical dosimeter irradiated along the axis with two partially overlapping 6 × 6 cm fields of different doses. The resulting stepped dose distribution facilitates evaluation of the correction as each step had different spectral contributions. The spectral artifact correction was found to accurately correct the reconstructed coefficients to within ~1.5%, improved from ~7.5%, for normalized dose distributions. In conclusion, for situations where spectral artifacts cannot be removed by physical filters, the method shown here is an effective correction. Physical

  16. Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds

    PubMed Central

    Fajardo, R J; Hernandez, E; O’Connor, P M

    2007-01-01

    Limb elements in birds have been characterized as exhibiting a reduction in trabecular bone, thinner cortices and decreased bending strength when pneumatized, yet it is unclear if these characteristics generalize to the axial skeleton. Thin section techniques, the traditional gold standard for bone structure studies, have most commonly been applied to the study of avian bone. This destructive technique, however, makes it subsequently impossible to use the same samples in experimental testing systems that allow researchers to correlate structure with the mechanical properties of the bone. Micro-computed tomography (µCT), a non-destructive X-ray imaging technique, can be used to assess the effect of pneumatization on vertebral cortical and trabecular bone through virtual extraction and structural quantification of each tissue type. We conducted a preliminary investigation of the application of µCT methods to the study of cortical and trabecular bone structure in a small sample of pneumatic and apneumatic thoracic vertebrae. The sample consisted of two similar-sized anatids, Aix sponsa (n = 7) and Oxyura jamaicensis (n = 5). Volumes of interest were created that contoured (outlined) the boundaries of the ventral cortical bone shell, the trabecular compartment and the whole centrum (cortical bone + trabecular bone), and allowed independent structural analysis of each volume of interest. Results indicated that bone volume fraction of the whole centrum was significantly higher in the apneumatic O. jamaicensis than in the pneumatized A. sponsa (A. sponsa = 36%, O. jamaicensis = 48%, P < 0.05). In contrast, trabecular bone volume fraction was similar between the two species. The ventral cortical bone shell was approximately 23% thinner (P < 0.05) in A. sponsa (0.133 mm) compared with apneumatic O. jamaicensis (0.172 mm). This case study demonstrates that µCT is a powerful non-destructive imaging technique that may be applied to the three-dimensional study of avian bone

  17. Micro biochemical sensor based on SOI planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Du, Yang; Dong, Ying

    2014-02-01

    A novel biochemical sensor based on planar optical waveguide is presented in this paper. The features of the sensor are as follows, the planar optical waveguide is made of SOI (Silicon-On-Insulator) material, a Mach Zehnder (M-Z) Interferometer structure is adopted as the sensing part, the sensor chip is fabricated using CMOS compatible technology and the size of the sensor chip is on the micron scale. Compared with the traditional biochemical sensors, this new type of sensor has such notable advantages as miniaturization, integration, high sensitivity and strong anti-interference capability, which provide the sensor with potential applications where traditional biochemical sensors cannot be used. At first, the benefits of SOI material comparing to other optical waveguide materials were analyzed in this paper. Then, according to the optical waveguide mode theory, M-Z interferometer waveguide was designed for the single mode behavior. By theoretical analysis of the radiation loss in the Y-junction of the planar waveguide interferometer, the relationship between the branch angle and the radiation loss was obtained. The power transfer function and the parametric equation of sensitivity of the M-Z interferometer were obtained through analysis of the waveguide structure. At last, the resolution of the effective refractive index and the characteristics of sensitivity of the sensor based on SOI M-Z Interferometer waveguide were simulated and analyzed by utilizing MATLAB software. As a result, the sensitivity of SOI M-Z Interferometer sensor can reach the order of 10-7 magnitude.

  18. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  19. Comments on 'Ionization chamber volume determination and quality assurance using micro-CT imaging'.

    PubMed

    Ross, C K

    2009-03-21

    The authors of a recent paper (McNiven et al 2008 Phys. Med. Biol. 53 5029-43) measured the volume of a particular type of a small ionization chamber using CT images. Using four Exradin A1SL chambers, they find that the volume measured using CT imaging is, on average, 4.3% larger than the value derived from the chamber calibration coefficient. Although they point out that the effective chamber volume is defined by electric field lines between the collector and the chamber body, they do not estimate how the mechanical volume might differ from the effective volume. We have used a commercial software package to calculate the electric field in the cavity and we show that the field lines define a volume that is about 11% smaller than the mechanical volume. We also show that the effective volume is very sensitive to small changes in the chamber geometry near the base of the collector. We conclude that simply determining the mechanical volume without careful consideration of the electric field lines within the cavity is not a useful dosimetric technique.

  20. On the feasibility of optical-CT imaging in media of different refractive index

    SciTech Connect

    Rankine, Leith; Oldham, Mark

    2013-05-15

    Purpose: Achieving accurate optical-CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Methods: Software has been developed to simulate optical-CT 3D dosimetry for a range of scanning configurations including parallel-beam, point, and converging light sources. For each configuration the efficacy of three refractive media was investigated: air, water, a fluid closely matched to PRESAGE{sup Registered-Sign }, and perfect matching (RI = 1.00, 1.33, 1.49, and 1.501 respectively). Reconstructions were performed using both filtered backprojection (FBP) and algebraic reconstruction technique (ART). The efficacy of the three configurations and the two algorithms was evaluated by calculating the usable radius (i.e., the outermost radius where data were accurate to within 2%), and gamma ({Gamma}) analysis. This definition recognizes that for optical-CT imaging, errors are greatest near the edge of the dosimeter, where refraction can be most pronounced. Simulations were performed on three types of dose distribution: uniform, volumetric modulated arc therapy (VMAT), and brachytherapy (Cs-137). Results: For a uniformly irradiated dosimeter the usable radius achieved with filtered backprojection was 68% for water-matching and 31% for dry-scanning in air. Algebraic reconstruction gave usable radii of 99% for both water and air (dry-scanning), indicating greater recovery of useful data for the uniform distribution. FBP and ART performed equally well for a VMAT dose distribution where less dose is delivered near the edge of the dosimeter. In this case, the usable radius was 86% and 53% for scanning in water and air, respectively. For brachytherapy, the usable radius was 99% and 98% for scanning in water and air, respectively using FBP, and a major decrease was seen with ART. Point source geometry provided 1%-2% larger usable radii than parallel geometry. Converging geometry recovered less usable dosimetry data (up to

