Science.gov

Sample records for micro rna cluster

  1. Correlations of microRNA:microRNA expression patterns reveal insights into microRNA clusters and global microRNA expression patterns.

    PubMed

    Chaulk, S G; Ebhardt, H A; Fahlman, R P

    2016-01-01

    MicroiRNAs are genome encoded small double stranded RNAs that regulate expression of homologous mRNAs. With approximately 2500 human miRNAs and each having hundreds of potential mRNA targets, miRNA based gene regulation is quite pervasive in both development and disease. While there are numerous studies investigating miRNA:mRNA and miRNA:protein target expression correlations, there are relatively few studies of miRNA:miRNA co-expression. Here we report on our analysis of miRNA:miRNA co-expression using expression data from the miRNA expression atlas of Landgraf et al. Our analysis indicates that many, but not all, genomically clustered miRNAs are co-expressed as a single pri-miRNA transcript. We have also identified co-expression groups that have similar biological activity. Further, the non-correlative miRNAs we have uncovered have been shown to be of utility in establishing miRNA biomarkers and signatures for certain tumours and cancers.

  2. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression

    PubMed Central

    2011-01-01

    Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. PMID:22027184

  3. Importance of the RNA secondary structure for the relative accumulation of clustered viral microRNAs

    PubMed Central

    Contrant, Maud; Fender, Aurélie; Chane-Woon-Ming, Béatrice; Randrianjafy, Ramy; Vivet-Boudou, Valérie; Richer, Delphine; Pfeffer, Sébastien

    2014-01-01

    Micro (mi)RNAs are small non-coding RNAs with key regulatory functions. Recent advances in the field allowed researchers to identify their targets. However, much less is known regarding the regulation of miRNAs themselves. The accumulation of these tiny regulators can be modulated at various levels during their biogenesis from the transcription of the primary transcript (pri-miRNA) to the stability of the mature miRNA. Here, we studied the importance of the pri-miRNA secondary structure for the regulation of mature miRNA accumulation. To this end, we used the Kaposi's sarcoma herpesvirus, which encodes a cluster of 12 pre-miRNAs. Using small RNA profiling and quantitative northern blot analysis, we measured the absolute amount of each mature miRNAs in different cellular context. We found that the difference in expression between the least and most expressed viral miRNAs could be as high as 60-fold. Using high-throughput selective 2′-hydroxyl acylation analyzed by primer extension, we then determined the secondary structure of the long primary transcript. We found that highly expressed miRNAs derived from optimally structured regions within the pri-miRNA. Finally, we confirmed the importance of the local structure by swapping stem-loops or by targeted mutagenesis of selected miRNAs, which resulted in a perturbed accumulation of the mature miRNA. PMID:24831544

  4. Haploinsufficiency of the miR-873/miR-876 microRNA cluster is associated with craniofacial abnormalities.

    PubMed

    Koufaris, Costas; Papagregoriou, Gregoris; Kousoulidou, Ludmila; Moutafi, Maria; Tauber, Maithé; Jouret, Béatrice; Kieffer, Isabelle; Deltas, Constantinos; Tanteles, George A; Anastasiadou, Violetta; Patsalis, Philippos C; Sismani, Carolina

    2015-04-25

    MicroRNA haploinsufficiency has been associated with developmental defects in only a limited number of cases. Here we report a de novo genomic microdeletion that includes the LINGO2 gene as well as two microRNA genes, MIR873 and MIR876, in a patient with craniofacial abnormalities - in particular macrocephaly and hypertelorism - and learning difficulties. Subsequent analysis revealed that the microRNAs affected by this de novo microdeletion form a mammalian-lineage, neuronal tissue-enriched cluster. In addition, bioinformatic analysis and experimental data indicate that miR-873 is involved in the regulation of the Hedgehog signaling, an essential pathway involved in craniofacial patterning and differentiation. Collectively these observations are consistent with a role of the miR-873/miR-876 microRNA cluster in physiological cranial bone development and indicate that mutations affecting these microRNAs could be a rare cause of developmental defect in humans. PMID:25680557

  5. The microRNA-183 cluster: the family that plays together stays together

    PubMed Central

    Dambal, Shweta; Shah, Mit; Mihelich, Brittany; Nonn, Larisa

    2015-01-01

    The microRNA (miR)183 cluster, which is comprised of miRs-183, -96 and -182, is also a miR family with sequence homology. Despite the strong similarity in the sequences of these miRs, minute differences in their seed sequences result in both overlapping and distinct messenger RNA targets, which are often within the same pathway. These miRs have tightly synchronized expression during development and are required for maturation of sensory organs. In comparison to their defined role in normal development, the miR-183 family is frequently highly expressed in a variety of non-sensory diseases, including cancer, neurological and auto-immune disorders. Here, we discuss the conservation of the miR-183 cluster and the functional role of this miR family in normal development and diseases. We also describe the regulation of vital cellular pathways by coordinated expression of these miR siblings. This comprehensive review sheds light on the likely reasons why the genomic organization and seeming redundancy of the miR-183 family cluster was conserved through 600 million years of evolution. PMID:26170234

  6. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S.; Theis, Fabian J.

    2015-01-01

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method “miRlastic”, which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of mi

  7. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings. PMID:22809308

  8. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  9. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation

    PubMed Central

    Haar, Janina; Contrant, Maud; Bernhardt, Katharina; Feederle, Regina; Diederichs, Sven; Pfeffer, Sébastien; Delecluse, Henri-Jacques

    2016-01-01

    The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1–3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1–3 displays an unusually low propensity to form a stem–loop structure, an effect potentiated by miR-BHRF1–3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1–2 or a cellular microRNA, but not a ribozyme, 5′ of miR-BHRF1–3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1–2 seed regions expressed miR-BHRF1–3 at normal levels and was fully transforming. Therefore, miR-BHRF1–2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1–2 and miR-BHRF1–3 in EBV enhanced miR-BHRF1–3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1–3 under the control of miR-BHRF1–2. PMID:26635399

  10. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition.

    PubMed

    Liao, Baojian; Bao, Xichen; Liu, Longqi; Feng, Shipeng; Zovoilis, Athanasios; Liu, Wenbo; Xue, Yanting; Cai, Jie; Guo, Xiangpeng; Qin, Baoming; Zhang, Ruosi; Wu, Jiayan; Lai, Liangxue; Teng, Maikun; Niu, Liwen; Zhang, Biliang; Esteban, Miguel A; Pei, Duanqing

    2011-05-13

    MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a-363 and in particular 302-367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302-367 targeted TGFβ receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype. PMID:21454525

  11. The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia.

    PubMed

    Li, Jing; Chen, Liping; Tang, Qiuqin; Wu, Wei; Gu, Hao; Liu, Lou; Wu, Jie; Jiang, Hua; Ding, Hongjuan; Xia, Yankai; Chen, Daozhen; Hu, Yali; Wang, Xinru

    2015-01-01

    Macrosomia is one of the most common perinatal complications of pregnancy and has life-long health implications for the infant. microRNAs (miRNAs) have been identified to regulate placental development, yet the role of miRNAs in macrosomia remains poorly understood. Here we investigated the role of miR-17-92 cluster in macrosomia. The expression levels of five miRNAs in miR-17-92 cluster were significantly elevated in placentas of macrosomia, which may due to the up-regulation of miRNA-processing enzyme Drosha and Dicer. Cell cycle pathway was identified to be the most relevant pathways regulated by miR-17-92 cluster miRNAs. Importantly, miR-17-92 cluster increased proliferation, attenuated cell apoptosis and accelerated cells entering S phase by targeting SMAD4 and RB1 in HTR8/SVneo cells. Furthermore, we found that expression of miR-17-92 cluster in serum had a high diagnostic sensitivity and specificity for macrosomia (AUC: 80.53%; sensitivity: 82.61%; specificity: 69.57%). Our results suggested that miR-17-92 cluster contribute to macrosomia development by targeting regulators of cell cycle pathway. Our findings not only provide a novel insight into the molecular mechanisms of macrosomia, but also the clinical value of miR-17-92 cluster as a predictive biomarker for macrosomia. PMID:26598317

  12. An X chromosome microRNA cluster in the marsupial species Monodelphis domestica.

    PubMed

    Devor, Eric J; Huang, Lingyan; Wise, Amanda; Peek, Andrew S; Samollow, Paul B

    2011-01-01

    MicroRNAs (miRNAs) are an important class of posttranscriptional gene expression regulators. In the course of mapping novel marsupial-specific miRNAs in the genome of the gray short-tailed opossum, Monodelphis domestica, we encountered a cluster of 39 actual and potential miRNAs spanning 102 kb of the X chromosome. Analysis of the cluster revealed that 37 of the 39 miRNAs are predicted to form thermodynamically stable hairpins, and at least 3 members have been directly cloned from M. domestica tissues. The sequence characteristics of these miRNAs suggest that they all descended from a single common ancestor. Further, 2 distinct families appear to have diversified from the ancestral sequence through different duplication mechanisms: one through a series of simple tandem duplications and the other through a recurrent transposon-mediated duplication process.

