Sample records for micro rna cluster

  1. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.

    PubMed

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2013-12-01

    The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p < 0.001). The development of OA-induced chronic pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly

  2. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas.

    PubMed

    Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J

    2016-02-16

    Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855).

  3. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas

    PubMed Central

    Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J

    2016-01-01

    Background: Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. Methods: The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Results: Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. Conclusions: A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855). PMID:26766736

  4. The expansion of the metazoan microRNA repertoire

    PubMed Central

    Hertel, Jana; Lindemeyer, Manuela; Missal, Kristin; Fried, Claudia; Tanzer, Andrea; Flamm, Christoph; Hofacker, Ivo L; Stadler, Peter F

    2006-01-01

    Background MicroRNAs have been identified as crucial regulators in both animals and plants. Here we report on a comprehensive comparative study of all known miRNA families in animals. We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursors whose expression has been verified in at least one species. Using this uniform data basis we analyze their evolutionary history in terms of individual gene phylogenies and in terms of preservation of genomic nearness across species. This allows us to reliably identify microRNA clusters that are derived from a common transcript. Results We identify three episodes of microRNA innovation that correspond to major developmental innovations: A class of about 20 miRNAs is common to protostomes and deuterostomes and might be related to the advent of bilaterians. A second large wave of innovations maps to the branch leading to the vertebrates. The third significant outburst of miRNA innovation coincides with placental (eutherian) mammals. In addition, we observe the expected expansion of the microRNA inventory due to genome duplications in early vertebrates and in an ancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local (tandem) duplications leading to the formation of about a dozen ancient microRNA clusters. Conclusion Our results suggest that microRNA innovation is an ongoing process. Major expansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates, and (placental) mammals. PMID:16480513

  5. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  6. The full-length microRNA cluster in the intron of large latency transcript is associated with the virulence of pseudorabies virus.

    PubMed

    Wang, Xin; Zhang, Mei-Mei; Yan, Kai; Tang, Qi; Wu, Yi-Quan; He, Wen-Bo; Chen, Huan-Chun; Liu, Zheng-Fei

    2018-07-01

    Pseudorabies virus (PRV), the etiological pathogen of Aujeszky's disease, belongs to the Alphaherpesvirus subfamily. Large latency transcript (LLT), the most abundant PRV transcript, harbors a ~ 4.6 kb microRNA (miRNA) cluster-encoding intron. To investigate the function of the LLT miRNA cluster during the life cycle of PRV, we generated a miRNA cluster mutation virus (PRV-∆miR cluster) and revertant virus. Analysis of the growth kinetics of PRV-ΔmiR cluster-infected cells revealed significantly smaller plaques and lower titers than the wild-type and revertant viruses. The mutation virus exhibited increased IE180 and decreased EP0 expression. The clinical symptoms observed in mice infected with PRV-ΔmiR cluster revealed that the miRNA cluster is involved in the pathogenesis of PRV. Physical parameters, virus shedding assays, and the SN 50 titers revealed that the miRNA cluster enhances PRV virulence in pigs. Collectively, our findings suggest that the full-length miRNA cluster is involved in PRV replication and virulence. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Identifying microRNA/mRNA dysregulations in ovarian cancer

    PubMed Central

    2012-01-01

    Background MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). Methods TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. Results We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory

  8. Identifying microRNA/mRNA dysregulations in ovarian cancer.

    PubMed

    Miles, Gregory D; Seiler, Michael; Rodriguez, Lorna; Rajagopal, Gunaretnam; Bhanot, Gyan

    2012-03-27

    MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Our findings identify

  9. A microRNA-mRNA expression network during oral siphon regeneration in Ciona

    PubMed Central

    Spina, Elijah J.; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S.

    2017-01-01

    Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. PMID:28432214

  10. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S.; Theis, Fabian J.

    2015-01-01

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method “miRlastic”, which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of mi

  11. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S; Theis, Fabian J

    2015-12-18

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method "miRlastic", which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that

  12. A microRNA-mRNA expression network during oral siphon regeneration in Ciona.

    PubMed

    Spina, Elijah J; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S; Smith, William C

    2017-05-15

    Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta , and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. © 2017. Published by The Company of Biologists Ltd.

  13. Identification of microRNA-mRNA modules using microarray data.

    PubMed

    Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Yang, Yee H

    2011-03-06

    MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs. We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest. Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.

  14. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway.

    PubMed

    Pande, Hari Om; Tesfaye, Dawit; Hoelker, Michael; Gebremedhn, Samuel; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Wondim, Dessie Salilew

    2018-05-01

    The granulosa cells are indispensable for follicular development and its function is orchestrated by several genes, which in turn posttranscriptionally regulated by microRNAs (miRNA). In our previous study, the miRRNA-424/503 cluster was found to be highly abundant in bovine granulosa cells (bGCs) of preovulatory dominant follicle compared to subordinate counterpart at day 19 of the bovine estrous cycle. Other study also indicated the involvement of miR-424/503 cluster in tumour cell resistance to apoptosis suggesting this miRNA cluster may involve in cell survival. However, the role of miR-424/503 cluster in granulosa cell function remains elusive Therefore, this study aimed to investigate the role of miRNA-424/503 cluster in bGCs function using microRNA gain- and loss-of-function approaches. The role of miR-424/503 cluster members in granulosa cell function was investigated by overexpressing or inhibiting its activity in vitro cultured granulosa cells using miR-424/503 mimic or inhibitor, respectively. Luciferase reporter assay showed that SMAD7 and ACVR2A are the direct targets of the miRNA-424/503 cluster members. In line with this, overexpression of miRNA-424/503 cluster members using its mimic and inhibition of its activity by its inhibitor reduced and increased, respectively the expression of SMAD7 and ACVR2A. Furthermore, flow cytometric analysis indicated that overexpression of miRNA-424/503 cluster members enhanced bGCs proliferation by promoting G1- to S- phase cell cycle transition. Modulation of miRNA-424/503 cluster members tended to increase phosphorylation of SMAD2/3 in the Activin signalling pathway. Moreover, sequence specific knockdown of SMAD7, the target gene of miRNA-424/503 cluster members, using small interfering RNA also revealed similar phenotypic and molecular alterations observed when miRNA-424/503 cluster members were overexpressed. Similarly, to get more insight about the role of miRNA-424/503 cluster members in activin signalling

  15. Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina*

    PubMed Central

    Zhu, Qubo; Sun, Wenyu; Okano, Kiichiro; Chen, Yu; Zhang, Ning; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    MicroRNA-183 (miR-183), miR-96, and miR-182 comprising the miR-183/96/182 cluster are highly expressed in photoreceptor cells. Although in vitro data have indicated an important role for this cluster in the retina, details of its in vivo biological activity are still unknown. To observe the impact of the miR-183/96/182 cluster on retinal maintenance and light adaptation, we generated a sponge transgenic mouse model that disrupted the activities of the three-component microRNAs simultaneously and selectively in the retina. Although our morphological and functional studies showed no differences between transgenic and wild type mice under normal laboratory lighting conditions, sponge transgenic mice displayed severe retinal degeneration after 30 min of exposure to 10,000 lux light. Histological studies showed that the outer nuclear layer thickness was dramatically reduced in the superior retina of transgenic mice. Real time PCR experiments in both the sponge transgenic mouse model and different microRNA stable cell lines identified Arrdc3, Neurod4, and caspase-2 (Casp2) as probable downstream targets of this cluster, a result also supported by luciferase assay and immunoblotting analyses. Further studies indicated that expression of both the cluster and Casp2 increased in response to light exposure. Importantly, Casp2 expression was enhanced in transgenic mice, and inhibition of Casp2 partially rescued their light-induced retinal degeneration. By connecting the microRNA and apoptotic pathways, these findings imply an important role for the miR-183/96/182 cluster in acute light-induced retinal degeneration of mice. This study demonstrates a clear involvement of miRs in the physiology of postmitotic cells in vivo. PMID:21768104

  16. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.

    PubMed

    Bellemer, Clément; Bortolin-Cavaillé, Marie-Line; Schmidt, Ute; Jensen, Stig Mølgaard Rask; Kjems, Jørgen; Bertrand, Edouard; Cavaillé, Jérôme

    2012-06-01

    Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.

  17. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes.

    PubMed

    Wommack, Joel C; Trzeciakowski, Jerome P; Miranda, Rajesh C; Stowe, Raymond P; Ruiz, R Jeanne

    2018-01-01

    The current study examined micro RNA (miRNAs) clusters from the maternal plasma to determine their association with preterm birth (PTB) and infant birth outcomes. A subsample of 42 participants who spontaneously delivered either preterm (≤37 weeks) or term was selected from a parent sample of 515 pregnant Mexican American women. Plasma samples and prenatal data were collected at a single mid-gestation time point (22-24 weeks' gestation) and birth outcomes were obtained from medical records after delivery. Circulating miRNAs were analyzed by qPCR. When miRNAs were grouped according to chromosomal cluster rather than expression level, individual miRNAs correlated strongly with other individual miRNAs within their respective genomic locus. miRNAs from the c19mc cluster negatively correlated with c14mc miRNAs, and this relationship was more pronounced in PTB. Clusters c14mc was negatively associated with length of gestation; while the c19mc was positively associated with length of gestation and infant head circumference. Together, these findings suggest that groups of miRNAs from common chromosomal clusters, rather than individual miRNAs, operate as co-regulated groups of signaling molecules to coordinate length of gestation and infant outcomes. From this evidence, differences in cluster-wide expression of miRNAs are involved in spontaneous PTB.

  18. MicroRNA networks in mouse lung organogenesis.

    PubMed

    Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A

    2010-05-26

    MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to

  19. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts

    PubMed Central

    Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C.; Chen, Yuqing; Bertin, Terry; Munivez, Elda; Campeau, Philippe M.; Tao, Jianning; Chen, Rui; Lee, Brendan H.

    2017-01-01

    Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. PMID:28397831

  20. MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia

    PubMed Central

    Verboon, Lonneke J.; Obulkasim, Askar; de Rooij, Jasmijn D.E.; Katsman, Jenny E.; Sonneveld, Edwin; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Pieters, Rob; Cloos, Jacqueline; Kaspers, Gertjan J.L.; Klusmann, Jan-Henning; Zwaan, Christian Michel; Fornerod, Maarten; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosis-relapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLL-rearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements. PMID:27351222

  1. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  2. Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming.

    PubMed

    Zhang, Zhonghui; Wu, Wen-Shu

    2018-01-01

    MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.

  3. Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data.

    PubMed

    Patrick, Ellis; Buckley, Michael; Müller, Samuel; Lin, David M; Yang, Jean Y H

    2015-09-01

    In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult. We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature. This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages. jean.yang@sydney.edu.au Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    PubMed

    Favaro, Elena; Ramachandran, Anassuya; McCormick, Robert; Gee, Harriet; Blancher, Christine; Crosby, Meredith; Devlin, Cecilia; Blick, Christopher; Buffa, Francesca; Li, Ji-Liang; Vojnovic, Borivoj; Pires das Neves, Ricardo; Glazer, Peter; Iborra, Francisco; Ivan, Mircea; Ragoussis, Jiannis; Harris, Adrian L

    2010-04-26

    Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1) and a microRNA, hsa-miR-210 (miR-210) which is associated with a poor prognosis. In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS) in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  5. MicroRNA Regulation of Lipid Metabolism

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2012-01-01

    MicroRNA are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis. PMID:22607769

  6. MicroRNA-302 Cluster Downregulates Enterovirus 71-Induced Innate Immune Response by Targeting KPNA2.

    PubMed

    Peng, Nanfang; Yang, Xuecheng; Zhu, Chengliang; Zhou, Li; Yu, Haisheng; Li, Mengqi; Lin, Yong; Wang, Xueyu; Li, Qian; She, Yinglong; Wang, Jun; Zhao, Qian; Lu, Mengji; Zhu, Ying; Liu, Shi

    2018-05-18

    Enterovirus 71 (EV71) induces significantly elevated levels of cytokines and chemokines, leading to local or systemic inflammation and severe complications. As shown in our previous study, microRNA (miR) 302c regulates influenza A virus-induced IFN expression by targeting NF-κB-inducing kinase. However, little is known about the role of the miR-302 cluster in EV71-mediated proinflammatory responses. In this study, we found that the miR-302 cluster controls EV71-induced cytokine expression. Further studies demonstrated that karyopherin α2 (KPNA2) is a direct target of the miR-302 cluster. Interestingly, we also found that EV71 infection upregulates KPNA2 expression by downregulating miR-302 cluster expression. Upon investigating the mechanisms behind this event, we found that KPNA2 intracellularly associates with JNK1/JNK2 and p38, leading to translocation of those transcription factors from the cytosol into the nucleus. In EV71-infected patients, miR-302 cluster expression was downregulated and KPNA2 expression was upregulated compared with controls, and their expression levels were closely correlated. Taken together, our work establishes a link between the miR-302/ KPNA2 axis and EV71-induced cytokine expression and represents a promising target for future antiviral therapy. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis.

    PubMed

    Zhang, Weigang; Yi, Xiuli; An, Yawen; Guo, Sen; Li, Shuli; Song, Pu; Chang, Yuqian; Zhang, Shaolong; Gao, Tianwen; Wang, Gang; Li, Chunying

    2018-05-11

    Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.

  8. [Association between hypertension and serum microRNA21 and microRNA133a in ocean seamen].

    PubMed

    Lin, J B; Chai, W L; Zhang, J M; Wang, Y P; Lin, S W; Li, H Y; Wu, S Y

    2016-06-20

    To investigate the prevalence of hypertension in ocean seamen and major influencing factors, as well as the association between hypertension and serum microRNA21 and microRNA133a. Health examination and a questionnaire survey were performed for 780 ocean seamen who underwent physical examination in an international travel healthcare center in Fujian, China from January to June, 2014. TaqMan RT-qPCR was used to measure the serum levels of microRNA21 and microRNA133a in seamen with hypertension. The prevalence of hypertension differed significantly between the ocean seamen with different ages, education levels, marital status, body mass index (BMI) values, drinking frequencies, and numbers of sailing years (P<0.05). The prevalence rate of hypertension in the ocean seamen increased with the increasing drinking frequency (χ(2)=9.02, P<0.05) , decreased with the increase in degree of education (χ(2)=11.578, P<0.05) , and increased with the increase in the number of sailing years (χ(2)=28.06, P<0.05). The hypertensive ocean seamen had significantly higher expression levels of microRNA21 and MicroRNA133a than the healthy ocean seamen (microRNA21: 7.87±5.46 vs 1.03±0.80, P<0.05; MicroRNA133a: 7.45±1.94 vs 4.52±1.15, P<0.05). The multivariate analysis showed that a high level of microRNA21 (OR=1.61, 95% CI: 1.22~2.11) , a high level of microRNA133a (OR=1.52, 95% CI: 1.24~1.87) , drinking (OR=1.64, 95% CI: 1.08~2.50) , overweight based on BMI (OR=1.18, 95%CI: 1.07~1.30) , and many sailing years (OR=2.89, 95% CI: 1.14~7.30) were risk factors for hypertension. The prevention and treatment of hypertension in ocean seamen should be enhanced. Excessive drinking should be controlled, and sailing time should be arranged reasonably. The microRNA21 and microRNA133a may be associated with the development and progression of hypertension in ocean seamen.

  9. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain

    PubMed Central

    Sakai, Atsushi; Saitow, Fumihito; Maruyama, Motoyo; Miyake, Noriko; Miyake, Koichi; Shimada, Takashi; Okada, Takashi; Suzuki, Hidenori

    2017-01-01

    miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. PMID:28677679

  10. The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer.

    PubMed

    Wang, Xiyin; Ivan, Mircea; Hawkins, Shannon M

    2017-11-01

    MicroRNA molecules are small, single-stranded RNA molecules that function to regulate networks of genes. They play important roles in normal female reproductive tract biology, as well as in the pathogenesis and progression of epithelial ovarian cancer. DROSHA, DICER, and Argonaute proteins are components of the microRNA-regulatory machinery and mediate microRNA production and function. This review discusses aberrant expression of microRNA molecules and microRNA-regulating machinery associated with clinical features of epithelial ovarian cancer. Understanding the regulation of microRNA molecule production and function may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of women with epithelial ovarian cancer. Additionally, understanding microRNA molecules and microRNA-regulatory machinery associations with clinical features may influence prevention and early detection efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  12. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma.

    PubMed

    Pan, Yue; Lu, Lingyun; Chen, Junquan; Zhong, Yong; Dai, Zhehao

    2018-01-01

    This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.

  13. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia.

    PubMed

    Nizyaeva, N V; Kulikova, G V; Nagovitsyna, M N; Kan, N E; Prozorovskaya, K N; Shchegolev, A I; Sukhikh, G T

    2017-07-01

    We studied the expression of microRNA-146a and microRNA-155 in placental villi from 18 women (26-39 weeks of gestation) of reproductive age with early- or late-onset preeclampsia. The reference group consisted of women with physiological pregnancy and full-term gestation and with preterm birth after caesarian section on gestation week 26-31. MicroRNA-146a and microRNA-155 were detected by in situ hybridization with digoxigenin on paraffin sections. It was found that the expression of microRNA-146a in both syncytiotrophoblast of the intermediate villi and syncytial knots was lower at late-onset preeclampsia than at physiologic pregnancy of full-term period (p=0.037 and p=0.001 respectively). The expression of microRNA-155 in syncytiotrophoblast of intermediate placental villi in early-onset preeclampsia was higher than in group with preterm delivery (p=0.003). However, in syncytiotrophoblast of intermediate villi and in syncytial knots, the expression of microRNA-155 was lower at late-onset preeclampsia in comparison with full-term physiological pregnancy (p=0.005). In addition, the expression of microRNA-146a and microRNA-155 did not increase in the later terms in preeclampsia, while in the reference groups demonstrating gradual increase in the expression of these markers with increasing gestational age. Expression microRNA-146a and microRNA-155 little differed in early- and late-onset preeclampsia. These findings suggest that different variants of preeclampsia are probably characterized by common pathogenetic pathways. Damaged trophoblast cannot maintain of microRNAs synthesis at the required level, which determines the formation of a vicious circle in preeclampsia and further progression of the disease.

  14. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application

    PubMed Central

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-01-01

    Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746

  15. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application.

    PubMed

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-06-16

    microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.

  16. Glucocorticoid-Mediated Repression of the Oncogenic microRNA Cluster miR-17∼92 Contributes to the Induction of Bim and Initiation of Apoptosis

    PubMed Central

    Molitoris, Jason K.; McColl, Karen S.

    2011-01-01

    Synthetic glucocorticoids were one of the first effective treatments for lymphoid malignancies because of their ability to induce apoptosis and are still used in combination with other chemotherapeutic agents. Up-regulation of Bim, a proapoptotic member of the B-cell lymphoma-2 family, is an important mediator of glucocorticoid-induced apoptosis. Although glucocorticoids are known to elevate Bim mRNA and protein, little is known about the mechanism. Here, we report that glucocorticoids repress the expression of the microRNA cluster miR-17∼92, which results in elevated Bim protein expression as a mechanism by which glucocorticoids induce Bim. Using a luciferase-Bim 3′ untranslated region construct, we demonstrate that glucocorticoids mediate Bim induction posttranscriptionally after miR-17∼92 repression, resulting in increased Bim protein expression. Overexpression of miR-17∼92 microRNAs decreases Bim induction and attenuates glucocorticoid-mediated apoptosis. Conversely, knockdown of miR-17∼92 increases Bim protein expression and glucocorticoid-mediated apoptosis. These findings indicate that endogenous levels of miR-17∼92 repress Bim expression in T-cell lymphoid malignancies and that glucocorticoids induce Bim expression via down-regulation of the miR-17∼92 microRNA cluster. Our findings present a novel mechanism that contributes to the up-regulation of Bim and induction of apoptosis in lymphocytes after glucocorticoid treatment. Furthermore, our work demonstrating that inhibition of miR-17∼92 increases glucocorticoid-induced apoptosis highlights the potential importance of miR-17∼92 as a therapeutic target in leukemias and lymphomas. PMID:21239610

  17. MicroRNA: Biogenesis, Function and Role in Cancer

    PubMed Central

    MacFarlane, Leigh-Ann; Murphy, Paul R.

    2010-01-01

    MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation. PMID:21532838

  18. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite.

    PubMed

    Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan

    2017-03-24

    MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.

  19. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  20. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  1. Pre-microRNA and Mature microRNA in Human Mitochondria

    PubMed Central

    Barrey, Eric; Saint-Auret, Gaelle; Bonnamy, Blandine; Damas, Dominique; Boyer, Orane; Gidrol, Xavier

    2011-01-01

    Background Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. Methodology/Principal Findings To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value<0.1) were found in the reference mitochondrial sequence and some of the best candidates were chosen for a co-localization test. In situ hybridization of pre-mir-302a, pre-let-7b and mir-365, using specific labelled locked nucleic acids and confocal microscopy, demonstrated that these miRNA were localized in mitochondria of human myoblasts. Total RNA was extracted from enriched mitochondria isolated by an immunomagnetic method from a culture of human myotubes. The detection of 742 human miRNA (miRBase) were monitored by RT-qPCR at three increasing mtRNA inputs. Forty six miRNA were significantly expressed (2nd derivative method Cp>35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). Conclusions/Significance The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria. PMID:21637849

  2. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    PubMed

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  3. Preclinical Evaluation of An Anti-HCV miRNA Cluster for Treatment of HCV Infection

    PubMed Central

    Yang, Xiao; Marcucci, Katherine; Anguela, Xavier; Couto, Linda B.

    2013-01-01

    We developed a strategy to treat hepatitis C virus (HCV) infection by replacing five endogenous microRNA (miRNA) sequences of a natural miRNA cluster (miR-17–92) with sequences that are complementary to the HCV genome. This miRNA cluster (HCV-miR-Cluster 5) is delivered to cells using adeno-associated virus (AAV) vectors and the miRNAs are expressed in the liver, the site of HCV replication and assembly. AAV-HCV-miR-Cluster 5 inhibited bona fide HCV replication in vitro by up to 95% within 2 days, and the spread of HCV to uninfected cells was prevented by continuous expression of the anti-HCV miRNAs. Furthermore, the number of cells harboring HCV RNA replicons decreased dramatically by sustained expression of the anti-HCV miRNAs, suggesting that the vector is capable of curing cells of HCV. Delivery of AAV-HCV-miR-Cluster 5 to mice resulted in efficient transfer of the miRNA gene cluster and expression of all five miRNAs in liver tissue, at levels up to 1,300 copies/cell. These levels achieved up to 98% gene silencing of cognate HCV sequences, and no liver toxicity was observed, supporting the safety of this approach. Therefore, AAV-HCV-miR-Cluster 5 represents a different paradigm for the treatment of HCV infection. PMID:23295950

  4. Inhibiting MicroRNA-503 and MicroRNA-181d with Losartan Ameliorates Diabetic Nephropathy in KKAy Mice.

    PubMed

    Zhu, XinWang; Zhang, CongXiao; Fan, QiuLing; Liu, XiaoDan; Yang, Gang; Jiang, Yi; Wang, LiNing

    2016-10-22

    BACKGROUND Diabetic nephropathy (DN) is the most lethal diabetic microvascular complication; it is a major cause of renal failure, and an increasingly globally prominent healthcare problem. MATERIAL AND METHODS To identify susceptible microRNAs for the pathogenesis of DN and the targets of losartan treatment, microRNA arrays were employed to survey the glomerular microRNA expression profiles of KKAy mice treated with or without losartan. KKAy mice were assigned to either a losartan-treated group or a non-treatment group, with C57BL/6 mice used as a normal control. Twelve weeks after treatment, glomeruli from the mice were isolated. MicroRNA expression profiles were analyzed using microRNA arrays. Real-time PCR was used to confirm the results. RESULTS Losartan treatment improved albuminuria and the pathological lesions of KKAy mice. The expression of 10 microRNAs was higher, and the expression of 12 microRNAs was lower in the glomeruli of the KKAy untreated mice than that of the CL57BL/6 mice. The expression of 4 microRNAs was down-regulated in the glomeruli of the KKAy losartan-treated mice compared to that of the untreated mice. The expression of miRNA-503 and miRNA-181d was apparently higher in the glomeruli of the KKAy untreated mice, and was inhibited by losartan treatment. CONCLUSIONS The over-expression of miR-503 and miR-181d in glomeruli of KKAy mice may be responsible for the pathogenesis of DN and are potential therapeutic targets for DN.

  5. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression.

    PubMed

    Shan, Sze Wan; Lee, Daniel Y; Deng, Zhaoqun; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Zhang, Yaou; Xuan, Jim W; Yee, Siu-Pok; Siragam, Vinayakumar; Yang, Burton B

    2009-08-01

    MicroRNAs (miRNAs) are single-stranded regulatory RNAs, frequently expressed as clusters. Previous studies have demonstrated that the six-miRNA cluster miR-17~92 has important roles in tissue development and cancers. However, the precise role of each miRNA in the cluster is unknown. Here we show that overexpression of miR-17 results in decreased cell adhesion, migration and proliferation. Transgenic mice overexpressing miR-17 showed overall growth retardation, smaller organs and greatly reduced haematopoietic cell lineages. We found that fibronectin and the fibronectin type-III domain containing 3A (FNDC3A) are two targets that have their expression repressed by miR-17, both in vitro and in transgenic mice. Several lines of evidence support the notion that miR-17 causes cellular defects through its repression of fibronectin expression. Our single miRNA expression assay may be evolved to allow the manipulation of individual miRNA functions in vitro and in vivo. We anticipate that this could serve as a model for studying gene regulation by miRNAs in the development of gene therapy.

  6. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  7. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  8. Animal models to study microRNA function

    PubMed Central

    Pal, Arpita S.; Kasinski, Andrea L.

    2018-01-01

    The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225

  9. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions.

    PubMed

    Vacchi-Suzzi, Caterina; Hahne, Florian; Scheubel, Philippe; Marcellin, Magali; Dubost, Valerie; Westphal, Magdalena; Boeglen, Catherine; Büchmann-Møller, Stine; Cheung, Ming Sin; Cordier, André; De Benedetto, Christopher; Deurinck, Mark; Frei, Moritz; Moulin, Pierre; Oakeley, Edward; Grenet, Olivier; Grevot, Armelle; Stull, Robert; Theil, Diethilde; Moggs, Jonathan G; Marrer, Estelle; Couttet, Philippe

    2013-01-01

    MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.

  10. miRBase: integrating microRNA annotation and deep-sequencing data.

    PubMed

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  11. Expanding the horizons of microRNA bioinformatics.

    PubMed

    Huntley, Rachael P; Kramarz, Barbara; Sawford, Tony; Umrao, Zara; Kalea, Anastasia Z; Acquaah, Vanessa; Martin, Maria-Jesus; Mayr, Manuel; Lovering, Ruth C

    2018-06-05

    MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyse microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics datasets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 3,900 Gene Ontology annotations associated with almost 500 miRNAs from human, mouse and rat and over 2,200 experimentally validated miRNA:target interactions. We illustrate how this resource can be used to create miRNA-focused interaction networks with a biological context using the known biological role of miRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent datasets for reproducible functional analysis of microRNAs across all biological research areas. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy

    PubMed Central

    Matkovich, Scot J.; Dorn, Gerald W.

    2018-01-01

    Summary MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicates purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses. PMID:25836573

  13. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    PubMed

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.

  14. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    PubMed Central

    2011-01-01

    Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Results Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a

  15. Conservation of a microRNA cluster in parasitic nematodes and profiling of miRNAs in excretory-secretory products and microvesicles of Haemonchus contortus

    PubMed Central

    Gu, Henry Y.; Marks, Neil D.; Winter, Alan D.; Weir, William; Tzelos, Thomas; McNeilly, Tom N.; Britton, Collette

    2017-01-01

    microRNAs are small non-coding RNAs that are important regulators of gene expression in a range of animals, including nematodes. We have analysed a cluster of four miRNAs from the pathogenic nematode species Haemonchus contortus that are closely linked in the genome. We find that the cluster is conserved only in clade V parasitic nematodes and in some ascarids, but not in other clade III species nor in clade V free-living nematodes. Members of the cluster are present in parasite excretory-secretory products and can be detected in the abomasum and draining lymph nodes of infected sheep, indicating their release in vitro and in vivo. As observed for other parasitic nematodes, H. contortus adult worms release extracellular vesicles (EV). Small RNA libraries were prepared from vesicle-enriched and vesicle-depleted supernatants from both adult worms and L4 stage larvae. Comparison of the miRNA species in the different fractions indicated that specific miRNAs are packaged within vesicles, while others are more abundant in vesicle-depleted supernatant. Hierarchical clustering analysis indicated that the gut is the likely source of vesicle-associated miRNAs in the L4 stage, but not in the adult worm. These findings add to the growing body of work demonstrating that miRNAs released from parasitic helminths may play an important role in host-parasite interactions. PMID:29145392

  16. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

  17. Causes and Consequences of microRNA Dysregulation

    PubMed Central

    Iorio, Marilena V.; Croce, Carlo M.

    2012-01-01

    It is currently well recognized that microRNA deregulation is an hallmark of human cancer, and how an aberrant expression of these tiny regulatory RNA molecules in several cell types is not just a random association, but it plays a causal role in different steps of the tumorigenic process, from the initiation and development to progression toward the acquisition of a metastatic phenotype. Different regulatory mechanisms can control microRNA expression at a genetic or epigenetic level as well as involving the biogenesis machinery or the recruitment of specific transcription factors. The tumorigenic process implies a substantial alteration of these mechanisms, thus disrupting the equilibrium within the cell and leading to a global change in microRNA expression, with loss of oncosuppressor microRNAs and overexpression of oncomiRNAs. Here we review the main mechanisms regulating microRNAs, and the consequences of their aberrant expression in cancer, with a glance at the possible implications at a clinical point of view. PMID:22647357

  18. MicroRNA signature of the human developing pancreas.

    PubMed

    Rosero, Samuel; Bravo-Egana, Valia; Jiang, Zhijie; Khuri, Sawsan; Tsinoremas, Nicholas; Klein, Dagmar; Sabates, Eduardo; Correa-Medina, Mayrin; Ricordi, Camillo; Domínguez-Bendala, Juan; Diez, Juan; Pastori, Ricardo L

    2010-09-22

    MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase algorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the

  19. MicroRNA signature of the human developing pancreas

    PubMed Central

    2010-01-01

    Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well

  20. A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster

    PubMed Central

    Li, Xiao Ling; Hara, Toshifumi; Choi, Youngeun; Subramanian, Murugan; Francis, Princy; Bilke, Sven; Walker, Robert L.; Pineda, Marbin; Zhu, Yuelin; Yang, Yuan; Luo, Ji; Wakefield, Lalage M.; Brabletz, Thomas; Park, Ben Ho; Sharma, Sudha; Chowdhury, Dipanjan; Meltzer, Paul S.

    2014-01-01

    The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21+/+ and p21−/− cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21−/− cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21+/+ cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop. PMID:24277930

  1. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy.

    PubMed

    Farr, Ryan J; Januszewski, Andrzej S; Joglekar, Mugdha V; Liang, Helena; McAulley, Annie K; Hewitt, Alex W; Thomas, Helen E; Loudovaris, Tom; Kay, Thomas W H; Jenkins, Alicia; Hardikar, Anandwardhan A

    2015-06-02

    MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-high content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.

  2. MicroRNA-mediated regulatory circuits: outlook and perspectives

    NASA Astrophysics Data System (ADS)

    Cora', Davide; Re, Angela; Caselle, Michele; Bussolino, Federico

    2017-08-01

    MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators.

  3. microRNA in Human Reproduction.

    PubMed

    Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal

    2015-01-01

    microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.

  4. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    PubMed Central

    Kruhøffer, Mogens; Dyrskjøt, Lars; Voss, Thorsten; Lindberg, Raija L.P.; Wyrich, Ralf; Thykjaer, Thomas; Orntoft, Torben F.

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated microRNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis. PMID:17690207

  5. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  6. microRNA therapies in cancer.

    PubMed

    Rothschild, Sacha I

    2014-01-01

    MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs" Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

  7. Distinct microRNA alterations characterize high- and low-grade bladder cancer.

    PubMed

    Catto, James W F; Miah, Saiful; Owen, Helen C; Bryant, Helen; Myers, Katie; Dudziec, Ewa; Larré, Stéphane; Milo, Marta; Rehman, Ishtiaq; Rosario, Derek J; Di Martino, Erica; Knowles, Margaret A; Meuth, Mark; Harris, Adrian L; Hamdy, Freddie C

    2009-11-01

    Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant urothelial samples using real-time rtPCR. Genes targeted by differentially expressed microRNA were investigated using real-time quantification and microRNA knockdown. We also examined the role of aberrant DNA hypermethylation in microRNA downregulation. We found that altered microRNA expression is common in UCC and occurs early in tumorogenesis. In normal urothelium from patients with UCC, 11% of microRNAs had altered expression when compared with disease-free controls. This was associated with upregulation of Dicer, Drosha, and Exportin 5. In UCC, microRNA alterations occur in a tumor phenotype-specific manner and can predict disease progression. High-grade UCC were characterized by microRNA upregulation, including microRNA-21 that suppresses p53 function. In low-grade UCC, there was downregulation of many microRNA molecules. In particular, loss of microRNAs-99a/100 leads to upregulation of FGFR3 before its mutation. Promoter hypermethylation is partly responsible for microRNA downregulation. In conclusion, distinct microRNA alterations characterize UCC and target genes in a pathway-specific manner. These data reveal new insights into the disease biology and have implications regarding tumor diagnosis, prognosis and therapy.

  8. Chemoprevention of Cigarette Smoke–Induced Alterations of MicroRNA Expression in Rat Lungs

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Cartiglia, Cristina; Longobardi, Mariagrazia; Croce, Carlo M.; De Flora, Silvio

    2015-01-01

    We previously showed that exposure to environmental cigarette smoke (ECS) for 28 days causes extensive downregulation of microRNA expression in the lungs of rats, resulting in the overexpression of multiple genes and proteins. In the present study, we evaluated by microarray the expression of 484 microRNAs in the lungs of either ECS-free or ECS-exposed rats treated with the orally administered chemopreventive agents N-acetylcysteine, oltipraz, indole-3-carbinol, 5,6-benzoflavone, and phenethyl isothiocyanate (as single agents or in combinations). This is the first study of microRNA modulation by chemopreventive agents in nonmalignant tissues. Scatterplot, hierarchical cluster, and principal component analyses of microarray and quantitative PCR data showed that none of the above chemopreventive regimens appreciably affected the baseline microRNA expression, indicating potential safety. On the other hand, all of them attenuated ECS-induced alterations but to a variable extent and with different patterns, indicating potential preventive efficacy. The main ECS-altered functions that were modulated by chemopreventive agents included cell proliferation, apoptosis, differentiation, Ras activation, P53 functions, NF-κB pathway, transforming growth factor–related stress response, and angiogenesis. Some micro-RNAs known to be polymorphic in humans were downregulated by ECS and were protected by chemopreventive agents. This study provides proof-of-concept and validation of technology that we are further refining to screen and prioritize potential agents for continued development and to help elucidate their biological effects and mechanisms. Therefore, microRNA analysis may provide a new tool for predicting at early carcinogenesis stages both the potential safety and efficacy of cancer chemopreventive agents. PMID:20051373

  9. Shielding the messenger (RNA): microRNA-based anticancer therapies

    PubMed Central

    Sotillo, Elena; Thomas-Tikhonenko, Andrei

    2011-01-01

    It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21–22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded. PMID:21514318

  10. mESAdb: microRNA Expression and Sequence Analysis Database

    PubMed Central

    Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657

  11. mESAdb: microRNA expression and sequence analysis database.