  1. A method to correct for stray light in telecentric optical-CT imaging of radiochromic dosimeters.

    PubMed

    Thomas, Andrew; Newton, Joseph; Oldham, Mark

    2011-07-21

    Radiochromic plastic and gel materials have recently emerged which can yield 3D dose information over clinical volumes in high resolution. These dosimeters can provide a much more comprehensive verification of complex radiation therapy treatments than can be achieved by conventional planar and point dosimeters. To achieve full clinical potential, these dosimeters require a fast and accurate read-out technology. Broad-beam optical-computed tomography (optical-CT) systems have shown promise, but can be sensitive to stray light artifacts originating in the imaging chain. In this work we present and evaluate a method to correct for stray light artifacts by deconvolving a measured, spatially invariant, point spread function (PSF). The correction was developed for the DLOS (Duke large field-of-view optical-CT scanner) in conjunction with radiochromic PRESAGE® dosimeters. The PSF was constructed from a series of acquisitions of projection images of various sized apertures placed in the optical imaging chain. Images were acquired with a range of exposure times, and for a range of aperture sizes (0.2-11 mm). The PSF is investigated under a variety of conditions, and found to be robust and spatially invariant, key factors enabling the viability of the deconvolution approach. The spatial invariance and robustness of the PSF are facilitated by telecentric imaging, which produces a collimated light beam and removes stray light originating upstream of the imaging lens. The telecentric capability of the DLOS therefore represents a significant advantage, both in keeping stray light levels to a minimum and enabling viability of an accurate PSF deconvolution method to correct for the residual. The performance of the correction method was evaluated on projection images containing known optical-density variations, and also on known 3D dose distributions. The method is shown to accurately account for stray light on small field dosimetry with corrections up to 3% in magnitude shown

  2. A method to correct for stray light in telecentric optical-CT imaging of radiochromic dosimeters

    PubMed Central

    Thomas, Andrew; Newton, Joseph

    2011-01-01

    Radiochromic plastic and gel materials have recently emerged which can yield 3D dose information over clinical volumes in high resolution. These dosimeters can provide a much more comprehensive verification of complex radiation therapy treatments than can be achieved by conventional planar and point dosimeters. To achieve full clinical potential, these dosimeters require a fast and accurate read-out technology. Broad-beam optical-computed tomography (optical-CT) systems have shown promise, but can be sensitive to stray light artifacts originating in the imaging chain. In this work we present and evaluate a method to correct for stray light artifacts by deconvolving a measured, spatially invariant, point spread function (PSF). The correction was developed for the DLOS (Duke large field-of-view optical-CT scanner) in conjunction with radiochromic PRESAGE® dosimeters. The PSF was constructed from a series of acquisitions of projection images of various sized apertures placed in the optical imaging chain. Images were acquired with a range of exposure times, and for a range of aperture sizes (0.2–11 mm). The PSF is investigated under a variety of conditions, and found to be robust and spatially invariant, key factors enabling the viability of the deconvolution approach. The spatial invariance and robustness of the PSF are facilitated by telecentric imaging, which produces a collimated light beam and removes stray light originating upstream of the imaging lens. The telecentric capability of the DLOS therefore represents a significant advantage, both in keeping stray light levels to a minimum and enabling viability of an accurate PSF deconvolution method to correct for the residual. The performance of the correction method was evaluated on projection images containing known optical-density variations, and also on known 3D dose distributions. The method is shown to accurately account for stray light on small field dosimetry with corrections up to 3% in magnitude shown

  3. Micro-optical devices for communications and beyond: The days before and after silicon micromachining

    NASA Astrophysics Data System (ADS)

    Kiang, Meng-Hsiung

    The area of micro-optics covers a variety of techniques used for developing miniaturized optical components and systems for applications ranging from optical communications and information processing and storage, to biomedical instrumentation and lightwave sensing and imaging. Miniaturization of optical devices and components is of great interest for system designers for many reasons. A reduction in the total volume of the components is not only cost-saving but sometimes necessary when space or portability is of concern. The trend of micro-optics is toward a higher degree of integration that provides enhanced stability (and thus performance) in addition to the compactness in the construction of complex systems. This dissertation discusses micro-optics at two levels; the first part contains our works on monolithic-cavity, passively mode-locked semiconductor lasers, which are micro-optical devices that can generate millimeter-wave signals with configuration as simply as that for CW lasers. The dynamics of passive modelocking and the transient phenomena when the laser is switched 'into' and 'out of' modelocking have been studied both experimentally and theoretically. The observation of doubling in the passive modelocking frequency under certain operating conditions is also described. The modelocking characteristics, such as the tunability of modelocking frequencies and the mode-locked RF signal linewidths, under different ambient temperatures (down to the liquid-nitrogen temperature) are also measured and analyzed in the laboratory and compared with theoretical predictions. The second part of the thesis deals with micro-optics at a higher level, describing our approach to integrating optical components and (sub)systems using silicon micromachining technologies. Taking advantage of the batch-fabrication feature akin to IC-processing and the capability of mechanical and electronic integration, these microphotonic systems are compact, lightweight, and potentially very

  4. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  5. Orthogonal and secondary concentration in planar micro-optic solar collectors.

    PubMed

    Karp, Jason H; Tremblay, Eric J; Hallas, Justin M; Ford, Joseph E

    2011-07-01

    Planar micro-optic concentrators are passive optical structures which combine a lens array with faceted microstructures to couple sunlight into a planar slab waveguide. Guided rays propagate within the slab to edge-mounted photovoltaic cells. This paper provides analysis and preliminary experiments describing modifications and additions to the geometry which increase concentration ratios along both the vertical and orthogonal waveguide axes. We present simulated results for a 900x concentrator with 85% optical efficiency, measured results for small-scale experimental systems and briefly discuss implementations using low-cost fabrication on continuous planar waveguides.

  6. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    NASA Astrophysics Data System (ADS)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are

  7. Analysis of an integrated optic micro racetrack resonator based biosensor

    NASA Astrophysics Data System (ADS)

    Malathi, S.; Hegde, Gopalkrishna; Srinivas, T.; Roy, Ugra M.

    2014-06-01

    Silicon-On- Insulator (SOI) technology has huge potential in fabricating compact devices for various applications such as integrated optic waveguides, directional couplers, resonators etc. In this work, we present the analysis of a biosensor based on an integrated optic racetrack resonator, interrogated by a bus waveguide. The biomaterial is applied as a cladding layer. Here we analyze the coupling between the resonator and the bus waveguide, and its dependence on the bio layer. In traditional analysis, the effective refractive index and resonator total path length are the factors influencing the resonant wavelength. Our analysis shows that all parametric values decrease with increase in waveguide width and spacing. The inclusion of waveguide mode overlap and perturbation in coupled mode equation results in enhanced resonator sensitivity of an order of magnitude

  8. Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-07-01

    A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.