  13. MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17∼92 microRNA cluster

    PubMed Central

    Chaulk, Steven G.; Xu, Zhizhong; Glover, Mark J. N.; Fahlman, Richard P.

    2014-01-01

    While functional mature microRNAs (miRNAs) are small ∼22 base oligonucleotides that target specific mRNAs, miRNAs are initially expressed as long transcripts (pri-miRNAs) that undergo sequential processing to yield the mature miRNAs. We have previously reported that the pri-miR-17∼92 cluster adopts a compact globular folded structure that internalizes a 3′ core domain resulting in reduced miRNA maturation and subsequent mRNA targeting. Using a site-specific photo-cross-linker we have identified a tertiary contact within the 3′ core domain of the pri-miRNA between a non-miRNA stem-loop and the pre-miR-19b hairpin. This tertiary contact is involved in the formation of the compact globular fold of the cluster while its disruption enhances miR-92a expression and mRNA targeting. We propose that this tertiary contact serves as a molecular scaffold to restrict expression of the proposed antiangiogenic miR-92a, allowing for the overall pro-angiogenic effect of miR-17∼92 expression. PMID:24520115

  14. MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17~92 microRNA cluster.

    PubMed

    Chaulk, Steven G; Xu, Zhizhong; Glover, Mark J N; Fahlman, Richard P

    2014-04-01

    While functional mature microRNAs (miRNAs) are small ∼22 base oligonucleotides that target specific mRNAs, miRNAs are initially expressed as long transcripts (pri-miRNAs) that undergo sequential processing to yield the mature miRNAs. We have previously reported that the pri-miR-17∼92 cluster adopts a compact globular folded structure that internalizes a 3' core domain resulting in reduced miRNA maturation and subsequent mRNA targeting. Using a site-specific photo-cross-linker we have identified a tertiary contact within the 3' core domain of the pri-miRNA between a non-miRNA stem-loop and the pre-miR-19b hairpin. This tertiary contact is involved in the formation of the compact globular fold of the cluster while its disruption enhances miR-92a expression and mRNA targeting. We propose that this tertiary contact serves as a molecular scaffold to restrict expression of the proposed antiangiogenic miR-92a, allowing for the overall pro-angiogenic effect of miR-17∼92 expression.

  15. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution.

    PubMed

    Mohammed, Jaaved; Flynt, Alex S; Siepel, Adam; Lai, Eric C

    2013-09-01

    The molecular evolutionary signatures of miRNAs inform our understanding of their emergence, biogenesis, and function. The known signatures of miRNA evolution have derived mostly from the analysis of deeply conserved, canonical loci. In this study, we examine the impact of age, biogenesis pathway, and genomic arrangement on the evolutionary properties of Drosophila miRNAs. Crucial to the accuracy of our results was our curation of high-quality miRNA alignments, which included nearly 150 corrections to ortholog calls and nucleotide sequences of the global 12-way Drosophilid alignments currently available. Using these data, we studied primary sequence conservation, normalized free-energy values, and types of structure-preserving substitutions. We expand upon common miRNA evolutionary patterns that reflect fundamental features of miRNAs that are under functional selection. We observe that melanogaster-subgroup-specific miRNAs, although recently emerged and rapidly evolving, nonetheless exhibit evolutionary signatures that are similar to well-conserved miRNAs and distinct from other structured noncoding RNAs and bulk conserved non-miRNA hairpins. This provides evidence that even young miRNAs may be selected for regulatory activities. More strikingly, we observe that mirtrons and clustered miRNAs both exhibit distinct evolutionary properties relative to solo, well-conserved miRNAs, even after controlling for sequence depth. These studies highlight the previously unappreciated impact of biogenesis strategy and genomic location on the evolutionary dynamics of miRNAs, and affirm that miRNAs do not evolve as a unitary class.

  16. The miR-17∼92 microRNA Cluster Is a Global Regulator of Tumor Metabolism.

    PubMed

    Izreig, Said; Samborska, Bozena; Johnson, Radia M; Sergushichev, Alexey; Ma, Eric H; Lussier, Carine; Loginicheva, Ekaterina; Donayo, Ariel O; Poffenberger, Maya C; Sagan, Selena M; Vincent, Emma E; Artyomov, Maxim N; Duchaine, Thomas F; Jones, Russell G

    2016-08-16

    A central hallmark of cancer cells is the reprogramming of cellular metabolism to meet the bioenergetic and biosynthetic demands of malignant growth. Here, we report that the miR-17∼92 microRNA (miRNA) cluster is an oncogenic driver of tumor metabolic reprogramming. Loss of miR-17∼92 in Myc(+) tumor cells leads to a global decrease in tumor cell metabolism, affecting both glycolytic and mitochondrial metabolism, whereas increased miR-17∼92 expression is sufficient to drive increased nutrient usage by tumor cells. We mapped the metabolic control element of miR-17∼92 to the miR-17 seed family, which influences cellular metabolism and mammalian target of rapamycin complex 1 (mTORC1) signaling through negative regulation of the LKB1 tumor suppressor. miR-17-dependent tuning of LKB1 levels regulates both the metabolic potential of Myc(+) lymphomas and tumor growth in vivo. Our results establish metabolic reprogramming as a central function of the oncogenic miR-17∼92 miRNA cluster that drives the progression of MYC-dependent tumors. PMID:27498867

  17. WEE1 is a validated target of the microRNA miR-17-92 cluster in leukemia

    PubMed Central

    Brockway, Sonia; Zeleznik-Le, Nancy J.

    2015-01-01

    MicroRNAs are short single-stranded RNAs that regulate target gene expression by binding to complementary sites in the 3’ untranslated region of their mRNA targets. The polycistronic miR-17-92 cluster, which encodes miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a, was previously shown to be overexpressed in multiple types of cancer. In the present study, target gene prediction algorithms were used to predict potential targets of the miR-17-92 cluster. WEE1, a kinase that inhibits cell cycle progression, was identified as a possible target of five of the six miRNAs of the cluster. Luciferase reporter assays were used to determine that miR-17, miR-20a, and miR-18a specifically target nucleotides 465 to 487 of the 3’ UTR of WEE1, while miR-19a and miR-19b exert control on WEE1 by targeting nucleotides 1069 to 1091. A negative correlation was determined between endogenous miR-17 or miR-19a expression and endogenous WEE1 protein expression in the same panel of cell lines. We conclude that WEE1 is a valid target of the miR-17-92 cluster in leukemia. PMID:25732734

  18. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes.

    PubMed

    Pfister, Stefan; Remke, Marc; Castoldi, Mirco; Bai, Alfa H C; Muckenthaler, Martina U; Kulozik, Andreas; von Deimling, Andreas; Pscherer, Armin; Lichter, Peter; Korshunov, Andrey

    2009-04-01

    Embryonal tumors with abundant neuropil and true rosettes (ETANTR) comprise a rare variant of embryonal brain tumors usually occurring in infants. Only 13 cases have been reported in the literature to date and little is known about the molecular pathogenesis of these tumors. Here, we describe a case of ETANTR in a 2-year-old girl presenting with a large tumor in the vermis of the cerebellum. Histological examination showed clusters of small-undifferentiated cells including ependymoblastic-like rosettes admixed with large fibrillar and paucicellular neuropil-like areas indicative for ETANTR. Genomic imbalances were detected by using array-based comparative genomic hybridization. In addition to trisomy of chromosome 2, which has been previously described in ETANTR, array-CGH revealed high-level genomic amplification of 0.89 Mb at chromosome band 19q13.42 covering a microRNA cluster and several protein-coding genes. This aberration has not been described in any other brain tumor to date, indicating a specific aberration in ETANTR. MicroRNAs contained in the microRNA cluster at 19q13.42 including oncomirs miRNA-372 and miRNA-373 were highly up-regulated in the tumor when compared to normal cerebellum or whole brain. In summary, this is the first report on a potentially specific genetic aberration in ETANTR, supporting the hypothesis of a distinct tumor entity.