    PubMed

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  12. RNA Polymerase II cluster dynamics predict mRNA output in living cells

    PubMed Central

    Cho, Won-Ki; Jayanth, Namrata; English, Brian P; Inoue, Takuma; Andrews, J Owen; Conway, William; Grimm, Jonathan B; Spille, Jan-Hendrik; Lavis, Luke D; Lionnet, Timothée; Cisse, Ibrahim I

    2016-01-01

    Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001 PMID:27138339

  13. High-throughput and reliable protocols for animal microRNA library cloning.

    PubMed

    Xiao, Caide

    2011-01-01

    MicroRNAs are short single-stranded RNA molecules (18-25 nucleotides). Because of their ability to silence gene expressions, they can be used to diagnose and treat tumors. Experimental construction of microRNA libraries was the most important step to identify microRNAs from animal tissues. Although there are many commercial kits with special protocols to construct microRNA libraries, this chapter provides the most reliable, high-throughput, and affordable protocols for microRNA library construction. The high-throughput capability of our protocols came from a double concentration (3 and 15%, thickness 1.5 mm) polyacrylamide gel electrophoresis (PAGE), which could directly extract microRNA-size RNAs from up to 400 μg total RNA (enough for two microRNA libraries). The reliability of our protocols was assured by a third PAGE, which selected PCR products of microRNA-size RNAs ligated with 5' and 3' linkers by a miRCat™ kit. Also, a MathCAD program was provided to automatically search short RNAs inserted between 5' and 3' linkers from thousands of sequencing text files.

  14. microRNA in Prostate Cancer Racial Disparities and Aggressiveness

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0477 TITLE: microRNA in Prostate Cancer Racial Disparities and Aggressiveness PRINCIPAL INVESTIGATOR: Cathryn...microRNA in Prostate Cancer Racial Disparities and Aggressiveness 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0477 5c. PROGRAM ELEMENT NUMBER...final analyses. 15. SUBJECT TERMS prostate cancer, microRNA, racial disparities, African American, genetic polymorphisms, biochemical recurrence

  15. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle.

    PubMed

    Del Rosario, Ricardo C H; Damasco, Joseph Ray Clarence G; Aguda, Baltazar D

    2016-09-09

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states.

  16. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  17. The effects of environmental chemical carcinogens on the microRNA machinery.

    PubMed

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  19. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis

    PubMed Central

    de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan

    2015-01-01

    In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864

  20. Urinary MicroRNA as Biomarker in Renal Transplantation.

    PubMed

    van de Vrie, M; Deegens, J K; Eikmans, M; van der Vlag, J; Hilbrands, L B

    2017-05-01

    Urine represents a noninvasive source in which proteins and nucleic acids can be assessed. Such analytes may function as biomarkers to monitor kidney graft pathology at every desired frequency, thereby providing a time window to prevent graft damage by therapeutic intervention. Recently, several proteins have been measured in urine as markers of graft injury. However, the specificity is limited, and measuring urinary proteins generally lacks the potential to predict early kidney graft damage. Currently, urinary mRNA and microRNA are being investigated to evaluate the prognostic value of changes in gene expression during the initial stages of graft damage. At such time point, a change in treatment regimen and dosage is expected to have maximum potency to minimize future decline in graft function. Both mRNA and microRNAs have shown promising results in both detection and prediction of graft injury. An advantage of microRNAs compared to mRNA molecules is their stability, a characteristic that is beneficial when working with urine samples. In this review, we provide the current state of urinary biomarkers in renal transplantation, with a focus on urinary microRNA. In addition, we discuss the methods used to study urinary microRNA expression. © 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  1. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    PubMed

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  2. Evaluation of microRNA alignment techniques

    PubMed Central

    Kaspi, Antony; El-Osta, Assam

    2016-01-01

    Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164

  3. The miR-545/374a Cluster Encoded in the Ftx lncRNA is Overexpressed in HBV-Related Hepatocellular Carcinoma and Promotes Tumorigenesis and Tumor Progression

    PubMed Central

    Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong

    2014-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a

  4. The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression.

    PubMed

    Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong

    2014-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a

  5. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the miRNA-132/212 cluster and affects progranulin pathways

    PubMed Central

    Chen-Plotkin, Alice S.; Unger, Travis L.; Gallagher, Michael D.; Bill, Emily; Kwong, Linda K.; Volpicelli-Daley, Laura; Busch, Johanna I.; Akle, Sebastian; Grossman, Murray; Van Deerlin, Vivianna; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2012-01-01

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a fatal neurodegenerative disease with no available treatments. Mutations in the progranulin gene (GRN) causing impaired production or secretion of progranulin are a common Mendelian cause of FTLD-TDP; additionally, common variants at chromosome 7p21 in the uncharacterized gene TMEM106B were recently linked by genome-wide association to FTLD-TDP with and without GRN mutations. Here we show that TMEM106B is neuronally expressed in postmortem human brain tissue, and that expression levels are increased in FTLD-TDP brain. Furthermore, using an unbiased, microarray-based screen of over 800 microRNAs, we identify microRNA-132 as the top microRNA differentiating FTLD-TDP and control brains, with <50% normal expression levels of three members of the microRNA-132 cluster (microRNA-132, microRNA-132*, and microRNA-212) in disease. Computational analyses, corroborated empirically, demonstrate that the top mRNA target of both microRNA-132 and microRNA-212 is TMEM106B; both microRNAs repress TMEM106B expression through shared microRNA-132/212 binding sites in the TMEM106B 3’UTR. Increasing TMEM106B expression to model disease results in enlargement and poor acidification of endo-lysosomes, as well as impairment of mannose-6-phosphate-receptor trafficking. Finally, endogenous neuronal TMEM106B co-localizes with progranulin in late endo-lysosomes, and TMEM106B over-expression increases intracellular levels of progranulin. Thus, TMEM106B is an FTLD-TDP risk gene, with microRNA-132/212 depression as an event which can lead to aberrant over-expression of TMEM106B, which in turn alters progranulin pathways. Evidence for this pathogenic cascade includes the striking convergence of two independent, genomic-scale screens on a microRNA:mRNA regulatory pair. Our findings open novel directions for elucidating miRNA-based therapies in FTLD-TDP. PMID:22895706

  6. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.

    PubMed

    Jiang, Qian; Meng, Xing; Meng, Lingwei; Chang, Nannan; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai

    2014-01-01

    MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.

  7. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  8. MicroRNA in Glioblastoma: An Overview

    PubMed Central

    Banelli, Barbara; Forlani, Alessandra; Allemanni, Giorgio; Morabito, Anna; Pistillo, Maria Pia

    2017-01-01

    Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor. PMID:29234674

  9. MicroRNA in oral cancer research: future prospects.

    PubMed

    Sarode, Sachin C; Sarode, Gargi S; Patil, Shankargouda

    2014-09-01

    MicroRNA (miRNA) and related therapeutic approaches hold great promise in the field of cancer managements. Various studies on epithelial malignancies have shown encouraging results on various fronts. Its association with invasion, tumor growth, epithelial mesenchymal transition (EMT), angiogenesis, cancer stem cells (CSCs), metastasis and refects the diversified role of miRNA. Moreover, miRNA plays an important role in determining the prognosis of the patients. MicroRNAs interactions with each other and with external factors [human papilloma virus (HPV) (like oncoproteins)] intrigue us to explore more deep into this fascinating world.(1.)

  10. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome

    PubMed Central

    Ge, Fei; Cao, Fenglin; Li, Haitao; Wang, Ping; Xu, Mengyuan; Song, Peng; Li, Xiaoxia; Wang, Shuye; Li, Jinmei; Han, Xueying; Zhao, Yanhong; Su, Yanhua; Li, Yinghua; Fan, Shengjin; Li, Limin; Zhou, Jin

    2016-01-01

    The pathogenesis of therapy-induced differentiation syndrome (DS) in patients with acute promyelocytic leukemia (APL) remains unclear. In this study, mRNA and microRNA (miRNA) expression profiling of peripheral blood APL cells from patients complicated with vs. without DS were integratively analyzed to explore the mechanisms underlying arsenic trioxide treatment-associated DS. By integrating the differentially expressed data with the data of differentially expressed microRNAs and their computationally predicted target genes, as well as the data of transcription factors and differentially expressed target microRNAs obtained from a literature search, a DS-related genetic regulatory network was constructed. Then using an EAGLE algorithm in clusterViz, the network was subdivided into 10 modules. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database the modules were annotated functionally, and three functionally active modules were recognized. The further in-depth analyses on the annotated functions of the three modules and the expression and roles of the related genes revealed that proliferation, differentiation, apoptosis and infiltration capability of APL cells might play important roles in the DS pathogenesis. The results could improve our understanding of DS pathogenesis from a more overall perspective, and could provide new clues for future research. PMID:27634874

  11. Customization of Artificial MicroRNA Design.

    PubMed

    Van Vu, Tien; Do, Vinh Nang

    2017-01-01

    RNAi approaches, including microRNA (miRNA) regulatory pathway, offer great tools for functional characterization of unknown genes. Moreover, the applications of artificial microRNA (amiRNA) in the field of plant transgenesis have also been advanced to engineer pathogen-resistant or trait-improved transgenic plants. Until now, despite the high potency of amiRNA approach, no commercial plant cultivar expressing amiRNAs with improved traits has been released yet. Beside the issues of biosafety policies, the specificity and efficacy of amiRNAs are of major concerns. Sufficient cares should be taken for the specificity and efficacy of amiRNAs due to their potential off-target effects and other issues relating to in vivo expression of pre-amiRNAs. For these reasons, the proper design of amiRNAs with the lowest off-target possibility is very important for successful applications of the approach in plant. Therefore, there are many studies with the aim to improve the amiRNA design and amiRNA expressing backbones for obtaining better specificity and efficacy. However, the requirement for an efficient reference for the design is still needed. In the present chapter, we attempt to summarize and discuss all the major concerns relating to amiRNA design with the hope to provide a significant guideline for this approach.

  12. The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection.

    PubMed

    Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen

    2017-11-17

    MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.

  13. MicroRNA expression patterns in indeterminate inflammatory bowel disease.

    PubMed

    Lin, Jingmei; Cao, Qi; Zhang, Jianjun; Li, Yong; Shen, Bo; Zhao, Zijin; Chinnaiyan, Arul M; Bronner, Mary P

    2013-01-01

    A diagnosis of idiopathic inflammatory bowel disease requires synthesis of clinical, radiographic, endoscopic, surgical, and histologic data. While most cases of inflammatory bowel disease can be specifically classified as either ulcerative colitis or Crohns disease, 5-10% of patients have equivocal features placing them into the indeterminate colitis category. This study examines whether microRNA biomarkers assist in the classification of classically diagnosed indeterminate inflammatory bowel disease. Fresh frozen colonic mucosa from the distal-most part of the colectomy from 53 patients was used (16 indeterminate colitis, 14 Crohns disease, 12 ulcerative colitis, and 11 diverticular disease controls). Total RNA extraction and quantitative reverse-transcription-PCR was performed using five pairs of microRNA primers (miR-19b, miR-23b, miR-106a, miR-191, and miR-629). Analysis of variance was performed assessing differences among the groups. A significant difference in expressions of miR-19b, miR-106a, and miR-629 was detected between ulcerative colitis and Crohns disease groups (P<0.05). The average expression level of all five microRNAs was statistically different between indeterminate colitis and Crohns disease groups (P<0.05); no significant difference was present between indeterminate and ulcerative colitis groups. Among the 16 indeterminate colitis patients, 15 showed ulcerative colitis-like and one Crohns disease-like microRNA pattern. MicroRNA expression patterns in indeterminate colitis are far more similar to those of ulcerative colitis than Crohns disease. MicroRNA expression patterns of indeterminate colitis provide molecular evidence indicating that most cases are probably ulcerative colitis-similar to the data from long-term clinical follow-up studies. Validation of microRNA results by additional long-term outcome data is needed, but the data presented show promise for improved classification of indeterminate inflammatory bowel disease.

  14. Black phosphorus nanosheets for rapid microRNA detection.

    PubMed

    Zhou, Jie; Li, Zhongjun; Ying, Ming; Liu, Maixian; Wang, Xiaomei; Wang, Xianyou; Cao, Liwei; Zhang, Han; Xu, Gaixia

    2018-03-15

    Herein, for the first time, a sensitive sensing platform for rapid detection of microRNA was developed by employing black phosphorus nanosheets as the fluorescence quenching material. The biosensor displayed a good linear response to microRNA ranging from 10 nM to 1000 nM. Moreover, the biosensor could distinguish triple nucleotide polymorphism.

  15. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy.

    PubMed

    Mironova, Nadezhda; Patutina, Olga; Brenner, Evgenyi; Kurilshikov, Alexander; Vlassov, Valentin; Zenkova, Marina

    2013-01-01

    Novel data showing an important role of microRNAs in mediating tumour progression opened a new field of possible molecular targets for cytotoxic ribonucleases. Recently, antitumour and antimetastatic activities of pancreatic ribonuclease A were demonstrated and here genome-wide profiles of microRNAs in the tumour and blood of mice bearing Lewis lung carcinoma after treatment with RNase A were analysed by high-throughput Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) sequencing technology. Sequencing data showed that RNase A therapy resulted in the boost of 116 microRNAs in tumour tissue and a significant drop of 137 microRNAs in the bloodstream that were confirmed by qPCR. The microRNA boost in the tumour was accompanied by the overexpression of microRNA processing genes: RNASEN (Drosha), xpo5, dicer1, and eif2c2 (Ago2). Ribonuclease activity of RNase A was shown to be crucial for the activation of both microRNA synthesis and expression of the microRNA processing genes. In the tumour tissue, RNase A caused the upregulation of both oncomirs and tumour-suppressor microRNAs, including microRNAs of the let-7 family, known to negatively regulate tumour progression. Our results suggest that the alteration of microRNA signature caused by RNase A treatment leads to the attenuation of tumour malignancy.

  16. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells.

    PubMed

    Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-02-01

    MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.

  17. Identification of suitable reference genes for hepatic microRNA quantitation.

    PubMed

    Lamba, Vishal; Ghodke-Puranik, Yogita; Guan, Weihua; Lamba, Jatinder K

    2014-03-07

    MicroRNAs (miRNAs) are short (~22 nt) endogenous RNAs that play important roles in regulating expression of a wide variety of genes involved in different cellular processes. Alterations in microRNA expression patterns have been associated with a number of human diseases. Accurate quantitation of microRNA levels is important for their use as biomarkers and in determining their functions. Real time PCR is the gold standard and the most frequently used technique for miRNA quantitation. Real time PCR data analysis includes normalizing the amplification data to suitable endogenous control/s to ensure that microRNA quantitation is not affected by the variability that is potentially introduced at different experimental steps. U6 (RNU6A) and RNU6B are two commonly used endogenous controls in microRNA quantitation. The present study was designed to investigate inter-individual variability and gender differences in hepatic microRNA expression as well as to identify the best endogenous control/s that could be used for normalization of real-time expression data in liver samples. We used Taqman based real time PCR to quantitate hepatic expression levels of 22 microRNAs along with U6 and RNU6B in 50 human livers samples (25 M, 25 F). To identify the best endogenous controls for use in data analysis, we evaluated the amplified candidates for their stability (least variability) in expression using two commonly used software programs: Normfinder and GeNormplus, Both Normfinder and GeNormplus identified U6 to be among the least stable of all the candidates analyzed, and RNU6B was also not among the top genes in stability. mir-152 and mir-23b were identified to be the two most stable candidates by both Normfinder and GeNormplus in our analysis, and were used as endogenous controls for normalization of hepatic miRNA levels. Measurements of microRNA stability indicate that U6 and RNU6B are not suitable for use as endogenous controls for normalizing microRNA relative quantitation

  18. A microRNA feedback loop regulates global microRNA abundance during aging.

    PubMed

    Inukai, Sachi; Pincus, Zachary; de Lencastre, Alexandre; Slack, Frank J

    2018-02-01

    Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1 /Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline. © 2018 Inukai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection.

    PubMed

    Hamam, Rimi; Ali, Arwa M; Alsaleh, Khalid A; Kassem, Moustapha; Alfayez, Musaed; Aldahmash, Abdullah; Alajez, Nehad M

    2016-05-16

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples from 23 BC and 9 normals identified 18 up-regulated miRNAs in BC patients (p(corr) < 0.05). Nine miRNAs (hsa-miR-4270, hsa-miR-1225-5p, hsa-miR-188-5p, hsa-miR-1202, hsa-miR-4281, hsa-miR-1207-5p, hsa-miR-642b-3p, hsa-miR-1290, and hsa-miR-3141) were subsequently validated using qRT-PCR in a cohort of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal subtype. Therefore, we developed a novel approach which led to the identification of a novel microRNA panel which was upregulated in BC patients with potential utilization in disease diagnosis and stratification.

  20. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    USDA-ARS?s Scientific Manuscript database

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  1. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Wu, Feng; Qu, Lina

    Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.

  2. Adaptive evolution of newly emerged micro-RNA genes in Drosophila.

    PubMed

    Lu, Jian; Fu, Yonggui; Kumar, Supriya; Shen, Yang; Zeng, Kai; Xu, Anlong; Carthew, Richard; Wu, Chung-I

    2008-05-01

    How often micro-RNA (miRNA) genes emerged and how fast they evolved soon after their emergence are some of the central questions in the evolution of miRNAs. Because most known miRNA genes are ancient and highly conserved, these questions can be best answered by identifying newly emerged miRNA genes. Among the 78 miRNA genes in Drosophila reported before 2007, only 5 are confirmed to be newly emerged in the genus (although many more can be found in the newly reported data set; e.g., Ruby et al. 2007; Stark et al. 2007; Lu et al. 2008). These new miRNA genes have undergone numerous changes, even in the normally invariant mature sequences. Four of them (the miR-310/311/312/313 cluster, denoted miR-310s) were duplicated from other conserved miRNA genes. The fifth one (miR-303) appears to be a very young gene, originating de novo from a non-miRNA sequence recently. We sequenced these 5 miRNA genes and their neighboring regions from a worldwide collection of Drosophila melanogaster lines. The levels of divergence and polymorphism in these miRNA genes, vis-à-vis those of the neighboring DNA sequences, suggest that these 5 genes are evolving adaptively. Furthermore, the polymorphism pattern of miR-310s in D. melanogaster is indicative of hitchhiking under positive selection. Thus, a large number of adaptive changes over a long period of time may be essential for the evolution of newly emerged miRNA genes.

  3. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  4. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID

  5. MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis

    PubMed Central

    Caporali, Andrea; Emanueli, Costanza

    2011-01-01

    MicroRNAs (miRs) are post-transcriptional inhibitory regulators of gene expression acting by direct binding to complementary messenger RNA (mRNA) transcripts. Recent studies have demonstrated that miRs are crucial determinants of endothelial cell behavior and angiogenesis. We have provided evidence of the prominent role of miR-503 in impairment of postischemic reparative angiogenesis in the setting of diabetes. Because miR-503 belongs to the miR-16 extended family of miRs, in this review, we describe the cardiovascular functions of miR-503 and other members of the miR-16 family and their impact on angiogenesis. PMID:22814423

  6. Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer

    PubMed Central

    Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M.; Shapiro, Charles L.; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways. Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis. PMID:23405235

  7. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    PubMed

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  8. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE

  9. MicroRNAfold: pre-microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy.

    PubMed

    Han, Dianwei; Zhang, Jun; Tang, Guiliang

    2012-01-01

    An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.

  10. Biomarker MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma Identified Based on Gene Expression Data and MicroRNA-mRNA Network Analysis

    PubMed Central

    Zhang, Hui; Li, Tangxin; Zheng, Linqing

    2017-01-01

    Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions. These findings were confirmed by literature verification and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular mechanisms. PMID:29098014

  11. DCIS-Specific MicroRNA in Cancer Stem Cell

    DTIC Science & Technology

    2011-09-01

    Gairani, Misako Watabe, Fei Xing, Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe. Roles of lipogenesis and microRNA in cancer...Pai, Wen Liu, Aya Kobayashi, Fei Xing, Koji Fukuda , Shigeru Hirota, Tamotsu Sugai, Go Wakabayashi, Keisuke Koeda, Masahiro Kashiwaba, Kazuyuki...Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe Roles of lipogenesis and microRNA in cancer stem- like cells in ductal carcinoma

  12. [MicroRNA in neurodegenerative disorders].

    PubMed

    Sobue, Gen

    2013-01-01

    MicroRNAs (miRNAs) bind to the 3'-untranslated region of mRNA, and thereby suppress the gene expression. Recent studies suggest that miRNAs modify the pathogenesis of cancer and neurodegeneration. Our study demonstrated that the expression levels of miR-196a is increased in a mouse model of spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease caused by the expansion of polyglutamine in androgen receptor (AR). In cultured neuronal cells, miR-196a decayed the mutant AR mRNA via silencing CUG triplet repeat RNA binding protein 2, a potent miR-196a targeting mRNA, which contributed to stabilize the mutant AR mRNA. Adeno-associated virus vector-mediated delivery of this miRNA attenuates the expression of the mutant AR, resulting in the mitigation of motor neuron degeneration in the SBMA mice. Introduction of miRNA appears to be a novel therapeutic strategy for devastating neurodegenerative diseases.

  13. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shun; Huang, Haijiao; Li, Nanhong

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33more » promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.« less

  14. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review.

    PubMed

    Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Bjoern; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Itzhak, Avital; Nissan, Aviram

    2013-01-01

    The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research.Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC.The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.

  15. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review

    PubMed Central

    Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Björn LDM; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Avital, Itzhak; Nissan, Aviram

    2013-01-01

    The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research. Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC. The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC. PMID:23459799

  16. Immunomodulation: A definitive role of microRNA-142.

    PubMed

    Sharma, Salil

    2017-12-01

    Majority of microRNAs are evolutionarily conserved in vertebrates. This is suggestive of their similar roles in regulation of gene networks. In addition to their conserved mature sequences and regulatory roles, a few microRNAs show very cell or tissue specific expression. These microRNAs are highly enriched in some cell types or organs. One such microRNA is microRNA-142 (miR-142). The classical stem-loop structure of miR142 encodes for two species of mature microRNAs; miR142-5p and miR142-3p. MiR-142 is abundant in cells of hematopoietic origin, and therefore, aptly plays a role in lineage differentiation of hematopoietic cells. Interestingly, over the years, miR-142 has gained considerable attention for its quintessential role in regulating immune response. This mini-review discusses the important functional roles of miR-142 in inflammatory and immune response in different physiological and disease setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA

    PubMed Central

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-01-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414

  18. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.

    PubMed

    Cambronne, Xiaolu A; Shen, Rongkun; Auer, Paul L; Goodman, Richard H

    2012-12-11

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.

  19. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft

  20. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  1. CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis.

    PubMed

    Vrahatis, Aristidis G; Dimitrakopoulou, Konstantina; Balomenos, Panos; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2016-03-15

    In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time. To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/ tassos.bezerianos@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.

    PubMed

    Lee, Soo Hyeon; Chung, Bong Hyun; Park, Tae Gwan; Nam, Yoon Sung; Mok, Hyejung

    2012-07-17

    Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi) processing. As a result, siRNA offers a potential strategy for treatment of many human diseases. However, due to inefficient delivery to cells and off-target effects, the clinical application of therapeutic siRNA has been very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. In this Account, we describe several strategies for efficient siRNA delivery and selective gene silencing. We took advantage of facile chemical conjugation and complementary hybridization to design novel siRNA-based micro- and nanostructures. Using chemical crosslinkers and hydrophobic/hydrophilic polymers at the end of siRNA, we produced various RNA-based structures, including siRNA block copolymers, micelles, linear siRNA homopolymers, and microhydrogels. Because of their increased charge density and flexibility compared with conventional siRNA, these micro- and nanostructures can form polyelectrolyte complexes with poorly charged and biocompatible cationic carriers that are both more condensed and more homogenous than the complexes formed in other carrier systems. In addition, the fabricated siRNA-based structures are linked by cleavable disulfide

  3. miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma.

    PubMed

    Chen, Lijuan; Li, Chunming; Zhang, Run; Gao, Xiao; Qu, Xiaoyan; Zhao, Min; Qiao, Chun; Xu, Jiaren; Li, Jianyong

    2011-10-01

    miRNAs play important roles in the regulation of cell proliferation, differentiation and apoptosis. The deregulation of miRNAs expression contributes to tumorigenesis by modulating oncogenic and tumor suppressor signaling pathways. Oncogenic transcription factor Myc can control expression of a large set of microRNAs (miRNAs). Previous studies have shown that the expression of miR-17-92 cluster, a polycistron encoding six microRNAs (miRNA), has close relationship with the expression of Myc. In current study, silencing Myc in multiple myeloma (MM)cells induced cell death and growth inhibition, and downregulated expression of miR-17-92 cluster. Overexpression of miR-17 or miR-18 could partly abrogated Myc-knockdown-induced MM cell apoptosis. One of the mechanism of Myc inhibiting MM cell apoptosis is through Myc activates miR-17-92 cluster and subsequently down-modulates proapoptotic protein Bim. Although miR-17-92 cluster are located at 13q31.3, the expression of miR-18, miR-19 and miR-20 (especially miR-19) in patients with del(13q14) was higher than those without del(13q14). Patients with miR-17, miR-20 and miR-92 high-expression had shorter PFS compared to those with miR-17, miR-20 and miR-92 low-expression. These results suggest the Myc-inducible miR-17-92 cluster miRNAs contribute to tumorigenesis and poor prognosis in multiple myeloma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.

    PubMed

    Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří

    2015-07-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Role of microRNA-7 and selenoprotein P in hepatocellular carcinoma.

    PubMed

    Tarek, Marwa; Louka, Manal Louis; Khairy, Eman; Ali-Labib, Randa; Zakaria Zaky, Doaa; Montasser, Iman F

    2017-05-01

    There is an obvious need to diagnose hepatocellular carcinoma using novel non-invasive and sensitive biomarkers. In this regard, the aim of this study was to evaluate and correlate both relative quantification of microRNA-7 using quantitative real time polymerase chain reaction and quantitative analysis of selenoprotein P using enzyme-linked immunosorbent assay in sera of hepatocellular carcinoma patients, chronic liver disease patients, as well as normal healthy subjects in order to establish a new diagnostic biomarker with a valid non-invasive technique. In addition, this study aimed to investigate whether changes in selenium supply affect microRNA-7 expression and selenoprotein P levels in human hepatocarcinoma cell line (HepG2). The results showed a highly significant decrease in serum microRNA-7 relative quantification values and selenoprotein P levels in malignant group in comparison with benign and control groups. The best cutoff for serum microRNA-7 and selenoprotein P to discriminate hepatocellular carcinoma group from benign and control groups was 0.06 and 4.30 mg/L, respectively. Furthermore, this study showed that changes in selenium supply to HepG2 cell line can alter the microRNA-7 profile and are paralleled by changes in the concentration of its target protein (selenoprotein P). Hence, serum microRNA-7 and selenoprotein P appear to be potential non-invasive diagnostic markers for hepatocellular carcinoma. Moreover, the results suggest that selenium could be used as an anticancer therapy for hepatocellular carcinoma by affecting both microRNA-7 and selenoprotein P.

  6. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.

    PubMed

    Trontti, Kalevi; Väänänen, Juho; Sipilä, Tessa; Greco, Dario; Hovatta, Iiris

    2018-05-01

    Diversity in the structure and expression of microRNAs, important regulators of gene expression, arises from SNPs, duplications followed by divergence, production of isomiRs, and RNA editing. Inbred mouse strains and crosses using them are important reference populations for genetic mapping, and as models of human disease. We determined the nature and extent of interstrain miRNA variation by (i) identifying miRNA SNPs in whole-genome sequence data from 36 strains, and (ii) examining miRNA editing and expression in hippocampus (Hpc) and frontal cortex (FCx) of six strains, to facilitate the study of miRNAs in neurobehavioral phenotypes. miRNA loci were strongly conserved among the 36 strains, but even the highly conserved seed region contained 16 SNPs. In contrast, we identified RNA editing in 58.9% of miRNAs, including 11 consistent editing events in the seed region. We confirmed the functional significance of three conserved edits in the miR-379/410 cluster, demonstrating that edited miRNAs gained novel target mRNAs not recognized by the unedited miRNAs. We found significant interstrain differences in miRNA and isomiR expression: Of 779 miRNAs expressed in Hpc and 719 in FCx, 262 were differentially expressed (190 in Hpc, 126 in FCx, 54 in both). We also identified 32 novel miRNA candidates using miRNA prediction tools. Our studies provide the first comprehensive analysis of SNP, isomiR, and RNA editing variation in miRNA loci across inbred mouse strains, and a detailed catalog of expressed miRNAs in Hpc and FCx in six commonly used strains. These findings will facilitate the molecular analysis of neurological and behavioral phenotypes in this model organism. © 2018 Trontti et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. RNAimmuno: A database of the nonspecific immunological effects of RNA interference and microRNA reagents

    PubMed Central

    Olejniczak, Marta; Galka-Marciniak, Paulina; Polak, Katarzyna; Fligier, Andrzej; Krzyzosiak, Wlodzimierz J.

    2012-01-01

    The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release. Subsequent changes in the cellular transcriptome and proteome may result in adverse effects, including cell death during therapeutic treatments or the misinterpretation of experimental results in research applications. The manually curated RNAimmuno database gathers the majority of the published data regarding the immunological side effects that are caused in investigated cell lines, tissues, and model organisms by different reagents. The database is accessible at http://rnaimmuno.ibch.poznan.pl and may be helpful in the further application and development of RNAi- and microRNA-based technologies. PMID:22411954

  8. RNAimmuno: a database of the nonspecific immunological effects of RNA interference and microRNA reagents.

    PubMed

    Olejniczak, Marta; Galka-Marciniak, Paulina; Polak, Katarzyna; Fligier, Andrzej; Krzyzosiak, Wlodzimierz J

    2012-05-01

    The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release. Subsequent changes in the cellular transcriptome and proteome may result in adverse effects, including cell death during therapeutic treatments or the misinterpretation of experimental results in research applications. The manually curated RNAimmuno database gathers the majority of the published data regarding the immunological side effects that are caused in investigated cell lines, tissues, and model organisms by different reagents. The database is accessible at http://rnaimmuno.ibch.poznan.pl and may be helpful in the further application and development of RNAi- and microRNA-based technologies.

  9. A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks.

    PubMed

    Peng, Wei; Lan, Wei; Zhong, Jiancheng; Wang, Jianxin; Pan, Yi

    2017-07-15

    MicroRNAs have been reported to have close relationship with diseases due to their deregulation of the expression of target mRNAs. Detecting disease-related microRNAs is helpful for disease therapies. With the development of high throughput experimental techniques, a large number of microRNAs have been sequenced. However, it is still a big challenge to identify which microRNAs are related to diseases. Recently, researchers are interesting in combining multiple-biological information to identify the associations between microRNAs and diseases. In this work, we have proposed a novel method to predict the microRNA-disease associations based on four biological properties. They are microRNA, disease, gene and environment factor. Compared with previous methods, our method makes predictions not only by using the prior knowledge of associations among microRNAs, disease, environment factors and genes, but also by using the internal relationship among these biological properties. We constructed four biological networks based on the similarity of microRNAs, diseases, environment factors and genes, respectively. Then random walking was implemented on the four networks unequally. In the walking course, the associations can be inferred from the neighbors in the same networks. Meanwhile the association information can be transferred from one network to another. The results of experiment showed that our method achieved better prediction performance than other existing state-of-the-art methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  11. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach

    PubMed Central

    Cambronne, Xiaolu A.; Shen, Rongkun; Auer, Paul L.; Goodman, Richard H.

    2012-01-01

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA– RNA-induced silencing complex (RISC)–messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs. PMID:23184980

  12. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution

    PubMed Central

    Mohammed, Jaaved; Flynt, Alex S.; Siepel, Adam; Lai, Eric C.

    2013-01-01

    The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class. PMID:23882112

  13. Histology-specific microRNA alterations in melanoma.

    PubMed

    Poliseno, Laura; Haimovic, Adele; Segura, Miguel F; Hanniford, Douglas; Christos, Paul J; Darvishian, Farbod; Wang, Jinhua; Shapiro, Richard L; Pavlick, Anna C; Berman, Russell S; Hernando, Eva; Zavadil, Jiri; Osman, Iman

    2012-07-01

    We examined the microRNA signature that distinguishes the most common melanoma histological subtypes, superficial spreading melanoma (SSM) and nodular melanoma (NM). We also investigated the mechanisms underlying the differential expression of histology-specific microRNAs. MicroRNA array performed on a training cohort of 82 primary melanoma tumors (26 SSM, 56 NM), and nine congenital nevi (CN) revealed 134 microRNAs differentially expressed between SSM and NM (P<0.05). Out of 134 microRNAs, 126 remained significant after controlling for thickness and 31 were expressed at a lower level in SSM compared with both NM and CN. For seven microRNAs (let-7g, miR-15a, miR-16, miR-138, miR-181a, miR-191, and miR-933), the downregulation was associated with selective genomic loss in SSM cell lines and primary tumors, but not in NM cell lines and primary tumors. The lower expression level of six out of seven microRNAs in SSM compared with NM was confirmed by real-time PCR on a subset of cases in the training cohort and validated in an independent cohort of 97 melanoma cases (38 SSM, 59 NM). Our data support a molecular classification in which SSM and NM are two molecularly distinct phenotypes. Therapeutic strategies that take into account subtype-specific alterations might improve the outcome of melanoma patients.

  14. Histology-Specific MicroRNA Alterations in Melanoma

    PubMed Central

    Poliseno, Laura; Haimovic, Adele; Segura, Miguel F.; Hanniford, Douglas; Christos, Paul J.; Darvishian, Farbod; Wang, Jinhua; Shapiro, Richard L.; Pavlick, Anna C.; Berman, Russell S.; Hernando, Eva; Zavadil, Jiri; Osman, Iman

    2013-01-01

    We examined the microRNA signature that distinguishes the most common melanoma histological subtypes, superficial spreading melanoma (SSM) and nodular melanoma (NM). We also investigated the mechanisms underlying the differential expression of histology-specific microRNAs. MicroRNA array performed on a training cohort of 82 primary melanoma tumors (26 SSM, 56 NM), and nine congenital nevi (CN) revealed 134 microRNAs differentially expressed between SSM and NM (P<0.05). Out of 134 microRNAs, 126 remained significant after controlling for thickness and 31 were expressed at a lower level in SSM compared with both NM and CN. For seven microRNAs (let-7g, miR-15a, miR-16, miR-138, miR-181a, miR-191, and miR-933), the downregulation was associated with selective genomic loss in SSM cell lines and primary tumors, but not in NM cell lines and primary tumors. The lower expression level of six out of seven microRNAs in SSM compared with NM was confirmed by real-time PCR on a subset of cases in the training cohort and validated in an independent cohort of 97 melanoma cases (38 SSM, 59 NM). Our data support a molecular classification in which SSM and NM are two molecularly distinct phenotypes. Therapeutic strategies that take into account subtype-specific alterations might improve the outcome of melanoma patients. PMID:22551973

  15. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.