  9. Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-06-01

    A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.

  10. Analysis of elastic micro optical components under large deformation

    NASA Astrophysics Data System (ADS)

    Hoshino, Kazunori; Shimoyama, Isao

    2003-01-01

    We describe a technique for analyzing the mechanical and optical properties of deformable optical elements that combines the finite element method, ray-tracing and birefringence measurement. We fabricated a pneumatically actuated microlens array on an elastic polydimethylsiloxane (PDMS) film to assess the proposed analysis technique. The lenses are 120 mum in diameter and arranged on the top surface of a 200 mum thick base film. The lenses are displaced by pneumatic actuators at the bottom of the film. The measured mechanical-optical properties of the PDMS test materials showed a good match with the calculation. The paths and retardation of light beams transmitted in the microlens array under several actuating conditions were then analyzed. The lens displacement of 21.8 mum was measured at an applied pressure of -45 kPa. At the same pressure, a ray-trace analysis showed that the actuator changed the visual axis of each lens by 5°, while the retardation was estimated to be within the order of 5 × 10-3 nm.

  11. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  12. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  13. Plastic micro-optical components with the LIGA technology

    NASA Astrophysics Data System (ADS)

    Singleton, Laurence; Detemple, Peter; Frese, I.; Klotzbuecher, Thomas; Bauer, Hans-Dieter

    2003-01-01

    Moulding of plastics enables optical features to be integrated into a single unit. This is particularly an advantage for product designs that impose space and weight constraints. Therefore, the use of plastic for biomedical and non telecommunications orientated optical applications continues to grow as design engineers take advantage of the ease of fabrication and the material flexibility. Deep X-ray LIGA presents itself as a method ideally suited for the production of moulds for the manufacture of plastic microcomponents. LIGA is synonymous for the lithography preferably carried out with synchrotron radiation X-rays, although many other lithography and non-lithography methods for master production have been developed in the last few years. Nevertheless, the exceptional resist heights, the enormous accuracy and low runout as well as the low sidewall roughnesses cannot be copied by these other methods of master production. In particular, the low sidewall roughnesses achieved through deep X-ray LIGA is essential for the manufacture of waveguide coupling systems based on polymers. The design and conceptualisation of such waveguides systems is presented here. In addition however, the exceptional resist heights and low runout can be employed to produce passive structures for the packaging of optical components. This paper provides an overview of the deep X-ray LIGA technology, emphasizing its strengths and application areas. Considerations for the design and manufacture of the plastic structures are also elucidated.

  14. Small Animal Imaging with Compact Micro-Ct Scanner with Timepix Quad Detector

    NASA Astrophysics Data System (ADS)

    Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Mrzilkova, Jana; Turecek, Daniel; Jakubek, Jan; Jakubek, Martin; Svoboda, Zdenek; Zach, Petr; Andel, Michal

    2014-06-01

    X-ray microtomography is currently one of the leading approaches in high resolution imaging providing information about the internal structure of the investigated objects. In biological imaging, this method is, however, still limited by low contrast of soft tissue. This limitation can be in some cases overcome by the application of contrast agents. The other possibility is based on the use of a new generation of noiseless particle counting detectors providing wide dynamic range which enable to detect even slight intensity changes induced by soft tissue in the transmitted beam. In this work, we demonstrate the performance of a redesigned MARS CT scanner equipped with the Timepix detector. Results of X-ray microtomographies of several biological samples demonstrating improved soft tissue sensitivity are presented.

  15. Quantification of pulmonary arterial wall distensibility using parameters extracted from volumetric micro-CT images

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Dawson, Christopher A.

    1999-09-01

    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy.

  16. Fabrication of two-dimensional micro patterns for adaptive optics by using laser interference lithography

    NASA Astrophysics Data System (ADS)

    Li, Xinghui; Cai, Yindi; Aihara, Ryo; Shimizu, Yuki; Ito, So; Gao, Wei

    2015-07-01

    This paper presents a fabrication method of two-dimensional micro patterns for adaptive optics with a micrometric or sub-micrometric period to be used for fabrication of micro lens array or two-dimensional diffraction gratings. A multibeam two-axis Lloyd's mirror interferometer is employed to carry out laser interference lithography for the fabrication of two-dimensional grating structures. In the proposed instrument, the optical setup consists of a light source providing a laser beam, a multi-beam generator, two plane mirrors to generate a two-dimensional XY interference pattern and a substrate on which the XY interference pattern is to be exposed. In this paper, pattern exposure tests are carried out by the developed optical configuration optimized by computer simulations. Some experimental results of the XY pattern fabrication will be reported.

  17. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  18. Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Hsing; Wu, Jay; Hsieh, Bor-Tsung; Chen, De-Shiou; Wang, Tzu-Hwei; Chien, Sou-Hsin; Chang, Yuan-Jen

    2014-11-01

    The accuracy of an optical computed tomography (CT)-based dosimeter is significantly affected by the refractive index (RI) of the matching liquid. Mismatched RI induces reflection and refraction as the laser beam passes through the gel phantom. Moreover, the unwanted light rays collected by the photodetector produce image artifacts after image reconstruction from the collected data. To obtain the best image quality, this study investigates the best-fit RI of the matching liquid for a 3D NIPAM gel dosimeter. The three recipes of NIPAM polymer gel used in this study consisted of 5% gelatin, 5% NIPAM and 3% N,N'-methylene bisacrylamide, which were combined with three compositions (5, 10, and 20 mM) of Tetrakis (hydroxymethyl) phosphonium chloride. Results were evaluated using a quantitative evaluation method of the gamma evaluation technique. Results showed that the best-fit RI for the non-irradiated NIPAM gel ranges from 1.340 to 1.346 for various NIPAM recipes with sensitivities ranging from 0.0113 to 0.0227. The greatest pass rate of 88.00% is achieved using best-fit RI=1.346 of the matching liquid. The adoption of mismatching RI decreases the gamma pass rate by 2.63% to 16.75% for all three recipes of NIPAM gel dosimeters. In addition, the maximum average deviation is less than 0.1% for the red and transparent matching liquids. Thus, the color of the matching liquid does not affect the measurement accuracy of the NIPAM gel dosimeter, as measured by optical CT.