  19. The tumor-suppressive microRNA-23b/27b cluster regulates the MET oncogene in oral squamous cell carcinoma.

    PubMed

    Fukumoto, Ichiro; Koshizuka, Keiichi; Hanazawa, Toyoyuki; Kikkawa, Naoko; Matsushita, Ryosuke; Kurozumi, Akira; Kato, Mayuko; Okato, Atsushi; Okamoto, Yoshitaka; Seki, Naohiko

    2016-09-01

    Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that two clustered miRNAs, microRNA-23b (miR-23b) and microRNA-27b (miR‑27b), were significantly reduced in cancer tissues. Few reports have provided functional analyses of these clustered miRNAs in oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the functional significance of miR-23b and miR-27b in OSCC and to identify novel miR-23b/27b-mediated cancer pathways and target genes involved in OSCC oncogenesis and metastasis. Expression levels of miR-23b and miR-27b were significantly reduced in OSCC specimens. Restoration of miR-23b or miR-27b in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analyses and luciferase reporter assays showed that the receptor tyrosine kinase MET, was directly regulated by these miRNAs. Moreover, downregulating the MET gene by use of siRNA significantly inhibited cell migration and invasion by OSCC cells. The identification of novel molecular pathways regulated by miR-23b and miR-27b may lead to a better understanding of the oncogenesis and metastasis of this disease. PMID:27573718

  20. microRNA Therapeutics

    PubMed Central

    Broderick, JA; Zamore, PD

    2011-01-01

    MicroRNAs (miRNAs) provide new therapeutic targets for many diseases, while their myriad roles in development and cellular processes make them fascinating to study. We still do not fully understand the molecular mechanisms by which miRNAs regulate gene expression nor do we know the complete repertoire of mRNAs each miRNA regulates. However, recent progress in the development of effective strategies to block miRNAs suggests that anti-miRNA drugs may soon be used in the clinic. PMID:21525952

  1. Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.

    PubMed

    Xia, Rui; Ye, Songqing; Liu, Zongrang; Meyers, Blake C; Liu, Zhongchi

    2015-09-01

    The wild strawberry (Fragaria vesca) has recently emerged as an excellent model for cultivated strawberry (Fragaria × ananassa) as well as other Rosaceae fruit crops due to its short seed-to-fruit cycle, diploidy, and sequenced genome. Deep sequencing and parallel analysis of RNA ends were used to identify F. vesca microRNAs (miRNAs) and their target genes, respectively. Thirty-eight novel and 31 known miRNAs were identified. Many known miRNAs targeted not only conserved mRNA targets but also developed new target genes in F. vesca. Significantly, two new clusters of miRNAs were found to collectively target 94 F-BOX (FBX) genes. One of the miRNAs in the new cluster is 22 nucleotides and triggers phased small interfering RNA production from six FBX genes, which amplifies the silencing to additional FBX genes. Comparative genomics revealed that the main novel miRNA cluster evolved from duplications of FBX genes. Finally, conserved trans-acting siRNA pathways were characterized and confirmed with distinct features. Our work identified novel miRNA-FBX networks in F. vesca and shed light on the evolution of miRNAs/phased small interfering RNA networks that regulate large gene families in higher plants. PMID:26143249

  2. Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.

    PubMed

    Xia, Rui; Ye, Songqing; Liu, Zongrang; Meyers, Blake C; Liu, Zhongchi

    2015-09-01

    The wild strawberry (Fragaria vesca) has recently emerged as an excellent model for cultivated strawberry (Fragaria × ananassa) as well as other Rosaceae fruit crops due to its short seed-to-fruit cycle, diploidy, and sequenced genome. Deep sequencing and parallel analysis of RNA ends were used to identify F. vesca microRNAs (miRNAs) and their target genes, respectively. Thirty-eight novel and 31 known miRNAs were identified. Many known miRNAs targeted not only conserved mRNA targets but also developed new target genes in F. vesca. Significantly, two new clusters of miRNAs were found to collectively target 94 F-BOX (FBX) genes. One of the miRNAs in the new cluster is 22 nucleotides and triggers phased small interfering RNA production from six FBX genes, which amplifies the silencing to additional FBX genes. Comparative genomics revealed that the main novel miRNA cluster evolved from duplications of FBX genes. Finally, conserved trans-acting siRNA pathways were characterized and confirmed with distinct features. Our work identified novel miRNA-FBX networks in F. vesca and shed light on the evolution of miRNAs/phased small interfering RNA networks that regulate large gene families in higher plants.

  3. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  4. Identifying microRNA/mRNA dysregulations in ovarian cancer

    PubMed Central

    2012-01-01

    Background MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). Methods TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. Results We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory

  5. The MicroRNA 424/503 Cluster Reduces CDC25A Expression during Cell Cycle Arrest Imposed by Transforming Growth Factor β in Mammary Epithelial Cells

    PubMed Central

    Rodriguez-Barrueco, Ruth; de la Iglesia-Vicente, Janis; Olivan, Mireia; Castro, Veronica; Saucedo-Cuevas, Laura; Marshall, Netonia; Putcha, Preeti; Castillo-Martin, Mireia; Bardot, Evan; Ezhkova, Elena; Iavarone, Antonio; Cordon-Cardo, Carlos

    2014-01-01

    Recently, we demonstrated that the microRNA 424(322)/503 [miR-424(322)/503] cluster is transcriptionally controlled by transforming growth factor β (TGF-β) in the mammary epithelium. Induction of this microRNA cluster impacts mammary epithelium fate by regulating apoptosis and insulin-like growth factor 1 (IGF1) signaling. Here, we expanded our finding to demonstrate that miR-424(322)/503 is an integral component of the cell cycle arrest mediated by TGF-β. Mechanistically, we showed that after TGF-β exposure, increased levels of miR-424(322)/503 reduce the expression of the cell cycle regulator CDC25A. miR-424(322)/503-dependent posttranscriptional downregulation of CDC25A cooperates with previously described transcriptional repression of the CDC25A promoter and proteasome-mediated degradation to reduce the levels of CDC25A expression and to induce cell cycle arrest. We also provide evidence that the TGF-β/miR-424(322)/503 axis is part of the mechanism that regulates the proliferation of hormone receptor-positive (HR+) mammary epithelial cells in vivo. PMID:25266660

  6. β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway.

    PubMed

    Zhou, A-D; Diao, L-T; Xu, H; Xiao, Z-D; Li, J-H; Zhou, H; Qu, L-H

    2012-06-14

    The microRNA-371-373 (miR-371-373) cluster is specifically expressed in human embryonic stem cells (ESCs) and is thought to be involved in stem cell maintenance. Recently, microRNAs (miRNAs) of this cluster were shown to be frequently upregulated in several human tumors. However, the regulatory mechanism for the involvement of the miR-371-373 cluster in human ESCs or cancer cells remains unclear. In this study, we explored the relationship between this miRNA cluster and the Wnt/β-catenin-signaling pathway, which has been shown to be involved in both stem cell maintenance and tumorigenesis. We show that miR-371-373 expression is induced by lithium chloride and is positively correlated with Wnt/β-catenin-signaling activity in several human cancer cell lines. Mechanistically, three TCF/LEF1-binding elements (TBEs) were identified in the promoter region and shown to be required for Wnt-dependent activation of miR-371-373. Interestingly, we also found that miR-372&373, in turn, activate Wnt/β-catenin signaling. In addition, four protein genes related to the Wnt/β-catenin-signaling pathway were identified as direct targets of miR-372&373, including Dickkopf-1 (DKK1), a well-known inhibitor of Wnt/β-catenin signaling. Using a lentiviral system, we showed that overexpression of miR-372 or miR-373 promotes cell growth and the invasive activity of tumor cells as knockdown of DKK1. Taken together, our study demonstrates a novel β-catenin/LEF1-miR-372&373-DKK1 regulatory feedback loop, which may have a critical role in regulating the activity of Wnt/β-catenin signaling in human cancer cells.

  7. The miR-17-92 MicroRNA Cluster Is Regulated by Multiple Mechanisms in B-Cell Malignancies

    PubMed Central

    Ji, Ming; Rao, Enyu; Ramachandrareddy, Himabindu; Shen, Yulei; Jiang, Chunsun; Chen, Jianxiu; Hu, Yiqiao; Rizzino, Angie; Chan, Wing C.; Fu, Kai; McKeithan, Timothy W.