    PubMed

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-12-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. © 2015 The Authors.

  16. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.

    PubMed

    Liu, Minmin; Yu, Huiyang; Zhao, Gangjun; Huang, Qiufeng; Lu, Yongen; Ouyang, Bo

    2017-06-26

    Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H 2 O 2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. In

  17. MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum.

    PubMed

    Wu, Wei; Xiong, Wenfeng; Li, Chengjun; Zhai, Mengfan; Li, Yao; Ma, Fei; Li, Bin

    2017-10-01

    To date, although some microRNAs (miRNAs) have been discovered in the holometabolism insect Tribolium castaneum, large numbers of miRNAs still require investigation. Knocking down Dicer-1 (Dcr-1) and Argonaute-1 (Ago-1) in late larvae impaired miRNA synthesis, affected the juvenile hormone pathway by up-regulating Methoprene-tolerant (Met) and Krüppel-homolog1 (Kr-h1) transcript levels, and resulted in a series of defects in T. castaneum development and metamorphosis. Thus, high-throughput Illumina/Solexa sequencing was performed with a mixed sample of eight key developmental stages of T. castaneum. In total, 1154 unique miRNAs were discovered containing 274 conserved miRNAs belong to 68 miRNA families, 108 known candidate miRNAs and 772 novel miRNAs. Genome locus analysis showed that miRNA clusters are more abundant in T. castaneum than other species. The results indicated that RNAi of Dcr-1 and Ago-1 in T. castaneum resulted in miRNA-induced metamorphosis defects. Furthermore, large numbers of novel miRNAs were discovered in T. castaneum and localized to T. castaneum genome loci. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. MicroRNA function in Drosophila melanogaster.

    PubMed

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dysregulated microRNA Activity in Shwachman-Diamond Syndrome

    DTIC Science & Technology

    2016-09-01

    define transcriptional signatures of bone marrow failure in SDS using single cell RNA -seq of patient cells. We will analyze these datasets to test the...microRNA expression profiles from HSPCs to be overlaid onto mRNA profiles. 15. SUBJECT TERMS Single cell RNA -seq; bone marrow failure; hematopoiesis...myelopoiesis; targeted RNA -seq 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  20. MicroRNA and mRNA Features of Malignant Pleural Mesothelioma and Benign Asbestos-Related Pleural Effusion

    PubMed Central

    Ak, Guntulu; Tomaszek, Sandra C.; Kosari, Farhad; Metintas, Muzaffer; Jett, James R.; Metintas, Selma; Yildirim, Huseyin; Dundar, Emine; Dong, Jie; Aubry, Marie Christine; Wigle, Dennis A.; Thomas, Charles F.

    2015-01-01

    Introduction. We investigated the expression of microRNAs and mRNAs in pleural tissues from patients with either malignant pleural mesothelioma or benign asbestos-related pleural effusion. Methods. Fresh frozen tissues from a total of 18 malignant pleural mesothelioma and 6 benign asbestos-related pleural effusion patients were studied. Expression profiling of mRNA and microRNA was performed using standard protocols. Results. We discovered significant upregulation of multiple microRNAs in malignant pleural mesothelioma compared to benign asbestos-related pleural effusion. Hsa-miR-484, hsa-miR-320, hsa-let-7a, and hsa-miR-125a-5p were able to discriminate malignant from benign disease. Dynamically regulated mRNAs were also identified. MET was the most highly overexpressed gene in malignant pleural mesothelioma compared to benign asbestos-related pleural effusion. Integrated analyses examining microRNA-mRNA interactions suggested multiple altered targets within the Notch signaling pathway. Conclusions. Specific microRNAs and mRNAs may have diagnostic utility in differentiating patients with malignant pleural mesothelioma from benign asbestos-related pleural effusion. These studies may be particularly helpful in patients who reside in a region with a high incidence of mesothelioma. PMID:25756049

  1. MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms.

    PubMed

    Heair, Hannah M; Kemper, Austin G; Roy, Bhaskar; Lopes, Helena B; Rashid, Harunur; Clarke, John C; Afreen, Lubana K; Ferraz, Emanuela P; Kim, Eddy; Javed, Amjad; Beloti, Marcio M; MacDougall, Mary; Hassan, Mohammad Q

    2015-09-01

    Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Evaluation of normalization methods in mammalian microRNA-Seq data

    PubMed Central

    Garmire, Lana Xia; Subramaniam, Shankar

    2012-01-01

    Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data. Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE. In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas the TMM method should be used with caution. PMID:22532701

  3. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma

    PubMed Central

    Wang, Ji Yu; Fang, Meng; Boye, Alex; Wu, Chao; Wu, Jia Jun; Ma, Ying; Hou, Shu; Kan, Yue; Yang, Yan

    2017-01-01

    MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy. PMID:29156696

  4. Evaluation of microRNA Stability in Plasma and Serum from Healthy Dogs.

    PubMed

    Enelund, Lars; Nielsen, Lise N; Cirera, Susanna

    2017-01-01

    Early and specific detection of cancer is of great importance for successful treatment of the disease. New biomarkers, such as microRNAs, could improve treatment efficiency and survival ratio. In human medicine, deregulation of microRNA profiles in circulation has shown great potential as a new type of biomarker for cancer diagnostics. There are, however, few studies of circulating microRNAs in dogs. Extracellular circulating microRNAs have shown a high level of stability in human blood and other body fluids. Nevertheless, there are still important issues to be solved before microRNAs can be applied routinely as a clinical tool, one of them being their stability over time in media commonly used for blood sampling. Evaluation of the stability of microRNA levels in plasma and serum from healthy dogs after storage at room temperature for different time points before being processed. The levels of four microRNAs (cfa-let-7a, cfa-miR-16, cfa-miR-23a and cfa-miR-26a) known to be stably expressed from other canine studies, have been measured by quantitative real-time PCR (qPCR). MicroRNA levels were found sufficiently stable for gene profiling in serum- and plasma stored at room temperature for 1 hour but not for samples stored at room temperature for 24 hours. Storage at room temperature of serum and plasma samples intended for microRNA profiling should be kept for a minimum period of time before proceeding with RNA isolation. For the four microRNAs investigated in the present study, we did not find significant differences in microRNA levels between serum and plasma samples from the same time point. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.

    PubMed

    Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun

    2012-09-01

    MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.

  6. MicroRNA-targeted therapeutics for lung cancer treatment.

    PubMed

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  7. Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities.

    PubMed

    Simion, Viorel; Nadim, Wissem Deraredj; Benedetti, Helene; Pichon, Chantal; Morisset-Lopez, Severine; Baril, Patrick

    2017-01-01

    Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington's and Parkinson's diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.

  8. Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities

    PubMed Central

    Simion, Viorel; Nadim, Wissem Deraredj; Benedetti, Hélène; Pichon, Chantal; Morisset-Lopez, Severine; Baril, Patrick

    2017-01-01

    Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington’s and Parkinson’s diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics. PMID:27397479

  9. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  10. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response

    PubMed Central

    Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron

    2011-01-01

    MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620

  11. Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions.

    PubMed

    Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas

    2012-12-01

    MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.

  12. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs.

    PubMed

    Lu, Ming; Shi, Bing; Wang, Juan; Cao, Qun; Cui, Qinghua

    2010-08-09

    MicroRNAs (miRNAs) are a class of important gene regulators. The number of identified miRNAs has been increasing dramatically in recent years. An emerging major challenge is the interpretation of the genome-scale miRNA datasets, including those derived from microarray and deep-sequencing. It is interesting and important to know the common rules or patterns behind a list of miRNAs, (i.e. the deregulated miRNAs resulted from an experiment of miRNA microarray or deep-sequencing). For the above purpose, this study presents a method and develops a tool (TAM) for annotations of meaningful human miRNAs categories. We first integrated miRNAs into various meaningful categories according to prior knowledge, such as miRNA family, miRNA cluster, miRNA function, miRNA associated diseases, and tissue specificity. Using TAM, given lists of miRNAs can be rapidly annotated and summarized according to the integrated miRNA categorical data. Moreover, given a list of miRNAs, TAM can be used to predict novel related miRNAs. Finally, we confirmed the usefulness and reliability of TAM by applying it to deregulated miRNAs in acute myocardial infarction (AMI) from two independent experiments. TAM can efficiently identify meaningful categories for given miRNAs. In addition, TAM can be used to identify novel miRNA biomarkers. TAM tool, source codes, and miRNA category data are freely available at http://cmbi.bjmu.edu.cn/tam.

  13. Plant-based microRNA presences in mice and human sera to breast milk

    USDA-ARS?s Scientific Manuscript database

    Plant foods contain hundreds of thousands of different small RNAs, including microRNAs (miRNAs). A microRNA (miRNA) is a tiny (19-24 nucleotide) piece of RNA that attaches to a specific protein-making mRNA, thus inhibiting protein production. A recent finding shows that a miRNA in rice survives dige...

  14. MicroRNA-21 in laryngeal squamous cell carcinoma: Diagnostic and prognostic features.

    PubMed

    Erkul, Evren; Yilmaz, Ismail; Gungor, Atila; Kurt, Onuralp; Babayigit, Mustafa A

    2017-02-01

    We aimed to determine the microRNA-21 expression in laryngeal squamous cell carcinoma and assess the association between the disease and clinical characteristics of patients. Retrospective case-control study. A retrospective study was conducted from January 2005 to May 2011, in a tertiary hospital following tumor resection in 72 patients with laryngeal squamous cell carcinoma. We used formalin-fixed paraffin-embedded tissue samples of laryngeal squamous cell carcinomas (study group) and adjacent nontumor tissues (control group) for microRNA-21 expressions, and we successfully extracted microRNAs detectable by real-time polymerase chain reaction. All patients were evaluated separately, and the study and control groups were compared. The study group was assessed in terms of localization, smoking, alcohol consumption, lymph node staging, tumor stage, overall survival, disease-free survival, perineural, and vascular invasion. All patients were male, and the average age of patients was 64.2 ± 10.3 years. MicroRNA-21 was upregulated in laryngeal squamous cell carcinomas compared to adjacent nontumor tissues (P = .005). However, the microRNA-21 did not differ significantly according to any clinicopathological features (P > .05). MicroRNA-21 has been found to be expressed at lower levels in early stage (stages 1 and 2) compared with advanced stage (stages 3 and 4), but this was not statistically significant (P = .455). We conclude that the microRNA-21 level may play an important role in diagnosis and serve as a potential biomarker; such measurement thus has clinical applications. However, any possible prognostic associations with microRNA-21 levels should be re-evaluated in future studies on laryngeal squamous cell carcinoma samples amenable to retrospective analysis. NA Laryngoscope, 2016 127:E62-E66, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.

    PubMed

    Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J

    2017-08-01

    Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known

  16. Identification of microRNA Genes in Three Opisthorchiids

    PubMed Central

    Ovchinnikov, Vladimir Y.; Afonnikov, Dmitry A.; Vasiliev, Gennady V.; Kashina, Elena V.; Sripa, Banchob; Mordvinov, Viacheslav A.; Katokhin, Alexey V.

    2015-01-01

    Background Opisthorchis felineus, O. viverrini, and Clonorchis sinensis (family Opisthorchiidae) are parasitic flatworms that pose a serious threat to humans in some countries and cause opisthorchiasis/clonorchiasis. Chronic disease may lead to a risk of carcinogenesis in the biliary ducts. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression at post-transcriptional level and are implicated in the regulation of various cellular processes during the parasite- host interplay. However, to date, the miRNAs of opisthorchiid flukes, in particular those essential for maintaining their complex biology and parasitic mode of existence, have not been satisfactorily described. Methodology/Principal Findings Using a SOLiD deep sequencing-bioinformatic approach, we identified 43 novel and 18 conserved miRNAs for O. felineus (miracidia, metacercariae and adult worms), 20 novel and 16 conserved miRNAs for O. viverrini (adult worms), and 33 novel and 18 conserved miRNAs for C. sinensis (adult worms). The analysis of the data revealed differences in the expression level of conserved miRNAs among the three species and among three the developmental stages of O. felineus. Analysis of miRNA genes revealed two gene clusters, one cluster-like region and one intronic miRNA in the genome. The presence and structure of the two gene clusters were validated using a PCR-based approach in the three flukes. Conclusions This study represents a comprehensive description of miRNAs in three members of the family Opistorchiidae, significantly expands our knowledge of miRNAs in multicellular parasites and provides a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites. Results of this study also provides novel resources for deeper understanding the complex parasite biology, for further research on the pathogenesis and molecular events of disease induced by the liver flukes. The present data may also facilitate the development of novel

  17. Micro-flock patterns and macro-clusters in chiral active Brownian disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Liebchen, Benno

    2018-02-01

    Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.

  18. Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.

    PubMed

    Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-13

    Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.

  19. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    PubMed

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  20. TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation

    PubMed Central

    Drasin, David J.; Guarnieri, Anna L.; Neelakantan, Deepika; Kim, Jihye; Cabrera, Joshua H.; Wang, Chu-An; Zaberezhnyy, Vadym; Gasparini, Pierluigi; Cascione, Luciano; Huebner, Kay; Tan, Aik-Choon; Ford, Heide L.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that microRNA-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, microRNA-424 increases motility, decreases adhesion and induces a growth arrest, changes associated with a complete EMT, that can be reversed when microRNA-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient microRNA-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, microRNA-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, microRNA-424 decreases tumor initiation and is post-transcriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed microRNA-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK/ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest microRNA-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis. PMID

  1. miRNEST database: an integrative approach in microRNA search and annotation

    PubMed Central

    Szcześniak, Michał Wojciech; Deorowicz, Sebastian; Gapski, Jakub; Kaczyński, Łukasz; Makałowska, Izabela

    2012-01-01

    Despite accumulating data on animal and plant microRNAs and their functions, existing public miRNA resources usually collect miRNAs from a very limited number of species. A lot of microRNAs, including those from model organisms, remain undiscovered. As a result there is a continuous need to search for new microRNAs. We present miRNEST (http://mirnest.amu.edu.pl), a comprehensive database of animal, plant and virus microRNAs. The core part of the database is built from our miRNA predictions conducted on Expressed Sequence Tags of 225 animal and 202 plant species. The miRNA search was performed based on sequence similarity and as many as 10 004 miRNA candidates in 221 animal and 199 plant species were discovered. Out of them only 299 have already been deposited in miRBase. Additionally, miRNEST has been integrated with external miRNA data from literature and 13 databases, which includes miRNA sequences, small RNA sequencing data, expression, polymorphisms and targets data as well as links to external miRNA resources, whenever applicable. All this makes miRNEST a considerable miRNA resource in a sense of number of species (544) that integrates a scattered miRNA data into a uniform format with a user-friendly web interface. PMID:22135287

  2. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have notmore » responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.« less

  3. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    PubMed

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  4. An integrated mRNA and microRNA expression signature for glioblastoma multiforme prognosis.

    PubMed

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures.

  5. An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis

    PubMed Central

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures. PMID:24871302

  6. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences

    PubMed Central

    Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří

    2015-01-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580

  7. Bottleneck limitations for microRNA-based therapeutics from bench to the bedside.

    PubMed

    Chen, Yan; Zhao, Hongliang; Tan, Zhijun; Zhang, Cuiping; Fu, Xiaobing

    2015-03-01

    MicroRNAs are endogenous non-coding small RNAs that repress expression of a broad array of target genes. Research into the role and underlying molecular events of microRNAs in disease processes and the potential of microRNAs as drug targets has expanded rapidly. Significant advances have been made in identifying the associations of microRNAs with cancers, viral infections, immune diseases, cardiovascular diseases, wound healing, biological development and other areas of medicine. However, because of intense competition and financial risks, there is a series of stringent criteria and conditions that must be met before microRNA-based therapeutics could be pursued as new drug candidates. In this review, we specifically emphasized the obstacles for bench-based microRNA to the bedside, including common barriers in basic research, application limitations while moving to the clinic at the aspects of vector delivery, off-target effects, toxicity mediation, immunological activation and dosage determination, which should be overcome before microRNA-based therapeutics take their place in the clinic.

  8. miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells.

    PubMed

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A; Voorhoeve, P Mathijs

    2012-05-01

    MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.

  9. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  10. microRNA biogenesis and turnover in plants.

    PubMed

    Rogers, K; Chen, X

    2012-01-01

    microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.

  11. MicroRNA delivery for regenerative medicine.

    PubMed

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fishing Into the MicroRNA Transcriptome

    PubMed Central

    Herkenhoff, Marcos E.; Oliveira, Arthur C.; Nachtigall, Pedro G.; Costa, Juliana M.; Campos, Vinicius F.; Hilsdorf, Alexandre W. S.; Pinhal, Danillo

    2018-01-01

    In the last decade, several studies have been focused on revealing the microRNA (miRNA) repertoire and determining their functions in farm animals such as poultry, pigs, cattle, and fish. These small non-protein coding RNA molecules (18–25 nucleotides) are capable of controlling gene expression by binding to messenger RNA (mRNA) targets, thus interfering in the final protein output. MiRNAs have been recognized as the main regulators of biological features of economic interest, including body growth, muscle development, fat deposition, and immunology, among other highly valuable traits, in aquatic livestock. Currently, the miRNA repertoire of some farmed fish species has been identified and characterized, bringing insights about miRNA functions, and novel perspectives for improving health and productivity. In this review, we summarize the current advances in miRNA research by examining available data on Neotropical and other key species exploited by fisheries and in aquaculture worldwide and discuss how future studies on Neotropical fish could benefit from this knowledge. We also make a horizontal comparison of major results and discuss forefront strategies for miRNA manipulation in aquaculture focusing on forward-looking ideas for forthcoming research. PMID:29616080

  13. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.

  14. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  15. miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells

    PubMed Central

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A.; Voorhoeve, P. Mathijs

    2012-01-01

    MicroRNA–mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3′ UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3′ UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3′ UTR–mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs. PMID:22417692

  16. Common features of microRNA target prediction tools

    PubMed Central

    Peterson, Sarah M.; Thompson, Jeffrey A.; Ufkin, Melanie L.; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates

    2014-01-01

    The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468

  17. Common features of microRNA target prediction tools.

    PubMed

    Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates

    2014-01-01

    The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

  18. A mRNA and cognate microRNAs localize in the nucleolus.

    PubMed

    Reyes-Gutierrez, Pablo; Ritland Politz, Joan C; Pederson, Thoru

    2014-01-01

    We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.

  19. RNA-Seq reveals MicroRNA expression signature and genetic polymorphism associated with growth and muscle quality traits in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, muscle c...

  20. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion.

    PubMed

    Patterson, Dillon G; Roberts, Justin T; King, Valeria M; Houserova, Dominika; Barnhill, Emmaline C; Crucello, Aline; Polska, Caroline J; Brantley, Lucas W; Kaufman, Garrett C; Nguyen, Michael; Santana, Megann W; Schiller, Ian A; Spicciani, Julius S; Zapata, Anastasia K; Miller, Molly M; Sherman, Timothy D; Ma, Ruixia; Zhao, Hongyou; Arora, Ritu; Coley, Alexander B; Zeidan, Melody M; Tan, Ming; Xi, Yaguang; Borchert, Glen M

    2017-01-01

    Genetic searches for tumor suppressors have recently linked small nucleolar RNA misregulations with tumorigenesis. In addition to their classically defined functions, several small nucleolar RNAs are now known to be processed into short microRNA-like fragments called small nucleolar RNA-derived RNAs. To determine if any small nucleolar RNA-derived RNAs contribute to breast malignancy, we recently performed a RNA-seq-based comparison of the small nucleolar RNA-derived RNAs of two breast cancer cell lines (MCF-7 and MDA-MB-231) and identified small nucleolar RNA-derived RNAs derived from 13 small nucleolar RNAs overexpressed in MDA-MB-231s. Importantly, we find that inhibiting the most differentially expressed of these small nucleolar RNA-derived RNAs (sdRNA-93) in MDA-MB-231 cells results primarily in a loss of invasiveness, whereas increased sdRNA-93 expression in either cell line conversely results in strikingly enhanced invasion. Excitingly, we recently determined sdRNA-93 expressions in small RNA-seq data corresponding to 116 patient tumors and normal breast controls, and while we find little sdRNA-93 expression in any of the controls and only sporadic expression in most subtypes, we find robust expression of sdRNA-93 in 92.8% of Luminal B Her2+tumors. Of note, our analyses also indicate that at least one of sdRNA-93's endogenous roles is to regulate the expression of Pipox, a sarcosine metabolism-related protein whose expression significantly correlates with distinct molecular subtypes of breast cancer. We find sdRNA-93 can regulate the Pipox 3'UTR via standard reporter assays and that manipulating endogenous sdRNA-93 levels inversely correlates with altered Pipox expression. In summary, our results strongly indicate that sdRNA-93 expression actively contributes to the malignant phenotype of breast cancer through participating in microRNA-like regulation.

  1. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity

    PubMed Central

    Sun, Weijia; Zhao, Chenyang; Li, Yuheng; Wang, Liang; Nie, Guangjun; Peng, Jiang; Wang, Aiyuan; Zhang, Pengfei; Tian, Weiming; Li, Qi; Song, Jinping; Wang, Cheng; Xu, Xiaolong; Tian, Yanhua; Zhao, Dingsheng; Xu, Zi; Zhong, Guohui; Han, Bingxing; Ling, Shukuan; Chang, Yan-Zhong; Li, Yingxian

    2016-01-01

    MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function. PMID:27462462

  2. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3′ UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3′ UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders. PMID:23435502

  3. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3' UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3' UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders.

  4. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development.

    PubMed

    Sun, Tingting; Li, Weiyun; Li, Tianpeng; Ling, Shucai

    2016-01-01

    Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development.

  5. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  6. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.

    PubMed

    Tay, Felix Chang; Lim, Jia Kai; Zhu, Haibao; Hin, Lau Cia; Wang, Shu

    2015-01-01

    Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. MicroRNA in Teleost Fish

    PubMed Central

    Bizuayehu, Teshome Tilahun; Babiak, Igor

    2014-01-01

    MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts. PMID:25053657

  8. MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine

    PubMed Central

    Smith, Bethany; Agarwal, Priyanka

    2017-01-01

    The high degree of conservation in microRNA from Caenorhabditis elegans to humans has enabled relatively rapid implementation of findings in model systems to the clinic. The convergence of the capacity for genomic screening being implemented in the prevailing precision medicine initiative and the capabilities of microRNA to address these changes holds significant promise. However, prostate, ovarian and breast cancers are heterogeneous and face issues of evolving therapeutic resistance. The transforming growth factor-beta (TGFβ) signaling axis plays an important role in the progression of these cancers by regulating microRNAs. Reciprocally, microRNAs regulate TGFβ actions during cancer progression. One must consider the expression of miRNA in the tumor microenvironment a source of biomarkers of disease progression and a viable target for therapeutic targeting. The differential expression pattern of microRNAs in health and disease, therapeutic response and resistance has resulted in its application as robust biomarkers. With two microRNA mimetics in ongoing restorative clinical trials, the paradigm for future clinical studies rests on the current observational trials to validate microRNA markers of disease progression. Some of today’s biomarkers can be translated to the next generation of microRNA-based therapies. PMID:28289080

  9. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves

    PubMed Central

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S. Y.; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  10. SC3 - consensus clustering of single-cell RNA-Seq data

    PubMed Central

    Kiselev, Vladimir Yu.; Kirschner, Kristina; Schaub, Michael T.; Andrews, Tallulah; Yiu, Andrew; Chandra, Tamir; Natarajan, Kedar N; Reik, Wolf; Barahona, Mauricio; Green, Anthony R; Hemberg, Martin

    2017-01-01

    Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. PMID:28346451

  11. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.

    PubMed

    Wai, Ching M; VanBuren, Robert; Zhang, Jisen; Huang, Lixian; Miao, Wenjing; Edger, Patrick P; Yim, Won C; Priest, Henry D; Meyers, Blake C; Mockler, Todd; Smith, J Andrew C; Cushman, John C; Ming, Ray

    2017-10-01

    The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C 3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C 3 photosynthesis crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients.

    PubMed

    Ermakov, E A; Ivanova, S A; Buneva, V N; Nevinsky, G A

    2018-05-01

    Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.

  13. microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer

    DTIC Science & Technology

    2017-09-01

    CYP17A1 inhibition with abiraterone in castration- resistant prostate cancer : induction of steroidogenesis and androgen receptor splice variants...AWARD NUMBER: W81XWH-15-1-0353 TITLE: microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE microRNA Biomarkers to Generate Sensitivity to Abiraterone- Resistant Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  14. Comparison of circulating, hepatocyte specific messenger RNA and microRNA as biomarkers for chronic hepatitis B and C.

    PubMed

    Zhang, Xiaonan; Zhang, Zhanqing; Dai, Fahui; Shi, Bisheng; Chen, Liang; Zhang, Xinxin; Zang, Guoqing; Zhang, Jiming; Chen, Xiaorong; Qian, Fangxing; Hu, Yunwen; Yuan, Zhenghong

    2014-01-01

    Circulating microRNAs have been widely recognized as a novel category of biomarker in a variety of physiological and pathological conditions. Other reports revealed that fragments of organ specific messenger RNAs are also detectable in serum/plasma and can be utilized as sensitive indicators of liver pathology and cancer. In order to assess the sensitivity and reliability of these two class of RNAs as marker of hepatitis B or C induced chronic liver disease, we collected plasma samples from 156 chronic hepatitis B or C patients (HBV active n = 112, HBV carrier n = 19, hepatitis C n = 25) and 22 healthy donors and quantified their circulating mRNA for albumin, HP (haptoglobin), CYP2E1 (cytochrome P450, family 2, subfamily E) and ApoA2 (Apolipoprotein A2) in conjunction with microRNA-122, a well established marker for acute and chronic liver injury. We found that plasma microRNA-122 level is significantly elevated in patients with active HBV but not in HBV carriers. Furthermore, microRNA-122 is not elevated in HCV patients even though their median serum alanine aminotransferase (sALT) was three fold of the healthy donors. Nevertheless, circulating mRNAs, especially albumin mRNA, showed much more sensitivity in distinguishing active hepatitis B, hepatitis B carrier or HCV patients from healthy control. Correlation and multiple linear regression analysis suggested that circulating mRNAs and miRNAs are much more related to HBsAg titre than to sALT. Immunoprecipitation of HBsAg in HBV patients' plasma resulted in enrichment of albumin and HP mRNA suggesting that fragments of liver specific transcripts can be encapsidated into HBsAg particles. Taken together, our results suggest that hepatocyte specific transcripts in plasma like albumin mRNA showed greater sensitivity and specificity in differentiating HBV or HCV induced chronic liver disease than microRNA-122. Circulating mRNA fragments merit more attention in the quest of next generation biomarkers for

  15. Comparison of Circulating, Hepatocyte Specific Messenger RNA and microRNA as Biomarkers for Chronic Hepatitis B and C

    PubMed Central

    Zhang, Xiaonan; Zhang, Zhanqing; Dai, Fahui; Shi, Bisheng; Chen, Liang; Zhang, Xinxin; Zang, Guoqing; Zhang, Jiming; Chen, Xiaorong; Qian, Fangxing; Hu, Yunwen; Yuan, Zhenghong

    2014-01-01

    Circulating microRNAs have been widely recognized as a novel category of biomarker in a variety of physiological and pathological conditions. Other reports revealed that fragments of organ specific messenger RNAs are also detectable in serum/plasma and can be utilized as sensitive indicators of liver pathology and cancer. In order to assess the sensitivity and reliability of these two class of RNAs as marker of hepatitis B or C induced chronic liver disease, we collected plasma samples from 156 chronic hepatitis B or C patients (HBV active n = 112, HBV carrier n = 19, hepatitis C n = 25) and 22 healthy donors and quantified their circulating mRNA for albumin, HP (haptoglobin), CYP2E1 (cytochrome P450, family 2, subfamily E) and ApoA2 (Apolipoprotein A2) in conjunction with microRNA-122, a well established marker for acute and chronic liver injury. We found that plasma microRNA-122 level is significantly elevated in patients with active HBV but not in HBV carriers. Furthermore, microRNA-122 is not elevated in HCV patients even though their median serum alanine aminotransferase (sALT) was three fold of the healthy donors. Nevertheless, circulating mRNAs, especially albumin mRNA, showed much more sensitivity in distinguishing active hepatitis B, hepatitis B carrier or HCV patientsfrom healthy control. Correlation and multiple linear regression analysis suggested that circulating mRNAs and miRNAs are much more related to HBsAg titre than to sALT. Immunoprecipitation of HBsAg in HBV patients’ plasma resulted in enrichment of albumin and HP mRNA suggesting that fragments of liver specific transcripts can be encapsidated into HBsAg particles. Taken together, our results suggest that hepatocyte specific transcripts in plasma like albumin mRNA showed greater sensitivity and specificity in differentiating HBV or HCV induced chronic liver disease than microRNA-122. Circulating mRNA fragments merit more attention in the quest of next generation biomarkers for

  16. Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma

    PubMed Central

    Kemeny, Nancy; Kingham, T. Peter; Allen, Peter J.; D’Angelica, Michael I.; DeMatteo, Ronald P.; Betel, Doron; Klimstra, David; Jarnagin, William R.; Ventura, Andrea

    2016-01-01

    Background MicroRNAs (miRNAs) are potential biomarkers in various malignancies. We aim to characterize miRNA expression in intrahepatic cholangiocarcinoma (ICC) and identify circulating plasma miRNAs with potential diagnostic and prognostic utility. Methods Using deep-sequencing techniques, miRNA expression between tumor samples and non-neoplastic liver parenchyma were compared. Overexpressed miRNAs were measured in plasma from an independent cohort of patients with cholangiocarcinoma using RT-qPCR and compared with that healthy volunteers. The discriminatory ability of the evaluated plasma miRNAs between patients and controls was evaluated with receiving operating characteristic (ROC) curves. Results Small RNAs from 12 ICC and 11 tumor-free liver samples were evaluated. Unsupervised hierarchical clustering using the miRNA expression data showed clear grouping of ICC vs. non-neoplastic liver parenchyma. We identified 134 down-regulated and 128 upregulated miRNAs. Based on overexpression and high fold-change, miR21, miR200b, miR221, and miR34c were measured in plasma from an independent cohort of patients with ICC (n = 25) and healthy controls (n = 7). Significant overexpression of miR-21 and miR-221 was found in plasma from ICC patients. Furthermore, circulating miR-21 demonstrated a high discriminatory ability between patients with ICC and healthy controls (AUC: 0.94). Conclusion Among the differentially expressed miRNAs in ICC, miR-21 and miR-221 are overexpressed and detectable in the circulation. Plasma expression levels of these miRNAs, particularly miR-21, accurately differentiates patients with ICC from healthy controls and could potentially serve as adjuncts in diagnosis. Prospective validation and comparison with other hepatobiliary malignancies is required to establish their potential role as diagnostic and prognostic biomarkers. PMID:27685844

  17. Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data.

    PubMed

    Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Hwa Yang, Yee

    2009-05-01

    Over the past decade, a class of small RNA molecules called microRNAs (miRNAs) has been shown to regulate gene expression at the post-transcription stage. While early work focused on the identification of miRNAs using a combination of experimental and computational techniques, subsequent studies have focused on identification of miRNA-target mRNA pairs as each miRNA can have hundreds of mRNA targets. The experimental validation of some miRNAs as oncogenic has provided further motivation for research in this area. In this article we propose an odds-ratio (OR) statistic for identification of regulatory miRNAs. It is based on integrative analysis of matched miRNA and mRNA time-course microarray data. The OR-statistic was used for (i) identification of miRNAs with regulatory potential, (ii) identification of miRNA-target mRNA pairs and (iii) identification of time lags between changes in miRNA expression and those of its target mRNAs. We applied the OR-statistic to a cancer data set and identified a small set of miRNAs that were negatively correlated to mRNAs. A literature survey revealed that some of the miRNAs that were predicted to be regulatory, were indeed oncogenic or tumor suppressors. Finally, some of the predicted miRNA targets have been shown to be experimentally valid.

  18. Micro-terminator: 'Hasta la vista, lncRNA!'.

    PubMed

    Diederichs, Sven

    2015-04-01

    Transcriptional termination is an important yet incompletely understood aspect of gene expression. Proudfoot, Jopling and colleagues now identify a new Microprocessor-mediated mechanism of transcriptional termination, which acts specifically on long noncoding transcripts that serve as microRNA precursors.

  19. MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.

    PubMed

    Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo

    2017-11-16

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

  20. Dysregulation of serum microRNA-574-3p and its clinical significance in hepatocellular carcinoma.

    PubMed

    Shen, Xianjuan; Xue, Yajing; Cong, Hui; Wang, Xudong; Ju, Shaoqing

    2018-07-01

    Objectives To explore microRNA-574-3p expression in serum of patients with hepatocellular carcinoma and investigate correlations between serum microRNA-574-3p expression and the development and prognosis of hepatocellular carcinoma. Design and methods Serum samples were collected from 70 patients with primary hepatocellular carcinoma, 40 patients with cirrhosis and 45 healthy controls. Serum microRNA-574-3p expression levels were detected by real-time quantitative polymerase chain reaction. The linearity, specificity and reproducibility were evaluated. In addition, the diagnostic value of microRNA-574-3p and its correlations with clinicopathologic features were assessed. Results The relative expression of microRNA-574-3p in hepatocellular carcinoma patients, cirrhosis patients and healthy controls was 2.306 (1.801-3.130), 1.362 (0.994-1.665) and 1.263 (0.765-1.723), respectively, indicating that it was significantly higher in hepatocellular carcinoma patients than that in the other two groups ( U = 439.5, 514.5, both P < 0.0001) and was significantly correlated with hepatitis B virus DNA copies ( U = 383.0, P = 0.018). In hepatitis B virus-positive hepatocellular carcinoma patients, the relative expression of microRNA-574-3p was significantly correlated with hepatitis B virus DNA concentration ( r = 0.348, P = 0.022). Compared with healthy control group, AUC ROC of serum microRNA-574-3p in hepatocellular carcinoma group was 0.837 with 95% CI: 0.763-0.910. Combining microRNA-574-3p, AFU and alpha-fetoprotein together, the sensitivity was highest compared with other markers alone or combined. Conclusions The relative expression of serum microRNA-574-3p in hepatocellular carcinoma patients was significantly higher than that in cirrhosis patients and healthy controls, and it may be an important biomarker in the auxiliary diagnosis of hepatocellular carcinoma.