  19. Breadboard micro-pore optic development for x-ray imaging

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Collon, Maximilien J.; Beijersbergen, Marco W.; Oemrawsingh, Sumant; Bavdaz, Marcos; Schyns, Emile

    2007-09-01

    Technology associated with x-ray optics for missions such as ESA's XMM-Newton are not compatible with the demanding mass requirements for planetary explorers. Glass micro-pore optics are an enabling technology for future ESA missions to fly remote, planetary, x-ray imagers, by facilitating mass and volume reduction. Activities pursued by ESA have developed manufacturing techniques for micro-channel plates to produce high quality, square fibres, which are used to form glass plates containing square micro-channel pores, with diameters from 10 μm and fill factors around 60%. Matched pairs of plates can be deformed under heat and pressure to form spherical surfaces, such that each plate approximates the radius of one part of the tandem pair of a Wolter I configuration. In such a configuration the tangential walls of the concentric rings of pores are used as the grazing incidence, reflective surfaces that focus x-rays. The monolithic structure of the plates allows dense packing of the rings of x-ray mirrors and simplifies mounting, especially with respect to thermal and mechanical considerations. To improve x-ray reflectivity, processes to coat the channel surfaces with elements such as Ni and Ir have also been investigated. This paper discusses the design of a structure to support the optic segments and assembly of the optics into a structure. Pairs of plates must be aligned into tandems and fixed to form segments of the x-ray optic. Each tandem pair must be aligned into a structure which will support the plates through thermal and mechanical loading. A structure has been designed to allow assembly of the optic within tolerances justified by analysis. Replacement of individual tandems is possible. Thermal and mechanical analyses have been performed to assess the performance and survivability of the optic under loads. An assembly plan has been designed to allow maximisation of the effective area of the optic and ensure its best performance.

  20. Studying the morphology of lyophilized protein solids using X-ray micro-CT: effect of post-freeze annealing and controlled nucleation.

    PubMed

    Izutsu, Ken-ichi; Yonemochi, Etsuo; Yomota, Chikako; Goda, Yukihiro; Okuda, Haruhiro

    2014-10-01

    The objective of this study was to determine how different techniques used during the freezing step of lyophilization affect morphology of the dried protein solids. Aqueous solutions containing recombinant human albumin, trehalose, and sodium phosphate buffer were dried after their freezing by shelf-ramp cooling, immersion in liquid nitrogen, or controlled ice nucleation. Some shelf-frozen solutions were heat treated (annealed) before the vacuum drying. We used three-dimensional (3D) X-ray micro-computed tomography (micro-CT) and scanning electron microscopy (SEM) to study the morphology of solids. The X-ray micro-CT images of the lyophilized microporous solids showed traces of varied size and structure ice crystals that were comparable to corresponding SEM images. A post-freeze heat treatment and a controlled nucleation both induced larger ice crystal ghosts in the solids. The variations in the structure of walls surrounding ice crystals, formed by the different freezing procedures, should affect the water vapor transition during the primary and secondary drying. Some solids also showed higher-density layer in the upper surface. Overall, the simple sample preparation procedures and the ample morphological information make the X-ray micro-CT appropriate for analyzing lyophilized pharmaceuticals.

  1. A preliminary analysis of LET effects in the dosimetry of proton beams using PRESAGE and optical CT.

    PubMed

    Al-Nowais, S; Doran, S; Kacperek, A; Krstajic, N; Adamovics, J; Bradley, D

    2009-03-01

    PRESAGE is a solid dosimeter based on a clear polyurethane matrix doped with radiochromic components (leuco dyes). On exposure to ionizing radiation a colour change is generated in the dosimeter, and hence an optical absorption or optical density change that can be read out by optical CT. The main focus of present investigations has been to investigate the possible LET dependence of PRESAGE to the dose deposited at the Bragg maxima using proton beam absorbed dose measurements, and the linearity of response of the dosimeter. Proton irradiations were performed using the proton beam facility at the Douglas Cyclotron, Clatterbridge Centre for Oncology (CCO) using a configuration that approximates the one routinely used in treatment of patients with ocular tumours. The samples were irradiated with both monoenergetic and modulated proton beams. Optical tomography measurements were carried out with our in-house CCD-based optical-CT system. Initial results for monoenergetic beams show that in PRESAGE the measured ratio of the Bragg peak dose to entrance dose is approximately 2:1 whereas the true value measured at CCO is approximately 5:1. For range-modulated proton beams, the absorbed dose close to the end of the proton range, i.e. at the Bragg peak, is underestimated by approximately 20% compared to the corresponding diode measurement. Further investigations are necessary to understand and quantify the effect of LET on PRESAGE, and to measure the uncertainties related to our optical CT.

  2. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    NASA Astrophysics Data System (ADS)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  3. Photo-induced micro-mechanical optical switch

    DOEpatents

    Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.

    2002-01-01

    An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.

  4. Confocal microscopic analysis of optical crosstalk in GaN micro-pixel light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, K. H.; Cheung, Y. F.; Cheung, W. S.; Choi, H. W.

    2015-10-01

    The optical crosstalk phenomenon in GaN micro-pixel light-emitting diodes (LED) has been investigated by confocal microscopy. Depth-resolved confocal emission images indicate light channeling along the GaN and sapphire layers as the source of crosstalk. Thin-film micro-pixel devices are proposed, whereby the light-trapping sapphire layers are removed by laser lift-off. Optical crosstalk is significantly reduced but not eliminated due to the remaining GaN layer. Another design involving micro-pixels which are completely isolated is further proposed; such devices exhibited low-noise and enhanced optical performances, which are important attributes for high-density micro-pixel LED applications including micro-displays and multi-channel optical communications.

  5. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence

    PubMed Central

    Vanderoost, Jef; van Lenthe, G Harry

    2014-01-01

    The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships

  6. Variation in osteocyte lacunar morphology and density in the human femur - a synchrotron radiation micro-CT study

    SciTech Connect

    Carter, Yasmin; Thomas, C David L.; Clement, John G; Peele, Andrew G; Hannah, Kevin; Cooper, David M.L.

    2013-04-09

    In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within the femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized

  7. Batch fabrication of micro-optical sensing and imaging devices

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Reimann, A.; Oelschläger, A.; Dannberg, P.; Blöhbaum, F.; Koburg, C.; Köhler, T.

    2013-03-01

    As demonstrated in microelectronics, the batch fabrication based on the processing of wafers can lead to a significant reduction in prize as well as in size. This concept was adapted to the fabrication of imaging optics extensively used in mobile phone cameras relying on small pixels and low resolutions such as VGA. We report on batch fabricated customer specific opto-electronical modules used in machine sensing and automotive applications relying on large pixel sizes and non-conventional sensor characteristics. We specially focus on the lens mold mastering for the subsequent UV-replication since comparatively large sag heights of 250μm are required. Two technological approaches were applied, first, based on reflow of photoresist and, second, using diamond turning for the generation of a single lens mold and a subsequent step&repeat-process for array mastering on 8" wafers. Aspects of the optical design and simulation, the batch fabrication based on 8" wafers and characterization results are provided by the example of an f/1.1 opto-electronic sensor and an objective for a global shutter imager using 550x550 pixels with 3.6μm pitch.