    2011-01-01

    A cluster of six microRNAs (miRNAs), miR-17-92, is processed from the transcript of C13orf25, a gene amplified in some lymphomas and solid tumors. We find that levels of the miRNAs in the cluster do not vary entirely in parallel with each other or with the primary RNA in B-cell lines or normal cells, suggesting that processing or stability of the miRNAs is differentially regulated. Using luciferase reporter assays, we identified the region required for maximum promoter activity. Additional deletions and mutations indicated that the promoter is regulated by the collaborative activity of several transcription factors, most of which individually have only a moderate effect; mutation of a cluster of putative SP1-binding sites, however, reduces promoter activity by 70%. MYC is known to regulate C13orf25; surprisingly, mutation of a putative promoter MYC-binding site enhanced promoter activity. We found that the inhibitory MYC family member MXI1 bound to this region. The chromatin structure of a >22.5-kb region encompassing the gene contains peaks of activating histone marks, suggesting the presence of enhancers, and we confirmed that at least two regions have enhancer activity. Because the miR-17-92 cluster acts as an important oncogene in several cancers and targets genes important in regulating cell proliferation and survival, further studies of its transcriptional control are warranted. PMID:21806958

  8. A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster

    PubMed Central

    Li, Xiao Ling; Hara, Toshifumi; Choi, Youngeun; Subramanian, Murugan; Francis, Princy; Bilke, Sven; Walker, Robert L.; Pineda, Marbin; Zhu, Yuelin; Yang, Yuan; Luo, Ji; Wakefield, Lalage M.; Brabletz, Thomas; Park, Ben Ho; Sharma, Sudha; Chowdhury, Dipanjan; Meltzer, Paul S.

    2014-01-01

    The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21+/+ and p21−/− cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21−/− cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21+/+ cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop. PMID:24277930

  9. Allergen-specific immune response suppresses interleukin 10 expression in B cells via increasing micro-RNA-17-92 cluster.

    PubMed

    Geng, Xiao-Rui; Qiu, Shu-Qi; Yang, Li-Tao; Liu, Zhi-Qiang; Yang, Gui; Liu, Jiang-Qi; Zeng, Lu; Li, Xiao-Xi; Mo, Li-Hua; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-08-01

    Interleukin (IL)-10-expressing B cells play a critical role in the immune homeostasis in the body; its regulation has not been fully understood. Micro-RNA (miR)-17-92 cluster has strong regulation in the immunity. This study tests a hypothesis that miR-17-92 cluster suppresses IL-10 expression in B cells. In this study, peripheral B cells were collected from patients with allergic rhinitis (AR). The B cells were treated with specific allergens, dust mite extracts, in the culture. The expressions of miR-17-92 cluster and IL-10 in the culture were assessed by real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. The results showed that the levels of miR-19a, but not the rest of the 5 members (miR-17, miR-18a, miR-19b, miR-20a, and miR-92a), were significantly higher in peripheral B cells from AR patients as than in B cells from healthy participants. Exposure of B cells from AR patients to specific allergen, dust mite extracts, significantly increased the levels if miR-19a and suppressed the expression of IL-10 in B cells. The levels of histone deacetylase 11 and acetylated H3K9 were higher, and the RNA polymerase II and c-Maf (the IL-10 transcription factor) were lower, at the IL-10 promoter locus. In conclusion, miR-19a mediates the allergen-specific immune response-decreased IL-10 expression in B cells. PMID:27491928

  10. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer*

    PubMed Central

    Zhang, Weijie; Qian, Pengxu; Zhang, Xiao; Zhang, Min; Wang, Hong; Wu, Mingming; Kong, Xiangjun; Tan, Sheng; Ding, Keshuo; Perry, Jo K.; Wu, Zhengsheng; Cao, Yuan; Lobie, Peter E.; Zhu, Tao

    2015-01-01

    Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer. PMID:25873390

  11. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  12. Rapid generation of microRNA sponges for microRNA inhibition.

    PubMed

    Kluiver, Joost; Gibcus, Johan H; Hettinga, Chris; Adema, Annelies; Richter, Mareike K S; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies. PMID:22238599

  13. The microRNA Machinery.

    PubMed

    Roberts, Thomas C

    2015-01-01

    MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded RNA molecules that primarily function to negatively regulate gene expression at the post-transcriptional level. miRNAs have thus been implicated in the regulation of a wide variety of normal cell functions and pathophysiological conditions. The miRNA machinery consists of a series of protein complexes which act to: (1) cleave the precursor-miRNA hairpin from its primary transcript (i.e. DROSHA and DGCR8); (2) traffic the miRNA hairpin between nucleus and cytoplasm (i.e. XPO5); (3) remove the loop sequence of the hairpin by a second nucleolytic cleavage reaction (i.e. DICER1); (4) facilitate loading of the mature miRNA sequence into an Argonaute protein (typically AGO2) as part of the RNA-Induced Silencing Complex (RISC); (5) guide the loaded RISC complex to complementary, or semi-complementary, target transcripts and (6) facilitate gene silencing via one of several possible mechanisms. PMID:26662984

  14. Induction of the Transcriptional Repressor ZBTB4 in Prostate Cancer Cells by Drug-induced Targeting of microRNA-17-92/106b-25 Clusters

    PubMed Central

    Kim, KyoungHyun; Chadalapaka, Gayathri; Pathi, Satya S.; Jin, Un-Ho; Lee, Ju-Seog; Park, Yun-Yong; Cho, Sung-Gook; Chintharlapalli, Sudhakar; Safe, Stephen

    2013-01-01

    Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3 and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft model (PC3 cells) and also decreased expression of Sp transcription factors in tumors. CDODA-Me-mediated downregulation of Sp1, Sp3 and Sp4 was due to induction of the transcriptional repressor ZBTB4 which competitively binds and displaces Sp transcription factors from GC-rich sites in Sp1, Sp3, Sp4 and Sp-regulated gene promoters. ZBTB4 levels are relatively low in DU145 and PC3 cells due to suppression by microRNA (miR) paralogs that are members of the miR-17-92 (miR-20a/17-5p) and miR-106b-25 (miR-106b/93) clusters. Examination of publically available prostate cancer patient array data showed an inverse relationship between ZBTB4 and miRs-20a/17-5p/106b/93 expression, and increased ZBTB4 in prostate cancer patients was a prognostic factor for increased survival. CDODA-Me induces ZBTB4 in prostate cancer cells through disruption of miR-ZBTB4 interactions and this results in downregulation of pro-oncogenic Sp transcription factors and Sp-regulated genes. PMID:22752225

  15. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum.

    PubMed

    Leite, Daniel J; Ninova, Maria; Hilbrant, Maarten; Arif, Saad; Griffiths-Jones, Sam; Ronshaugen, Matthew; McGregor, Alistair P

    2016-01-01

    MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development. PMID:27324919

  16. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum

    PubMed Central

    Leite, Daniel J.; Ninova, Maria; Hilbrant, Maarten; Arif, Saad; Griffiths-Jones, Sam; Ronshaugen, Matthew; McGregor, Alistair P.

    2016-01-01

    MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster. However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum. We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development. PMID:27324919

  17. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum.

    PubMed

    Leite, Daniel J; Ninova, Maria; Hilbrant, Maarten; Arif, Saad; Griffiths-Jones, Sam; Ronshaugen, Matthew; McGregor, Alistair P

    2016-08-03

    MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development.