  1. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  2. The Evolution of MicroRNA Pathway Protein Components in Cnidaria

    PubMed Central

    Moran, Yehu; Praher, Daniela; Fredman, David; Technau, Ulrich

    2013-01-01

    In the last decade, it became evident that posttranscriptional regulation of gene expression by microRNAs is a central biological process in both plants and animals. Yet, our knowledge about microRNA biogenesis and utilization in animals stems mostly from the study of Bilateria. In this study, we identified genes encoding the protein components of different parts of the microRNA pathway in Cnidaria, the likely sister phylum of Bilateria. These genes originated from three cnidarian lineages (sea anemones, stony corals, and hydras) that are separated by at least 500 My from one another. We studied the expression and phylogeny of the cnidarian homologs of Drosha and Pasha (DGCR8) that compose the microprocessor, the RNAse III enzyme Dicer and its partners, the HEN1 methyltransferase, the Argonaute protein effectors, as well as members of the GW182 protein family. We further reveal that whereas the bilaterian dicer partners Loquacious/TRBP and PACT are absent from Cnidaria, this phylum contains homologs of the double-stranded RNA-binding protein HYL1, the Dicer partner found in plants. We also identified HYL1 homologs in a sponge and a ctenophore. This finding raises questions regarding the independent evolution of the microRNA pathway in plants and animals, and together with the other results shed new light on the evolution of an important regulatory pathway. PMID:24030553

  3. The evolution of microRNA pathway protein components in Cnidaria.

    PubMed

    Moran, Yehu; Praher, Daniela; Fredman, David; Technau, Ulrich

    2013-12-01

    In the last decade, it became evident that posttranscriptional regulation of gene expression by microRNAs is a central biological process in both plants and animals. Yet, our knowledge about microRNA biogenesis and utilization in animals stems mostly from the study of Bilateria. In this study, we identified genes encoding the protein components of different parts of the microRNA pathway in Cnidaria, the likely sister phylum of Bilateria. These genes originated from three cnidarian lineages (sea anemones, stony corals, and hydras) that are separated by at least 500 My from one another. We studied the expression and phylogeny of the cnidarian homologs of Drosha and Pasha (DGCR8) that compose the microprocessor, the RNAse III enzyme Dicer and its partners, the HEN1 methyltransferase, the Argonaute protein effectors, as well as members of the GW182 protein family. We further reveal that whereas the bilaterian dicer partners Loquacious/TRBP and PACT are absent from Cnidaria, this phylum contains homologs of the double-stranded RNA-binding protein HYL1, the Dicer partner found in plants. We also identified HYL1 homologs in a sponge and a ctenophore. This finding raises questions regarding the independent evolution of the microRNA pathway in plants and animals, and together with the other results shed new light on the evolution of an important regulatory pathway.

  4. Evolution of coding and non-coding genes in HOX clusters of a marsupial.

    PubMed

    Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B

    2012-06-18

    The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  5. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    PubMed Central

    2012-01-01

    Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672

  6. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A potential microRNA signature for tumorigenic conazoles in mouse liver.

    PubMed

    Ross, Jeffrey A; Blackman, Carl F; Thai, Sheau-Fung; Li, Zhiguang; Kohan, Michael; Jones, Carlton P; Chen, Tao

    2010-04-01

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumorigenicity, we analyzed the microRNA expression levels in control and conazole-treated mice after 90 d of administration in feed. MicroRNAs (miRNAs) are small noncoding RNAs composed of approximately 19-24 nucleotides in length, and have been shown to interact with mRNA (usually 3' UTR) to suppress its expression. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Groups of mice were fed either control diet or diet containing 1800 ppm triadimefon, 2500 ppm propiconazole, or 2000 ppm myclobutanil. MicroRNA was isolated from livers and analyzed using Superarray whole mouse genome miRNA PCR arrays from SABioscience. Data were analyzed using the significance analysis of microarrays (SAM) procedure. We identified those miRNAs whose expression was either increased or decreased relative to untreated controls with q < or = 0.01. The tumorigenic conazoles induced many more changes in miRNA expression than the nontumorigenic conazole. A group of 19 miRNAs was identified whose expression was significantly altered in both triadimefon- and propiconazole-treated animals but not in myclobutanil-treated animals. All but one of the altered miRNAs were downregulated compared to controls. This pattern of altered miRNA expression may represent a signature for tumorigenic conazole exposure in mouse liver after 90 d of treatment.

  8. Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul

    2017-05-01

    MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.

  9. Integrative analysis of micro-RNA, gene expression, and survival of glioblastoma multiforme.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Kelsey, Karl T; Lin, Chien-Ling

    2015-02-01

    Glioblastoma multiforme (GBM), the most common type of malignant brain tumor, is highly fatal. Limited understanding of its rapid progression necessitates additional approaches that integrate what is known about the genomics of this cancer. Using a discovery set (n = 348) and a validation set (n = 174) of GBM patients, we performed genome-wide analyses that integrated mRNA and micro-RNA expression data from GBM as well as associated survival information, assessing coordinated variability in each as this reflects their known mechanistic functions. Cox proportional hazards models were used for the survival analyses, and nonparametric permutation tests were performed for the micro-RNAs to investigate the association between the number of associated genes and its prognostication. We also utilized mediation analyses for micro-RNA-gene pairs to identify their mediation effects. Genome-wide analyses revealed a novel pattern: micro-RNAs related to more gene expressions are more likely to be associated with GBM survival (P = 4.8 × 10(-5)). Genome-wide mediation analyses for the 32,660 micro-RNA-gene pairs with strong association (false discovery rate [FDR] < 0.01%) identified 51 validated pairs with significant mediation effect. Of the 51 pairs, miR-223 had 16 mediation genes. These 16 mediation genes of miR-223 were also highly associated with various other micro-RNAs and mediated their prognostic effects as well. We further constructed a gene signature using the 16 genes, which was highly associated with GBM survival in both the discovery and validation sets (P = 9.8 × 10(-6)). This comprehensive study discovered mediation effects of micro-RNA to gene expression and GBM survival and provided a new analytic framework for integrative genomics. © 2014 WILEY PERIODICALS, INC.

  10. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollome, James; Martin, Elizabeth

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less

  11. Circulating microRNA as candidates for early embryonic viability in cattle

    USDA-ARS?s Scientific Manuscript database

    Blood borne extracellular vesicles (EVs; i.e. exosomes and microvesicles) carrying microRNA (miRNA) may make excellent biomarkers of disease conditions and different physiologic states, including pregnancy status. We tested the hypothesis that circulating EV-derived miRNA might differentiate pregnan...

  12. MicroRNA signatures differentiate melanoma subtypes

    PubMed Central

    Chan, Elcie; Patel, Rajeshvari; Nallur, Sunitha; Ratner, Elena; Bacchiocchi, Antonella; Hoyt, Kathleen; Szpakowski, Sebastian; Godshalk, Sirie; Ariyan, Stephan; Sznol, Mario; Halaban, Ruth; Krauthammer, Michael; Tuck, David; Slack, Frank J

    2011-01-01

    Melanoma is an aggressive cancer that is highly resistance to therapies once metastasized. We studied microRNA (miRNA) expression in clinical melanoma subtypes and evaluated different miRNA signatures in the background of gain of function somatic and inherited mutations associated with melanoma. Total RNA from 42 patient derived primary melanoma cell lines and three independent normal primary melanocyte cell cultures was evaluated by miRNA array. MiRNA expression was then analyzed comparing subtypes and additional clinicopathologic criteria including somatic mutations. The prevalence and association of an inherited variant in a miRNA binding site in the 3′UTR of the KRAS oncogene, referred to as the KRAS-variant, was also evaluated. We show that seven miRNAs, miR-142-3p, miR-486, miR-214, miR-218, miR-362, miR-650 and miR-31, were significantly correlated with acral as compared to non-acral melanomas (p < 0.04). In addition, we discovered that the KRAS-variant was enriched in non-acral melanoma (25%), and that miR-137 under expression was significantly associated with melanomas with the KRAS-variant. Our findings indicate that miRNAs are differentially expressed in melanoma subtypes and that their misregulation can be impacted by inherited gene variants, supporting the hypothesis that miRNA misregulation reflects biological differences in melanoma. PMID:21543894

  13. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens.

    PubMed

    Huang, Wei; Hu, Jie; Yang, Da-wei; Fan, Xin-ting; Jin, Yi; Hou, Ying-yong; Wang, Ji-ping; Yuan, Yun-feng; Tan, Yun-shan; Zhu, Xiong-Zeng; Bai, Chun-xue; Wu, Ying; Zhu, Hong-guang; Lu, Shao-hua

    2012-12-01

    Effective treatment for lung cancer requires accuracy in subclassification of carcinoma subtypes. To identify microRNAs in bronchial brushing specimens for discriminating small cell lung cancer (SCLC) from non-small cell lung cancer (NSCLC) and for further differentiating squamous cell carcinoma (SQ) from adenocarcinoma (AC). Microarrays were used to screen 723 microRNAs in laser-captured, microdissected cancer cells from 82 snap-frozen surgical lung specimens. Quantitative reverse-transcriptase polymerase chain reaction was performed on 153 macrodissected formalin-fixed, paraffin-embedded (FFPE) surgical lung specimens to evaluate seven microRNA candidates discovered from microarrays. Two microRNA panels were constructed on the basis of a training cohort (n = 85) and validated using an independent cohort (n = 68). The microRNA panels were applied as differentiators of SCLC from NSCLC and of SQ from AC in 207 bronchial brushing specimens. Two microRNA panels yielded high diagnostic accuracy in discriminating SCLC from NSCLC (miR-29a and miR-375; area under the curve [AUC], 0.991 and 0.982 for training and validation data set, respectively) and in differentiating SQ from AC (miR-205 and miR-34a; AUC, 0.977 and 0.982 for training and validation data set, respectively) in FFPE surgical lung specimens. Moreover, the microRNA panels accurately differentiated SCLC from NSCLC (AUC, 0.947) and SQ from AC (AUC, 0.962) in bronchial brushing specimens. We found two microRNA panels that accurately discriminated between the three subtypes of lung carcinoma in bronchial brushing specimens. The identified microRNA panels may have considerable clinical value in differential diagnosis and optimizing treatment strategies based on lung cancer subtypes.

  14. MicroRNA Biomarkers of Toxicity in Biological Matrices ...

    EPA Pesticide Factsheets

    Biomarker measurements that reliably correlate with tissue injury and can be measured from sampling accessible biofluids offer enormous benefits in terms of cost, time, and convenience when assessing environmental and drug-induced toxicity in model systems or human cohorts. MicroRNAs (miRNAs) have emerged in recent years as a promising new type of biomarker for monitoring toxicity. Recent enthusiasm for miRNA biomarker research has been fueled by discoveries that certain miRNA species are cell-type specific and released during injury, thus raising the possibility of using biofluid-based miRNAs as a “liquid biopsy” that may be obtained by sampling extracellular fluids. As biomarkers, miRNAs demonstrate improved stability as compared to many protein markers and sequences are largely conserved across species, simplifying analytical techniques. Recent efforts have sought to identify miRNAs that are released into accessible biofluids following xenobiotic exposure, using compounds that target specific organs. While still early in the discovery phase, miRNA biomarkers will have an increasingly important role in the assessment of adverse effects of both environmental chemicals and pharmaceutical drugs. Here, we review the current findings of biofluid-based miRNAs, as well as highlight technical challenges in assessing toxicologic pathology using these biomarkers. MicroRNAs (miRNAs) are small, non-coding RNA species that selectively bind mRNA molecules and alter thei

  15. Multilayer checkpoints for microRNA authenticity during RISC assembly.

    PubMed

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-09-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.

  16. G-Quadruplexes influence pri-microRNA processing.

    PubMed

    Rouleau, Samuel G; Garant, Jean-Michel; Bolduc, François; Bisaillon, Martin; Perreault, Jean-Pierre

    2018-02-01

    RNA G-Quadruplexes (G4) have been shown to possess many biological functions, including the regulation of microRNA (miRNA) biogenesis and function. However, their impact on pri-miRNA processing remains unknown. We identified G4 located near the Drosha cleavage site in three distinct pri-miRNAs: pri-mir200c, pri-mir451a, and pri-mir497. The folding of the potential G4 motifs was determined in solution. Subsequently, mutations disrupting G4 folding led to important changes in the mature miRNAs levels in cells. Moreover, using small antisense oligonucleotides binding to the pri-miRNA, it was possible to modulate, either positively or negatively, the mature miRNA levels. Together, these data demonstrate that G4 motifs could contribute to the regulation of pri-mRNA processing, a novel role for G4. Considering that bio-informatics screening indicates that between 9% and 50% of all pri-miRNAs contain a putative G4, these structures possess interesting potential as future therapeutic targets.

  17. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.

    PubMed

    Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver

    2015-05-01

    During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  18. OmniSearch: a semantic search system based on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene interaction data.

    PubMed

    Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan

    2016-01-01

    As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.

  19. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    PubMed

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  20. YM500: a small RNA sequencing (smRNA-seq) database for microRNA research

    PubMed Central

    Cheng, Wei-Chung; Chung, I-Fang; Huang, Tse-Shun; Chang, Shih-Ting; Sun, Hsing-Jen; Tsai, Cheng-Fong; Liang, Muh-Lii; Wong, Tai-Tong; Wang, Hsei-Wei

    2013-01-01

    MicroRNAs (miRNAs) are small RNAs ∼22 nt in length that are involved in the regulation of a variety of physiological and pathological processes. Advances in high-throughput small RNA sequencing (smRNA-seq), one of the next-generation sequencing applications, have reshaped the miRNA research landscape. In this study, we established an integrative database, the YM500 (http://ngs.ym.edu.tw/ym500/), containing analysis pipelines and analysis results for 609 human and mice smRNA-seq results, including public data from the Gene Expression Omnibus (GEO) and some private sources. YM500 collects analysis results for miRNA quantification, for isomiR identification (incl. RNA editing), for arm switching discovery, and, more importantly, for novel miRNA predictions. Wetlab validation on >100 miRNAs confirmed high correlation between miRNA profiling and RT-qPCR results (R = 0.84). This database allows researchers to search these four different types of analysis results via our interactive web interface. YM500 allows researchers to define the criteria of isomiRs, and also integrates the information of dbSNP to help researchers distinguish isomiRs from SNPs. A user-friendly interface is provided to integrate miRNA-related information and existing evidence from hundreds of sequencing datasets. The identified novel miRNAs and isomiRs hold the potential for both basic research and biotech applications. PMID:23203880

  1. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    PubMed

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs. IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. Micro

  2. [The function and application of animal microRNA-181].

    PubMed

    Chang, Yang; Mu, Weitao; Man, Chaolai

    2014-02-01

    MicroRNAs (miRNAs) are a type of non-coding RNAs which are short (17-25nt) and highly conservative in evolution. They can regulate gene expression by preventing target mRNA translation or inducing degradation via oligonucleotides complementary to target mRNA. Here, we briefly summarize the functions and regulatory mechanisms of microRNA-181 (miR-181) in cell proliferation, apoptosis and differentiation, and discuss the miR-181-mediated regulation of immune response in lymphocyte proliferation and differentiation, autoimmunity, inflammation and virus infection. Also, we analyze the functions of miR-181 in tumorigenesis, tumor development, diagnosis, treatment and prognosis. Finally, we discuss the application prospects of miR-181. The functional studies of miR-181 family members have important significance in understanding the mechanisms of biological events, pathogenesis of diseases, and finding new ways to diagnose and treat related diseases.

  3. Effective Anti-miRNA Oligonucleotides Show High Releasing Rate of MicroRNA from RNA-Induced Silencing Complex.

    PubMed

    Ariyoshi, Jumpei; Matsuyama, Yohei; Kobori, Akio; Murakami, Akira; Sugiyama, Hiroshi; Yamayoshi, Asako

    2017-10-01

    MicroRNAs (miRNAs) regulate gene expression by forming RNA-induced silencing complexes (RISCs) and have been considered as promising therapeutic targets. MiRNA is an essential component of RISC for the modulation of gene expression. Therefore, the release of miRNA from RISC is considered as an effective method for the inhibition of miRNA functions. In our previous study, we reported that anti-miRNA oligonucleotides (AMOs), which are composed of the 2'-O-methyl (2'-OMe) RNA, could induce the release of miRNA from RISC. However, the mechanisms underlying the miRNA-releasing effects of chemically modified AMOs, which are conventionally used as anti-cancer drugs, are still unclear. In this study, we investigated the relationship between the miRNA releasing rate from RISC and the inhibitory effect on RISC activity (IC 50 ) using conventional chemically modified AMOs. We demonstrated that the miRNA-releasing effects of AMOs are directly proportional to the IC 50 values, and AMOs, which have an ability to promote the release of miRNA from RISC, can effectively inhibit RISC activity in living cells.

  4. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  5. Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs.

    PubMed

    Lazzari, Barbara; Caprera, Andrea; Cestaro, Alessandro; Merelli, Ivan; Del Corvo, Marcello; Fontana, Paolo; Milanesi, Luciano; Velasco, Riccardo; Stella, Alessandra

    2009-06-29

    Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.

  6. Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer.

    PubMed

    de Foucher, Tiphaine; Sbeih, Maria; Uzan, Jenifer; Bendifallah, Sofiane; Lefevre, Marine; Chabbert-Buffet, Nathalie; Aractingi, Selim; Uzan, Catherine; Abd Alsalam, Issam; Mitri, Rana; Fontaine, Romain H; Daraï, Emile; Haddad, Bassam; Méhats, Céline; Ballester, Marcos; Canlorbe, Geoffroy; Touboul, Cyril

    2018-05-21

    Actual European pathological classification of early-stage endometrial cancer (EC) may show insufficient accuracy to precisely stratify recurrence risk, leading to potential over or under treatment. Micro-RNAs are post-transcriptional regulators involved in carcinogenic mechanisms, with some micro-RNA patterns of expression associated with EC characteristics and prognosis. We previously demonstrated that downregulation of micro-RNA-184 was associated with lymph node involvement in low-risk EC (LREC). The aim of this study was to evaluate whether micro-RNA signature in tumor tissues from LREC women can be correlated with the occurrence of recurrences. MicroRNA expression was assessed by chip analysis and qRT-PCR in 7 formalin-fixed paraffin-embedded (FFPE) LREC primary tumors from women whose follow up showed recurrences (R+) and in 14 FFPE LREC primary tumors from women whose follow up did not show any recurrence (R-), matched for grade and age. Various statistical analyses, including enrichment analysis and a minimum p-value approach, were performed. The expression levels of micro-RNAs-184, -497-5p, and -196b-3p were significantly lower in R+ compared to R- women. Women with a micro-RNA-184 fold change < 0.083 were more likely to show recurrence (n = 6; 66%) compared to those with a micro-RNA-184 fold change > 0.083 (n = 1; 8%), p = 0.016. Women with a micro-RNA-196 fold change < 0.56 were more likely to show recurrence (n = 5; 100%) compared to those with a micro-RNA-196 fold change > 0.56 (n = 2; 13%), p = 0.001. These findings confirm the great interest of micro-RNA-184 as a prognostic tool to improve the management of LREC women.

  7. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  8. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias

    PubMed Central

    Calin, George Adrian; Liu, Chang-Gong; Sevignani, Cinzia; Ferracin, Manuela; Felli, Nadia; Dumitru, Calin Dan; Shimizu, Masayoshi; Cimmino, Amelia; Zupo, Simona; Dono, Mariella; Dell'Aquila, Marie L.; Alder, Hansjuerg; Rassenti, Laura; Kipps, Thomas J.; Bullrich, Florencia; Negrini, Massimo; Croce, Carlo M.

    2004-01-01

    Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673–676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253–258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia. PMID:15284443

  9. Multilayer checkpoints for microRNA authenticity during RISC assembly

    PubMed Central

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-01-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5′ phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5′ nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3′ region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly. PMID:21738221

  10. Cellular Response to Ionizing Radiation: A MicroRNA Story

    PubMed Central

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  11. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Structural basis for microRNA targeting

    DOE PAGES

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2014-10-31

    MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. In this paper, we determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions withmore » the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. Finally, these results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.« less

  13. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    PubMed

    Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane

    2014-08-06

    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

  14. MicroRNA Gene Regulatory Networks in Peripheral Nerve Sheath Tumors

    DTIC Science & Technology

    2013-09-01

    3.0 hierarchical clustering of both the X and the Y-axis using Centroid linkage. The resulting clustered matrixes were visualized using Java Treeview...To score potential ceRNA interactions, the 54979 human interactions were loaded into a mySQL database and when the user selects a given mRNA all...on the fly using PHP interactions with mySQL in a similar fashion as previously described in our publicly available databases such as sarcoma

  15. MicroRNA network changes in the brain stem underlie the development of hypertension.

    PubMed

    DeCicco, Danielle; Zhu, Haisun; Brureau, Anthony; Schwaber, James S; Vadigepalli, Rajanikanth

    2015-09-01

    Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension. Copyright © 2015 the American Physiological Society.

  16. MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo.

    PubMed

    Sahoo, Anupama; Lee, Bongyong; Boniface, Katia; Seneschal, Julien; Sahoo, Sanjaya K; Seki, Tatsuya; Wang, Chunyan; Das, Soumen; Han, Xianlin; Steppie, Michael; Seal, Sudipta; Taieb, Alain; Perera, Ranjan J

    2017-09-01

    Vitiligo is a common chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has complex immune, genetic, environmental, and biochemical causes, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. In this study we characterized the human vitiligo cell line PIG3V and the normal human melanocyte line HEM-l by RNA sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched microRNA-211, a known metabolic switch in nonpigmented melanoma cells, was severely down-regulated in vitiligo cell line PIG3V and skin biopsy samples from vitiligo patients, whereas its predicted targets PPARGC1A, RRM2, and TAOK1 were reciprocally up-regulated. microRNA-211 binds to PGC1-α 3' untranslated region locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated microRNA-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of microRNA-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

    PubMed

    Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat

    2014-03-01

    Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

  18. MicroRNA biogenesis and function in plants.

    PubMed

    Chen, Xuemei

    2005-10-31

    A microRNA (miRNA) is a 21-24 nucleotide RNA product of a non-protein-coding gene. Plants, like animals, have a large number of miRNA-encoding genes in their genomes. The biogenesis of miRNAs in Arabidopsis is similar to that in animals in that miRNAs are processed from primary precursors by at least two steps mediated by RNAse III-like enzymes and that the miRNAs are incorporated into a protein complex named RISC. However, the biogenesis of plant miRNAs consists of an additional step, i.e., the miRNAs are methylated on the ribose of the last nucleotide by the miRNA methyltransferase HEN1. The high degree of sequence complementarity between plant miRNAs and their target mRNAs has facilitated the bioinformatic prediction of miRNA targets, many of which have been subsequently validated. Plant miRNAs have been predicted or confirmed to regulate a variety of processes, such as development, metabolism, and stress responses. A large category of miRNA targets consists of genes encoding transcription factors that play important roles in patterning the plant form.

  19. An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences

    PubMed Central

    Moyle, Richard L.; Carvalhais, Lilia C.; Pretorius, Lara-Simone; Nowak, Ekaterina; Subramaniam, Gayathery; Dalton-Morgan, Jessica; Schenk, Peer M.

    2017-01-01

    Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence. PMID:28979287

  20. Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity.

    PubMed

    Garbuzov, Alina; Tatar, Marc

    2010-01-01

    The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNAi knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNA, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNA when exposed to micromolar levels of 20-HE. We then explore the role microRNA plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3'UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNA control of antimicrobial peptide translation.

  1. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  2. miTRATA: a web-based tool for microRNA Truncation and Tailing Analysis.

    PubMed

    Patel, Parth; Ramachandruni, S Deepthi; Kakrana, Atul; Nakano, Mayumi; Meyers, Blake C

    2016-02-01

    We describe miTRATA, the first web-based tool for microRNA Truncation and Tailing Analysis--the analysis of 3' modifications of microRNAs including the loss or gain of nucleotides relative to the canonical sequence. miTRATA is implemented in Python (version 3) and employs parallel processing modules to enhance its scalability when analyzing multiple small RNA (sRNA) sequencing datasets. It utilizes miRBase, currently version 21, as a source of known microRNAs for analysis. miTRATA notifies user(s) via email to download as well as visualize the results online. miTRATA's strengths lie in (i) its biologist-focused web interface, (ii) improved scalability via parallel processing and (iii) its uniqueness as a webtool to perform microRNA truncation and tailing analysis. miTRATA is developed in Python and PHP. It is available as a web-based application from https://wasabi.dbi.udel.edu/∼apps/ta/. meyers@dbi.udel.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0548 TITLE: Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression PRINCIPAL...Sep 2015 4. TITLE AND SUBTITLE Exosomes as Novel microRNA-Delivery Vehicles to Modulate Prostate Cancer Progression 5a. CONTRACT NUMBER 5b. GRANT...they are produced, but can also signal intercellularly to other cells and tissues at distant sites via exosomal transport. We hypothesize that miRNAs

  4. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    PubMed Central

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  5. De novo discovery of structural motifs in RNA 3D structures through clustering.

    PubMed

    Ge, Ping; Islam, Shahidul; Zhong, Cuncong; Zhang, Shaojie

    2018-05-18

    As functional components in three-dimensional (3D) conformation of an RNA, the RNA structural motifs provide an easy way to associate the molecular architectures with their biological mechanisms. In the past years, many computational tools have been developed to search motif instances by using the existing knowledge of well-studied families. Recently, with the rapidly increasing number of resolved RNA 3D structures, there is an urgent need to discover novel motifs with the newly presented information. In this work, we classify all the loops in non-redundant RNA 3D structures to detect plausible RNA structural motif families by using a clustering pipeline. Compared with other clustering approaches, our method has two benefits: first, the underlying alignment algorithm is tolerant to the variations in 3D structures. Second, sophisticated downstream analysis has been performed to ensure the clusters are valid and easily applied to further research. The final clustering results contain many interesting new variants of known motif families, such as GNAA tetraloop, kink-turn, sarcin-ricin and T-loop. We have also discovered potential novel functional motifs conserved in ribosomal RNA, sgRNA, SRP RNA, riboswitch and ribozyme.

  6. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

  7. DMirNet: Inferring direct microRNA-mRNA association networks.

    PubMed

    Lee, Minsu; Lee, HyungJune

    2016-12-05

    MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles of a miRNA and its target mRNA, various computational methods have previously been proposed to identify miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However, there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or suboptimal performance across different datasets is highly needed. In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods (namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble aggregation to build a reliable and robust model across different datasets. Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art Ensemble

  8. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  9. Strategies to identify microRNA targets: New advances

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progr...

  10. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer.

    PubMed

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels; Sørensen, Flemming Brandt; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates in future studies of miRNA expression in rectal cancer. We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably expressed miRNAs for subsequent validation. In the first validation experiment, a panel of miRNAs were analysed on 25 pairs of micro dissected rectal cancer tissue and adjacent stroma. Subsequently, the same miRNAs were analysed in 28 pairs of rectal cancer tissue and normal rectal mucosa. From the miRNA profiling experiment, miR-645, miR-193a-5p, miR-27a and let-7g were identified as stably expressed, both in malignant and stromal tissue. In addition, NormFinder confirmed high expression stability for the four miRNAs. In the RT-qPCR based validation experiments, no significant difference between tumour and stroma/normal rectal mucosa was detected for the mean of the normaliser candidates miR-27a, miR-193a-5p and let-7g (first validation P = 0.801, second validation P = 0.321). MiR-645 was excluded from the data analysis, because it was undetected in 35 of 50 samples (first validation) and in 24 of 56 samples (second validation), respectively. Significant difference in expression level of RNU6B was observed between tumour and adjacent stromal (first validation), and between tumour and normal rectal mucosa (second

  11. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  12. SeedVicious: Analysis of microRNA target and near-target sites.

    PubMed

    Marco, Antonio

    2018-01-01

    Here I describe seedVicious, a versatile microRNA target site prediction software that can be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds microRNA canonical sites plus other, less efficient, target sites. Among other novel features, seedVicious can compute evolutionary gains/losses of target sites using maximum parsimony, and also detect near-target sites, which have one nucleotide different from a canonical site. Near-target sites are important to study population variation in microRNA regulation. Some analyses suggest that near-target sites may also be functional sites, although there is no conclusive evidence for that, and they may actually be target alleles segregating in a population. SeedVicious does not aim to outperform but to complement existing microRNA prediction tools. For instance, the precision of TargetScan is almost doubled (from 11% to ~20%) when we filter predictions by the distance between target sites using this program. Interestingly, two adjacent canonical target sites are more likely to be present in bona fide target transcripts than pairs of target sites at slightly longer distances. The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X). Users with no computing experience can also run the program in a dedicated web-server by uploading custom data, or browse pre-computed predictions. SeedVicious and its associated web-server and database (SeedBank) are distributed under the GPL/GNU license.

  13. Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy.

    PubMed

    Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling

    2017-09-01

    The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.

  14. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    PubMed

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. Identification of novel microRNA genes in freshwater and marine ecotypes of the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Rastorguev, S M; Nedoluzhko, A V; Sharko, F S; Boulygina, E S; Sokolov, A S; Gruzdeva, N M; Skryabin, K G; Prokhortchouk, E B

    2016-11-01

    The three-spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three-spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high-throughput sequencing technology was applied to identify microRNA genes in gills of the three-spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected 'divergence islands' was analysed and 10 miRNA genes were identified as not randomly located in 'divergence islands'. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation. © 2016 John Wiley & Sons Ltd.

  16. Dynamical modeling of microRNA action on the protein translation process

    PubMed Central

    2010-01-01

    Background Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc.), the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. Results In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks) can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks) of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Conclusions Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters), or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step. Algorithms for identifying

  17. Dynamical modeling of microRNA action on the protein translation process.

    PubMed

    Zinovyev, Andrei; Morozova, Nadya; Nonne, Nora; Barillot, Emmanuel; Harel-Bellan, Annick; Gorban, Alexander N

    2010-02-24

    Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc.), the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks) can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks) of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters), or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step. Algorithms for identifying dominant systems in multiscale

  18. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  19. Control of Metastatic Progression by microRNA Regulatory Networks

    PubMed Central

    Pencheva, Nora; Tavazoie, Sohail F.

    2015-01-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. These miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, while others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460

  20. [Progress of study on the detection technique of microRNA].

    PubMed

    Zhao, Hai-Feng; Yang, Ren-Chi

    2009-12-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. MiRNAs are involved in critical biologic processes, including development, cell differentiation, proliferation and the pathogenesis of disease. This review focuses on recent researches on the detection techniques of miRNA including micorarray technique, Northern blot, real-time quantitative PCR, detection technique of miRNA function and so on.

  1. SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Trevino, Victor

    2014-06-01

    MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    PubMed

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.

  3. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours

    PubMed Central

    Helwig, J; Bertram, S; Sheu, S Y; Suttorp, A C; Seggewiß, J; Willscher, E; Walz, M K; Worm, K; Schmid, K W

    2011-01-01

    Background For the clinical management of adrenocortical neoplasms it is crucial to correctly distinguish between benign and malignant tumours. Even histomorphologically based scoring systems do not allow precise separation in single lesions, thus novel parameters are desired which offer a more accurate differentiation. The tremendous potential of microRNAs (miRNAs) as diagnostic biomarkers in surgical pathology has recently been shown in a broad variety of tumours. Methods In order to elucidate the diagnostic impact of miRNA expression in adrenocortical neoplasms, a cohort of 20 adrenocortical specimens including normal adrenal tissue (n=4), adrenocortical adenomas (ACAs) (n=9), adrenocortical carcinomas (ACCs) (n=4) and metastases (n=3) was analysed using TaqMan low density arrays to identify specific miRNA profiles in order to distinguish between benign and malignant adrenocortical lesions. Results were validated in a validation cohort (n=16). Results Concerning the differential diagnosis of ACAs and ACCs, 159 out of 667 miRNAs were up- and 89 were down-regulated in ACAs. Using real-time PCR analysis of three of the most significantly expressed single key miRNAs allowed separation of ACAs from ACCs. ACCs exhibited significantly lower levels of miR-139-3p (up to 8.49-fold, p<0.001), miR-675 (up to 23.25-fold, p<0.001) and miR-335 (up to 5.25-fold, p<0.001). A validation cohort of 16 specimen with known Weiss score showed up-regulation of miR-335 and miR-675 in the majority of cases with probable malignant course, although overlapping values exist. Conclusion miRNA profiling of miR-675 and miR-335 helps in discriminating ACCs from ACAs. miRNA analysis may indicate malignant behaviour in cases with indeterminate malignant potential. PMID:21471143

  4. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide.

    PubMed

    Sun, Yanli; Sun, Yanhua; Zhao, Ronglan

    2017-08-01

    MicroRNAs have great therapeutic potential in cancer and other diseases. However, their instability and low in vivo delivery efficiency limits their application. Recombinant PP7 bacteriophage-based virus-like particles (VLPs) could protect microRNAs against rapid degradation by RNase by packaging specific exogenous pre-microRNAs using the pac site. Insertion of a cell-penetrating peptide (CPP) into the AB-loop of VLPs could significantly improve the delivery efficiency of microRNAs into mammalian cells. Unlike other microRNA delivery methods (viral or non-viral vectors), recombinant PP7 VLPs carrying a CPP and microRNA could be efficiently expressed in Escherichia coli using the one-plasmid double expression system. Here we showed that PP7 VLPs carrying a CPP penetrated hepatoma SK-HEP-1 cells and delivered the pre-microRNA-23b, which was processed into a mature product within 24 h; a concentration of 10 nM was sufficient for the inhibition of hepatoma cell migration via the downregulation of liver-intestine cadherin expression. Furthermore, PP7 VLPs carrying a CPP and a pre-microRNA were not infectious, replicative, or cytotoxic. Therefore, recombinant PP7 VLPs can be used for simultaneous and targeted delivery of both microRNAs and peptides because of their ability to package specific exogenous RNA using the pac site and to display peptides. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. The Landscape of MicroRNA, Piwi-Interacting RNA, and Circular RNA in Human Saliva

    PubMed Central

    Bahn, Jae Hoon; Zhang, Qing; Li, Feng; Chan, Tak-Ming; Lin, Xianzhi; Kim, Yong; Wong, David T.W.; Xiao, Xinshu

    2015-01-01

    BACKGROUND Extracellular RNAs (exRNAs) in human body fluids are emerging as effective biomarkers for detection of diseases. Saliva, as the most accessible and noninvasive body fluid, has been shown to harbor exRNA biomarkers for several human diseases. However, the entire spectrum of exRNA from saliva has not been fully characterized. METHODS Using high-throughput RNA sequencing (RNA-Seq), we conducted an in-depth bioinformatic analysis of noncoding RNAs (ncRNAs) in human cell-free saliva (CFS) from healthy individuals, with a focus on microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs). RESULTS Our data demonstrated robust reproducibility of miRNA and piRNA profiles across individuals. Furthermore, individual variability of these salivary RNA species was highly similar to those in other body fluids or cellular samples, despite the direct exposure of saliva to environmental impacts. By comparative analysis of >90 RNA-Seq data sets of different origins, we observed that piRNAs were surprisingly abundant in CFS compared with other body fluid or intracellular samples, with expression levels in CFS comparable to those found in embryonic stem cells and skin cells. Conversely, miRNA expression profiles in CFS were highly similar to those in serum and cerebrospinal fluid. Using a customized bioinformatics method, we identified >400 circRNAs in CFS. These data represent the first global characterization and experimental validation of circRNAs in any type of extracellular body fluid. CONCLUSIONS Our study provides a comprehensive landscape of ncRNA species in human saliva that will facilitate further biomarker discoveries and lay a foundation for future studies related to ncRNAs in human saliva. PMID:25376581

  6. MicroRNA-93 Promotes Epithelial–Mesenchymal Transition of Endometrial Carcinoma Cells

    PubMed Central

    Sun, Kai-Xuan; Xiu, Yin-Ling; Liu, Bo-Liang; Feng, Miao-Xiao; Sang, Xiu-Bo; Zhao, Yang

    2016-01-01

    MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3′ untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial–mesenchymal transition in endometrial carcinoma cells by targeting FOXA1. PMID:27829043

  7. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure.