  8. Micro-CT application for infiltration technology in paedodontics and orthodontics

    NASA Astrophysics Data System (ADS)

    Ogodescu, Alexandru; Manescu, Adrian; Ogodescu, Ana Emilia; Giuliani, Alessandra; Todea, Carmen

    2014-01-01

    White spot lesions are an early evidence of the demineralization of the enamel surface and are the first step of future caries that will develop on those spots. Recently, a new and innovative biotechnology was developed - Icon, a caries infiltrant to be introduced in early tooth lesions, able to achieve a very good preservation of dental structures. In order to assess the infiltrant penetration level inside the white spot lesions, a non-destructive 3D visualization method is needed. Phase-contrast micro computed tomography using synchrotron radiation proved to be a powerful technique, allowing a 3D morphological investigation of all the components of interest: tooth structure, white spot lesions extension, infiltrant penetration inside the lesions, without the need of slicing the specimens. From our clinical experience and the conducted research we can conclude that this technology is effective and useful in many clinical situations encountered in pediatric dentistry.

  9. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect

    Patterson, Brian M; Hamilton, Christopher E; Cerreta, Ellen K; Dennis - Koller, Darcie; Bronkhorst, C. A.; Hansen, B. L.

    2011-01-26

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  10. TU-F-18C-08: Micro-Calcification Detectability Using Spectral Breast CT Based On a Si Strip Detector

    SciTech Connect

    Cho, H; Ding, H; Molloi, S; Barber, W; Iwanczyk, J

    2014-06-15

    Purpose: To investigate the feasibility of micro-calcification (μCa) detectability by using an energy-resolved photon-counting Si strip detector for spectral breast computed tomography (CT). Methods: A bench-top CT system was constructed using a tungsten anode x-ray source with a focal spot size of 0.8 mm and a single line 256-pixel Si strip photon counting detector with a pixel pitch of 100 μm. The slice thickness was 0.5 mm. Five different size groups of calcium carbonate grains, from 105 to 215 μm in diameter, were embedded in a cylindrical resin phantom with a diameter of 16 mm to simulate μCas. The phantoms were imaged at 65 kVp with an Entrance Skin Air Kerma (ESAK) of 1.2, 3, 6, and 8 mGy. The images were reconstructed using a standard filtered back projection (FBP) with a ramp filter. A total of 200 μCa images (5 different sizes of μCas × 4 different doses × 10 images for each setting) were combined with another 200 control images without μCas, to ultimately form 400 images for the reader study. The images were displayed in random order to three blinded observers, who were asked to give a binary score on each image regarding the presence of μCas. The μCa detectability for each image was evaluated in terms of binary decision theory metrics. The sensitivity, specificity, and accuracy were calculated to study the size and dose-dependence for μCa detectability. Additionally, the influence of the partial volume effect on the μCa detectability was investigated by simulation. Results: For a μCa larger than 140 μm in diameter, detection accuracy of above 90 % was achieved with the investigated prototype spectral CT system at ESAK of 1.2 mGy. Conclusion: The proposed Si strip detector is expected to offer superior image quality with the capability to detect μCas for low dose breast imaging.

  11. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.

    PubMed

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C; Park, Shery; Sanchez-Lara, Pedro A; Chai, Yang

    2015-04-15

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.

  12. Effects of growth hormone and ultrasound on mandibular growth in rats: MicroCT and toxicity analyses.

    PubMed

    Khan, Imran; El-Kadi, Ayman O; El-Bialy, Tarek

    2013-09-01

    It has been shown by previous studies that mandibular growth can be enhanced by the systemic administration of recombinant growth hormone (rGH) and/or local application of therapeutic low intensity pulsed ultrasound (LIPUS). The purpose of this study was to determine if local injection of rGH and application of LIPUS to the temporomandibular joint (TMJ) would synergistically enhance mandibular growth. In an animal study, the effect of rGH, LIPUS, and combination of rGH and LIPUS on male Sprague-Dawley rats was observed. Mandibular growth was evaluated by measuring total hemimandibular and condylar bone volume and bone surface area as well as condylar bone mineral density (BMD) after 21 days on dissected rats' mandibles using micro-computed tomography (MicroCT). The expression of c-jun mRNA extracted from the liver of each of these rats was also quantified by real-time polymerase chain reaction to evaluate possible systemic effect of local rGH administration. Significant growth stimulation was observed in the mandibular and condylar bone of the animals treated with rGH, LIPUS, and rGH/LIPUS combined when compared with the control group. Bone volume, surface area, condylar bone mineral density, and c-jun expression were also compared between the treatment groups and the control in the liver. The results suggest that mandibular growth may be enhanced by injection of rGH or LIPUS application. The current study although showed synergetic effect of rGH and LIPUS application in increasing mandibular condylar head length, there was no significant changes in mandibular bone volume using both treatments together when compared to the two individual treatments. Moreover, combined rGH and LIPUS decreased condylar bone mineral density than each treatment separately. Future research could be directed to investigate the effects of different rGH doses and/or different LIPUS exposures parameters on lower jaw growth.

  13. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Benson, T. M.; Gregor, J.

    2006-09-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  14. 3D registration of micro PET-CT for measurable correlates of dyspeptic symptoms in mice

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Simpson, Kathryn; Bardsley, Michael R.; Popko, Laura N.; Young, David L.; Kemp, Bradley J.; Lowe, Val; Ordog, Tamas; Robb, Richard

    2009-02-01

    Patients with chronic calorie insufficiency commonly suffer from upper gastrointestinal dysfunction and consequent dyspeptic symptoms, which may interfere with their nutritional rehabilitation. To investigate the relationship between gastric dysfunction and feeding behavior, we exposed mice to chronic caloric restriction and demonstrated gastric motor abnormalities in them. Gastric dysmotility is typically associated with dyspeptic symptoms but sensations cannot be directly assessed in animal models. Therefore, as an initial step toward establishing measurable correlates of postprandial symptoms in small animals, we have attempted to characterize central responses to food intake by positron emission tomography-computerized microtomography (PET-CT) in normal and calorically restricted mice. Animals consumed a standard test meal after an overnight fast before receiving 2-deoxy-2[18F]fluoro-D-glucose tracer. The same mice were also scanned in the fasting state on a separate day. We were able to bring the fed and fasting PET volume images into spatial registration with each other and with an MR-derived atlas of the mouse brain, so that the differences in uptake between the two states could be mapped quantitatively against the neuroanatomic regions of the atlas. Our approach is suitable for studying the effects of gastric dysmotilities on central responses to feeding.