  18. The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106a-363, and miR-106b-25

    PubMed Central

    Sehic, Amer

    2016-01-01

    MicroRNAs (miRNAs) form a class of noncoding RNA genes whose products are small single-stranded RNAs that are involved in the regulation of translation and degradation of mRNAs. There is a fine balance between deregulation of normal developmental programs and tumor genesis. An increasing body of evidence suggests that altered expression of miRNAs is entailed in the pathogenesis of human cancers. Studies in mouse and human cells have identified the miR-17-92 cluster as a potential oncogene. The miR-17-92 cluster is often amplified or overexpressed in human cancers and has recently emerged as the prototypical oncogenic polycistron miRNA. The functional analysis of miR-17-92 is intricate by the existence of two paralogues: miR-106a-363 and miR-106b-25. During early evolution of vertebrates, it is likely that the three clusters commenced via a series of duplication and deletion occurrences. As miR-106a-363 and miR-106b-25 contain miRNAs that are very similar, and in some cases identical, to those encoded by miR-17-92, it is feasible that they regulate a similar set of genes and have overlapping functions. Further understanding of these three clusters and their functions will increase our knowledge about cancer progression. The present review discusses the characteristics and functions of these three miRNA clusters. PMID:27127675

  19. Identification of the miR-106b∼25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation

    PubMed Central

    Poliseno, Laura; Salmena, Leonardo; Riccardi, Luisa; Fornari, Alessandro; Song, Min Sup; Hobbs, Robin M.; Sportoletti, Paolo; Varmeh, Shorheh; Egia, Ainara; Fedele, Giuseppe; Rameh, Lucia; Loda, Massimo; Pandolfi, Pier Paolo

    2010-01-01

    PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor that antagonizes signaling through the phosphatidylinositol-3-kinase–Akt pathway. We have demonstrated that subtle decreases in PTEN abundance can have critical consequences for tumorigenesis. Here, we used a computational approach to identify miR-22, miR-25, and miR-302 as three PTEN-targeting microRNA (miRNA) families found within nine genomic loci. We showed that miR-22 and the miR-106b∼25 cluster are aberrantly overexpressed in human prostate cancer, correlate with abundance of the miRNA processing enzyme DICER, and potentiate cellular transformation both in vitro and in vivo. We demonstrated that the intronic miR-106b∼25 cluster cooperates with its host gene MCM7 in cellular transformation both in vitro and in vivo, so that the concomitant overexpression of MCM7 and the miRNA cluster triggers prostatic intraepithelial neoplasia in transgenic mice. Therefore, the MCM7 gene locus delivers two simultaneous oncogenic insults when amplified or overexpressed in human cancer. Thus, we have uncovered a proto-oncogenic miRNA-dependent network for PTEN regulation and defined the MCM7 locus as a critical factor in initiating prostate tumorigenesis. PMID:20388916

  20. microRNA: Diagnostic Perspective

    PubMed Central

    Faruq, Omar; Vecchione, Andrea

    2015-01-01

    Biomarkers are biological measures of a biological state. An ideal marker should be safe and easy to measure, cost efficient, modifiable with treatment, and consistent across gender and ethnic groups. To date, none of the available biomarkers satisfy all of these criteria. In addition, the major limitations of these markers are low specificity, sensitivity, and false positive results. Recently identified, microRNAs (miRNAs) are endogenous, evolutionarily conserved small non-coding RNA (about 22–25 nt long), also known as micro-coordinators of gene expression, which have been shown to be an effective tools to study the biology of diseases and to have great potential as novel diagnostic and prognostic biomarkers with high specificity and sensitivity. In fact, it has been demonstrated that miRNAs play a pivotal role in the regulation of a wide range of developmental and physiological processes and their deficiencies have been related to a number of disease. In addition, miRNAs are stable and can be easily isolated and measured from tissues and body fluids. In this review, we provide a perspective on emerging concepts and potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, subtypes, cardiovascular diseases, diabetes, infectious diseases, and forensic test. PMID:26284247

  1. microRNA-encoded behaviour in Drosophila+

    PubMed Central

    Picao-Osorio, Joao; Johnston, Jamie; Landgraf, Matthias; Berni, Jimena; Alonso, Claudio R.

    2016-01-01

    The relationship between microRNA regulation and the specification of behaviour is only beginning to be explored. Here we find that mutation of a single microRNA locus (miR-iab4/8) in Drosophila larvae affects the animal’s capacity to correct its orientation if turned upside-down (self-righting). One of the microRNA targets involved in this behaviour is the Hox gene Ultrabithorax whose derepression in two metameric neurons leads to self-righting defects. In vivo neural activity analysis reveals that these neurons, the self-righting node (SRN), have different activity patterns in wild type and miRNA mutants whilst thermogenetic manipulation of SRN activity results in changes in self-righting behaviour. Our work thus reveals a microRNA-encoded behaviour and suggests that other microRNAs might also be involved in behavioural control in Drosophila and other species. PMID:26494171

  2. MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro.

    PubMed

    Mehi, Stephen J; Maltare, Astha; Abraham, Carmela R; King, Gwendalyn D

    2014-02-01

    Klotho is an anti-aging protein with direct effects on life-span in mice. Klotho functions to regulate pathways classically associated with longevity including insulin/IGF1 and Wnt signaling. Decreased Klotho protein expression is observed throughout the body during the normal aging process. While increased methylation of the Klotho promoter is reported, other epigenetic mechanisms could contribute to age-related downregulation of Klotho expression, including microRNA-mediated regulation. Following in silico identification of potential microRNA binding sites within the Klotho 3' untranslated region, reporter assays reveal regulation by microRNA-339, microRNA-556, and, to a lesser extent, microRNA-10 and microRNA-199. MicroRNA-339 and microRNA-556 were further found to directly decrease Klotho protein expression indicating that, if upregulated in aging tissue, these microRNA could play a role in age-related downregulation of Klotho messenger RNA. These microRNAs are differentially regulated in cancer cells compared to normal cells and may imply a role for microRNA-mediated regulation of Klotho in cancer. PMID:23818104

  3. microRNA-17 Is the Most Up-Regulated Member of the miR-17-92 Cluster during Early Colon Cancer Evolution

    PubMed Central

    Knudsen, Kirsten Nguyen; Nielsen, Boye Schnack; Lindebjerg, Jan; Hansen, Torben Frøstrup; Holst, René; Sørensen, Flemming Brandt

    2015-01-01

    Deregulated microRNAs play a role in the development and progression of colon cancer, but little is known about their tissue and cell distribution in the continuum of normal mucosa through the premalignant adenoma to invasive adenocarcinoma. The aim of this study was to examine the expression pattern of the miR-17-92 cluster (miR-17, miR-18, miR-19, miR-20 and miR-92) as well as miR-21, miR-31, miR-135b, and miR-145 in early clinically diagnosed colon cancer. MicroRNAs were analysed by chromogenic in situ hybridisation in the normal-adenoma-adenocarcinoma sequence of nine adenocarcinomas developed in mucosal colon polyps. Subsequently, the expression of selected microRNAs was validated in 24 mucosal colon cancer polyps. Expression of miR-17 was confined to the epithelial cells, and the expression levels increased in the transitional zone from normal to adenomatous tissue. The miR-17-92 cluster members, miR-19b, miR-20a, and miR-92a, followed the same expression pattern, but miR-17 was the most predominant. An increased expression of miR-21 was found in the tumour-associated stroma with the most dramatic increase from adenoma to adenocarcinoma, while the number of positive miR-145 fibroblast-like cells in the normal lamina propria (stroma) decreased in a stepwise manner throughout the normal-adenoma-adenocarcinoma sequence. It is concluded that the expression of miR-17, miR-21, and miR-145 changes at early stages of the normal-adenoma-adenocarcinoma sequence. Thus, these microRNAs may play a role in the development of colon cancer. PMID:26465597

  4. MicroRNA involvement in glioblastoma pathogenesis

    SciTech Connect

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-08-14

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  5. MicroRNA and Metastasis.

    PubMed

    Ma, L

    2016-01-01

    Noncoding RNAs are important regulatory molecules of cellular processes. MicroRNAs (miRNAs) are small noncoding RNAs that bind to complementary sequences in the 3' untranslated region of target mRNAs, leading to degradation of the target mRNAs and/or inhibition of their translation. Some miRNAs are essential for normal animal development; however, many other miRNAs are dispensable for development but play a critical role in pathological conditions, including tumorigenesis and metastasis. miRNA genes often reside at fragile chromosome sites and are deregulated in cancer. Some miRNAs function as oncogenes or tumor suppressors, collectively termed "oncomirs." Specific metastasis-regulating miRNAs, collectively termed "metastamirs," govern molecular processes and pathways in malignant progression in either a tumor cell-autonomous or a cell-nonautonomous manner. Recently, exosome-transferred miRNAs have emerged as mediators of the tumor-stroma cross talk. In this chapter, we focus on the functions, mechanisms of action, and therapeutic potential of miRNAs, particularly oncomirs and metastamirs. PMID:27613133

  6. lncRNA/MicroRNA interactions in the vasculature

    PubMed Central

    Ballantyne, MD; McDonald, RA

    2016-01-01

    MicroRNA (miRNA) have gained widespread attention for their role in diverse vascular processes including angiogenesis, apoptosis, proliferation, and migration. Despite great understanding of miRNA expression and function, knowledge of long noncoding RNA (lncRNA) molecular mechanisms still remains limited. The influence of miRNA on lncRNA function, and the converse, is now beginning to emerge. lncRNA may regulate miRNA function by acting as endogenous sponges to regulate gene expression and miRNA have been shown to bind and regulate lncRNA stability. A detailed understanding of the molecular and cellular effects of lncRNA‐miRNA‐mediated interactions in vascular pathophysiology could pave the way for new diagnostic markers and therapeutic approaches, but first there is a requirement for a more detailed understanding of the impact of such regulatory networks. PMID:26910520

  7. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    PubMed

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size.