    PubMed

    Balaraman, Sridevi; Idrus, Nirelia M; Miranda, Rajesh C; Thomas, Jennifer D

    2017-05-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by

  8. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure

    PubMed Central

    Balaraman, Sridevi; Idrus, Nirelia M.; Miranda, Rajesh C.; Thomas, Jennifer D.

    2017-01-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol’s developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol’s long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4–9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4–21. On PD 22, subjects were sacrificed, and RNA isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was normalized with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p<0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p<0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by

  9. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing

    PubMed Central

    Le Thomas, Adrien; Stuwe, Evelyn; Li, Sisi; Marinov, Georgi; Rozhkov, Nikolay; Chen, Yung-Chia Ariel; Luo, Yicheng; Sachidanandam, Ravi; Toth, Katalin Fejes; Patel, Dinshaw; Aravin, Alexei A.

    2014-01-01

    Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors. PMID:25085419

  10. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

    PubMed

    Makeyev, Eugene V; Zhang, Jiangwen; Carrasco, Monica A; Maniatis, Tom

    2007-08-03

    Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.

  12. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

    PubMed Central

    Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.

    2014-01-01

    Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372

  13. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  14. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows.

    PubMed

    Paraskevopoulou, Maria D; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A G

    2013-07-01

    MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA-gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.

  15. Ablation of the MiR-17-92 MicroRNA Cluster in Germ Cells Causes Subfertility in Female Mice.

    PubMed

    Wang, Jian; Xu, Bo; Tian, Geng G; Sun, Tao; Wu, Ji

    2018-01-01

    Oogenesis is a highly complex process that is intricately regulated by interactions of multiple genes and signaling molecules. However, the underlying molecular mechanisms are poorly understood. There is emerging evidence that microRNAs contribute to oogenesis. Here, we aimed to investigate the role of miR-17-92 cluster in regulating oogenesis. The miR-17-92 cluster was genetically ablated in germ cells of female mice by applying the Cre-loxp system for conditional gene knockout. Mating experiment, superovulation and histological analysis were used to assess the fertility of the model female mice. TUNEL assay was used to identify apoptotic cells in ovaries. The expression level of apoptosis- and follicular atresia- related genes was evaluated by qRT-PCR. Western blotting was performed to detect protein expression. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-17-92 cluster. Deletion of miR-17-92 cluster in germ cells of female mice caused increased oocyte degradation and follicular atresia, perturbed oogenesis, and ultimately led to subfertility. Genes involved in follicular atresia and the mitochondrial apoptotic pathway were obviously up-regulated. Furthermore, we verified that miR-19a regulated oogenesis at the post-transcriptional level by targeting Bmf in the ovaries of miR-17-92 cluster conditional knockout female mice. The miR-17-92 cluster is an important regulator of oogenesis. These findings will assist in better understanding the etiology of disorders in oogenesis and in developing new therapeutic targets for female infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Combined RT-qPCR of mRNA and microRNA Targets within One Fluidigm Integrated Fluidic Circuit.

    PubMed

    Baldwin, Don A; Horan, Annamarie D; Hesketh, Patrick J; Mehta, Samir

    2016-07-01

    The ability to profile expression levels of a large number of mRNAs and microRNAs (miRNAs) within the same sample, using a single assay method, would facilitate investigations of miRNA effects on mRNA abundance and streamline biomarker screening across multiple RNA classes. A protocol is described for reverse transcription of long RNA and miRNA targets, followed by preassay amplification of the pooled cDNAs and quantitative PCR (qPCR) detection for a mixed panel of candidate RNA biomarkers. The method provides flexibility for designing custom target panels, is robust over a range of input RNA amounts, and demonstrated a high assay success rate.

  17. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer.

    PubMed

    Rohan, Thomas; Ye, Kenny; Wang, Yihong; Glass, Andrew G; Ginsberg, Mindy; Loudig, Olivier

    2018-01-01

    MicroRNAs are endogenous, small non-coding RNAs that control gene expression by directing their target mRNAs for degradation and/or posttranscriptional repression. Abnormal expression of microRNAs is thought to contribute to the development and progression of cancer. A history of benign breast disease (BBD) is associated with increased risk of subsequent breast cancer. However, no large-scale study has examined the association between microRNA expression in BBD tissue and risk of subsequent invasive breast cancer (IBC). We conducted discovery and validation case-control studies nested in a cohort of 15,395 women diagnosed with BBD in a large health plan between 1971 and 2006 and followed to mid-2015. Cases were women with BBD who developed subsequent IBC; controls were matched 1:1 to cases on age, age at diagnosis of BBD, and duration of plan membership. The discovery stage (316 case-control pairs) entailed use of the Illumina MicroRNA Expression Profiling Assay (in duplicate) to identify breast cancer-associated microRNAs. MicroRNAs identified at this stage were ranked by the strength of the correlation between Illumina array and quantitative PCR results for 15 case-control pairs. The top ranked 14 microRNAs entered the validation stage (165 case-control pairs) which was conducted using quantitative PCR (in triplicate). In both stages, linear regression was used to evaluate the association between the mean expression level of each microRNA (response variable) and case-control status (independent variable); paired t-tests were also used in the validation stage. None of the 14 validation stage microRNAs was associated with breast cancer risk. The results of this study suggest that microRNA expression in benign breast tissue does not influence the risk of subsequent IBC.

  18. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer

    PubMed Central

    Ye, Kenny; Wang, Yihong; Ginsberg, Mindy; Loudig, Olivier

    2018-01-01

    MicroRNAs are endogenous, small non-coding RNAs that control gene expression by directing their target mRNAs for degradation and/or posttranscriptional repression. Abnormal expression of microRNAs is thought to contribute to the development and progression of cancer. A history of benign breast disease (BBD) is associated with increased risk of subsequent breast cancer. However, no large-scale study has examined the association between microRNA expression in BBD tissue and risk of subsequent invasive breast cancer (IBC). We conducted discovery and validation case-control studies nested in a cohort of 15,395 women diagnosed with BBD in a large health plan between 1971 and 2006 and followed to mid-2015. Cases were women with BBD who developed subsequent IBC; controls were matched 1:1 to cases on age, age at diagnosis of BBD, and duration of plan membership. The discovery stage (316 case-control pairs) entailed use of the Illumina MicroRNA Expression Profiling Assay (in duplicate) to identify breast cancer-associated microRNAs. MicroRNAs identified at this stage were ranked by the strength of the correlation between Illumina array and quantitative PCR results for 15 case-control pairs. The top ranked 14 microRNAs entered the validation stage (165 case-control pairs) which was conducted using quantitative PCR (in triplicate). In both stages, linear regression was used to evaluate the association between the mean expression level of each microRNA (response variable) and case-control status (independent variable); paired t-tests were also used in the validation stage. None of the 14 validation stage microRNAs was associated with breast cancer risk. The results of this study suggest that microRNA expression in benign breast tissue does not influence the risk of subsequent IBC. PMID:29432432

  19. GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells

    PubMed Central

    Wu, Yongyan; Liu, Fayang; Liu, Yingying; Liu, Xiaolei; Ai, Zhiying; Guo, Zekun; Zhang, Yong

    2015-01-01

    Wnt/β-catenin signalling plays a prominent role in maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). microRNAs (miRNAs) have critical roles in maintaining pluripotency and directing reprogramming. To investigate the effect of GSK3 inhibitors on miRNA expression, we analysed the miRNA expression profile of J1 mESCs in the absence or presence of CHIR99021 (CHIR) or 6-bromoindirubin-3′-oxime (BIO) by small RNA deep-sequencing. The results demonstrate that CHIR and BIO decrease mature miRNAs of most miRNA species, 90.4% and 98.1% of the differentially expressed miRNAs in BIO and CHIR treated cells were downregulated respectively. CHIR and BIO treatment leads to a slight upregulation of the primary transcripts of the miR-302–367 cluster and miR-181 family of miRNAs, these miRNAs are activated by Wnt/β-catenin signalling. However, the precursor and mature form of the miR-302–367 cluster and miR-181 family of miRNAs are downregulated by CHIR, suggesting CHIR inhibits maturation of primary miRNA. Western blot analysis shows that BIO and CHIR treatment leads to a reduction of the RNase III enzyme Drosha in the nucleus. These data suggest that BIO and CHIR inhibit miRNA maturation by disturbing nuclear localisation of Drosha. Results also show that BIO and CHIR induce miR-211 expression in J1 mESCs. PMID:25727520

  20. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster

    PubMed Central

    Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, German; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M.; Lopez-Lozano, Xochitl; Barnes, Christopher O.; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L.; Gonen, Tamir; Jose-Yacaman, Miguel; Calero, Guillermo

    2018-01-01

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault. PMID:29072840

  1. Advances on microRNA in regulating mammalian skeletal muscle development.

    PubMed

    Li, Xin-Yun; Fu, Liang-Liang; Cheng, Hui-Jun; Zhao, Shu-Hong

    2017-11-20

    MicroRNA (miRNA) is a class of short non-coding RNA, which is about 22 bp in length. In mammals, miRNA exerts its funtion through binding with the 3°-UTR region of target genes and inhibiting their translation. Skeletal muscle development is a complex event, including: proliferation, migration and differentiation of skeletal muscle stem cells; proliferation, differentiation and fusion of myocytes; as well as hypertrophy, energy metabolism and conversion of muscle fiber types. The miRNA plays important roles in all processes of skeletal muscle development through targeting the key factors of different stages. Herein we summarize the miRNA related to muscle development, providing a better understanding of the skeletal muscle development.

  2. Diverse functions of miR-17-92 cluster microRNAs in T helper cells.

    PubMed

    Baumjohann, Dirk

    2018-06-01

    T helper (Th) cells are critically involved in adaptive immune responses against various pathogens. In contrast, dysregulated T helper cell responses are associated with a variety of diseases, including autoimmunity, allergies, and cancer. Differentiation of naïve CD4 + T cells into effector T helper cell subsets, including Th1, Th2, Th17, Treg, and T follicular helper (Tfh), requires precise dosing of signaling molecules and transcription factors. MicroRNAs (miRNAs), which are small endogenously expressed RNAs that regulate gene expression, play important roles in these processes. The miR-17-92 cluster, a miRNA polycistron also known as oncomiR-1, has emerged as a central integrator of gene expression events that govern T helper cell differentiation pathways. The complexity of miR-17-92-mediated gene regulation lies in the nature of this miRNA cluster, which consists of six different miRNAs. Individual miR-17-92 miRNAs, albeit initially transcribed as one transcript, can have cooperative or opposing effects on biological processes. Therefore, a better understanding of the molecular regulation of miR-17-92 and its downstream networks will provide important insights into T helper cell differentiation and diversity that may be harnessed for the design of advanced T cell-targeting therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition.

    PubMed

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I; Liu, Qinghua

    2013-01-04

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.

  4. Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer.

    PubMed

    Feng, Sujuan; Qian, Xiaosong; Li, Han; Zhang, Xiaodong

    2017-12-01

    The aim of the present study was to investigate the effectiveness of the miR-17-92 cluster as a disease progression marker in prostate cancer (PCa). Reverse transcription-quantitative polymerase chain reaction analysis was used to detect the microRNA (miR)-17-92 cluster expression levels in tissues from patients with PCa or benign prostatic hyperplasia (BPH), in addition to in PCa and BPH cell lines. Spearman correlation was used for comparison and estimation of correlations between miRNA expression levels and clinicopathological characteristics such as the Gleason score and prostate-specific antigen (PSA). Receiver operating curve (ROC) analysis was performed for evaluation of specificity and sensitivity of miR-17-92 cluster expression levels for discriminating patients with PCa from patients with BPH. Kaplan-Meier analysis was plotted to investigate the predictive potential of miR-17-92 cluster for PCa biochemical recurrence. Expression of the majority of miRNAs in the miR-17-92 cluster was identified to be significantly increased in PCa tissues and cell lines. Bivariate correlation analysis indicated that the high expression of unregulated miRNAs was positively correlated with Gleason grade, but had no significant association with PSA. ROC curves demonstrated that high expression of miR-17-92 cluster predicted a higher diagnostic accuracy compared with PSA. Improved discriminating quotients were observed when combinations of unregulated miRNAs with PSA were used. Survival analysis confirmed a high combined miRNA score of miR-17-92 cluster was associated with shorter biochemical recurrence interval. miR-17-92 cluster could be a potential diagnostic and prognostic biomarker for PCa, and the combination of the miR-17-92 cluster and serum PSA may enhance the accuracy for diagnosis of PCa.

  5. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle.

    PubMed

    Yang, I-Ping; Tsai, Hsiang-Lin; Hou, Ming-Feng; Chen, Ku-Chung; Tsai, Pei-Chien; Huang, Szu-Wei; Chou, Wen-Wen; Wang, Jaw-Yuan; Juo, Suh-Hang Hank

    2012-08-01

    Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.

  6. A biochemical approach to identifying microRNA targets

    PubMed Central

    Karginov, Fedor V.; Conaco, Cecilia; Xuan, Zhenyu; Schmidt, Bryan H.; Parker, Joel S.; Mandel, Gail; Hannon, Gregory J.

    2007-01-01

    Identifying the downstream targets of microRNAs (miRNAs) is essential to understanding cellular regulatory networks. We devised a direct biochemical method for miRNA target discovery that combined RNA-induced silencing complex (RISC) purification with microarray analysis of bound mRNAs. Because targets of miR-124a have been analyzed, we chose it as our model. We honed our approach both by examining the determinants of stable binding between RISC and synthetic target RNAs in vitro and by determining the dependency of both repression and RISC coimmunoprecipitation on miR-124a seed sites in two of its well characterized targets in vivo. Examining the complete spectrum of miR-124 targets in 293 cells yielded both a set that were down-regulated at the mRNA level, as previously observed, and a set whose mRNA levels were unaffected by miR-124a. Reporter assays validated both classes, extending the spectrum of mRNA targets that can be experimentally linked to the miRNA pathway. PMID:18042700

  7. A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.

    PubMed

    Peng, Wei; Lan, Wei; Yu, Zeng; Wang, Jianxin; Pan, Yi

    2017-03-01

    MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on. There are also intra-relationships between microRNAs and diseases, microRNAs and environment factors, diseases and environment factors. Moreover, functionally similar microRNAs tend to associate with common diseases and common environment factors. The diseases with similar phenotypes are likely caused by common microRNAs and common environment factors. In this work, we propose a framework namely ThrRWMDE which can integrate these complex relationships to predict microRNA-disease associations. In this framework, microRNA similarity network (MFN), disease similarity network (DSN) and environmental factor similarity network (ESN) are constructed according to certain biological properties. Then, an unbalanced three random walking algorithm is implemented on the three networks so as to obtain information from neighbors in corresponding networks. This algorithm not only can flexibly infer information from different levels of neighbors with respect to the topological and structural differences of the three networks, but also in the course of working the functional information will be transferred from one network to another according to the associations between the nodes in different networks. The results of experiment show that our method achieves better prediction performance than other state

  8. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  9. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    PubMed Central

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  10. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    PubMed

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  12. Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation

    PubMed Central

    Chak, Kayam; Roy-Chaudhuri, Biswajoy; Kim, Hak Kyun; Kemp, Kayla C; Kay, Mark A

    2016-01-01

    MicroRNA-21 (miR-21) is consistently up-regulated in various neurological disorders, including epilepsy. Here, we show that the biogenesis of miR-21 is altered following pilocarpine status epilepticus (SE) with an increase in precursor miR-21 (pre-miR-21) in rats. We demonstrate that pre-miR-21 has an energetically favorable site overlapping with the miR-21 binding site and competes with mature miR-21 for binding in the 3′UTR of TGFBR2 mRNA, but not NT-3 mRNA in vitro. This binding competition influences miR-21-mediated repression in vitro and correlates with the increase in TGFBR2 and decrease in NT-3 following SE. Polysome profiling reveals co-localization of pre-miR-21 in the ribosome fraction with translating mRNAs in U-87 cells. The current work suggests that pre-miR-21 may post-transcriptionally counteract miR-21-mediated suppression following SE and could potentially lead to prolonged TGF-β receptor expression impacting epileptogenesis. The study further supports that the ratio of the pre to mature miRNA may be important in determining the regulatory effects of a miRNA gene. PMID:27725160

  13. MicroRNA polymorphisms: a giant leap towards personalized medicine

    PubMed Central

    Mishra, Prasun J

    2010-01-01

    “An individual’s genetic inheritance of microRNA polymorphisms associated with disease progression, prognosis and treatment holds the key to create safer and more personalized drugs and can be a giant leap towards personalized medicine.” PMID:20428464

  14. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  15. Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System.

    PubMed

    Wan, Shan; Chen, Xiang; He, Yuedong; Yu, Xijie

    2018-01-01

    MiR-17-92 cluster is coded by MIR17HG in chromosome 13, which is highly conserved in vertebrates. Published literatures have proved that miR-17-92 cluster critically regulates tumorigenesis and metastasis. Recent researches showed that the miR-17-92 cluster also plays novel functions in the endocrine system. To summarize recent findings on the physiological and pathological roles of miR-17-92 cluster in bone, lipid and glucose metabolisms. MiR-17-92 cluster plays significant regulatory roles in bone development and metabolism through regulating the differentiation and function of osteoblasts and osteoclasts. In addition, miR-17- 92 cluster is nearly involved in every aspect of lipid metabolism. Last but not the least, the miR-17-92 cluster is closely bound up with pancreatic beta cell function, development of type 1 diabetes and insulin resistance. However, whether miR-17-92 cluster is involved in the communication among bone, fat and glucose metabolisms remains unknown. Growing evidence indicates that miR-17-92 cluster plays significant roles in bone, lipid and glucose metabolisms through a variety of signaling pathways. Fully understanding its modulating mechanisms may necessarily facilitate to comprehend the clinical and molecule features of some metabolic disorders such as osteoporosis, arthrosclerosis and diabetes mellitus. It may provide new drug targets to prevent and cure these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing

    PubMed Central

    Makeyev, Eugene V.; Zhang, Jiangwen; Carrasco, Monica A.; Maniatis, Tom

    2011-01-01

    SUMMARY Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing. PMID:17679093

  18. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows

    PubMed Central

    Paraskevopoulou, Maria D.; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S.; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A.G.

    2013-01-01

    MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA–gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines. PMID:23680784

  19. HDL and microRNA Therapeutics in Cardiovascular Disease

    PubMed Central

    Michell, Danielle L.; Vickers, Kasey C.

    2016-01-01

    microRNAs (miRNA) are small non-coding RNAs (sRNA) that post-transcriptionally regulate gene (mRNA) expression and are implicated in many biological processes and diseases. Many miRNAs have been reported to be altered in cardiovascular disease (CVD); both cellular and extracellular miRNA levels are affected by hypercholesterolemia and atherosclerosis. We and other groups have reported that lipoproteins transport miRNAs in circulation and these lipoprotein signatures are significantly altered in hypercholesterolemia and coronary artery disease (CAD). Extracellular miRNAs are a new class of potential biomarkers for CVD; however, they may also be new drug targets as high-density lipoproteins (HDL) transfer functional miRNAs to recipient cells in an endocrine-like form of intercellular communication that likely suppresses vascular inflammation. Recently, RNA-based drugs have emerged as the next frontier in drug therapy, and there are many miRNA inhibitors and mimics in clinical development. Here, we discuss specific miRNA drug targets and how their manipulation may impact CVD. We also address the potential for manipulating HDL-miRNA levels to treat CVD and the use of HDL as a delivery vehicle for RNA and chemical drugs. Finally, we outline the current and future challenges for HDL and miRNA-based therapeutics for the prevention and treatment of CVD. PMID:27595929

  20. Tumorigenicity of the miR-17-92 cluster distilled.

    PubMed

    van Haaften, Gijs; Agami, Reuven

    2010-01-01

    The miR-17-92 gene cluster, with its six different mature microRNAs (miRNAs), has an established oncogenic function. However, the oncogenic contribution of each individual miRNA in the cluster has not been assigned. Two studies published in the December 15, 2009, issue of Genes & Development by Mu and colleagues (pp. 2806-2811) and Olive and colleagues (pp. 2839-2849) dissected the miR-17-92 cluster to its individual miRNA components and identified their relative contributions to oncogenic transformation in mouse model systems.

  1. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.

    PubMed

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien

    2016-08-24

    Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.

  2. Selective blockade of microRNA processing by Lin-28

    PubMed Central

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  3. Plasma processing conditions substantially influence circulating microRNA biomarker levels.

    PubMed

    Cheng, Heather H; Yi, Hye Son; Kim, Yeonju; Kroh, Evan M; Chien, Jason W; Eaton, Keith D; Goodman, Marc T; Tait, Jonathan F; Tewari, Muneesh; Pritchard, Colin C

    2013-01-01

    Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts. We therefore hypothesized that the quantity of residual platelets and microparticles remaining after plasma processing might impact miRNA measurements. To systematically investigate this, we subjected matched plasma from healthy individuals to stepwise processing with differential centrifugation and 0.22 µm filtration and performed miRNA profiling. We found a major effect on circulating miRNAs, with the majority (72%) of detectable miRNAs substantially affected by processing alone. Specifically, 10% of miRNAs showed 4-30x variation, 46% showed 30-1,000x variation, and 15% showed >1,000x variation in expression solely from processing. This was predominantly due to platelet contamination, which persisted despite using standard laboratory protocols. Importantly, we show that platelet contamination in archived samples could largely be eliminated by additional centrifugation, even in frozen samples stored for six years. To minimize confounding effects in microRNA biomarker studies, additional steps to limit platelet contamination for circulating miRNA biomarker studies are necessary. We provide specific practical recommendations to help minimize confounding variation attributable to plasma processing and platelet contamination.

  4. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment.

    PubMed

    Nishimura, Masato; Jung, Eun-Jung; Shah, Maitri Y; Lu, Chunhua; Spizzo, Riccardo; Shimizu, Masayoshi; Han, Hee Dong; Ivan, Cristina; Rossi, Simona; Zhang, Xinna; Nicoloso, Milena S; Wu, Sherry Y; Almeida, Maria Ines; Bottsford-Miller, Justin; Pecot, Chad V; Zand, Behrouz; Matsuo, Koji; Shahzad, Mian M; Jennings, Nicholas B; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Sood, Anil K; Calin, George A

    2013-11-01

    Development of improved RNA interference-based strategies is of utmost clinical importance. Although siRNA-mediated silencing of EphA2, an ovarian cancer oncogene, results in reduction of tumor growth, we present evidence that additional inhibition of EphA2 by a microRNA (miRNA) further "boosts" its antitumor effects. We identified miR-520d-3p as a tumor suppressor upstream of EphA2, whose expression correlated with favorable outcomes in two independent patient cohorts comprising 647 patients. Restoration of miR-520d-3p prominently decreased EphA2 protein levels, and suppressed tumor growth and migration/invasion both in vitro and in vivo. Dual inhibition of EphA2 in vivo using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes loaded with miR-520d-3p and EphA2 siRNA showed synergistic antitumor efficiency and greater therapeutic efficacy than either monotherapy alone. This synergy is at least in part due to miR-520d-3p targeting EphB2, another Eph receptor. Our data emphasize the feasibility of combined miRNA-siRNA therapy, and will have broad implications for innovative gene silencing therapies for cancer and other diseases. This study addresses a new concept of RNA inhibition therapy by combining miRNA and siRNA in nanoliposomal particles to target oncogenic pathways altered in ovarian cancer. Combined targeting of the Eph pathway using EphA2-targeting siRNA and the tumor suppressor miR-520d-3p exhibits remarkable therapeutic synergy and enhanced tumor suppression in vitro and in vivo compared with either monotherapy alone. ©2013 AACR.

  5. MiR-21 is an Ngf-modulated microRNA that supports Ngf signaling and regulates neuronal degeneration in PC12 cells.

    PubMed

    Montalban, Enrica; Mattugini, Nicola; Ciarapica, Roberta; Provenzano, Claudia; Savino, Mauro; Scagnoli, Fiorella; Prosperini, Gianluca; Carissimi, Claudia; Fulci, Valerio; Matrone, Carmela; Calissano, Pietro; Nasi, Sergio

    2014-06-01

    The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.

  6. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.

    PubMed

    Arata, Hideyuki; Komatsu, Hiroshi; Hosokawa, Kazuo; Maeda, Mizuo

    2012-01-01

    Detection of microRNAs, small noncoding single-stranded RNAs, is one of the key topics in the new generation of cancer research because cancer in the human body can be detected or even classified by microRNA detection. This report shows rapid and sensitive microRNA detection using a power-free microfluidic device, which is driven by degassed poly(dimethylsiloxane), thus eliminating the need for an external power supply. MicroRNA is detected by sandwich hybridization, and the signal is amplified by laminar flow-assisted dendritic amplification. This method allows us to detect microRNA of specific sequences at a limit of detection of 0.5 pM from a 0.5 µL sample solution with a detection time of 20 min. Together with the advantages of self-reliance of this device, this method might contribute substantially to future point-of-care early-stage cancer diagnosis.

  7. Multicolor microRNA FISH effectively differentiates tumor types

    PubMed Central

    Renwick, Neil; Cekan, Pavol; Masry, Paul A.; McGeary, Sean E.; Miller, Jason B.; Hafner, Markus; Li, Zhen; Mihailovic, Aleksandra; Morozov, Pavel; Brown, Miguel; Gogakos, Tasos; Mobin, Mehrpouya B.; Snorrason, Einar L.; Feilotter, Harriet E.; Zhang, Xiao; Perlis, Clifford S.; Wu, Hong; Suárez-Fariñas, Mayte; Feng, Huichen; Shuda, Masahiro; Moore, Patrick S.; Tron, Victor A.; Chang, Yuan; Tuschl, Thomas

    2013-01-01

    MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH. As a proof of concept, we used this method to differentiate two skin tumors, basal cell carcinoma (BCC) and Merkel cell carcinoma (MCC), with overlapping histologic features but distinct cellular origins. Using sequencing-based miRNA profiling and discriminant analysis, we identified the tumor-specific miRNAs miR-205 and miR-375 in BCC and MCC, respectively. We addressed three major shortcomings in miRNA FISH, identifying optimal conditions for miRNA fixation and ribosomal RNA (rRNA) retention using model compounds and high-pressure liquid chromatography (HPLC) analyses, enhancing signal amplification and detection by increasing probe-hapten linker lengths, and improving probe specificity using shortened probes with minimal rRNA sequence complementarity. We validated our method on 4 BCC and 12 MCC tumors. Amplified miR-205 and miR-375 signals were normalized against directly detectable reference rRNA signals. Tumors were classified using predefined cutoff values, and all were correctly identified in blinded analysis. Our study establishes a reliable miRNA FISH technique for parallel visualization of differentially expressed miRNAs in FFPE tumor tissues. PMID:23728175

  8. MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing

    PubMed Central

    Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T.; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling. PMID:23724047

  9. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    PubMed

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  10. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.

    PubMed

    Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.

  11. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    PubMed

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  12. microRNA Therapeutics in Cancer - An Emerging Concept.

    PubMed

    Shah, Maitri Y; Ferrajoli, Alessandra; Sood, Anil K; Lopez-Berestein, Gabriel; Calin, George A

    2016-10-01

    MicroRNAs (miRNAs) are an evolutionarily conserved class of small, regulatory non-coding RNAs that negatively regulate protein coding gene and other non-coding transcripts expression. miRNAs have been established as master regulators of cellular processes, and they play a vital role in tumor initiation, progression and metastasis. Further, widespread deregulation of microRNAs have been reported in several cancers, with several microRNAs playing oncogenic and tumor suppressive roles. Based on these, miRNAs have emerged as promising therapeutic tools for cancer management. In this review, we have focused on the roles of miRNAs in tumorigenesis, the miRNA-based therapeutic strategies currently being evaluated for use in cancer, and the advantages and current challenges to their use in the clinic. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Microprocessor mediates transcriptional termination in long noncoding microRNA genes

    PubMed Central

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.

    2015-01-01

    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776

  14. MicroRNA-mediated species-specific attenuation of influenza A virus.

    PubMed

    Perez, Jasmine T; Pham, Alissa M; Lorini, Maria H; Chua, Mark A; Steel, John; tenOever, Benjamin R

    2009-06-01

    Influenza A virus leads to yearly epidemics and sporadic pandemics. Present prophylactic strategies focus on egg-grown, live, attenuated influenza vaccines (LAIVs), in which attenuation is generated by conferring temperature sensitivity onto the virus. Here we describe an alternative approach to attenuating influenza A virus based on microRNA-mediated gene silencing. By incorporating nonavian microRNA response elements (MREs) into the open-reading frame of the viral nucleoprotein, we generate reassortant LAIVs for H1N1 and H5N1 that are attenuated in mice but not in eggs. MRE-based LAIVs show a greater than two-log reduction in mortality compared with control viruses lacking MREs and elicit a diverse antibody response. This approach might be combined with existing LAIVs to increase attenuation and improve vaccine safety.

  15. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  16. MicroRNA Signaling in Embryo Development

    PubMed Central

    Gross, Nicole; Khatib, Hasan

    2017-01-01

    Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation. PMID:28906477

  17. [Progress in application of targeting viral vector regulated by microRNA in gene therapy: a review].

    PubMed

    Zhang, Guohai; Wang, Qizhao; Zhang, Jinghong; Xu, Ruian

    2010-06-01

    A safe and effective targeting viral vector is the key factor for successful clinical gene therapy. microRNA, a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The discovery of these kind regulatory elements provides a new approach to regulate gene expression more accurately. In this review, we elucidated the principle of microRNA in regulation of targeting viral vector. The applications of microRNA in the fields of elimination contamination from replication competent virus, reduction of transgene-specific immunity, promotion of cancer-targeted gene therapy and development of live attenuated vaccines were also discussed.

  18. TAM 2.0: tool for MicroRNA set analysis.

    PubMed

    Li, Jianwei; Han, Xiaofen; Wan, Yanping; Zhang, Shan; Zhao, Yingshu; Fan, Rui; Cui, Qinghua; Zhou, Yuan

    2018-06-06

    With the rapid accumulation of high-throughput microRNA (miRNA) expression profile, the up-to-date resource for analyzing the functional and disease associations of miRNAs is increasingly demanded. We here describe the updated server TAM 2.0 for miRNA set enrichment analysis. Through manual curation of over 9000 papers, a more than two-fold growth of reference miRNA sets has been achieved in comparison with previous TAM, which covers 9945 and 1584 newly collected miRNA-disease and miRNA-function associations, respectively. Moreover, TAM 2.0 allows users not only to test the functional and disease annotations of miRNAs by overrepresentation analysis, but also to compare the input de-regulated miRNAs with those de-regulated in other disease conditions via correlation analysis. Finally, the functions for miRNA set query and result visualization are also enabled in the TAM 2.0 server to facilitate the community. The TAM 2.0 web server is freely accessible at http://www.scse.hebut.edu.cn/tam/ or http://www.lirmed.com/tam2/.

  19. Identification of novel microRNA signatures linked to acquired aplastic anemia.

    PubMed

    Hosokawa, Kohei; Muranski, Pawel; Feng, Xingmin; Keyvanfar, Keyvan; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Kajigaya, Sachiko; Taylor, James G; Hourigan, Christopher S; Barrett, A John; Young, Neal S

    2015-12-01

    Emerging evidence indicates that microRNA control and modulate immunity. MicroRNA have not been investigated in acquired aplastic anemia, a T-cell-mediated immune disease. Analysis of 84 microRNA expression levels in CD4(+) and CD8(+) T cells of patients with aplastic anemia revealed concurrent down-regulation of miR-126-3p, miR-145-5p, miR-223-3p, and miR-199a-5p (>3-fold change, P<0.05) in both T-cell populations, which were unique in aplastic anemia compared to other hematologic disorders. MiR-126-3p and miR-223-3p were down-regulated in CD4(+) T effector memory cells, and miR-126-3p, miR-145-5p, and miR-223-3p were down-regulated in CD8(+) T effector memory and terminal effector cells. Successful immunosuppressive therapy was associated with restoration to normal expression levels of miR-126-3p, miR-145-5p, and miR-223-3p (>2-fold change, P<0.05). In CD4(+) and CD8(+) T cells in aplastic anemia patients, MYC and PIK3R2 were up-regulated and proved to be targets of miR-145-5p and miR-126-3p, respectively. MiR-126-3p and miR-145-5p knockdown promoted proliferation and increased interferon-γ and granzyme B production in both CD4(+) and CD8(+) T cells. Our work describes previously unknown regulatory roles of microRNA in T-cell activation in aplastic anemia, which may open a new perspective for development of effective therapy. Clinicaltrials.gov identifier: NCT 01623167. Copyright© Ferrata Storti Foundation.

  20. MicroRNA Expression Profile in the Prenatal Amniotic Fluid Samples of Pregnant Women with Down Syndrome.

    PubMed

    Karaca, Emin; Aykut, Ayça; Ertürk, Biray; Durmaz, Burak; Güler, Ahmet; Büke, Barış; Yeniel, Ahmet Özgür; Ergenoğlu, Ahmet Mete; Özkınay, Ferda; Özeren, Mehmet; Kazandı, Mert; Akercan, Fuat; Sağol, Sermet; Gündüz, Cumhur; Çoğulu, Özgür

    2018-03-15

    Down syndrome, which is the most common human chromosomal anomaly that can affect people of any race and age, can be diagnosed prenatally in most cases. Prenatal diagnosis via culture method is time-consuming; thus, genetic analysis has thus been introduced and is continually being developed for rapid prenatal diagnosis. For this reason, the effective use of microRNA profiling for the rapid analysis of prenatal amniotic fluid samples for the diagnosis of Down syndrome was investigated. To evaluate the expression levels of 14 microRNAs encoded by chromosome 21 in amniotic fluid samples and their utility for prenatal diagnosis of Down syndrome. Case-control study. We performed invasive prenatal testing for 56 pregnant women; 23 carried fetuses with Down syndrome, and 33 carried fetuses with a normal karyotype. Advanced maternal age and increased risk for Down syndrome in the screening tests were indications for invasive prenatal testing. The age of gestation in the study and control groups ranged between 17 and 18 weeks. The expression levels of microRNA were measured by real-time polymerase chain reaction. The expression levels of microRNA-125b-2, microRNA-155 , and microRNA-3156 were significantly higher in the study group than in the control group. The presence of significantly dysregulated microRNAs may be associated with either the phenotype or the result of abnormal development. Further large-scale comparative studies conducted in a variety of conditions may bring novel insights in the field of abnormal prenatal conditions.