  15. Functionalization of UV-curing adhesives for surface-integrated micro-polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Hachicha, B.; Overmeyer, L.

    2016-02-01

    Polymer optical waveguides, especially single-mode waveguides are increasingly used for short distance communication, as well as for sensing applications. The realization of a working communication route requires different and sequentially realized steps. Generally, these steps are the packaging of semiconductor beam senders and receivers, the fabrication of an optical waveguide, the preparation of its end-facets, the alignment of different elements along their optical axis and the integration into a desired communication route. The development of a process, which integrates all these steps for planar surfaces, offers a reduction in time and an increase in flexibility. A sub-step toward such a highly automated system is the integration of optical waveguides into the planar surface. In this context, we are investigating the use of the micro-dispensing process to realize this integration step. We functionalize UV-curing adhesives as cladding for micro-optical cores as well as for inherent bonding to the substrate surface. For this purpose an optical characterization of the adhesives is necessary for an adequate core and cladding material combination. A ow behavior characterization is also relevant in order to analyze the used dispensing process with the selected adhesive. Finally, a mechanical characterization is done to test the adhesion of the core to the adhesive, as well as the adhesive to the substrate surface. In this paper we present a summary of the realized characterization of the selected polymer. Based on experiment results we infer limits and opportunities of this method.

  16. Transmission performance of one waveguide and double micro-ring resonator using 3×3 optical fiber coupler

    NASA Astrophysics Data System (ADS)

    Zhao, Chao Ying; Tan, Wei Han

    2016-09-01

    This paper investigates theoretically the transmission characteristics of one waveguide and double micro-ring resonator using 3 × 3 optical fibre coupler. Our analytical solution of transmittance is suitable for either linearly distributed coupler or circularly symmetric distributed coupler. The all-optical analogue to electromagnetic inducted transparency spectrum of one waveguide and double micro-ring resonators can be controlled by changing the coupling strength between waveguide and micro-rings, the absorption coefficient around micro-rings, as well as the asymmetric coupling coefficients between non-adjacent waveguides. The curves show that the transitions of transmission spectra sensitively depend on asymmetric coupling coefficients.

  17. Fabricating a variety of micro-optics structures using anisotropic etching of silicon

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wei, Ming-yue; Wang, Meng; Zhang, Xin-yu; Xie, Chang-sheng; Zhang, Tian-xu

    2010-10-01

    A variety of micro-optics structures can be fabricated using a dual-step anisotropic etching of KOH: H2O over (100) silicon. A key step of this method is the design of mask layout. In accordance with the expected profile, this paper implemented a set of algorithms through computer programming to design the mask, and after setting a set of parameters, the final etching profile can be simulated. According to the data of the mask layout generated by the program, a lithography mask is fabricated, and then through the single-step lithography and dual-step wet etching, the expected profile is acquired. The mask can be fast and efficiently designed using this method, and through follow-up procedures, many kinds of aspherical and irregular micro-structures can be obtained. In this study, a series of 512x512 arrays of concave lenses are designed using the algorithm, and then the follow-up procedures are carried out using the most appropriate corrosion issues calculated by the program, and finally get a good result. At the end of this study, the lens' surface profile, roughness, and optical performance, etc, are tested. Test results show that the micro lens are very neat, and the hole size and depth of each unit have basically the same size. The surface profile and roughness already achieve optical mirror requirements, and the structures have good optical performances.

  18. At the limit of nondispersive micro and nanofocusing mirror optics.

    SciTech Connect

    Ice, G. E.; Specht, E. D.; Tischler, J. Z.; Khounsary, A.; Assoufid, L.; Liu, C.; Experimental Facilities Division; ORNL

    2004-01-01

    We describe x-ray Kirkpatrick-Baez mirror designs with the potential to produce hard x-ray beams of 40 nm or smaller. The x-ray quality mirrors required to achieve the desired performance can be fabricated by differential deposition on ultra-smooth surfaces, or by differential polishing. Various mirror systems designed for nanofocusing to {approx}40 nm and below are compared. The performance limits of total-external-reflection mirrors are compared with the limits of multilayer mirrors that can potentially focus to an even smaller spot size. The advantages of side-by-side Kirkpatrick-Baez mirrors are evaluated and more advanced, four-mirror systems with significantly greater geometrical demagnification are discussed. These systems can potentially reach 5 - 20 nm focal spot sizes for multilayer and total-external-reflection optics respectively.

  19. Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches

    NASA Astrophysics Data System (ADS)

    Liu, L.; Huang, X.; Li, S.; Lu, Yao; Chen, K.; Lu, Y. F.

    2016-03-01

    A cost effective method for optical emission enhancement in laser-induced breakdown spectroscopy (LIBS) has been proposed in this research. The pulsed Nd:YAG laser with a wavelength of 532 nm was used for sample ablation and plasma generation. A cost effective commercial butane micro-torch was put parallel to the sample surface to generate a small flame above the surface. The laser-induced plasma expanded in the flame environment. The time-resolved optical emission intensity and signal-to-noise ratio (SNR) have been observed with and without micro torch. For laser with pulse energy of 20 mJ, the relationship between optical emission intensity and delay time indicates that signal intensities have been greatly enhanced in the initial several microseconds when using micro torch. The time-resolved study of signal-to-noise ratio shows that the maximum SNR occurs at the delay time of 2 μs. The laser energy effects on the enhancements of optical emission intensity and SNR have also been analyzed, which indicates that the enhancement factors are both delay time and laser energy dependent. The maximum enhancement factors for both optical emission intensity and SNR gradually decreases with the laser energy increase. The limits of detection (LODs) for aluminum (Al) and molybdenum (Mo) in steel have been estimated, which shows that the detection sensitivity has been improved by around 4 times. The LODs of Al and Mo have been reduced from 18 to 6 ppm and from 110 to 36 ppm in LIBS, respectively. The method of LIBS by a micro torch has been demonstrated to be a cost effective method for detection sensitivity improvement, especially in the situation of low laser pulse energy.

  20. A comprehensive evaluation of the PRESAGE∕optical-CT 3D dosimetry system

    PubMed Central

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5× scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1×3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5× commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to ∼2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in opaqueness

  1. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system.

    PubMed

    Sakhalkar, H S; Adamovics, J; Ibbott, G; Oldham, M

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1 x 3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to approximately 2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  2. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    SciTech Connect

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  3. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining.