  8. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    PubMed

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size. PMID:27643583

  9. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci.

    PubMed

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-08-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  10. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci.

    PubMed

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-08-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results.

  11. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  12. Functional MicroRNA Involved in Endometriosis

    PubMed Central

    Creighton, Chad J.; Han, Derek Y.; Zariff, Azam; Anderson, Matthew L.; Gunaratne, Preethi H.; Matzuk, Martin M.

    2011-01-01

    Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction. PMID:21436257

  13. MicroRNA and gynecological reproductive diseases.

    PubMed

    Santamaria, Xavier; Taylor, Hugh

    2014-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs estimated to regulate the translation of mRNAs in 30% of all genes in animals by inhibiting translation. Aberrant miRNA expression is associated with many human diseases, including gynecological diseases, cancer, inflammatory diseases, and cardiovascular disorders. Abnormal expression of miRNAs has been observed in multiple human reproductive tract diseases including preeclampsia, endometrioid endometrial adenocarcinoma, uterine leiomyomata, ovarian carcinoma, endometriosis, and recurrent pregnancy loss. In the following review, an update of the role of microRNA and gynecological diseases is performed covering, not only impact of microRNA dysregulation in the origin of each disease, but also showing the potential useful diagnostic and therapeutic tool that miRNA may play in these gynecological pathologies.

  14. Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor

    PubMed Central

    2012-01-01

    Background Metastatic melanoma is a devastating disease with limited therapeutic options. MicroRNAs (miRNAs) are small non coding RNA molecules with important roles in post-transcriptional gene expression regulation, whose aberrant expression has been implicated in cancer. Results We show that the expression of miRNAs from a large cluster on human chromosome 14q32 is significantly down-regulated in melanoma cell lines, benign nevi and melanoma samples relative to normal melanocytes. This miRNA cluster resides within a parentally imprinted chromosomal region known to be important in development and differentiation. In some melanoma cell lines, a chromosomal deletion or loss-of-heterozygosity was observed in the cis-acting regulatory region of this cluster. In several cell lines we were able to re-express two maternally-induced genes and several miRNAs from the cluster with a combination of de-methylating agents and histone de-acetylase inhibitors, suggesting that epigenetic modifications take part in their silencing. Stable over-expression of mir-376a and mir-376c, two miRNAs from this cluster that could be re-expressed following epigenetic manipulation, led to modest growth retardation and to a significant decrease in migration in-vitro. Bioinformatic analysis predicted that both miRNAs could potentially target the 3'UTR of IGF1R. Indeed, stable expression of mir-376a and mir-376c in melanoma cells led to a decrease in IGF1R mRNA and protein, and a luciferase reporter assay indicated that the 3'UTR of IGF1R is a target of both mir-376a and mir-376c. Conclusions Our work is the first to show that the large miRNA cluster on chromosome 14q32 is silenced in melanoma. Our results suggest that down-regulation of mir-376a and mir-376c may contribute to IGF1R over-expression and to aberrant negative regulation of this signaling pathway in melanoma, thus promoting tumorigenesis and metastasis. PMID:22747855

  15. microRNA target predictions across seven Drosophila species and comparison to mammalian targets.

    PubMed

    Grün, Dominic; Wang, Yi-Lu; Langenberger, David; Gunsalus, Kristin C; Rajewsky, Nikolaus

    2005-06-01

    microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu.

  16. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging.

    PubMed

    Kim, Ji Young; Park, Young-Kyu; Lee, Kwang-Pyo; Lee, Seung-Min; Kang, Tae-Wook; Kim, Hee-Jin; Dho, So Hee; Kim, Seon-Young; Kwon, Ki-Sun

    2014-07-01

    Skeletal muscle degenerates progressively, losing mass (sarcopenia) over time, which leads to reduced physical ability and often results in secondary diseases such as diabetes and obesity. The regulation of gene expression by microRNAs is a key event in muscle development and disease. To understand genome‐wide changes in microRNAs and mRNAs during muscle aging, we sequenced microRNAs and mRNAs from mouse gastrocnemius muscles at two different ages (6 and 24 months). Thirty‐four microRNAs (15 up‐regulated and 19 down‐regulated) were differentially expressed with age, including the microRNAs miR‐206 and ‐434, which were differentially expressed in aged muscle in previous studies. Interestingly, eight microRNAs in a microRNA cluster at the imprinted Dlk1‐Dio3 locus on chromosome 12 were coordinately down‐regulated. In addition, sixteen novel microRNAs were identified. Integrative analysis of microRNA and mRNA expression revealed that microRNAs may contribute to muscle aging through the positive regulation of transcription, metabolic processes, and kinase activity. Many of the age‐related microRNAs have been implicated in human muscular diseases. We suggest that genome‐wide microRNA profiling will expand our knowledge of microRNA function in the muscle aging process.

  17. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging

    PubMed Central

    Kim, Ji Young; Park, Young-Kyu; Lee, Kwang-Pyo; Lee, Seung-Min; Kang, Tae-Wook; Kim, Hee-Jin; Dho, So Hee; Kim, Seon-Young; Kwon, Ki-Sun

    2014-01-01

    Skeletal muscle degenerates progressively, losing mass (sarcopenia) over time, which leads to reduced physical ability and often results in secondary diseases such as diabetes and obesity. The regulation of gene expression by microRNAs is a key event in muscle development and disease. To understand genome-wide changes in microRNAs and mRNAs during muscle aging, we sequenced microRNAs and mRNAs from mouse gastrocnemius muscles at two different ages (6 and 24 months). Thirty-four microRNAs (15 up-regulated and 19 down-regulated) were differentially expressed with age, including the microRNAs miR-206 and -434, which were differentially expressed in aged muscle in previous studies. Interestingly, eight microRNAs in a microRNA cluster at the imprinted Dlk1-Dio3 locus on chromosome 12 were coordinately down-regulated. In addition, sixteen novel microRNAs were identified. Integrative analysis of microRNA and mRNA expression revealed that microRNAs may contribute to muscle aging through the positive regulation of transcription, metabolic processes, and kinase activity. Many of the age-related microRNAs have been implicated in human muscular diseases. We suggest that genome-wide microRNA profiling will expand our knowledge of microRNA function in the muscle aging process. PMID:25063768

  18. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  19. Transcriptome dynamics of the microRNA inhibition response.

    PubMed

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto; Kauppinen, Sakari; Lund, Anders H; Krogh, Anders; Parker, Brian J

    2015-07-27

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at ∼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies. PMID:26089393

  20. [Epigenetic factors in atherogenesis: microRNA].