  1. Validated MicroRNA Target Databases: An Evaluation.

    PubMed

    Lee, Yun Ji Diana; Kim, Veronica; Muth, Dillon C; Witwer, Kenneth W

    2015-11-01

    Preclinical Research Positive findings from preclinical and clinical studies involving depletion or supplementation of microRNA (miRNA) engender optimism about miRNA-based therapeutics. However, off-target effects must be considered. Predicting these effects is complicated. Each miRNA may target many gene transcripts, and the rules governing imperfectly complementary miRNA: target interactions are incompletely understood. Several databases provide lists of the relatively small number of experimentally confirmed miRNA: target pairs. Although incomplete, this information might allow assessment of at least some of the off-target effects. We evaluated the performance of four databases of experimentally validated miRNA: target interactions (miRWalk 2.0, miRTarBase, miRecords, and TarBase 7.0) using a list of 50 alphabetically consecutive genes. We examined the provided citations to determine the degree to which each interaction was experimentally supported. To assess stability, we tested at the beginning and end of a five-month period. Results varied widely by database. Two of the databases changed significantly over the course of 5 months. Most reported evidence for miRNA: target interactions were indirect or otherwise weak, and relatively few interactions were supported by more than one publication. Some returned results appear to arise from simplistic text searches that offer no insight into the relationship of the search terms, may not even include the reported gene or miRNA, and may thus, be invalid. We conclude that validation databases provide important information, but not all information in all extant databases is up-to-date or accurate. Nevertheless, the more comprehensive validation databases may provide useful starting points for investigation of off-target effects of proposed small RNA therapies. © 2015 Wiley Periodicals, Inc.

  2. A novel serum microRNA panel to discriminate benign from malignant ovarian disease.

    PubMed

    Langhe, Ream; Norris, Lucy; Saadeh, Feras Abu; Blackshields, Gordon; Varley, Rachel; Harrison, Ashling; Gleeson, Noreen; Spillane, Cathy; Martin, Cara; O'Donnell, Dearbhaile M; D'Arcy, Tom; O'Leary, John; O'Toole, Sharon

    2015-01-28

    Ovarian cancer is the seventh most common cancer in women and the most frequent cause of gynaecological malignancy-related mortality in women. Currently, no standardized reliable screening test exists. MicroRNA profiling has allowed the identification of signatures associated with diagnosis, prognosis and response to treatment of human tumours. The aim of this study was to determine if a microRNA signature could distinguish between malignant and benign ovarian disease. A training set of 5 serous ovarian carcinomas and 5 benign serous cystadenomas were selected for the initial experiments. The validation set included 20 serous ovarian carcinomas and 20 benign serous cystadenomas. The serum/plasma focus microRNA Exiqon panel was used for the training set. For the validation set a pick and mix Exiqon panel, which focuses on microRNAs of interest was used. A panel of 4 microRNAs (let-7i-5p, miR-122, miR-152-5p and miR-25-3p) was significantly down regulated in cancer patients. These microRNAs target WNT signalling, AKT/mTOR and TLR-4/MyD88, which have previously been found to play a role in ovarian carcinogenesis and chemoresistance. let-7i-5p, miR-122, miR-152-5p and miR-25-3p could act as diagnostic biomarkers in ovarian cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.

    PubMed

    Krol, Jacek; Sobczak, Krzysztof; Wilczynska, Urszula; Drath, Maria; Jasinska, Anna; Kaczynska, Danuta; Krzyzosiak, Wlodzimierz J

    2004-10-01

    We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).

  4. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  5. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System.

    PubMed

    Ma, Yingcong; Sha, Meng; Cheng, Shixuan; Yao, Wang; Li, Zhongjun; Qi, Xian-Rong

    2018-06-14

    The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

  6. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa

    PubMed Central

    Petegrosso, Raphael; Tolar, Jakub

    2018-01-01

    Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC. PMID:29630593

  7. The prognostic value of a seven-microRNA classifier as a novel biomarker for the prediction and detection of recurrence in glioma patients.

    PubMed

    Chen, Wanghao; Yu, Qiang; Chen, Bo; Lu, Xingyu; Li, Qiaoyu

    2016-08-16

    Glioma is often diagnosed at a later stage, and the high risk of recurrence remains a major challenge. We hypothesized that the microRNA expression profile may serve as a biomarker for the prognosis and prediction of glioblastoma recurrence. We defined microRNAs that were associated with good and poor prognosis in 300 specimens of glioblastoma from the Cancer Genome Atlas. By analyzing microarray gene expression data and clinical information from three random groups, we identified 7 microRNAs that have prognostic and prognostic accuracy: microRNA-124a, microRNA-129, microRNA-139, microRNA-15b, microRNA-21, microRNA-218 and microRNA-7. The differential expression of these miRNAs was verified using an independent set of glioma samples from the Affiliated People's Hospital of Jiangsu University. We used the log-rank test and the Kaplan-Meier method to estimate correlations between the miRNA signature and disease-free survival/overall survival. Using the LASSO model, we observed a uniform significant difference in disease-free survival and overall survival between patients with high-risk and low-risk miRNA signature scores. Furthermore, the prognostic capability of the seven-miRNA signature was demonstrated by receiver operator characteristic curve analysis. A Circos plot was generated to examine the network of genes and pathways predicted to be targeted by the seven-miRNA signature. The seven-miRNA-based classifier should be useful in the stratification and individualized management of patients with glioma.

  8. Passenger strand loading in overexpression experiments using microRNA mimics.

    PubMed

    Søkilde, Rolf; Newie, Inga; Persson, Helena; Borg, Åke; Rovira, Carlos

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene function and manipulation of miRNAs is a central component of basic research. Modulation of gene expression by miRNA gain-of-function can be based on different approaches including transfection with miRNA mimics; artificial, chemically modified miRNA-like small RNAs. These molecules are intended to mimic the function of a miRNA guide strand while bypassing the maturation steps of endogenous miRNAs. Due to easy accessibility through commercial providers this approach has gained popularity, and accuracy is often assumed without prior independent testing. Our in silico analysis of over-represented sequence motifs in microarray expression data and sequencing of AGO-associated small RNAs indicate, however, that miRNA mimics may be associated with considerable side-effects due to the unwanted activity of the miRNA mimic complementary strand.

  9. A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma.

    PubMed

    Palumbo, Tiziana; Poultsides, George A; Kouraklis, Grigorios; Liakakos, Theodore; Drakaki, Alexandra; Peros, George; Hatziapostolou, Maria; Iliopoulos, Dimitrios

    2016-06-03

    Cholangiocarcinoma is characterized by late diagnosis and a poor survival rate. MicroRNAs have been involved in the pathogenesis of different cancer types, including cholangiocarcinoma. Our aim was to identify novel microRNAs regulating cholangiocarcinoma cell growth in vitro and in vivo. A functional microRNA library screen was performed in human cholangiocarcinoma cells to identify microRNAs that regulate cholangiocarcinoma cell growth. Real-time PCR analysis evaluated miR-9 and XIAP mRNA levels in cholangiocarcinoma cells and tumors. The screen identified 21 microRNAs that regulated >50 % cholangiocarcinoma cell growth. MiR-410 was identified as the top suppressor of growth, while its overexpression significantly inhibited the invasion and colony formation ability of cholangiocarcinoma cells. Bioinformatics analysis revealed that microRNA-410 exerts its effects through the direct regulation of the X-linked inhibitor of apoptosis protein (XIAP). Furthermore, overexpression of miR-410 significantly reduced cholangiocarcinoma tumor growth in a xenograft mouse model through induction of apoptosis. In addition, we identified an inverse relationship between miR-410 and XIAP mRNA levels in human cholangiocarcinomas. Taken together, our study revealed a novel microRNA signaling pathway involved in cholangiocarcinoma and suggests that manipulation of the miR-410/XIAP pathway could have a therapeutic potential for cholangiocarcinoma.

  10. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    PubMed Central

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  11. Role of microRNA Pathway in Mental Retardation

    PubMed Central

    Qurashi, Abrar; Chang, Shuang; Jin, Peng

    2007-01-01

    Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP). MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general. PMID:17982588

  12. Effect of Micro-RNA on Tenocytes and Tendon-Related Gene Expression: A Systematic Review.

    PubMed

    Dubin, Jeremy A; Greenberg, Daniel R; Iglinski-Benjamin, Kag C; Abrams, Geoffrey D

    2018-06-06

    The purpose of the review was to synthesize the current literature regarding the effect of miRNA on biological processes known to be involved in tendon and tenocyte development and homeostasis. Using multiple databases, a systematic review was performed with a customized search term crafted to identify any study examining micro-RNA in relation to tendon and/or tenocytes. Results were classified based on the following categories: gene expression, tenocyte development and differentiation, tendon tissue repair, and tenocyte senescence. A total of 3,112 potentially relevant studies were reviewed, and after exclusion criteria was applied, 15 investigations were included in the final analysis. There were 14 specific miRNA included in this review, with 11 studies reporting on tendon-related gene expression, five reporting on tendon development and/or tenocyte differentiation, six reporting on tendon tissue repair, and five reporting on tenocyte senescence. The miR-29 family was the most commonly reported micro-RNA in the investigation. We also report on a number of micro-RNA which are associated with both positive and negative effects on tendon homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. A microRNA family exerts maternal control on sex determination in C. elegans

    PubMed Central

    McJunkin, Katherine; Ambros, Victor

    2017-01-01

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans. Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. PMID:28279983

  14. MicroRNA as therapeutic targets for treatment of depression

    PubMed Central

    Hansen, Katelin F; Obrietan, Karl

    2013-01-01

    Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. PMID:23935365

  15. Virus-Based MicroRNA Silencing in Plants1[C][W][OPEN

    PubMed Central

    Sha, Aihua; Zhao, Jinping; Yin, Kangquan; Tang, Yang; Wang, Yan; Wei, Xiang; Hong, Yiguo; Liu, Yule

    2014-01-01

    MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, the functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based microRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through tobacco rattle virus-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato (Solanum lycopersicum) compound leaves. These results demonstrate that tobacco rattle virus-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species. PMID:24296072

  16. Detection of micro RNA hsa-let-7e in peripheral blood mononuclear cells infected with dengue virus serotype-2: preliminary study

    NASA Astrophysics Data System (ADS)

    Masyeni, S.; Hadi, U.; Kuntaman; Yohan, B.; Margyaningsih, N. I.; Sasmono, R. T.

    2018-03-01

    Pathogenesis of dengue infection is still obscure. Recently, the role of microRNA has been associated with the cytokine storm which leads to plasma leakage in endothelial cells. The objective of our study was to determine whether particular microRNA is overexpressed in PBMCs infected with DENV and to assess its correlation to the expression of suppressor of cytokine signaling 3 (SOCS3) proteins to increase the production of pro-inflammatory cytokines. We report the result of a preliminary study on the expression of microRNA hsa-let-7e. The peripheral blood mononuclear cells (PBMCs) from the healthy volunteer were infected with the clinical isolate of DENV-2. RNA was extracted with miRCURYLNATMExiqon. Quantitative Real-Time PCR was used to measure the relative expression of hsa-let-7e micro RNA and the mRNA of SOCS3 proteins. MicroRNA hsa-let-7e expression was increased in PBMCs upon DENV-2 infection. The relative expression of hsa-let-7e is detected at 1.46 folds relative to uninfected PBMCs in 4 hours post-infection and decreased in 19 hours post infection. In contrast, the expression of mRNA of SOCS3 was inversely expressed with hsa-let-7 expression. MicroRNA was overexpressed in PBMCs upon infection with DENV-2. This microRNA may bind the SOCS3 and contribute to the pathogenesis of dengue infection.

  17. Sjögren Syndrome Antigen B (SSB)/La Promotes Global MicroRNA Expression by Binding MicroRNA Precursors through Stem-Loop Recognition*

    PubMed Central

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E.; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I.; Liu, Qinghua

    2013-01-01

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ∼70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ∼21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3′ UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules. PMID:23129761

  18. Existence of a microRNA pathway in anucleate platelets

    PubMed Central

    Landry, Patricia; Plante, Isabelle; Ouellet, Dominique L; Perron, Marjorie P; Rousseau, Guy; Provost, Patrick

    2010-01-01

    Platelets play a critical role in the maintenance of hemostasis as well as in thrombosis and vessel occlusion that underlie stroke and acute coronary syndromes. Anucleate platelets contain messenger RNAs (mRNAs) and are capable of protein synthesis, raising the issue of how these mRNAs are regulated. Here we show that human platelets harbor an abundant and diverse array of microRNAs (miRNAs), which are known as key regulators of mRNA translation. Further analyses revealed that platelets contain Dicer and Argonaute 2 (Ago2) complexes functional in exogenously supplied miRNA precursor (pre-miRNA) processing and the control of specific reporter transcripts, respectively. Detection of the receptor P2Y12 mRNA in Ago2 immunoprecipitates suggests that P2Y12 expression may be subjected to miRNA control in human platelets. Our study lends an additional level of complexity to the control of gene expression in these anucleate elements of the cardiovascular system. PMID:19668211

  19. microRNA expression in the neural retina: Focus on Müller glia.

    PubMed

    Quintero, Heberto; Lamas, Mónica

    2018-03-01

    The neural retina hosts a unique specialized type of macroglial cell that not only preserves retinal homeostasis, function, and integrity but also may serve as a source of new neurons during regenerative processes: the Müller cell. Precise microRNA-driven mechanisms of gene regulation impel and direct the processes of Müller glia lineage acquisition from retinal progenitors during development, the triggering of their response to retinal degeneration and, in some cases, Müller cell reprogramming and regenerative events. In this review we survey the recent reports describing, through functional assays, the regulatory role of microRNAs in Müller cell physiology, differentiation potential, and retinal pathology. We discuss also the evidence based on expression analysis that points out the relevance of a Müller glia-specific microRNA signature that would orchestrate these processes. © 2017 Wiley Periodicals, Inc.

  20. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.

    PubMed

    Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M

    2009-07-01

    Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.

  1. In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allegra, Danilo; Cooperation Unit 'Mechanisms of Leukemogenesis', B061, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg; Mertens, Daniel, E-mail: daniel.mertens@uniklinik-ulm.de

    2011-03-25

    Research highlights: {yields} Posttranscriptional regulation of miRNA processing is difficult to quantify. {yields} Our in-vivo processing assay can quantify Drosha cleavage in live cells. {yields} It is based on luciferase reporters fused with pri-miRNAs. {yields} The assay validates the processing defect caused by a mutation in pri-16-1. {yields} It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNAmore » in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.« less

  2. Exploration of low temperature microRNA function in an anoxia tolerant vertebrate ectotherm, the red eared slider turtle (Trachemys scripta elegans).

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2017-08-01

    As a model for vertebrate long-term survival in oxygen-restricted environments, the red-eared slider turtle (Trachemys scripta elegans) can adapt at the biochemical level to survive in oxygen-free (anoxic) cold water (<10°C). This impressive ability is enabled through a coordinated suppression of energy-expensive, non-essential, cell processes. This study explored the anoxia-responsive expression of several microRNA species (miR-1a, -133, -17, -107, -148a, -21, -103, -210, -20a, -365 and -29b) in adult turtles exposed to 5h and 20h anoxia (at 5±1°C). Furthermore, since microRNA target binding is regularly defined only by microRNA-mRNA interactions at 37°C, the possibility of unique low temperature-selective microRNA targeting interactions with mRNA was explored in this ectotherm. Approximately twice as many microRNA-mRNA interactions were predicted at 5°C versus 37°C with particular enrichment of mRNA targets involved in biological processes known to be part of the stress response. Hence, the results suggest that the influence of temperature should be considered for the prediction of microRNA targets (and their follow-up) in poikilothermic animals and that interacting effects of low body temperature and anoxia on microRNA expression could potentially be important to achieve the profound metabolic rate depression that characterizes turtle hibernation underwater during the winter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape.

    PubMed

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem-loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  4. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    PubMed Central

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed. PMID:29922322

  5. An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes

    PubMed Central

    Chen, Chang-Zheng

    2013-01-01

    MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275

  6. Hippocampal microRNA-mRNA regulatory network is affected by physical exercise.

    PubMed

    Fernandes, Jansen; Vieira, Andre Schwambach; Kramer-Soares, Juliana Carlota; Da Silva, Eduardo Alves; Lee, Kil Sun; Lopes-Cendes, Iscia; Arida, Ricardo Mario

    2018-05-08

    It is widely known that physical activity positively affects the overall health and brain function. Recently, microRNAs (miRNAs) have emerged as potential regulators of numerous biological processes within the brain. These molecules modulate gene expression post-transcriptionally by inducing mRNA degradation and inhibiting the translation of target mRNAs. To verify whether the procognitive effects of physical exercise are accompanied by changes in the activity of miRNA-mRNA network in the brain, differential expression analysis was performed in the hippocampus of control (CTL) and exercised (Ex) rats subjected to 4 weeks of treadmill exercise. Cognition was evaluated by a multiple trial inhibitory avoidance (MTIA) task and Illumina next-generation sequencing (NGS) was used for miRNA and mRNA profiling. Exercise improved memory retention but not acquisition in the MTIA task. It was observed that 4 miRNAs and 54 mRNAs were significantly altered in the hippocampus of Ex2 (euthanized 2 h after the last exercise bout) group when compared to CTL group. Bioinformatic analysis showed an inverse correlation between 3 miRNAs and 6 target mRNAs. The miRNAs miR-129-1-3p and miR-144-5p were inversely correlated to the Igfbp5 and Itm2a, respectively, and the miR-708-5p presented an inverse correlation with Cdkn1a, Per2, Rt1-a2. The exercise-induced memory improvements are accompanied by changes in hippocampal miRNA-mRNA regulatory network. Physical exercise can affect brain function through modulation of epigenetics mechanisms involving miRNA regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The application of cluster analysis in the intercomparison of loop structures in RNA.

    PubMed

    Huang, Hung-Chung; Nagaswamy, Uma; Fox, George E

    2005-04-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.

  8. The application of cluster analysis in the intercomparison of loop structures in RNA

    PubMed Central

    HUANG, HUNG-CHUNG; NAGASWAMY, UMA; FOX, GEORGE E.

    2005-01-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence. PMID:15769871

  9. MicroRNA therapeutics in cardiovascular medicine

    PubMed Central

    Thum, Thomas

    2012-01-01

    Cardiovascular diseases are the most common causes of human morbidity and mortality despite significant therapeutic improvements by surgical, interventional and pharmacological approaches in the last decade. MicroRNAs (miRNAs) are important and powerful mediators in a wide range of diseases and thus emerged as interesting new drug targets. An array of animal and even human miRNA-based therapeutic studies has been performed, which validate miRNAs as being successfully targetable to treat a wide range of diseases. Here, the current knowledge about miRNAs therapeutics in cardiovascular diseases on their way to clinical use are reviewed and discussed. PMID:22162462

  10. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis

    PubMed Central

    Pant, Bikram Datt; Buhtz, Anja; Kehr, Julia; Scheible, Wolf-Rüdiger

    2008-01-01

    The presence of microRNA species in plant phloem sap suggests potential signaling roles by long-distance regulation of gene expression. Proof for such a role for a phloem-mobile microRNA is lacking. Here we show that phosphate (Pi) starvation-induced microRNA399 (miR399) is present in the phloem sap of two diverse plant species, rapeseed and pumpkin, and levels are strongly and specifically increased in phloem sap during Pi deprivation. By performing micro-grafting experiments using Arabidopsis, we further show that chimeric plants constitutively over-expressing miR399 in the shoot accumulate mature miR399 species to very high levels in their wild-type roots, while corresponding primary transcripts are virtually absent in roots, demonstrating shoot-to-root transport. The chimeric plants exhibit (i) down-regulation of the miR399 target transcript (PHO2), which encodes a critical component for maintenance of Pi homeostasis, in the wild-type root, and (ii) Pi accumulation in the shoot, which is the phenotype of pho2 mutants, miR399 over-expressers or chimeric plants with a genetic knock-out of PHO2 in the root. Hence the transported miR399 molecules retain biological activity. This is a demonstration of systemic control of a biological process, i.e. maintenance of plant Pi homeostasis, by a phloem-mobile microRNA. PMID:17988220

  11. MicroRNA-2400 promotes bovine preadipocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yao; Cui, Ya Feng; Tong, Hui Li

    MicroRNAs (miRNAs) play critical roles in the proliferation of bovine preadipocytes. miR-2400 is a novel and unique miRNA from bovines. In the present study, we separated and identified preadipocytes from bovine samples. miR-2400 overexpression increased the rate of preadipocyte proliferation, which was analyzed with a combination of EdU and flow cytometry. Simultaneously, functional genes related to proliferation (PCNA, CCND2, CCNB1) were also increased, which was detected by real-time PCR. Furthermore, luciferase reporter assays showed that miR-2400 bound directly to the 3'untranslated regions (3′UTRs) of PRDM11 mRNA. These data suggested that miR-2400 could promote preadipocyte proliferation by targeting PRDM11. - Highlights:more » • miRNAs are important in bovine preadipocyte proliferation. • miR-2400 is a novel miRNA from bovines. • miR-2400 overexpression increased preadipocyte proliferation. • Functional genes related to preadipocyte proliferation were upregulated. • Preadipocyte proliferation was promoted by targeting PRDM11.« less

  12. MicroRNA and Pathogenesis of Enterovirus Infection

    PubMed Central

    Ho, Bing-Ching; Yang, Pan-Chyr; Yu, Sung-Liang

    2016-01-01

    There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy. PMID:26751468

  13. MicroRNA and Pathogenesis of Enterovirus Infection.

    PubMed

    Ho, Bing-Ching; Yang, Pan-Chyr; Yu, Sung-Liang

    2016-01-06

    There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.

  14. MicroRNA-based biotechnology for plant improvement.

    PubMed

    Zhang, Baohong; Wang, Qinglian

    2015-01-01

    MicroRNAs (miRNAs) are an extensive class of newly discovered endogenous small RNAs, which negatively regulate gene expression at the post-transcription levels. As the application of next-generation deep sequencing and advanced bioinformatics, the miRNA-related study has been expended to non-model plant species and the number of identified miRNAs has dramatically increased in the past years. miRNAs play a critical role in almost all biological and metabolic processes, and provide a unique strategy for plant improvement. Here, we first briefly review the discovery, history, and biogenesis of miRNAs, then focus more on the application of miRNAs on plant breeding and the future directions. Increased plant biomass through controlling plant development and phase change has been one achievement for miRNA-based biotechnology; plant tolerance to abiotic and biotic stress was also significantly enhanced by regulating the expression of an individual miRNA. Both endogenous and artificial miRNAs may serve as important tools for plant improvement. © 2014 Wiley Periodicals, Inc.

  15. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts

    PubMed Central

    Paraskevopoulou, Maria D.; Vlachos, Ioannis S.; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G.

    2016-01-01

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. PMID:26612864

  16. MicroRNA profiling in intraocular medulloepitheliomas.

    PubMed

    Edward, Deepak P; Alkatan, Hind; Rafiq, Qundeel; Eberhart, Charles; Al Mesfer, Saleh; Ghazi, Nicola; Al Safieh, Leen; Kondkar, Altaf A; Abu Amero, Khaled K

    2015-01-01

    To study the differential expression of microRNA (miRNA) profiles between intraocular medulloepithelioma (ME) and normal control tissue (CT). Total RNA was extracted from formalin fixed paraffin embedded (FFPE) intraocular ME (n=7) and from age matched ciliary body controls (n=8). The clinical history and phenotype was recorded. MiRNA profiles were determined using the Affymetrix GeneChip miRNA Arrays analyzed using expression console 1.3 software. Validation of significantly dysregulated miRNA was confirmed by quantitative real-time PCR. The web-based DNA Intelligent Analysis (DIANA)-miRPath v2.0 was used to perform enrichment analysis of differentially expressed (DE) miRNA gene targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The pathologic evaluation revealed one benign (benign non-teratoid, n=1) and six malignant tumors (malignant teratoid, n=2; malignant non-teratoid, n = 4). A total of 88 miRNAs were upregulated and 43 miRNAs were downregulated significantly (P<0.05) in the tumor specimens. Many of these significantly dysregulated miRNAs were known to play various roles in carcinogenesis and tumor behavior. RT-PCR validated three significantly upregulated miRNAs and three significantly downregulated miRNAs namely miR-217, miR-216a, miR-216b, miR-146a, miR-509-3p and miR-211. Many DE miRNAs that were significant in ME tumors showed dysregulation in retinoblastoma, glioblastoma, and precursor, normal and reactive human cartilage. Enriched pathway analysis suggested a significant association of upregulated miRNAs with 15 pathways involved in prion disease and several types of cancer. The pathways involving significantly downregulated miRNAs included the toll-like receptor (TLR) (p<4.36E-16) and Nuclear Factor kappa B (NF-κB) signaling pathways (p<9.00E-06). We report significantly dysregulated miRNAs in intraocular ME tumors, which exhibited abnormal profiles in other cancers as well such as retinoblastoma and glioblastoma. Pathway analysis of

  17. T7 RNA Polymerase Functions In Vitro without Clustering

    PubMed Central

    Finan, Kieran; Torella, Joseph P.; Kapanidis, Achillefs N.; Cook, Peter R.

    2012-01-01

    Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein. PMID:22768341

  18. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice

    PubMed Central

    Ou-Yang, Fangqian; Luo, Qing-Jun; Zhang, Yue; Richardson, Casey R.; Jiang, Yingwen; Rock, Christopher D.

    2013-01-01

    microRNAs (miRNAs) are a class of small RNAs (sRNAs) of ~21 nucleotides (nt) in length processed from foldback hairpins by DICER-LIKE1 (DCL1) or DCL4. They regulate the expression of target mRNAs by base pairing through RNA-Induced Silencing Complex (RISC). In the RISC, ARGONAUTE1 (AGO1) is the key protein that cleaves miRNA targets at position ten of a miRNA:target duplex. The authenticity of many annotated rice miRNA hairpins is under debate because of their homology to repeat sequences. Some of them, like miR1884b, have been removed from the current release of miRBase based on incomplete information. In this study, we investigated the association of transposable element (TE)-derived miRNAs with typical miRNA pathways (DCL1/4- and AGO1-dependent) using publicly available deep sequencing datasets. Seven miRNA hairpins with 13 unique sRNAs were specifically enriched in AGO1 immunoprecipitation samples and relatively reduced in DCL1/4 knockdown genotypes. Interestingly, these species are ~21-nt long, instead of 24-nt as annotated in miRBase and the literature. Their expression profiles meet current criteria for functional annotation of miRNAs. In addition, diagnostic cleavage tags were found in degradome datasets for predicted target mRNAs. Most of these miRNA hairpins share significant homology with miniature inverted-repeat transposable elements (MITEs), one type of abundant DNA transposons in rice. Finally, the root-specific production of a 24 nt miRNA-like sRNA was confirmed by RNA blot for a novel EST that maps to the 3'-UTR of a candidate pseudogene showing extensive sequence homology to miR1884b hairpin. Our data are consistent with the hypothesis that TEs can serve as a driving force for the evolution of some MIRNAs, where co-opting of DICER-LIKE1/4 processing and integration into AGO1 could exapt transcribed TE-associated hairpins into typical miRNA pathways. PMID:23420033

  19. Ensemble Clustering Classification compete SVM and One-Class classifiers applied on plant microRNAs Data.

    PubMed

    Yousef, Malik; Khalifa, Waleed; AbedAllah, Loai

    2016-12-22

    The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that ECkNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.

  20. Highly sensitive dual mode electrochemical platform for microRNA detection

    NASA Astrophysics Data System (ADS)

    Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro

    2016-11-01

    MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.

  1. De novo characterization of microRNAs in oriental fruit moth Grapholita molesta and selection of reference genes for normalization of microRNA expression

    PubMed Central

    Zhang, Jing; Zhang, Qingwen; Liu, Xiaoxia; Li, Zhen

    2017-01-01

    MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that have critical regulatory functions in almost all known biological processes at the post-transcriptional level in a variety of organisms. The oriental fruit moth Grapholita molesta is one of the most serious pests in orchards worldwide and threatens the production of Rosacea fruits. In this study, a de novo small RNA library constructed from mixed stages of G. molesta was sequenced through Illumina sequencing platform and a total of 536 mature miRNAs consisting of 291 conserved and 245 novel miRNAs were identified. Most of the conserved and novel miRNAs were detected with moderate abundance. The miRNAs in the same cluster normally showed correlated expressional profiles. A comparative analysis of the 79 conserved miRNA families within 31 arthropod species indicated that these miRNA families were more conserved among insects and within orders of closer phylogenetic relationships. The KEGG pathway analysis and network prediction of target genes indicated that the complex composed of miRNAs, clock genes and developmental regulation genes may play vital roles to regulate the developmental circadian rhythm of G. molesta. Furthermore, based on the sRNA library of G. molesta, suitable reference genes were selected and validated for study of miRNA transcriptional profile in G. molesta under two biotic and six abiotic experimental conditions. This study systematically documented the miRNA profile in G. molesta, which could lay a foundation for further understanding of the regulatory roles of miRNAs in the development and metabolism in this pest and might also suggest clues to the development of genetic-based techniques for agricultural pest control. PMID:28158242

  2. A quick reality check for microRNA target prediction.

    PubMed

    Kast, Juergen

    2011-04-01

    The regulation of protein abundance by microRNA (miRNA)-mediated repression of mRNA translation is a rapidly growing area of interest in biochemical research. In animal cells, the miRNA seed sequence does not perfectly match that of the mRNA it targets, resulting in a large number of possible miRNA targets and varied extents of repression. Several software tools are available for the prediction of miRNA targets, yet the overlap between them is limited. Jovanovic et al. have developed and applied a targeted, quantitative approach to validate predicted miRNA target proteins. Using a proteome database, they have set up and tested selected reaction monitoring assays for approximately 20% of more than 800 predicted let-7 targets, as well as control genes in Caenorhabditis elegans. Their results demonstrate that such assays can be developed quickly and with relative ease, and applied in a high-throughput setup to verify known and identify novel miRNA targets. They also show, however, that the choice of the biological system and material has a noticeable influence on the frequency, extent and direction of the observed changes. Nonetheless, selected reaction monitoring assays, such as those developed by Jovanovic et al., represent an attractive new tool in the study of miRNA function at the organism level.

  3. Convergent microRNA actions coordinate neocortical development.

    PubMed

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  4. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    PubMed Central

    Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.

    2016-01-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967

  5. A microRNA family exerts maternal control on sex determination in C. elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 ( sup-26 ) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 ( nhl-2 ), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. © 2017 McJunkin and Ambros; Published by Cold Spring Harbor Laboratory Press.

  6. Conservation of small RNA pathways in platypus.

    PubMed

    Murchison, Elizabeth P; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J

    2008-06-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense.

  7. miRMaid: a unified programming interface for microRNA data resources

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are endogenous small RNAs that play a key role in post-transcriptional regulation of gene expression in animals and plants. The number of known miRNAs has increased rapidly over the years. The current release (version 14.0) of miRBase, the central online repository for miRNA annotation, comprises over 10.000 miRNA precursors from 115 different species. Furthermore, a large number of decentralized online resources are now available, each contributing with important miRNA annotation and information. Results We have developed a software framework, designated here as miRMaid, with the goal of integrating miRNA data resources in a uniform web service interface that can be accessed and queried by researchers and, most importantly, by computers. miRMaid is built around data from miRBase and is designed to follow the official miRBase data releases. It exposes miRBase data as inter-connected web services. Third-party miRNA data resources can be modularly integrated as miRMaid plugins or they can loosely couple with miRMaid as individual entities in the World Wide Web. miRMaid is available as a public web service but is also easily installed as a local application. The software framework is freely available under the LGPL open source license for academic and commercial use. Conclusion miRMaid is an intuitive and modular software platform designed to unify miRBase and independent miRNA data resources. It enables miRNA researchers to computationally address complex questions involving the multitude of miRNA data resources. Furthermore, miRMaid constitutes a basic framework for further programming in which microRNA-interested bioinformaticians can readily develop their own tools and data sources. PMID:20074352

  8. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.

    PubMed

    Meseguer, Salvador; Martínez-Zamora, Ana; García-Arumí, Elena; Andreu, Antonio L; Armengod, M-Eugenia

    2015-01-01

    Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email

  9. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  10. Bistability and delay-induced stability switches in a cancer network with the regulation of microRNA

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Cao, Xin; Zhang, Tonghua

    2018-01-01

    In this paper, we are concerned with a cancer network including a protein module and a corresponding microRNA cluster that inhibits the synthesis of proteins. The existence of multiple steady states and their stability depending on the parameters are firstly determined. Bistability and dependency on the parameters, Hopf bifurcations and the corresponding properties like direction and stability of Hopf bifurcations are determined by computing the normal form on the center manifold. Then, the role of the delay in the process of synthesis of the protein is investigated. We show that the delay can stabilize the unstable equilibrium and destabilize the stable equilibrium. Some simulations are carried out to numerically illustrate the obtained theoretical results. Finally, the biological interpretation of the theoretical results is discussed.

  11. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  12. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry

    PubMed Central

    Qian, Frank; Feng, Ye; Zheng, Yonglan; Ogundiran, Temidayo O.; Ojengbede, Oladosu; Zheng, Wei; Blot, William; Ambrosone, Christine B.; John, Esther M.; Bernstein, Leslie; Hu, Jennifer J.; Ziegler, Regina G.; Nyante, Sarah; Bandera, Elisa V.; Ingles, Sue A.; Press, Michael F.; Nathanson, Katherine L.; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Kolonel, Laurence N.; Olopade, Olufunmilayo I.; Haiman, Christopher A.; Huo, Dezheng

    2016-01-01

    Background MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. Methods We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95% confidence intervals (CI). Results For overall breast cancer risk, three single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR=0.69, 95% CI: 0.55–0.88, P=0.003), ESR1 rs523736 (OR=0.88, 95% CI: 0.82–0.95, P=3.99×10−4), and ZCCHC11 rs114101502 (OR=1.33, 95% CI: 1.11–1.59, P=0.002) and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR=0.74, 95% CI: 0.63–0.89, P=0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer and three SNPs were associated with risk of ER-positive breast cancer. Conclusion Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology. PMID:27380242

  13. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry.

    PubMed

    Qian, Frank; Feng, Ye; Zheng, Yonglan; Ogundiran, Temidayo O; Ojengbede, Oladosu; Zheng, Wei; Blot, William; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Nathanson, Katherine L; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Kolonel, Laurence N; Olopade, Olufunmilayo I; Haiman, Christopher A; Huo, Dezheng

    2016-10-01

    MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55-0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82-0.95, P = 3.99 × 10(-4)), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11-1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63-0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology.

  14. Similar Squamous Cell Carcinoma Epithelium microRNA Expression in Never Smokers and Ever Smokers

    PubMed Central

    Kolokythas, Antonia; Zhou, Yalu; Schwartz, Joel L.; Adami, Guy R.

    2015-01-01

    The incidence of oral tumors in patients who never used mutagenic agents such as tobacco is increasing. In an effort to better understand these tumors we studied microRNA (miRNA) expression in tumor epithelium of never tobacco users, tumor epithelium of ever tobacco users, and nonpathological control oral epithelium. A comparison of levels among 372 miRNAs in 12 never tobacco users with oral squamous cell carcinoma (OSCC) versus 10 healthy controls was made using the reverse transcription quantitative polymerase chain reaction. A similar analysis was done with 8 ever tobacco users with OSCC. These comparisons revealed miR-10b-5p, miR-196a-5p, and miR-31-5p as enriched in the tumor epithelium in OSCC of both never and ever tobacco users. Examination of The Cancer Genome Atlas (TCGA) project miRNA data on 305 OSCCs and 30 controls revealed 100% of those miRNAs enriched in never smoker OSCCs in this patient group were also enriched in ever smoker OSCCs. Nonsupervised clustering of TCGA OSCCs was suggestive of two or four subgroups of tumors based on miRNA levels with limited evidence for differences in tobacco exposure among the groups. Results from both patient groups together stress the importance of miR196a-5p in OSCC malignancy in both never and ever smokers, and emphasize the overall similarity of miRNA expression in OSCCs in these two risk groups. It implies that there may be great similarity in etiology of OSCC in never and ever smokers and that classifying OSCC based on tobacco exposure may not be helpful in the clinic. PMID:26544609

  15. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma.