    PubMed

    Yamaki, Koichi; Kataoka, Yu; Ohtsuka, Fukunaga; Miyazaki, Takashi

    2012-01-01

    Titanium surfaces processed by wire-type electric discharge machining (EDM) are microfabricated surfaces with an irregular morphology, and they exhibited excellent in vitro bone biocompatibility. In this study, the efficiency of in vivo osteogenesis on EDM surfaces was investigated by surgically placing screw-shaped EDM-processed and machined-surface implants into the femurs of four Japanese white rabbits. The volume and process of new bone formation were evaluated by an X-ray micro-CT scanner, coupled with histopathological observations at 1, 2, and 4 weeks post-implantation. Before surgical implantation, the surface topography and contact angle of each implant surface were examined. Bone formation increased over time on both implant surfaces, with both implant types yielding statistically equivalent bone volume at 4 weeks post-implementation. However, at 1 week post-implantation, amount of new bone at EDM-processed implant was markedly greater than that at machined-surface implant. Moreover, new bone appeared to initiate directly from the EDM surfaces, while new bone appeared to generate from pre-existing host bone to the machined surfaces. Thus, EDM seemed to be a promising method for surface modification of titanium implants to support enhanced osteogenesis.

  4. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    NASA Astrophysics Data System (ADS)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  5. Three-dimensional reconstruction of the odontophoral cartilages of Caenogastropoda (Mollusca: Gastropoda) using micro-CT: Morphology and phylogenetic significance.

    PubMed

    Golding, Rosemary E; Ponder, Winston F; Byrne, Maria

    2009-05-01

    Odontophoral cartilages are located in the molluscan buccal mass and support the movement of the radula during feeding. The structural diversity of odontophoral cartilages is currently known only from limited taxa, but this information is important for interpreting phylogeny and for understanding the biomechanical operation of the buccal mass. Caenogastropods exhibit a wide variety of feeding strategies, but there is little comparative information on cartilage morphology within this group. The morphology of caenogastropod odontophoral cartilages is currently known only from dissection and histology, although preliminary results suggest that they may be structurally diverse. A comparative morphological survey of 18 caenogastropods and three noncaenogastropods has been conducted, sampling most major caenogastropod superfamilies. Three-dimensional models of the odontophoral cartilages were generated using X-ray microscopy (micro-CT) and reconstruction by image segmentation. Considerable morphological diversity of the odontophoral cartilages was found within Caenogastropoda, including the presence of thin cartilaginous appendages, asymmetrically overlapping cartilages, and reflexed cartilage margins. Many basal caenogastropod taxa possess previously unidentified cartilaginous support structures below the radula (subradular cartilages), which may be homologous to the dorsal cartilages of other gastropods. As subradular cartilages were absent in carnivorous caenogastropods, adaptation to trophic specialization is likely. However, incongruence with specific feeding strategies or body size suggests that the morphology of odontophoral cartilages is constrained by phylogeny, representing a new source of morphological characters to improve the phylogenetic resolution of this group.

  6. Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice.

    PubMed

    Choi, Jaesung P; Foley, Matthew; Zhou, Zinan; Wong, Weng-Yew; Gokoolparsadh, Naveena; Arthur, J Simon C; Li, Dean Y; Zheng, Xiangjian

    2016-01-01

    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.

  7. Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice

    PubMed Central

    Choi, Jaesung P.; Foley, Matthew; Zhou, Zinan; Wong, Weng-Yew; Gokoolparsadh, Naveena; Arthur, J. Simon C.; Li, Dean Y.; Zheng, Xiangjian

    2016-01-01

    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases. PMID:27513872

  8. Automated detection of retinal cell nuclei in 3D micro-CT images of zebrafish using support vector machine classification

    NASA Astrophysics Data System (ADS)

    Ding, Yifu; Tavolara, Thomas; Cheng, Keith

    2016-03-01

    Our group is developing a method to examine biological specimens in cellular detail using synchrotron microCT. The method can acquire 3D images of tissue at micrometer-scale resolutions, allowing for individual cell types to be visualized in the context of the entire specimen. For model organism research, this tool will enable the rapid characterization of tissue architecture and cellular morphology from every organ system. This characterization is critical for proposed and ongoing "phenome" projects that aim to phenotype whole-organism mutants and diseased tissues from different organisms including humans. With the envisioned collection of hundreds to thousands of images for a phenome project, it is important to develop quantitative image analysis tools for the automated scoring of organism phenotypes across organ systems. Here we present a first step towards that goal, demonstrating the use of support vector machines (SVM) in detecting retinal cell nuclei in 3D images of wild-type zebrafish. In addition, we apply the SVM classifier on a mutant zebrafish to examine whether SVMs can be used to capture phenotypic differences in these images. The longterm goal of this work is to allow cellular and tissue morphology to be characterized quantitatively for many organ systems, at the level of the whole-organism.

  9. Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen

    2016-03-01

    The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.

  10. Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate

    SciTech Connect

    Naik, N.N.; Jupe, A.C.; Stock, S.R.; Wilkinson, A.P.; Lee, P.L.; Kurtis, K.E. . E-mail: kkurtis@ce.gatech.edu

    2006-01-15

    X-ray microtomography (microCT) and spatially resolved energy dispersive X-ray diffraction (EDXRD) were used in combination to non-destructively monitor the physical and chemical manifestations of damage in Portland cement paste samples subjected to severe sodium sulfate attack. Additional measurements of expansion and compressive strength were made on complementary mortar and cement paste specimens. Specifically, the influences of cement type (ASTM Types I and V), water-to-cement ratio (0.485 and 0.435), and the presence of aggregate on the rate and forms of damage were examined. As expected, Type V cement samples exhibited less cracking and expansion than the Type I cement samples. EDXRD indicated an anticorrelation between ettringite and gypsum in the near-surface region for Type V samples, which may be associated with crack formation. An unanticipated result for Type I cement pastes was that cracking was apparent at earlier exposure times and progressed more rapidly for samples with w/c of 0.435, than for those with w/c of 0.485. Possible mechanisms for this behavior are proposed. The presence of aggregate particles resulted in a more rapid rate of cracking, as compared to the corresponding cement paste sample.

  11. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining.

    PubMed

    Yamaki, Koichi; Kataoka, Yu; Ohtsuka, Fukunaga; Miyazaki, Takashi

    2012-01-01

    Titanium surfaces processed by wire-type electric discharge machining (EDM) are microfabricated surfaces with an irregular morphology, and they exhibited excellent in vitro bone biocompatibility. In this study, the efficiency of in vivo osteogenesis on EDM surfaces was investigated by surgically placing screw-shaped EDM-processed and machined-surface implants into the femurs of four Japanese white rabbits. The volume and process of new bone formation were evaluated by an X-ray micro-CT scanner, coupled with histopathological observations at 1, 2, and 4 weeks post-implantation. Before surgical implantation, the surface topography and contact angle of each implant surface were examined. Bone formation increased over time on both implant surfaces, with both implant types yielding statistically equivalent bone volume at 4 weeks post-implementation. However, at 1 week post-implantation, amount of new bone at EDM-processed implant was markedly greater than that at machined-surface implant. Moreover, new bone appeared to initiate directly from the EDM surfaces, while new bone appeared to generate from pre-existing host bone to the machined surfaces. Thus, EDM seemed to be a promising method for surface modification of titanium implants to support enhanced osteogenesis. PMID:22673455

  12. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging.