    PubMed

    Smirnova, A V; Sukhorukov, V N; Karagodin, V P; Orekhov, A N

    2016-01-01

    MicroRNAs (miRNAs) are small (~22 nucleotides in length) noncoding RNA sequences regulating gene expression at posttranscriptional level. MicroRNAs bind complementarily to certain mRNA and cause gene silencing. The involvement of miRNAs in the regulation of lipid metabolism, inflammatory response, cell cycle progression and proliferation, oxidative stress, platelet activation, endothelial and vascular smooth muscle cells (VSMC) function, angiogenesis and plaque formation and rapture indicates important roles in the initiation and progression of atherosclerosis. The key role of microRNAs in pathophysiology of cardiovascular diseases (CVDs), including atherosclerosis, was demonstrated in recent studies. Creating antisense oligonucleotides is a novel technique for selective changes in gene expression both in vitro and in vivo. In this review, we draw attention to the role of miRNAs in atherosclerosis progression, using miRNA as the potential biomarkers and targets in the CVDs, as well as possible application of antisense oligonucleotides. PMID:27143369

  1. The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas.

    PubMed

    Rippe, Volkhard; Dittberner, Lea; Lorenz, Verena N; Drieschner, Norbert; Nimzyk, Rolf; Sendt, Wolfgang; Junker, Klaus; Belge, Gazanfer; Bullerdiek, Jörn

    2010-03-03

    Thyroid adenomas are common benign human tumors with a high prevalence of about 5% of the adult population even in iodine sufficient areas. Rearrangements of chromosomal band 19q13.4 represent a frequent clonal cytogenetic deviation in these tumors making them the most frequent non-random chromosomal translocations in human epithelial tumors at all. Two microRNA (miRNA) gene clusters i.e. C19MC and miR-371-3 are located in close proximity to the breakpoint region of these chromosomal rearrangements and have been checked for a possible up-regulation due to the genomic alteration. In 4/5 cell lines established from thyroid adenomas with 19q13.4 rearrangements and 5/5 primary adenomas with that type of rearrangement both the C19MC and miR-371-3 cluster were found to be significantly overexpressed compared to controls lacking that particular chromosome abnormality. In the remaining cell line qRT-PCR revealed overexpression of members of the miR-371-3 cluster only which might be due to a deletion accompanying the chromosomal rearrangement in that case. In depth molecular characterization of the breakpoint in a cell line from one adenoma of this type reveals the existence of large Pol-II mRNA fragments as the most likely source of up-regulation of the C19MC cluster. The up-regulation of the clusters is likely to be causally associated with the pathogenesis of the corresponding tumors. Of note, the expression of miRNAs miR-520c and miR-373 is known to characterize stem cells and in terms of molecular oncology has been implicated in invasive growth of epithelial cells in vitro and in vivo thus allowing to delineate a distinct molecular subtype of thyroid adenomas. Besides thyroid adenomas rearrangements of 19q13.4 are frequently found in other human neoplasias as well, suggesting that activation of both clusters might be a more general phenomenon in human neoplasias.

  2. Computational prediction of microRNA genes.

    PubMed

    Hertel, Jana; Langenberger, David; Stadler, Peter F

    2014-01-01

    The computational identification of novel microRNA (miRNA) genes is a challenging task in bioinformatics. Massive amounts of data describing unknown functional RNA transcripts have to be analyzed for putative miRNA candidates with automated computational pipelines. Beyond those miRNAs that meet the classical definition, high-throughput sequencing techniques have revealed additional miRNA-like molecules that are derived by alternative biogenesis pathways. Exhaustive bioinformatics analyses on such data involve statistical issues as well as precise sequence and structure inspection not only of the functional mature part but also of the whole precursor sequence of the putative miRNA. Apart from a considerable amount of species-specific miRNAs, the majority of all those genes are conserved at least among closely related organisms. Some miRNAs, however, can be traced back to very early points in the evolution of eukaryotic species. Thus, the investigation of the conservation of newly found miRNA candidates comprises an important step in the computational annotation of miRNAs.Topics covered in this chapter include a review on the obvious problem of miRNA annotation and family definition, recommended pipelines of computational miRNA annotation or detection, and an overview of current computer tools for the prediction of miRNAs and their limitations. The chapter closes discussing how those bioinformatic approaches address the problem of faithful miRNA prediction and correct annotation. PMID:24639171

  3. MicroRNA-106b-25 cluster targets β-TRCP2, increases the expression of Snail and enhances cell migration and invasion in H1299 (non small cell lung cancer) cells

    SciTech Connect

    Savita, Udainiya; Karunagaran, Devarajan

    2013-05-17

    Highlights: •miR-106b-25 cluster directly targets the 3′UTR of the β-TRCP2 transcript. •β-TRCP2 mRNA was lower in H1299 cells stably expressing miR-106b-25 cluster. •miR-106b-25 cluster increased the expression of Snail. •miR-106b-25 cluster promoted the migration, colony formation and invasion. •miR-106b-25 cluster enhanced endothelial tube formation. -- Abstract: Lung cancer causes high mortality without a declining trend and non small cell lung cancer represents 85% of all pulmonary carcinomas. MicroRNAs (miRNAs) serve as fine regulators of proliferation, migration, invasion/metastasis and angiogenesis of normal and cancer cells. Using TargetScan6.2, we predicted that the ubiquitin ligase, β-TRCP2, could be a target for two of the constituent miRNAs of the miR-106b-25 cluster (miR-106b and miR-93). We generated a stable clone of miR-106b-25 cluster (CL) or the empty vector (EV) in H1299 (non small cell lung cancer) cells. The expression of β-TRCP2 mRNA was significantly lower in CL than that in EV cells. Transient expression of miR-93 but not antimiR-93 decreased the expression of β-TRCP2 mRNA in H1299 cells. β-TRCP2-3′UTR reporter assay revealed that its activity in CL cells was only 60% of that in EV cells. Snail protein expression was higher in CL than that in EV cells and H1299 cells exhibited an increase in the expression of Snail upon transient transfection with miR-93. miR-106b-25 cluster-induced migration of CL measured by scratch assay was more than that in EV cells and no significant difference in migration was observed between antimiR-93-transfected H1299 cells and the corresponding control-oligo-transfected cells. miR-106b-25 cluster-induced migration of CL cells was again confirmed in a Boyden chamber assay without the matrigel. CL cells were more invasive than EV cells when assessed using Boyden chambers with matrigel but there were no significant changes in the cell viabilities between EV and CL cells. Colony formation assay

  4. Shielding the messenger (RNA): microRNA-based anticancer therapies

    PubMed Central

    Sotillo, Elena; Thomas-Tikhonenko, Andrei

    2011-01-01

    It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21–22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded. PMID:21514318

  5. MicroRNA profiling: approaches and considerations

    PubMed Central

    Pritchard, Colin C.; Cheng, Heather H.; Tewari, Muneesh

    2015-01-01

    MicroRNAs (miRNAs) are small RNAs (~22 nt long) that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms, in both normal physiologic and disease contexts. MiRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and have also shown promise as biomarkers for disease. Technological advances have enabled the development of various platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in the effective use of miRNA profiling for diverse applications. We review here the major considerations for carrying out and interpreting results of miRNA profiling studies, as well as current and emerging applications of miRNA profiling. PMID:22510765

  6. Potential Pitfalls in microRNA Profiling

    PubMed Central

    Chugh, Pauline; Dittmer, Dirk P.

    2013-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally influence a wide range of cellular processes such as the host response to viral infection, innate immunity, cell cycle progression, migration and apoptosis through the inhibition of target mRNA translation. Due to the growing number of microRNAs and identification of their functional roles, miRNA profiling of many different sample types has become more expansive, especially with relevance to disease signatures. Here, we address some of the advantages and potential pitfalls of the currently available methods for miRNA expression profiling. Some of the topics discussed include isomiRNAs, comparison of different profiling platforms, normalization strategies and issues with regard to sample preparation and experimental analyses. PMID:22566380

  7. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  8. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum.

    PubMed

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

  9. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum

    PubMed Central

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3′ end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon. PMID:26518483

  10. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner.

  11. microRNA in Human Reproduction.

    PubMed

    Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal

    2015-01-01

    microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation. PMID:26663192

  12. Computational Biology in microRNA.

    PubMed

    Li, Yue; Zhang, Zhaolei

    2015-01-01

    MicroRNA (miRNA) is a class of small endogenous noncoding RNA species, which regulate gene expression post-transcriptionally by forming imperfect base-pair at the 3' untranslated regions of the messenger RNAs. Since the 1993 discovery of the first miRNA let-7 in worms, a vast number of studies have been dedicated to functionally characterizing miRNAs with a special emphasis on their roles in cancer. A single miRNA can potentially target ∼ 400 distinct genes, and there are over a 1000 distinct endogenous miRNAs in the human genome. Thus, miRNAs are likely involved in virtually all biological processes and pathways including carcinogenesis. However, functionally characterizing miRNAs hinges on the accurate identification of their mRNA targets, which has been a challenging problem due to imperfect base-pairing and condition-specific miRNA regulatory dynamics. In this review, we will survey the current state-of-the-art computational methods to predict miRNA targets, which are divided into three main categories: (1) sequence-based methods that primarily utilizes the canonical seed-match model, evolutionary conservation, and binding energy; (2) expression-based target prediction methods using the increasingly available miRNA and mRNA expression data measured for the same sample; and (3) network-based method that aims identify miRNA regulatory modules, which reflect their synergism in conferring a global impact to the biological system of interest. We hope that the review will serve as a good reference to the new comers to the ever-growing miRNA research field as well as veterans, who would appreciate the detailed review on the technicalities, strength, and limitations of each representative computational method.