    PubMed

    Sayeed, Md Abu; Bracci, Massimo; Lucarini, Guendalina; Lazzarini, Raffaella; Di Primio, Roberto; Santarelli, Lory

    2017-10-01

    Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival.

    PubMed

    Jin, Tiefeng; Suk Kim, Hoe; Ki Choi, Sul; Hye Hwang, Eun; Woo, Jisu; Suk Ryu, Han; Kim, Kwangsoo; Moon, Aree; Kyung Moon, Woo

    2017-05-16

    The microRNA-200 (miR-200) family is associated with tumor metastasis and poor patient prognosis. We found that miR-200c/141 cluster overexpression upregulated SerpinB2 in the MDA-MB-231 triple-negative (TN) breast cancer cell line. We observed transcription factor (c-Jun, c-Fos, and FosB) upregulation, nuclear localization of c-Jun, and increased SerpinB2 promoter-directed chloramphenicol acetyltransferase activity in miR-200c/141 cluster-overexpressing cells relative to controls. Additionally, miR-124a and miR-26b, which directly target SepinB2, were downregulated compared to controls. In mouse xenograft models, miR-200c/141 cluster overexpression promoted lymph node and lung metastasis, and siRNA-mediated SerpinB2 knockdown decreased lung metastasis, suggesting that SerpinB2 mediates miR-200c/141-induced lung metastasis. We also explored the clinical significance of SerpinB2 protein status through analysis of primary breast tumor samples and The Cancer Genome Atlas (TCGA) data. High SerpinB2 levels were associated with reduced survival and increased lymph node metastasis in breast cancer patients. SerpinB2 was overexpressed in the TN breast cancer subtype as compared to the luminal subtype. The present study demonstrates that SerpinB2 promotes miR-200c/141 cluster overexpression-induced breast cancer cell metastasis, and SerpinB2 overexpression correlates with increased metastatic potential and unfavorable outcomes in breast cancer patients. SerpinB2 may be a useful biomarker for assessing metastasis risk in breast cancer patients.

  17. Protein components of the microRNA pathway and human diseases

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657

  18. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  19. MicroRNA Expression Profile Selection for Cancer Staging Classification Using Backpropagation

    NASA Astrophysics Data System (ADS)

    Anjarwati; Wibowo, Adi; Adhy, Satriyo; Kusumaningrum, Retno

    2018-05-01

    Ovarian cancer, breast cancer, and lung cancer are deadly diseases and require serious treatment. The cancers are among the fifth most common causes of cancer-induced deaths especially for woman. The high mortality rate of cancer is caused by the lack of effective strategies for early detection of the cancer, whereas if its detected in the early stages, the life survival of cancer patients will be 90%, otherwise the survival rate only 30% when the cancers detected on metastasis stages or cancer cells have spread from a primary site of cancer. MicroRNAs can be used as potential biomarkers for cancer due to their profile expression on the cancers. In this paper, we proposed the feature selection of microRNA expression profiles for classification of the cancers stages using Backpropagation Neural Network. The Cancer stages are classified into before metastasis and after metastasis. Several combinations of the microRNA expression profiles from medical references are compared to find the best features for the classification. The accuracy and the mean square errors are used as basis testing the comparison.

  20. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2015-01-01

    Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829

  1. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer

    USDA-ARS?s Scientific Manuscript database

    Growing evidence indicates deregulation of the epigenetic machinery comprising the microRNA (miRNA) network as a critical factor in the progression of various diseases including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health beneficial prop...

  2. Systematic MicroRNA Analysis Identifies ATP6V0C as an Essential Host Factor for Human Cytomegalovirus Replication

    PubMed Central

    Pavelin, Jon; Reynolds, Natalie; Chiweshe, Stephen; Wu, Guanming; Tiribassi, Rebecca; Grey, Finn

    2013-01-01

    Recent advances in microRNA target identification have greatly increased the number of putative targets of viral microRNAs. However, it is still unclear whether all targets identified are biologically relevant. Here, we use a combined approach of RISC immunoprecipitation and focused siRNA screening to identify targets of HCMV encoded human cytomegalovirus that play an important role in the biology of the virus. Using both a laboratory and clinical strain of human cytomegalovirus, we identify over 200 putative targets of human cytomegalovirus microRNAs following infection of fibroblast cells. By comparing RISC-IP profiles of miRNA knockout viruses, we have resolved specific interactions between human cytomegalovirus miRNAs and the top candidate target transcripts and validated regulation by western blot analysis and luciferase assay. Crucially we demonstrate that miRNA target genes play important roles in the biology of human cytomegalovirus as siRNA knockdown results in marked effects on virus replication. The most striking phenotype followed knockdown of the top target ATP6V0C, which is required for endosomal acidification. siRNA knockdown of ATP6V0C resulted in almost complete loss of infectious virus production, suggesting that an HCMV microRNA targets a crucial cellular factor required for virus replication. This study greatly increases the number of identified targets of human cytomegalovirus microRNAs and demonstrates the effective use of combined miRNA target identification and focused siRNA screening for identifying novel host virus interactions. PMID:24385903

  3. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA

    PubMed Central

    La Rocca, Gaspare; Olejniczak, Scott H.; González, Alvaro J.; Briskin, Daniel; Vidigal, Joana A.; Spraggon, Lee; DeMatteo, Raymond G.; Radler, Megan R.; Lindsten, Tullia; Ventura, Andrea; Tuschl, Thomas; Leslie, Christina S.; Thompson, Craig B.

    2015-01-01

    MicroRNAs repress mRNA translation by guiding Argonaute proteins to partially complementary binding sites, primarily within the 3′ untranslated region (UTR) of target mRNAs. In cell lines, Argonaute-bound microRNAs exist mainly in high molecular weight RNA-induced silencing complexes (HMW-RISC) associated with target mRNA. Here we demonstrate that most adult tissues contain reservoirs of microRNAs in low molecular weight RISC (LMW-RISC) not bound to mRNA, suggesting that these microRNAs are not actively engaged in target repression. Consistent with this observation, the majority of individual microRNAs in primary T cells were enriched in LMW-RISC. During T-cell activation, signal transduction through the phosphoinositide-3 kinase–RAC-alpha serine/threonine-protein kinase–mechanistic target of rapamycin pathway increased the assembly of microRNAs into HMW-RISC, enhanced expression of the glycine-tryptophan protein of 182 kDa, an essential component of HMW-RISC, and improved the ability of microRNAs to repress partially complementary reporters, even when expression of targeting microRNAs did not increase. Overall, data presented here demonstrate that microRNA-mediated target repression in nontransformed cells depends not only on abundance of specific microRNAs, but also on regulation of RISC assembly by intracellular signaling. PMID:25568082

  4. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts.

    PubMed

    Paraskevopoulou, Maria D; Vlachos, Ioannis S; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2016-01-04

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. In vitro quantification of specific microRNA using molecular beacons

    PubMed Central

    Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2012-01-01

    MicroRNAs (miRNAs), a class of non-coding RNAs, have become a major focus of molecular biology research because of their diverse genomic origin and ability to regulate an array of cellular processes. Although the biological functions of miRNA are yet to be fully understood, tissue levels of specific miRNAs have been shown to correlate with pathological development of disease. Here, we demonstrate that molecular beacons can readily distinguish mature- and pre-miRNAs, and reliably quantify miRNA expression. We found that molecular beacons with DNA, RNA and combined locked nucleic acid (LNA)–DNA backbones can all detect miRNAs of low (<1 nM) concentrations in vitro, with RNA beacons having the highest detection sensitivity. Furthermore, we found that molecular beacons have the potential to distinguish miRNAs that have slight variations in their nucleotide sequence. These results suggest that the molecular beacon-based approach to assess miRNA expression and distinguish mature and precursor miRNA species is quite robust, and has the promise for assessing miRNA levels in biological samples. PMID:22110035

  6. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    PubMed

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro . The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  7. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA

    PubMed Central

    James, Amanda Marie; Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples. PMID:28255356

  8. Discovering cancer vulnerabilities using high-throughput micro-RNA screening.

    PubMed

    Nikolic, Iva; Elsworth, Benjamin; Dodson, Eoin; Wu, Sunny Z; Gould, Cathryn M; Mestdagh, Pieter; Marshall, Glenn M; Horvath, Lisa G; Simpson, Kaylene J; Swarbrick, Alexander

    2017-12-15

    Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway Regulated-Circulating microRNA

    DTIC Science & Technology

    2016-05-01

    Award Number: W81XWH-11-1-0715 TITLE: Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway-Regulated Circulating microRNA PRINCIPAL...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway- Regulated Circulating microRNA Sb. GRANT NUMBER...panel of diagnostic miRNAs that are measurable in serum and will be able to identify kidney cancer in its earliest stages. We hypothesized that serum

  10. Exosomal tumor microRNA modulates premetastatic organ cells.

    PubMed

    Rana, Sanyukta; Malinowska, Kamilla; Zöller, Margot

    2013-03-01

    Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery

  11. MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9.

    PubMed

    Chai, Sunghee; Cambronne, Xiaolu A; Eichhorn, Stephen W; Goodman, Richard H

    2013-10-29

    MicroRNA-134 (miR-134) serves as a widely accepted model for microRNA function in synaptic plasticity. In this model, synaptic activity stimulates miR-134 expression, which then regulates dendrite growth and spine formation. By using a ratiometric microRNA sensor, we found, unexpectedly, that miR-134 activity in cortical neurons was restricted to interneurons. Using an assay designed to trap microRNA-mRNA complexes, we determined that miR-134 interacted directly with the mRNA encoding the palmitoylation enzyme, DHHC9. This enzyme is known to palmitoylate H-Ras, a modification required for proper membrane trafficking. Treatment with bicuculline, a GABAA receptor antagonist, decreased DHHC9 expression in somatostatin-positive interneurons and membrane localization of an H-Ras reporter in a manner that depended on miR-134. Thus, although miR-134 has been proposed to affect all types of neurons, we showed that functionally active miR-134 is produced in only a selected population of neurons where it influences the expression of targets, such as DHHC9, that regulate membrane targeting of critical signaling molecules.

  12. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid

  13. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers

    PubMed Central

    Xu, Li; Fengji, Liang; Changning, Liu; Liangcai, Zhang; Yinghui, Li; Yu, Li; Shanguang, Chen; Jianghui, Xiong

    2015-01-01

    Introduction Advances in high-throughput technologies have generated diverse informative molecular markers for cancer outcome prediction. Long non-coding RNA (lncRNA) and DNA methylation as new classes of promising markers are emerging as key molecules in human cancers; however, the prognostic utility of such diverse molecular data remains to be explored. Materials and Methods We proposed a computational pipeline (IDFO) to predict patient survival by identifying prognosis-related biomarkers using multi-type molecular data (mRNA, microRNA, DNA methylation, and lncRNA) from 3198 samples of five cancer types. We assessed the predictive performance of both single molecular data and integrated multi-type molecular data in patient survival stratification, and compared their relative importance in each type of cancer, respectively. Survival analysis using multivariate Cox regression was performed to investigate the impact of the IDFO-identified markers and traditional variables on clinical outcome. Results Using the IDFO approach, we obtained good predictive performance of the molecular datasets (bootstrap accuracy: 0.71–0.97) in five cancer types. Impressively, lncRNA was identified as the best prognostic predictor in the validated cohorts of four cancer types, followed by DNA methylation, mRNA, and then microRNA. We found the incorporating of multi-type molecular data showed similar predictive power to single-type molecular data, but with the exception of the lncRNA + DNA methylation combinations in two cancers. Survival analysis of proportional hazard models confirmed a high robustness for lncRNA and DNA methylation as prognosis factors independent of traditional clinical variables. Conclusion Our study provides insight into systematically understanding the prognostic performance of diverse molecular data in both single and aggregate patterns, which may have specific reference to subsequent related studies. PMID:26606135

  14. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung.

    PubMed

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna; Steele, Vernon E; De Flora, Silvio

    2011-12-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631mg/m(3) of total particulate matter. Exposure started within 12h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were measured by (32)P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding.

    PubMed

    Chen, Bin; Longhini, Andrew P; Nußbaumer, Felix; Kreutz, Christoph; Dinman, Jonathan D; Dayie, T Kwaku

    2018-04-11

    Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. microRNA profiles and functions in mosquitoes

    PubMed Central

    Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-01-01

    Mosquitoes are incriminated as vectors for many crippling diseases, including malaria, West Nile fever, Dengue fever, and other neglected tropical diseases (NTDs). microRNAs (miRNAs) can interact with multiple target genes to elicit biological functions in the mosquitoes. However, characterization and function of individual miRNAs and their potential targets have not been fully determined to date. We conducted a systematic review of published literature following PRISMA guidelines. We summarize the information about miRNAs in mosquitoes to better understand their metabolism, development, and responses to microorganisms. Depending on the study, we found that miRNAs were dysregulated in a species-, sex-, stage-, and tissue/organ-specific manner. Aberrant miRNA expressions were observed in development, metabolism, host-pathogen interactions, and insecticide resistance. Of note, many miRNAs were down-regulated upon pathogen infection. The experimental studies have expanded the identification of miRNA target from the 3′ untranslated regions (UTRs) of mRNAs of mosquitoes to the 5′ UTRs of mRNAs of the virus. In addition, we discuss current trends in mosquito miRNA research and offer suggestions for future studies. PMID:29718912

  17. Relative dispersion of clustered drifters in a small micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.

    2017-07-01

    Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d < 0.5 m) relative diffusivity followed the Richardson's 4/3 power law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.

  18. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    PubMed

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  19. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  20. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    PubMed

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  1. Conservation of small RNA pathways in platypus

    PubMed Central

    Murchison, Elizabeth P.; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J.

    2008-01-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense. PMID:18463306

  2. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  3. A simple method for construction of artificial microRNA vector in plant.

    PubMed

    Li, Yang; Li, Yang; Zhao, Sunping; Zhong, Sheng; Wang, Zhaohai; Ding, Bo; Li, Yangsheng

    2014-10-01

    Artificial microRNA (amiRNA) is a powerful tool for silencing genes in many plant species. Here we provide an easy method to construct amiRNA vectors that reinvents the Golden Gate cloning approach and features a novel system called top speed amiRNA construction (TAC). This speedy approach accomplishes one restriction-ligation step in only 5 min, allowing easy and high-throughput vector construction. Three primers were annealed to be a specific adaptor, then digested and ligated on our novel vector pTAC. Importantly, this method allows the recombined amiRNA constructs to maintain the precursor of osa-miR528 with exception of the desired amiRNA/amiRNA* sequences. Using this method, our results showed the expected decrease of targeted genes in Nicotiana benthamiana and Oryza sativa.

  4. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    PubMed

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  5. MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients

    PubMed Central

    Wang, Xiaofeng; Luo, Yifeng; Liu, Shuangxi; Tan, Liming; Wang, Sanhu; Man, Rongyong

    2017-01-01

    Background Temporal lobe epilepsy is the second most common neurological disorders characterized by recurrent spontaneous seizures. MicroRNAs play a vital role in regulating synaptic plasticity, brain development and post-transcriptional expression of proteins. In both animal models of epilepsy and human patients, miR-134, a brain-specific microRNA has recently been identified as a potential regulator of epileptogenesis. Methods microRNA identified as targets for the actions of valproic acid (VPA) are known to have important effects in brain function. In this study, 59 new-onset epilepsy patients and 20 controls matched by sex and age were enrolled. Patients with a score < 3 were allocated into the mild group, 3-5 into the moderate group and >5 into the severe group. The plasma miRNA-134 level was quantitatively measured using real-time PCR. Results Plasma miRNA-134 level in new-onset epilepsy patients was significantly up-regulated when compared with that in healthy controls, and then considerably down-regulated after oral intake of valproic acid medication. The up-regulated plasma miRNA-134 levels may be directly associated with the pathophysiology and severity of epilepsy. Conclusion Plasma miRNA-134 in epilepsy may be considered as a potential peripheral biomarker that responds to the incidence of epilepsy and associates with use of anti-epilepsy drugs. PMID:29069823

  6. MicroRNA-155 expression and function in AML: An evolving paradigm.

    PubMed

    Narayan, Nisha; Bracken, Cameron P; Ekert, Paul G

    2018-06-01

    Acute myeloid leukemia (AML) arises when immature myeloid blast cells acquire multiple, recurrent genetic and epigenetic changes that result in dysregulated proliferation. Acute leukemia is the most common form of pediatric cancer, with AML accounting for ~20% of all leukemias in children. The genomic aberrations that drive AML inhibit myeloid differentiation and activate signal transduction pathways that drive proliferation. MicroRNAs, a class of small (~22 nucleotide) noncoding RNAs that posttranscriptionally suppress the expression of specifically targeted transcripts, are also frequently dysregulated in AML, which may prove useful for the purposes of disease classification, prognosis, and future therapeutic approaches. MicroRNA expression profiles are associated with patient prognosis and responses to standard chemotherapy, including predicting therapy resistance in AML. miR-155 is the primary focus of this review because it has been repeatedly associated with poorer survival across multiple cohorts of adult and pediatric AML. We discuss some novel features of miR-155 expression in AML, in particular how the levels of expression can critically influence function. Understanding the role of microRNAs in AML and the ways in which microRNA expression influences AML biology is one means to develop novel and more targeted therapies. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  7. Extension of microRNA expression pattern associated with high-risk neuroblastoma.

    PubMed

    Bienertova-Vasku, Julie; Mazanek, Pavel; Hezova, Renata; Curdova, Anna; Nekvindova, Jana; Kren, Leos; Sterba, Jaroslav; Slaby, Ondrej

    2013-08-01

    Clinical behavior of neuroblastoma (NBL) is remarkably heterogeneous, as it ranges from spontaneous regression to aggressive clinical phenotype and death. There is increasing body of evidence demonstrating that microRNAs could be considered the potential biomarkers for clinical applications in NBL. In this report, we focus on molecular characterization of high-risk as well as low-risk and intermediate-risk NBL cases in the context of the microRNA expression profile that is specific for the given risk category of the disease. We investigated a total of 30 NBL patients, out of whom there were 19 patients with low- to intermediate-risk and 11 with high-risk NBLs as defined by the Clinical Oncology Group. We determined the expression profiles of 754 microRNAs (miRNAs), whereas the miRNA expression levels were normalized to RNU44, mean expression levels were calculated, and data were analyzed by use of the microarray biostatistical approaches. We identified the signature of 38 miRNAs differentially expressed between these groups of NBL patients (P < 0.05): 17 miRNAs were upregulated and 21 miRNAs were downregulated in the tumors of high-risk NBL patients. We confirm some of the previous observations and we report several new microRNAs associated with aggressive NBL, both being relevant subjects for further translational validation and functional studies.

  8. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.

    PubMed

    Ma, Jing; Gong, Wei; Liu, Su; Li, Qian; Guo, Mengzheng; Wang, Jinhan; Wang, Suying; Chen, Naiyao; Wang, Yafei; Liu, Qiang; Zhao, Hui

    2018-01-01

    The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.

  9. An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0082 TITLE: An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells ...syndromes (MDS) to identify microRNAs (miRNAs) dysregulated in MDS hematopoietic stem cells (MDS HSCs) as compared with normal HSCs. MiRNAs differentially...the age-related predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells

  10. An Analysis of MicroRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0082 TITLE: An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells ...syndromes (MDS) to identify microRNAs (miRNAs) dysregulated in MDS hematopoietic stem cells (MDS HSCs) as compared with normal HSCs. MiRNAs differentially...the age-related predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells

  11. Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients

    PubMed Central

    Urbas, Romana; Mayr, Christian; Klieser, Eckhard; Fuereder, Julia; Bach, Doris; Stättner, Stefan; Primavesi, Florian; Jaeger, Tarkan; Stanzer, Stefanie; Ress, Anna Lena; Löffelberger, Magdalena; Wagner, Andrej; Berr, Frieder; Ritter, Markus; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias

    2016-01-01

    Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome. PMID:27941621

  12. MicroRNA profiling of the murine hematopoietic system

    PubMed Central

    Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S

    2005-01-01

    Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853

  13. MicroRNA related polymorphisms and breast cancer risk.

    PubMed

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  14. MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases.

    PubMed

    Rieger, Jessica K; Bodan, Denis A; Zanger, Ulrich M

    2011-01-01

    MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3'-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp.

  15. MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases

    PubMed Central

    Rieger, Jessica K.; Bodan, Denis A.; Zanger, Ulrich M.

    2011-01-01

    MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3′-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp PMID:22303335

  16. TargetSpy: a supervised machine learning approach for microRNA target prediction.

    PubMed

    Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij

    2010-05-28

    Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila

  17. TargetSpy: a supervised machine learning approach for microRNA target prediction

    PubMed Central

    2010-01-01

    Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well

  18. Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation.

    PubMed

    Guan, Jiuqiang; Long, Keren; Ma, Jideng; Zhang, Jinwei; He, Dafang; Jin, Long; Tang, Qianzi; Jiang, Anan; Wang, Xun; Hu, Yaodong; Tian, Shilin; Jiang, Zhi; Li, Mingzhou; Luo, Xiaolin

    2017-01-01

    Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.

  19. Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation

    PubMed Central

    Zhang, Jinwei; He, Dafang; Jin, Long; Tang, Qianzi; Jiang, Anan; Wang, Xun; Hu, Yaodong; Tian, Shilin; Jiang, Zhi

    2017-01-01

    Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation. PMID:29109913

  20. A tale of two sequences: microRNA-target chimeric reads.

    PubMed

    Broughton, James P; Pasquinelli, Amy E

    2016-04-04

    In animals, a functional interaction between a microRNA (miRNA) and its target RNA requires only partial base pairing. The limited number of base pair interactions required for miRNA targeting provides miRNAs with broad regulatory potential and also makes target prediction challenging. Computational approaches to target prediction have focused on identifying miRNA target sites based on known sequence features that are important for canonical targeting and may miss non-canonical targets. Current state-of-the-art experimental approaches, such as CLIP-seq (cross-linking immunoprecipitation with sequencing), PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP), and iCLIP (individual-nucleotide resolution CLIP), require inference of which miRNA is bound at each site. Recently, the development of methods to ligate miRNAs to their target RNAs during the preparation of sequencing libraries has provided a new tool for the identification of miRNA target sites. The chimeric, or hybrid, miRNA-target reads that are produced by these methods unambiguously identify the miRNA bound at a specific target site. The information provided by these chimeric reads has revealed extensive non-canonical interactions between miRNAs and their target mRNAs, and identified many novel interactions between miRNAs and noncoding RNAs.

  1. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains

    PubMed Central

    Benoit, Matthieu P. M. H.; Imbert, Lionel; Palencia, Andrés; Pérard, Julien; Ebel, Christine; Boisbouvier, Jérôme; Plevin, Michael J.

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer. PMID:23435228

  2. Real-time dynamics of RNA Polymerase II clustering in live human cells

    NASA Astrophysics Data System (ADS)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  3. Catalog of MicroRNA Seed Polymorphisms in Vertebrates

    PubMed Central

    Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453

  4. Small RNA sequencing and functional characterization reveals microRNA-143 tumor suppressor activity in liposarcoma

    PubMed Central

    Ugras, Stacy; Brill, Elliott; Jacobsen, Anders; Hafner, Markus; Socci, Nicholas D.; DeCarolis, Penelope L.; Khanin, Raya; O'Connor, Rachael; Mihailovic, Aleksandra; Taylor, Barry S.; Sheridan, Robert; Gimble, Jeffrey M.; Viale, Agnes; Crago, Aimee; Antonescu, Cristina R.; Sander, Chris; Tuschl, Thomas; Singer, Samuel

    2011-01-01

    Liposarcoma remains the most common mesenchymal cancer, with a mortality rate of 60% among patients with this disease. To address the present lack of therapeutic options, we embarked upon a study of microRNA (miRNA) expression alterations associated with liposarcomagenesis with the goal of exploiting differentially expressed miRNAs and the gene products they regulate as potential therapeutic targets. MicroRNA expression was profiled in samples of normal adipose tissue, well-differentiated liposarcoma, and dedifferentiated liposarcoma by both deep sequencing of small RNA libraries and hybridization-based Agilent microarrays. The expression profiles discriminated liposarcoma from normal adipose tissue and well-differentiated from dedifferentiated disease. We defined over 40 miRNAs that were dysregulated in dedifferentiated liposarcomas in both the sequencing and the microarray analysis. The upregulated miRNAs included two cancer-associated species (miR-21, miR-26a), and the downregulated miRNAs included two species that were highly abundant in adipose tissue (miR-143, miR-145). Restoring miR-143 expression in dedifferentiated liposarcoma cells inhibited proliferation, induced apoptosis, and decreased expression of BCL2, TOP2A, PRC1, and PLK1. The downregulation of PRC1 and its docking partner PLK1 suggests that miR-143 inhibits cytokinesis in these cells. In support of this idea, treatment with a PLK1 inhibitor potently induced G2/M growth arrest and apoptosis in liposarcoma cells. Taken together, our findings suggest that miR-143 re-expression vectors or selective agents directed at miR-143 or its targets may have therapeutic value in dedifferentiated liposarcoma. PMID:21693658

  5. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and themore » plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.« less

  6. MiR-17-92 cluster and immunity.

    PubMed

    Kuo, George; Wu, Chao-Yi; Yang, Huang-Yu

    2018-05-29

    MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members. Copyright © 2018. Published by Elsevier B.V.

  7. Urinary and Blood MicroRNA-126 and -770 are Potential Noninvasive Biomarker Candidates for Diabetic Nephropathy: a Meta-Analysis.

    PubMed

    Park, Sungjin; Moon, SeongRyeol; Lee, Kiyoung; Park, Ie Byung; Lee, Dae Ho; Nam, Seungyoon

    2018-01-01

    Diabetic nephropathy (DN), a major diabetic microvascular complication, has a long and growing list of biomarkers, including microRNA biomarkers, which have not been consistent across preclinical and clinical studies. This meta-analysis aims to identify significant blood- and urine-incident microRNAs as diagnostic/prognostic biomarker candidates for DN. PubMed, Web of Science, and Cochrane Library were searched from their earliest records through 12th Dec 2016. Relevant publications for the meta-analysis included (1) human participants; (2) microRNAs in blood and urine; (3) DN studies; and (4) English language. Four reviewers, including two physicians, independently and blindly extracted published data regarding microRNA profiles in blood and/or urine from subjects with diabetic nephropathy. A random-effect model was used to pool the data. Statistical associations between diabetic nephropathy and urinary or blood microRNA expression levels were assessed. Fourteen out of 327 studies (n=2,747 patients) were selected. Blood or urinary microRNA expression data of diabetic nephropathy were pooled for this analysis. The hsa-miR-126 family was significantly (OR: 0.57; 95% CI: 0.44-0.74; p-value < 0.0001) downregulated in blood from patients with diabetic kidney disease, while its urinary level was upregulated (OR: 2931.12; 95% CI: 9.96-862623.21; p-value = 0.0059). The hsa-miR-770 family microRNA were significantly (OR: 10.24; 95% CI: 2.37-44.25; p-value = 0.0018) upregulated in both blood and urine from patients with diabetic nephropathy. Our meta-analysis suggests that hsa-miR-126 and hsa-miR-770 family microRNA may have important diagnostic and pathogenetic implications for DN, which warrants further systematic clinical studies. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    PubMed Central

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  9. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus.

    PubMed

    Wen, Weitao; He, Zhenjian; Jing, Qinlong; Hu, Yiwen; Lin, Cuiji; Zhou, Rui; Wang, Xiaoqun; Su, Yangfan; Yuan, Jiehao; Chen, Zhenxin; Yuan, Jie; Wu, Jueheng; Li, Jun; Zhu, Xun; Li, Mengfeng

    2015-06-01

    It has been well recognized that microRNA plays a role in the host-pathogen interaction network. The significance of microRNA in the regulation of dengue virus (DENV) replication, however, remains unknown. The objective of our study was to determine the biological function of miR-548g-3p in modulating the replication of dengue virus. Here we report that employment of a microRNA target search algorithm to analyze the 5' untranslated region (5'UTR) consensus sequences of DENV (DENV serotypes 1-4) led to a discovery that miR-548g-3p directly targets the stem loop A promoter element within the 5'UTR, a region essential for DENV replication. Real-time PCR was used to measure the expression levels of miR-548g-3p under DENV infection. We performed overexpression and inhibition assays to test the role of miR-548g-3p on DENV replication. The protein and mRNA levels of interferon were measured by ELISA and real-time PCR respectively. We found that overexpression of miR-548g-3p suppressed multiplication of DENV 1, 2, 3 and 4, and that miR-548g-3p was also found to interfere with DENV translation, thereby suppressing the expression of viral proteins. Our results suggest that miR-548g-3p directly regulates DENV replication and warrant further study to investigate the feasibility of microRNA-based anti-DENV approaches. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells.

    PubMed

    Yin, Perry T; Shah, Birju P; Lee, Ki-Bum

    2014-10-29

    A novel therapy is demonstrated utilizing magnetic nanoparticles for the dual purpose of delivering microRNA and inducing magnetic hyperthermia. In particular, the combination of lethal-7a microRNA (let-7a), which targets a number of the survival pathways that typically limit the effectiveness of hyperthermia, with magnetic hyperthermia greatly enhances apoptosis in brain cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  12. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    PubMed Central

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  13. Precursor microRNA Programmed Silencing Complex Assembly Pathways in Mammals

    PubMed Central

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T.; Mourelatos, Zissimos

    2012-01-01

    Summary Assembly of microRNA Ribonucleoproteins (miRNPs) or RNA-Induced Silencing Complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in-vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in-vivo studies in Dicer Knock-Out cells reconstituted with wild type or catalytically inactive Dicer, we find that the miRNA Loading Complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA Precursor Deposit Complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5′-uridine, 3′-mid base pairing and 5′-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. PMID:22503104

  14. Precursor microRNA-programmed silencing complex assembly pathways in mammals.

    PubMed

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T; Mourelatos, Zissimos

    2012-05-25

    Assembly of microRNA ribonucleoproteins (miRNPs) or RNA-induced silencing complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in vivo studies in Dicer Knockout cells reconstituted with wild-type or catalytically inactive Dicer, we find that the miRNA loading complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA precursor deposit complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5'-uridine, 3'-mid base pairing, and 5'-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals, and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Identification of a Polyomavirus microRNA Highly Expressed in Tumors

    PubMed Central

    Chen, Chun Jung; Cox, Jennifer E.; Azarm, Kristopher; Wylie, Karen N.; Woolard, Kevin D.; Pesavento, Patricia A.; Sullivan, Christopher S.

    2014-01-01

    Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors. PMID:25514573

  16. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)-plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of

  17. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    PubMed Central

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Background Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Methods Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)–plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. Findings On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Conclusions Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The

  18. Plasma microRNA profile as a predictor of early virological response to interferon treatment in chronic hepatitis B patients.

    PubMed

    Zhang, Xiaonan; Chen, Cuncun; Wu, Min; Chen, Liang; Zhang, Jiming; Zhang, Xinxin; Zhang, Zhanqin; Wu, Jingdi; Wang, Jiefei; Chen, Xiaorong; Huang, Tao; Chen, Lixiang; Yuan, Zhenghong

    2012-01-01

    Interferon (IFN) and pegylated interferon (PEG-IFN) treatment of chronic hepatitis B leads to a sustained virological response in a limited proportion of patients and has considerable side effects. To find novel markers associated with prognosis of IFN therapy, we investigated whether a pretreatment plasma microRNA profile could be used to predict early virological response to IFN. We performed microRNA microarray analysis of plasma samples from 94 patients with chronic hepatitis B who received IFN therapy. The microRNA profiles from 13 liver biopsy samples were also measured. The OneR feature ranking and incremental feature selection method were used to rank and optimize the number of features in the model. Support vector machine prediction engine and jack-knife cross-validation were used to generate and evaluate the prediction model. The optimized model consisting of 11 microRNAs yielded a 74.2% overall accuracy in the training group and was independently confirmed in the test group (71.4% accuracy). Univariate and multivariate logistic regression analyses confirmed its independent association with early virological response (OR=7.35; P=2.12×10(-5)). Combining the microRNA profile with the alanine aminotransferase level improved the overall accuracy from 73.4% to 77.3%. Co-transfection of an HBV replicative construct with microRNA mimics revealed that let-7f, miR-939 and miR-638 were functionally associated with the HBV life cycle. The 11 microRNA signatures in plasma, together with basic clinical variables, might provide an accurate method to assist in medication decisions and improve the overall sustained response to IFN treatment.

  19. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    PubMed Central

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  20. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  1. Signal-on fluorescence biosensor for microRNA-21 detection based on DNA strand displacement reaction and Mg2+-dependent DNAzyme cleavage.

    PubMed

    Yin, Huan-Shun; Li, Bing-Chen; Zhou, Yun-Lei; Wang, Hai-Yan; Wang, Ming-Hui; Ai, Shi-Yun

    2017-10-15

    MicroRNAs have been involved into many biological processes and are regarded as disease biomarkers. Simple, rapid, sensitive and selective method for microRNA detection is crucial for early diagnosis and therapy of diseases. In this work, sensitive fluorescence assay was developed for microRNA-21 detection based on DNA polymerase induced strand displacement amplification reaction, Mg 2+ -dependent DNAzyme catalysis reaction, and magnetic separation. In the presence of target microRNA-21, amounts of trigger DNA could be produced with DNA polymerase induced strand displacement amplification reaction, and the trigger DNA could be further hybridized with signal DNA, which was labeled with biotin and AMCA dye. After introduction of Mg 2+ , trigger DNA could form DNAzyme to cleave signal DNA. After magnetic separation, the DNA fragment with AMCA dye could give fluorescence signal, which was related to microRNA-21 concentration. Based on the two efficient signal amplifications, the developed method showed high detection sensitivity with low detection limit of 0.27fM (3σ). In addition, this fluorescence strategy also possessed excellent detection specificity, and could be applied to analyze microRNA-21 expression level in serum of cancer patient. According to the obtained results, the developed fluorescence method might be a promising detection platform for microRNA-21 quantitative analysis in biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Integrated microRNA and mRNA network analysis of the human myometrial transcriptome in the transition from quiescence to labor.