    PubMed

    Steck, Roland; Ueno, Masaki; Gregory, Laura; Rijken, Noortje; Wullschleger, Martin E; Itoman, Moritoshi; Schuetz, Michael A

    2011-08-01

    Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

  13. Concentration-dependent specimen shrinkage in iodine-enhanced microCT

    PubMed Central

    Vickerton, Paula; Jarvis, Jonathan; Jeffery, Nathan

    2013-01-01

    Iodine potassium iodide (I2KI) solution can be employed as a contrast agent for the visualisation of soft tissue structures in micro-computed tomography studies. This technique provides high resolution images of soft tissue non-destructively but initial studies suggest that the stain can cause substantial specimen shrinkage. The degree of specimen shrinkage, and potential deformation, is an important consideration when using the data for morphological studies. Here we quantify the macroscopic volume changes in mouse skeletal muscle, cardiac muscle and cerebellum as a result of immersion in the common fixatives 10% phosphate-buffered formal saline, 70% ethanol and 3% glutaraldehyde, compared with I2KI staining solution at concentrations of 2, 6, 10 and 20%. Immersion in the I2KI solution resulted in dramatic changes of tissue volume, which were far larger than the shrinkage from formalin fixation alone. The degree of macroscopic change was most dependent upon the I2KI concentration, with severe shrinkage of 70% seen in solutions of 20% I2KI after 14 days' incubation. When using this technique care needs to be taken to use the lowest concentration that will give adequate contrast to minimise artefacts due to shrinkage. PMID:23721431

  14. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  15. MicroPET/CT Imaging of an Orthotopic Model of Human Glioblastoma Multiforme and Evaluation of Pulsed Low-Dose Irradiation

    SciTech Connect

    Park, Sean S.; Chunta, John L.; Robertson, John M.; Martinez, Alvaro A.; Oliver Wong, Ching-Yee; Amin, Mitual; Wilson, George D.; Marples, Brian

    2011-07-01

    Purpose: Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Methods: Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CT (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Results: Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 x 10{sup 6} cells produced a 50- to 70-mm{sup 3} tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). Conclusion: This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage.

  16. Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices.

    PubMed

    Lin, Shu-Ju; Hung, Shih-Hsun; Jeng, Jun-Yuan; Guo, Tzung-Fang; Lee, Gwo-Bin

    2012-01-01

    This study presents a novel technology to manipulate micro-particles with the assistance from flexible polymer-based optically-induced dielectrophoretic (ODEP) devices. Bending the flexible ODEP devices downwards or upwards to create convex or concave curvatures, respectively, enables the more effective separation or collection of micro-particles with different diameters. The travel distances of the polystyrene beads of 40 μm diameter, as induced by the projected light in a given time period was increased by ~100%, which were 43.0 ± 5.0 and 84.6 ± 4.0 μm for flat and convex ODEP devices, respectively. A rapid separation or collection of micro-particles can be achieved with the assistance of gravity because the falling polystyrene beads followed the inclination of the downward and upward bent ODEP devices.

  17. Comparative study on measured variables and sensitivity to bone microstructural changes induced by weightlessness between in vivo and ex vivo micro-CT scans.

    PubMed

    Sun, Lian Wen; Wang, Chao; Pu, Fang; Li, De Yu; Niu, Hai Jun; Fan, Yu Bo

    2011-01-01

    Depending on the experimental design, micro-CT can be used to examine bones either in vivo or ex vivo (excised fresh or formalin-fixed). In this study we investigated if differences exist in the variables measured by micro-CT between in vivo and ex vivo scans and which kind of scan is more sensitive to the changes of bone microstructure induced by simulated weightlessness. Rat tail suspension was used to simulate the weightless condition. The same bone from either normal or tail-suspended rats was scanned by micro-CT both in vivo and ex vivo (fresh and fixed by formalin). Then, bone mineral density (BMD) and microstructural characteristics were analyzed. The results showed that no significant differences existed in the microstructural parameters of trabecular bone among in vivo, fresh, and formalin-fixed bone scans from both femurs and tibias, although BMD exhibited differences. On the other hand, most parameters of the tail-suspended rats measured by micro-CT deteriorated compared with controls. Ex vivo scanning appeared to be more sensitive to bone microstructural changes induced by tail suspension than in vivo scanning. In general, the results indicate that values obtained in vivo and ex vivo (fresh and fixed) are comparable, thus allowing for meaningful comparison of experimental results from different studies irrespective of the type of scans. In addition, this study suggests that it is better to use ex vivo scanning when evaluating bone microstructure under weightlessness. However, researchers can select any type of scan depending upon the objective and the demands of the experiment.

  18. Four-channel optical add-drop multiplexer based on dual racetrack micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Wu, Danning; Wu, Yuanda; Wang, Yue; An, Junming; Hu, Xiongwei

    2015-11-01

    In this paper we report on a four-channel optical add-drop multiplexer based on dual racetrack micro-ring resonators in submicron SOI rib waveguides. The free spectral range (FSR) is about 18.6 nm. The device can add/drop four optical channels in half C-band. When the device acts as an optical drop multiplexer, the channel spacing is about 1.5 nm, maximum extinction ratio is 23.75 dB, the minimum insertion loss 9.94 dB and the maximum adjacent channels crosstalk is -12.12 dB. When the device acts as an optical add multiplexer, the maximum extinction ratio is 28.72 dB and the minimum insertion loss 7.35 dB. The fabricated device has effectively and perfectly realized the signals upload and download.

  19. Phase-space properties of magneto-optical traps utilising micro-fabricated gratings.

    PubMed

    McGilligan, J P; Griffin, P F; Riis, E; Arnold, A S

    2015-04-01

    We have used diffraction gratings to simplify the fabrication, and dramatically increase the atomic collection efficiency, of magneto-optical traps using micro-fabricated optics. The atom number enhancement was mainly due to the increased beam capture volume, afforded by the large area (4cm(2)) shallow etch (~ 200nm) binary grating chips. Here we provide a detailed theoretical and experimental investigation of the on-chip mag