    PubMed

    Ackerman, William E; Buhimschi, Irina A; Brubaker, Douglas; Maxwell, Sean; Rood, Kara M; Chance, Mark R; Jing, Hongwu; Mesiano, Sam; Buhimschi, Catalin S

    2018-02-13

    We conducted integrated transcriptomics network analyses of miRNA and mRNA interactions in human myometrium to identify novel molecular candidates potentially involved in human parturition. Myometrial biopsies were collected from women undergoing primary Cesarean deliveries in well-characterized clinical scenarios: 1) spontaneous term labor (TL, n = 5); 2) term non-labor (TNL, n = 5); 3) spontaneous preterm birth (PTB) with histologic chorioamnionitis (PTB-HCA, n = 5); and 4) indicated PTB non-labor (PTB-NL, n = 5). MicroRNAs and long RNAs were profiled using RNA sequencing, and miRNA-target interaction networks were mined for key discriminatory subnetworks. Forty miRNAs differed between TL and TNL myometrium while seven miRNAs differed between PTB-HCA vs. PTB-NL specimens; six of these miRNAs were cross-validated using quantitative PCR. Based on the combined sequencing data, unsupervised clustering revealed two non-overlapping cohorts that differed primarily by absence or presence of uterine quiescence, rather than gestational age or original clinical cohort. The intersection of differentially expressed miRNAs and their mRNA targets predicted 22 subnetworks with enriched representation of miR-146b-5p, miR-223-3p, and miR-150-5p among miRNAs, and of myocyte enhancer factor-2C (MEF2C) among mRNAs. Of four known MEF2 transcription factors, decreased MEF2A and MEF2C expression in women with uterine non-quiescence was observed in the transcriptome profiling data, and validated in a second cohort by quantitative PCR. Immunohistochemistry localized MEF2A and MEF2C to myometrial smooth muscle cells and confirmed decreased abundance with labor. Collectively, these results suggest that repression of MEF2 expression may represent a previously unrecognized process through which miRNAs contribute to the phenotypic switch from quiescence to labor in human myometrium. © The Author(s) 2018. Published by Oxford University Press on behalf of Society for the Study of

  3. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  4. Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset.

    PubMed

    Boo, Lily; Ho, Wan Yong; Mohd Ali, Norlaily; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Cheong, Soon Keng; Ong, Han Kiat

    2017-01-01

    Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.

  5. MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1.

    PubMed

    Zhu, Jin; Zhang, Yuehua; Zhang, Weichen; Zhang, Wei; Fan, Linni; Wang, Lu; Liu, Yixiong; Liu, Shasha; Guo, Ying; Wang, Yingmei; Yi, Jun; Yan, Qingguo; Wang, Zhe; Huang, Gaosheng

    2016-06-08

    MicroRNAs have the potential as diagnostic biomarkers and therapeutic targets in autoimmune diseases. However, very limited studies have evaluated the expression of microRNA profile in thyroid gland related to Hashimoto's thyroiditis (HT). MicroRNA microarray expression profiling was performed and validated by quantitative RT-PCR. The expression pattern of miR-142-5p was detected using locked nucleic acid-in situ hybridization. The target gene was predicted and validated using miRNA targets prediction database, gene expression analysis, quantitative RT-PCR, western blot, and luciferase assay. The potential mechanisms of miR-142-5p were studied using immunohistochemistry, immunofluorescence, and quantitative assay of thyrocyte permeability. Thirty-nine microRNAs were differentially expressed in HT (Fold change ≥2, P < 0.05) and miR-142-5p, miR-142-3p, and miR-146a were only high expression in HT thyroid gland (P < 0.001). miR-142-5p, which was expressed at high levels in injured follicular epithelial cells, was also detected in HT patient serum and positively correlated with thyroglobulin antibody (r ≥ 0.6, P < 0.05). Furthermore, luciferase assay demonstrated CLDN1 was the direct target gene of miR-142-5p (P < 0.05), and Immunohistochemical staining showed a reverse expression patterns with miR-142-5p and CLDN1. Overexpression of miR-142-5p in thyrocytes resulted in reducing of the expression of claudin-1 both in mRNA and protein level (P = 0.032 and P = 0.009 respectively) and increasing the permeability of thyrocytes monolayer (P < 0.01). Our findings indicate a previously unrecognized mechanism that miR-142-5p, targeting CLDN1, plays an important role in HT pathogenesis.

  6. MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.

    PubMed

    Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S

    2015-04-27

    Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.

  7. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing.

    PubMed

    Chen, Hau-Yun; Albert, Karunya; Wen, Cheng-Che; Hsieh, Pei-Ying; Chen, Sih-Yu; Huang, Nei-Chung; Lo, Shen-Chuan; Chen, Jen-Kun; Hsu, Hsin-Yun

    2017-04-01

    Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNC m -miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Differences in microRNA expression during tumor development in the transition and peripheral zones of the prostate

    PubMed Central

    2013-01-01

    Background The prostate is divided into three glandular zones, the peripheral zone (PZ), the transition zone (TZ), and the central zone. Most prostate tumors arise in the peripheral zone (70-75%) and in the transition zone (20-25%) while only 10% arise in the central zone. The aim of this study was to investigate if differences in miRNA expression could be a possible explanation for the difference in propensity of tumors in the zones of the prostate. Methods Patients with prostate cancer were included in the study if they had a tumor with Gleason grade 3 in the PZ, the TZ, or both (n=16). Normal prostate tissue was collected from men undergoing cystoprostatectomy (n=20). The expression of 667 unique miRNAs was investigated using TaqMan low density arrays for miRNAs. Student’s t-test was used in order to identify differentially expressed miRNAs, followed by hierarchical clustering and principal component analysis (PCA) to study the separation of the tissues. The ADtree algorithm was used to identify markers for classification of tissues and a cross-validation procedure was used to test the generality of the identified miRNA-based classifiers. Results The t-tests revealed that the major differences in miRNA expression are found between normal and malignant tissues. Hierarchical clustering and PCA based on differentially expressed miRNAs between normal and malignant tissues showed perfect separation between samples, while the corresponding analyses based on differentially expressed miRNAs between the two zones showed several misplaced samples. A classification and cross-validation procedure confirmed these results and several potential miRNA markers were identified. Conclusions The results of this study indicate that the major differences in the transcription program are those arising during tumor development, rather than during normal tissue development. In addition, tumors arising in the TZ have more unique differentially expressed miRNAs compared to the PZ. The

  9. BioVLAB-MMIA-NGS: microRNA-mRNA integrated analysis using high-throughput sequencing data.

    PubMed

    Chae, Heejoon; Rhee, Sungmin; Nephew, Kenneth P; Kim, Sun

    2015-01-15

    It is now well established that microRNAs (miRNAs) play a critical role in regulating gene expression in a sequence-specific manner, and genome-wide efforts are underway to predict known and novel miRNA targets. However, the integrated miRNA-mRNA analysis remains a major computational challenge, requiring powerful informatics systems and bioinformatics expertise. The objective of this study was to modify our widely recognized Web server for the integrated mRNA-miRNA analysis (MMIA) and its subsequent deployment on the Amazon cloud (BioVLAB-MMIA) to be compatible with high-throughput platforms, including next-generation sequencing (NGS) data (e.g. RNA-seq). We developed a new version called the BioVLAB-MMIA-NGS, deployed on both Amazon cloud and on a high-performance publicly available server called MAHA. By using NGS data and integrating various bioinformatics tools and databases, BioVLAB-MMIA-NGS offers several advantages. First, sequencing data is more accurate than array-based methods for determining miRNA expression levels. Second, potential novel miRNAs can be detected by using various computational methods for characterizing miRNAs. Third, because miRNA-mediated gene regulation is due to hybridization of an miRNA to its target mRNA, sequencing data can be used to identify many-to-many relationship between miRNAs and target genes with high accuracy. http://epigenomics.snu.ac.kr/biovlab_mmia_ngs/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. MicroRNA Related Polymorphisms and Breast Cancer Risk

    PubMed Central

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L.; Muranen, Taru A.; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K.; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L.; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J.; Hunter, David J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Schmidt, Marjanka K.; Broeks, Annegien; Veer, Laura J. V. a. n't.; Hogervorst, Frans B.; Fasching, Peter A.; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M.; Perez, Jose I. A.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Olson, Janet E.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Kristensen, Vessela N.; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J.; Martens, John W. M.; Collée, J. Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G.; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F.; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  11. Protein interactions and complexes in human microRNA biogenesis and function

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Encoded in the genome of most eukaryotes, microRNAs (miRNAs) have been proposed to regulate specifically up to 90% of human genes through a process known as miRNA-guided RNA silencing. The aim of this review is to present this process as the integration of a succession of specialized molecular machines exerting well defined functions. The nuclear microprocessor complex initially recognizes and processes its primary miRNA substrate into a miRNA precursor (pre-miRNA). This structure is then exported to the cytoplasm by the Exportin-5 complex where it is presented to the pre-miRNA processing complex. Following pre-miRNA conversion into a miRNA:miRNA* duplex, this complex is assembled into a miRNA-containing ribonucleoprotein (miRNP) complex, after which the miRNA strand is selected. The degree of complementarity of the miRNA for its messenger RNA (mRNA) target guides the recruitment of the miRNP complex. Initially repressing its translation, the miRNP-silenced mRNA is directed to the P-bodies, where the mRNA is either released from its inhibition upon a cellular signal and/or actively degraded. The potency and specificity of miRNA biogenesis and function rely on the distinct protein·protein, protein·RNA and RNA:RNA interactions found in different complexes, each of which fulfill a specific function in a well orchestrated process. PMID:17981733

  12. Evolution of the human-specific microRNA miR-941

    PubMed Central

    Hu, Hai Yang; He, Liu; Fominykh, Kseniya; Yan, Zheng; Guo, Song; Zhang, Xiaoyu; Taylor, Martin S.; Tang, Lin; Li, Jie; Liu, Jianmei; Wang, Wen; Yu, Haijing; Khaitovich, Philipp

    2012-01-01

    MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage. PMID:23093182

  13. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  14. Viability, Longevity, and Egg Production of Drosophila melanogaster Are Regulated by the miR-282 microRNA

    PubMed Central

    Vilmos, Péter; Bujna, Ágnes; Szuperák, Milán; Havelda, Zoltán; Várallyay, Éva; Szabad, János; Kucerova, Lucie; Somogyi, Kálmán; Kristó, Ildikó; Lukácsovich, Tamás; Jankovics, Ferenc; Henn, László; Erdélyi, Miklós

    2013-01-01

    The first microRNAs were discovered some 20 years ago, but only a small fraction of the microRNA-encoding genes have been described in detail yet. Here we report the molecular analysis of a computationally predicted Drosophila melanogaster microRNA gene, mir-282. We show that the mir-282 gene is the source of a 4.9-kb-long primary transcript with a 5′ cap and a 3′-poly(A) sequence and a mature microRNA of ∼25 bp. Our data strongly suggest the existence of an independent mir-282 gene conserved in holometabolic insects. We give evidence that the mir-282 locus encodes a functional transcript that influences viability, longevity, and egg production in Drosophila. We identify the nervous system-specific adenylate cyclase (rutabaga) as a target of miR-282 and assume that one of the main functions of mir-282 is the regulation of adenylate cyclase activity in the nervous system during metamorphosis. PMID:23852386

  15. MicroRNA Array Normalization: An Evaluation Using a Randomized Dataset as the Benchmark

    PubMed Central

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays. PMID:24905456

  16. MicroRNAs are suitable for assessment as biomarkers from formalin-fixed paraffin-embedded tissue, and miR-24 represents an appropriate reference microRNA for diffuse large B-cell lymphoma studies.

    PubMed

    Culpin, Rachel Emily; Sieniawski, Michal; Proctor, Stephen John; Menon, Geetha; Mainou-Fowler, Tryfonia

    2013-03-01

    Tissue biopsy specimens in the form of formalin-fixed paraffin-embedded tissue (FFPET) represent a valuable resource for biomarker identification and validation. However, to date, they remain an underused asset due to uncertainty regarding RNA extraction and the reliability of downstream techniques, including quantitative RT-PCR. Recently, much interest has emerged in the study of microRNAs; small single-stranded RNAs with a role in transcriptional regulation, that are thought to be well preserved in FFPET. In this study, we show that microRNA expression is comparable between FFPET and matched fresh-frozen samples (miR-17-5p: p=0.01, miR-92: p=0.003), and demonstrate that no significant deterioration in expression occurs over prolonged FFPET storage (p=0.06). Furthermore, microRNA expression is equivalent dependant on RNA extraction method (p<0.001) or DNAse treatment of total RNA (p<0.001). Finally, we validate miR-24 as a suitable reference microRNA for diffuse large B-cell lymphoma (DLBCL) FFPET studies.

  17. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors

    PubMed Central

    Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi

    2011-01-01

    RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091

  18. Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men

    USDA-ARS?s Scientific Manuscript database

    Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young...

  19. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  20. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain

    PubMed Central

    Somel, Mehmet; Guo, Song; Fu, Ning; Yan, Zheng; Hu, Hai Yang; Xu, Ying; Yuan, Yuan; Ning, Zhibin; Hu, Yuhui; Menzel, Corinna; Hu, Hao; Lachmann, Michael; Zeng, Rong; Chen, Wei; Khaitovich, Philipp

    2010-01-01

    Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging. PMID:20647238

  1. Data mining with unsupervised clustering using photonic micro-ring resonators

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2013-09-01

    Data is commonly moved through optical fiber in modern data centers and may be stored optically. We propose an optical method of data mining for future data centers to enhance performance. For example, in clustering, a form of unsupervised learning, we propose that parameters corresponding to information in a database are converted from analog values to frequencies, as in the brain's neurons, where similar data will have close frequencies. We describe the Wilson-Cowan model for oscillating neurons. In optics we implement the frequencies with micro ring resonators. Due to the influence of weak coupling, a group of resonators will form clusters of similar frequencies that will indicate the desired parameters having close relations. Fewer clusters are formed as clustering proceeds, which allows the creation of a tree showing topics of importance and their relationships in the database. The tree can be used for instance to target advertising and for planning.

  2. Ensemble Clustering Classification Applied to Competing SVM and One-Class Classifiers Exemplified by Plant MicroRNAs Data.

    PubMed

    Yousef, Malik; Khalifa, Waleed; AbdAllah, Loai

    2016-12-01

    The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that EC-kNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.

  3. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury

    PubMed Central

    2013-01-01

    Background The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets. Results In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery. Conclusions This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs. PMID:23387820

  4. Design and interpretation of microRNA-reporter gene activity.

    PubMed

    Carroll, Adam P; Tooney, Paul A; Cairns, Murray J

    2013-06-15

    MicroRNAs (miRNAs) are small noncoding RNA molecules that act as sequence specificity guides to direct post-transcriptional gene silencing. In doing so, miRNAs regulate many critical developmental processes, including cellular proliferation, differentiation, migration, and apoptosis, as well as more specialized biological functions such as dendritic spine development and synaptogenesis. Interactions between miRNAs and their miRNA recognition elements occur via partial complementarity, rendering tremendous redundancy in targeting such that miRNAs are predicted to regulate 60% of the genome, with each miRNA estimated to regulate more than 200 genes. Because these predictions are prone to false positives and false negatives, there is an ever present need to provide material support to these assertions to firmly establish the biological function of specific miRNAs in both normal and pathophysiological contexts. Using schizophrenia-associated miR-181b as an example, we present detailed guidelines and novel insights for the rapid establishment of a streamlined miRNA-reporter gene assay and explore various design concepts for miRNA-reporter gene applications, including bidirectional miRNA modulation. In exemplifying this approach, we report seven novel miR-181b target sites for five schizophrenia candidate genes (DISC1, BDNF, ENKUR, GRIA1, and GRIK1) and dissect a number of vital concepts regarding future developments for miRNA-reporter gene assays and the interpretation of their results. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Impact of gastro-oesophageal reflux on microRNA expression, location and function.

    PubMed

    Smith, Cameron M; Michael, Michael Z; Watson, David I; Tan, Grace; Astill, David St J; Hummel, Richard; Hussey, Damian J

    2013-01-08

    Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett's oesophagus. Barrett's oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett's oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett's oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These mi

  6. MicroRNA Expression in Laser Micro-dissected Breast Cancer Tissue Samples - a Pilot Study.

    PubMed

    Seclaman, Edward; Narita, Diana; Anghel, Andrei; Cireap, Natalia; Ilina, Razvan; Sirbu, Ioan Ovidiu; Marian, Catalin

    2017-10-28

    Breast cancer continues to represent a significant public health burden despite outstanding research advances regarding the molecular mechanisms of cancer biology, biomarkers for diagnostics and prognostic and therapeutic management of this disease. The studies of micro RNAs in breast cancer have underlined their potential as biomarkers and therapeutic targets; however most of these studies are still done on largely heterogeneous whole breast tissue samples. In this pilot study we have investigated the expression of four micro RNAs (miR-21, 145, 155, 92) known to be involved in breast cancer, in homogenous cell populations collected by laser capture microdissection from breast tissue section slides. Micro RNA expression was assessed by real time PCR, and associations with clinical and pathological characteristics were also explored. Our results have confirmed previous associations of miR-21 expression with poor prognosis characteristics of breast cancers such as high stage, large and highly proliferative tumors. No statistically significant associations were found with the other micro RNAs investigated, possibly due to the small sample size of our study. Our results also suggest that miR-484 could be a suitable endogenous control for data normalization in breast tissues, these results needing further confirmation by future studies. In summary, our pilot study showed the feasibility of detecting micro RNAs expression in homogenous laser captured microdissected invasive breast cancer samples, and confirmed some of the previously reported associations with poor prognostic characteristics of breast tumors.

  7. Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a

    PubMed Central

    Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.

    2009-01-01

    MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148

  8. Computational study of ‘HUB’ microRNA in human cardiac diseases

    PubMed Central

    Krishnan, Remya; Nair, Achuthsankar S.; Dhar, Pawan K.

    2017-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs ~22 nucleotides long that do not encode for proteins but have been reported to influence gene expression in normal and abnormal health conditions. Though a large body of scientific literature on miRNAs exists, their network level profile linking molecules with their corresponding phenotypes, is less explored. Here, we studied a network of 191 human miRNAs reported to play a role in 30 human cardiac diseases. Our aim was to study miRNA network properties like hubness and preferred associations, using data mining, network graph theory and statistical analysis. A total of 16 miRNAs were found to have a disease node connectivity of >5 edges (i.e., they were linked to more than 5 diseases) and were considered hubs in the miRNAcardiac disease network. Alternatively, when diseases were considered as hubs, >10 of miRNAs showed up on each ‘disease hub node’. Of all the miRNAs associated with diseases, 19 miRNAs (19/24= 79.1% of upregulated events) were found to be upregulated in atherosclerosis. The data suggest micro RNAs as early stage biological markers in cardiac conditions with potential towards microRNA based therapeutics. PMID:28479745

  9. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport.

    PubMed

    Liu, Xiaoning; Edinger, Robert S; Klemens, Christine A; Phua, Yu L; Bodnar, Andrew J; LaFramboise, William A; Ho, Jacqueline; Butterworth, Michael B

    2017-06-01

    The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na + ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na + regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na + transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na + transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na + transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Integrated microRNA and mRNA signatures in peripheral blood lymphocytes of familial epithelial ovarian cancer.

    PubMed

    Dou, Yun-De; Huang, Tao; Wang, Qun; Shu, Xin; Zhao, Shi-Gang; Li, Lei; Liu, Tao; Lu, Gang; Chan, Wai-Yee; Liu, Hong-Bin

    2018-01-29

    Characterization of the genetic landscapes of familial ovarian cancer through integrated analysis of microRNA and mRNA by partial least squares (PLS) and Monte Carlo technique based on genome-wide association studies (GWAS). The miRNA and mRNA transcriptional data in familial ovarian cancer were characterized from the Gene Expression Omnibus (GEO) database. The miRNA and mRNA expression profiles in peripheral blood lymphocytes (PBLs) of 74 familial ovarian cancer patients and 47 control subjects were analyzed with the integration of partial least squares (PLS) and Monte Carlo techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. Total of 16 miRNA-mRNA pairs were identified with the target gene prediction results of miRNAs and mRNAs. An innovated miRNA-mRNA integrated network was constructed in which 6 downregulated miRNAs and 1 upregulated miRNAs were included. KEGG and GO pathway enrichment analysis revealed over-representation of dysregulated miRNAs in various biological processes especially in cancer pathology. Hsa-miR-34b played a pivotal role in this network and interacted with other miRNAs. Hsa-miR-136 and hsa-miR-335 were associated with p53 and Erk1/2 pathways and tumor suppressors, such as PTEN. The results from this research provide insights on miRNA-mRNA networks and offer new tools for studying transcriptional variants in familial ovarian cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40

    PubMed Central

    McNees, Adrienne L.; Harrigal, Lindsay J.; Kelly, Aoife; Minard, Charles G.; Wong, Connie

    2018-01-01

    Background Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40–human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. Results SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. Conclusion These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. Significance Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human

  12. mirPub: a database for searching microRNA publications.

    PubMed

    Vergoulis, Thanasis; Kanellos, Ilias; Kostoulas, Nikos; Georgakilas, Georgios; Sellis, Timos; Hatzigeorgiou, Artemis; Dalamagas, Theodore

    2015-05-01

    Identifying, amongst millions of publications available in MEDLINE, those that are relevant to specific microRNAs (miRNAs) of interest based on keyword search faces major obstacles. References to miRNA names in the literature often deviate from standard nomenclature for various reasons, since even the official nomenclature evolves. For instance, a single miRNA name may identify two completely different molecules or two different names may refer to the same molecule. mirPub is a database with a powerful and intuitive interface, which facilitates searching for miRNA literature, addressing the aforementioned issues. To provide effective search services, mirPub applies text mining techniques on MEDLINE, integrates data from several curated databases and exploits data from its user community following a crowdsourcing approach. Other key features include an interactive visualization service that illustrates intuitively the evolution of miRNA data, tag clouds summarizing the relevance of publications to particular diseases, cell types or tissues and access to TarBase 6.0 data to oversee genes related to miRNA publications. mirPub is freely available at http://www.microrna.gr/mirpub/. vergoulis@imis.athena-innovation.gr or dalamag@imis.athena-innovation.gr Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  13. A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis.

    PubMed

    Bagnato, Gianluca; Roberts, William Neal; Roman, Jesse; Gangemi, Sebastiano

    2017-06-30

    Lung fibrosis can be observed in systemic sclerosis and in idiopathic pulmonary fibrosis, two disorders where lung involvement carries a poor prognosis. Although much has been learned about the pathogenesis of these conditions, interventions capable of reversing or, at the very least, halting disease progression are not available. Recent studies point to the potential role of micro messenger RNAs (microRNAs) in cancer and tissue fibrogenesis. MicroRNAs are short non-coding RNA sequences (20-23 nucleotides) that are endogenous, evolutionarily conserved and encoded in the genome. By acting on several genes, microRNAs control protein expression. Considering the above, we engaged in a systematic review of the literature in search of overlapping observations implicating microRNAs in the pathogenesis of both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). Our objective was to uncover top microRNA candidates for further investigation based on their mechanisms of action and their potential for serving as targets for intervention against lung fibrosis. Our review points to microRNAs of the -29 family, -21-5p and -92a-3p, -26a-5p and let-7d-5p as having distinct and counter-balancing actions related to lung fibrosis. Based on this, we speculate that readjusting the disrupted balance between these microRNAs in lung fibrosis related to SSc and IPF may have therapeutic potential. Copyright ©ERS 2017.

  14. Clinical translation of human microRNA 21 as a potential biomarker for exposure to ionizing radiation.

    PubMed

    Halimi, Mohammad; Parsian, Hadi; Asghari, S Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Yeganeh, Farshid; Zabihi, Ebrahim

    2014-06-01

    This study investigated to what extent the serum microRNA 21 (miR-21) level alters in response to ionizing radiation (IR). Initially, we evaluated the appropriateness of our RNA extraction efficiency and microRNA assay in serum, and then investigated the serum miR-21 level in 4 patients with breast cancer in 4 stages: pre- and postoperation, at the beginning radiotherapy, and after 25 sessions of radiotherapy with a total of 50 Gy irradiation, as well as in 20 healthy volunteers. The initial analysis showed the appropriateness of our RNA extraction efficiency and microRNA assay in serum for identifying people exposed to IR. We then analyzed the serum miR-21 level in another group of 40 patients with breast cancer before and after radiotherapy. During our large-scale analysis, the miR-21 level before radiotherapy was comparable with healthy volunteers (P = 0.10) and increased significantly after radiotherapy (P < 0.001)-an indication that this could discriminate irradiated patients from nonirradiated ones with high specificity (75%) and sensitivity (80%). According to this study, serum miR-21 has the potential to be used as a biomarker for the identification of people exposed to ionizing radiation. Copyright © 2014 Mosby, Inc. All rights reserved.

  15. Micro-RNA-208a, -208b, and -499 as Biomarkers for Myocardial Damage After Cardiac Surgery in Children.

    PubMed

    Bolkier, Yoav; Nevo-Caspi, Yael; Salem, Yishay; Vardi, Amir; Mishali, David; Paret, Gideon

    2016-04-01

    To test the hypothesis that cardiac-enriched micro-RNAs can serve as accurate biomarkers that reflect myocardial injury and to predict the postoperative course following pediatric cardiac surgery. Micro-RNAs have emerged as plasma biomarkers for many pathologic states. We aimed to quantify preoperative and postoperative plasma levels of cardiac-enriched micro-RNA-208a, -208b, and -499 in children undergoing cardiac surgery and to evaluate correlations between their levels, the extent of myocardial damage, and the postoperative clinical course. PICU. Thirty pediatric patients that underwent open heart surgery for the correction of congenital heart defects between January 2012 to July 2013. None. At 12 hours post surgery, the plasma levels of the micro-RNAs increased by 300- to 4,000-fold. At 24 hours, their levels decreased but remained significantly higher than before surgery. Micro-RNA levels were associated with troponin levels, longer cardiopulmonary bypass and aortic crossclamp times, maximal postoperative aspartate aminotransferase levels, and delayed hospital discharge. Circulating micro-RNA-208a, -208b, and -499 are detectable in the plasma of children undergoing cardiac surgery and may serve as novel biomarkers for monitoring and forecasting postoperative myocardial injury and recovery.

  16. Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction.

    PubMed

    Wang, Minghui; Zhou, Yunlei; Yin, Huanshun; Jiang, Wenjing; Wang, Haiyan; Ai, Shiyun

    2018-06-01

    MicroRNAs play crucial role in regulating gene expression in organism, thus it is very necessary to exploit an efficient method for the sensitive and specific detection of microRNA. Herein, a signal-on electrochemiluminescence biosensor was fabricated for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction (ISDPR). In the presence of target microRNA, amounts of trigger DNA could be generated by the first ISDPR. Then, the trigger DNA and the primer hybridized simultaneously with the hairpin probe to open the stem of the probe, and then the ECL signal will be emitted. In the presence of phi29 DNA polymerase and dNTPs, the trigger DNA could be displaced to initiate a new cycle which was the second ISDPR. Due to the two-stage amplification, this method presented excellent detection sensitivity with a low detection limit of 0.14 fM. Moreover, the applicability of the developed method was demonstrated by detecting the change of microRNA-319a content in the leaves of rice seedlings after the rice seeds were incubated with chemical mutagen of ethyl methanesulfonate. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  18. A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue

    PubMed Central

    Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina

    2013-01-01

    We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235

  19. MicroRNA156: A Potential Graft-Transmissible MicroRNA That Modulates Plant Architecture and Tuberization in Solanum tuberosum ssp. andigena1[C][W][OPEN

    PubMed Central

    Bhogale, Sneha; Mahajan, Ameya S.; Natarajan, Bhavani; Rajabhoj, Mohit; Thulasiram, Hirekodathakallu V.; Banerjee, Anjan K.

    2014-01-01

    MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development. PMID:24351688

  20. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    PubMed Central

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D.; Bentzinger, C. Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van IJcken, Wilfred; Grosveld, Frank; Dekemp, Robert A.; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A.

    2013-01-01

    SUMMARY Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. PMID:23395168

  1. The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation.

    PubMed

    Rao, E; Jiang, C; Ji, M; Huang, X; Iqbal, J; Lenz, G; Wright, G; Staudt, L M; Zhao, Y; McKeithan, T W; Chan, W C; Fu, K

    2012-05-01

    The median survival of patients with mantle cell lymphoma (MCL) ranges from 3 to 5 years with current chemotherapeutic regimens. A common secondary genomic alteration detected in MCL is chromosome 13q31-q32 gain/amplification, which targets a microRNA (miRNA) cluster, miR-17∼92. On the basis of gene expression profiling, we found that high level expression of C13orf25, the primary transcript from which these miRNAs are processed, was associated with poorer survival in patients with MCL (P=0.021). We demonstrated that the protein phosphatase PHLPP2, an important negative regulator of the PI3K/AKT pathway, was a direct target of miR-17∼92 miRNAs, in addition to PTEN and BIM. These proteins were down-modulated in MCL cells with overexpression of the miR-17∼92 cluster. Overexpression of miR-17∼92 activated the PI3K/AKT pathway and inhibited chemotherapy-induced apoptosis in MCL cell lines. Conversely, inhibition of miR-17∼92 expression suppressed the PI3K/AKT pathway and inhibited tumor growth in a xenograft MCL mouse model. Targeting the miR-17∼92 cluster may therefore provide a novel therapeutic approach for patients with MCL.

  2. MicroRNA Predictors of Longevity in Caenorhabditis elegans

    PubMed Central

    Pincus, Zachary; Smith-Vikos, Thalyana; Slack, Frank J.

    2011-01-01

    Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan. PMID:21980307

  3. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity

    NASA Astrophysics Data System (ADS)

    Trobaugh, Derek W.; Gardner, Christina L.; Sun, Chengqun; Haddow, Andrew D.; Wang, Eryu; Chapnik, Elik; Mildner, Alexander; Weaver, Scott C.; Ryman, Kate D.; Klimstra, William B.

    2014-02-01

    Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.

  4. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.

    PubMed

    Askou, Anne Louise; Alsing, Sidsel; Holmgaard, Andreas; Bek, Toke; Corydon, Thomas J

    2018-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  6. MicroRNA profiling of human kidney cancer subtypes.

    PubMed

    Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean

    2009-07-01

    Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.

  7. MicroRNA Regulators of Anxiety and Metabolic Disorders.

    PubMed

    Meydan, Chanan; Shenhar-Tsarfaty, Shani; Soreq, Hermona

    2016-09-01

    Anxiety-related and metabolic disorders are under intense research focus. Anxiety-induced microRNAs (miRNAs) are emerging as regulators that are not only capable of suppressing inflammation but can also induce metabolic syndrome-related processes. We summarize here evidence linking miRNA pathways which share regulatory networks in metabolic and anxiety-related conditions. In particular, miRNAs involved in these disorders include regulators of acetylcholine signaling in the nervous system and their accompanying molecular machinery. These have been associated with anxiety-prone states in individuals, while also acting as inflammatory suppressors. In peripheral tissues, altered miRNA pathways can lead to dysregulated metabolism. Common pathways in metabolic and anxiety-related phenomena might offer an opportunity to reclassify 'healthy' and 'unhealthy', as well as metabolic and anxiety-prone biological states, and inform putative strategies to treat these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  9. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.—Izzotti, A., Calin, G. A., Vernon E. St., Croce, G. M., De Flora, S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. PMID:19465468

  10. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

    PubMed Central

    Butardo, Vito M.; Fitzgerald, Melissa A.; Bird, Anthony R.; Gidley, Michael J.; Flanagan, Bernadine M.; Larroque, Oscar; Resurreccion, Adoracion P.; Laidlaw, Hunter K. C.; Jobling, Stephen A.; Morell, Matthew K.; Rahman, Sadequr

    2011-01-01

    The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed. PMID:21791436

  11. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs

    PubMed Central

    Jima, Dereje D.; Zhang, Jenny; Jacobs, Cassandra; Richards, Kristy L.; Dunphy, Cherie H.; Choi, William W. L.; Yan Au, Wing; Srivastava, Gopesh; Czader, Magdalena B.; Rizzieri, David A.; Lagoo, Anand S.; Lugar, Patricia L.; Mann, Karen P.; Flowers, Christopher R.; Bernal-Mizrachi, Leon; Naresh, Kikkeri N.; Evens, Andrew M.; Gordon, Leo I.; Luftig, Micah; Friedman, Daphne R.; Weinberg, J. Brice; Thompson, Michael A.; Gill, Javed I.; Liu, Qingquan; How, Tam; Grubor, Vladimir; Gao, Yuan; Patel, Amee; Wu, Han; Zhu, Jun; Blobe, Gerard C.; Lipsky, Peter E.; Chadburn, Amy

    2010-01-01

    A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-β pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions. PMID:20733160

  12. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    PubMed

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  13. Detection of human microRNAs across miRNA Array and Next Generation DNA Sequencing Platforms

    EPA Science Inventory

    microRNA (miRNAs) are non-coding RNA molecules between 19 and 30 nucleotides in length that are believed to regulate approximately 30 per cent of all human genes. They act as negative regulators of their gene targets in many biological processes. Recent developments in microar...

  14. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    PubMed

    Molina-Pinelo, Sonia; Gutiérrez, Gabriel; Pastor, Maria Dolores; Hergueta, Marta; Moreno-Bueno, Gema; García-Carbonero, Rocío; Nogal, Ana; Suárez, Rocío; Salinas, Ana; Pozo-Rodríguez, Francisco; Lopez-Rios, Fernando; Agulló-Ortuño, Maria Teresa; Ferrer, Irene; Perpiñá, Asunción; Palacios, José; Carnero, Amancio; Paz-Ares, Luis

    2014-01-01

    Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  15. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa

    PubMed Central

    Morin, Ryan D.; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H. Alexander; Magrini, Vincent; Mardis, Elaine R.; Sahinalp, S. Cenk; Unrau, Peter J.

    2008-01-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21- and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/. PMID:18323537

  16. Coronary Heart Disease Alters Intercellular Communication by Modifying Microparticle-Mediated MicroRNA Transport

    PubMed Central

    Finn, Nnenna A.; Eapen, Danny; Manocha, Pankaj; Kassem, Hatem Al; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D.

    2013-01-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. PMID:24042051

  17. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport.

    PubMed

    Finn, Nnenna A; Eapen, Danny; Manocha, Pankaj; Al Kassem, Hatem; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D

    2013-11-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. Published by Elsevier B.V.

  18. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?

    PubMed

    Conde, João; Edelman, Elazer R; Artzi, Natalie

    2015-01-01

    microRNAs (miRNAs) show high potential for cancer treatment, however one of the most significant bottlenecks in enabling miRNA effect is the need for an efficient vehicle capable of selective targeting to tumor cells without disrupting normal cells. Even more challenging is the ability to detect and silence multiple targets simultaneously with high sensitivity while precluding resistance to the therapeutic agents. Focusing on the pervasive role of miRNAs, herein we review the multiple nanomaterial-based systems that encapsulate DNA/RNA for miRNA sensing and inhibition in cancer therapy. Understanding the potential of miRNA detection and silencing while overcoming existing limitations will be critical to the optimization and clinical utilization of this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. MicroRNA and extracellular vesicles in glioblastoma – Small but powerful

    PubMed Central

    Rooj, Arun K.; Mineo, Marco; Godlewski, Jakub

    2016-01-01

    To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma multiforme (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intracellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM. PMID:26968172

  20. Biology of childhood germ cell tumours, focussing on the significance of microRNAs.

    PubMed

    Murray, M J; Nicholson, J C; Coleman, N

    2015-01-01

    Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at