  13. MicroRNA-mediated somatic cell reprogramming.

    PubMed

    Kuo, Chih-Hao; Ying, Shao-Yao

    2013-02-01

    Since the first report of induced pluripotent stem cells (iPSCs) using somatic cell nuclear transfer (SCNT), much focus has been placed on iPSCs due to their great therapeutic potential for diseases such as abnormal development, degenerative disorders, and even cancers. Subsequently, Takahashi and Yamanaka took a novel approach by using four defined transcription factors to generate iPSCs in mice and human fibroblast cells. Scientists have since been trying to refine or develop better approaches to reprogramming, either by using different combinations of transcription factors or delivery methods. However, recent reports showed that the microRNA expression pattern plays a crucial role in somatic cell reprogramming and ectopic introduction of embryonic stem cell-specific microRNAs revert cells back to an ESC-like state, although, the exact mechanism underlying this effect remains unclear. This review describes recent work that has focused on microRNA-mediated approaches to somatic cell reprogramming as well as some of the pros and cons to these approaches and a possible mechanism of action. Based on the pivotal role of microRNAs in embryogenesis and somatic cell reprogramming, studies in this area must continue in order to gain a better understanding of the role of microRNAs in stem cells regulation and activity. PMID:22961769

  14. Progress in MicroRNA Delivery

    PubMed Central

    Zhang, Yu; Wang, Zaijie; Gemeinhart, Richard A.

    2013-01-01

    MicroRNAs (miRNAs) are non-coding endogenous RNAs that direct post-transcriptional regulation of gene expression by several mechanisms. Activity is primarily through binding to the 3’ untranslated regions (UTRs) of messenger RNAs (mRNA) resulting in degradation and translation repression. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes. Although we have only just begun to gain insights into the full range of biologic functions of miRNA, their involvement in the onset and progression of disease has generated significant interest for therapeutic development. Mounting evidence suggests that miRNA-based therapies, either restoring or repressing miRNAs expression and activity, hold great promise. However, despite the early promise and exciting potential, critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications. Limitations that may be overcome by delivery include, but are not limited to, poor in vivo stability, inappropriate biodistribution, disruption and saturation of endogenous RNA machinery, and untoward side effects. Both viral vectors and nonviral delivery systems can be developed to circumvent these challenges. Viral vectors are efficient delivery agents but toxicity and immunogenicity limit their clinical usage. Herein, we review the recent advances in the mechanisms and strategies of nonviral miRNA delivery systems and provide a perspective on the future of miRNA-based therapeutics. PMID:24075926

  15. microRNA Profiling Identifies Cancer-Specific and Prognostic Signatures in Pediatric Malignancies

    PubMed Central

    Wei, Jun S; Johansson, Peter; Chen, Qing-Rong; Song, Young K; Durinck, Steffen; Wen, Xinyu; Cheuk, Adam TC; Smith, Malcolm A.; Houghton, Peter; Morton, Christopher; Khan, Javed

    2009-01-01

    Purpose microRNAs have been shown to be involved in different human cancers. We therefore have performed expression profiles on a panel of pediatric tumors to identify cancer-specific microRNAs. We also investigated if microRNAs are co-regulated with their host gene. Experimental Design We performed parallel microRNAs and mRNA expression profiling on 57 tumor xenografts and cell lines representing 10 different pediatric solid tumors using microarrays. For those microRNAs that map to their host mRNA, we calculated correlations between them. Results We found that the majority of cancer types clustered together based on their global microRNA expression profiles by unsupervised hierarchical clustering. Fourteen microRNAs were significantly differentially expressed between rhabdomyosarcoma and neuroblastoma, and 8 of them were validated in independent patient tumor samples. Exploration of the expression of microRNAs in relationship with their host genes demonstrated that the expression for 43 (63%) of 68 microRNAs located inside known coding genes were significantly correlated with that of their host genes. Among these 43 microRNAs, 5 out of 7 microRNAs in the OncomiR-1 cluster correlated significantly with their host gene MIRHG1 (P<0.01). In addition, high expression of MIRHG1 was significantly associated with high stage and MYCN-amplification in neuroblastoma tumors; and the expression level of MIRHG1 could predict the outcome of neuroblastoma patients independently from the current neuroblastoma risk-stratification in two independent patient cohorts. Conclusion Pediatric cancers express cancer-specific microRNAs. The high expression of the OncomiR-1 host gene MIRHG1 correlates with poor outcome for patients with neuroblastoma, indicating important oncogenic functions of this microRNA cluster in neuroblastoma biology. PMID:19706822

  16. MicroRNA profiling of diverse endothelial cell types

    PubMed Central

    2011-01-01

    Background MicroRNAs are ~22-nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. The diversity of miRNAs in endothelial cells (ECs) and the relationship of this diversity to epithelial and hematologic cells is unknown. We investigated the baseline miRNA signature of human ECs cultured from the aorta (HAEC), coronary artery (HCEC), umbilical vein (HUVEC), pulmonary artery (HPAEC), pulmonary microvasculature (HPMVEC), dermal microvasculature (HDMVEC), and brain microvasculature (HBMVEC) to understand the diversity of miRNA expression in ECs. Results We identified 166 expressed miRNAs, of which 3 miRNAs (miR-99b, miR-20b and let-7b) differed significantly between EC types and predicted EC clustering. We confirmed the significance of these miRNAs by RT-PCR analysis and in a second data set by Sylamer analysis. We found wide diversity of miRNAs between endothelial, epithelial and hematologic cells with 99 miRNAs shared across cell types and 31 miRNAs unique to ECs. We show polycistronic miRNA chromosomal clusters have common expression levels within a given cell type. Conclusions EC miRNA expression levels are generally consistent across EC types. Three microRNAs were variable within the dataset indicating potential regulatory changes that could impact on EC phenotypic differences. MiRNA expression in endothelial, epithelial and hematologic cells differentiate these cell types. This data establishes a valuable resource characterizing the diverse miRNA signature of ECs. PMID:22047531

  17. An alternative mode of microRNA target recognition

    PubMed Central

    Chi, Sung Wook; Hannon, Gregory J.; Darnell, Robert B.

    2012-01-01

    MicroRNAs (miRNAs) regulate mRNA targets through perfect pairing with their seed region (position 2-7). Recently, a precise genome-wide map of miRNA interaction sites in mouse brain was generated by high-throughput sequencing of clusters of ~50 nucleotide RNA tags associated with Argonaute (Ago HITS-CLIP). By analyzing Ago HITS-CLIP “orphan clusters” – Ago binding regions from HITS-CLIP that cannot be explained by canonical seed matches – we have identified an alternative binding mode used by miRNAs. Specifically, G-bulge sites (position 5-6) are often bound and regulated by miR-124 in brain. More generally, bulged sites comprise ≥ 15% (≥ 1441 sites) of all Ago-miRNA interactions in mouse brain and are evolutionally conserved. We have termed position 6 the “pivot” nucleotide and suggest a model in which a transitional “nucleation-bulge” leads to functional bulge mRNA-miRNA interactions, expanding the number of potential miRNA regulatory sites. PMID:22343717

  18. MicroRNA Processing and Human Cancer

    PubMed Central

    Ohtsuka, Masahisa; Ling, Hui; Doki, Yuichiro; Mori, Masaki; Calin, George Adrian

    2015-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs of 20 to 25 nucleotides that regulate gene expression post-transcriptionally mainly by binding to a specific sequence of the 3′ end of the untranslated region (3′UTR) of target genes. Since the first report on the clinical relevance of miRNAs in cancer, many miRNAs have been demonstrated to act as oncogenes, whereas others function as tumor suppressors. Furthermore, global miRNA dysregulation, due to alterations in miRNA processing factors, has been observed in a large variety of human cancer types. As previous studies have shown, the sequential miRNA processing can be divided into three steps: processing by RNAse in the nucleus; transportation by Exportin-5 (XPO5) from the nucleus; and processing by the RNA-induced silencing complex (RISC) in the cytoplasm. Alteration in miRNA processing genes, by genomic mutations, aberrant expression or other means, could significantly affect cancer initiation, progression and metastasis. In this review, we focus on the biogenesis of miRNAs with emphasis on the potential of miRNA processing factors in human cancers. PMID:26308063

  19. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  20. Dysregulated microRNA clusters in response to retinoic acid and CYP26B1 inhibitor induced testicular function in dogs.

    PubMed

    Kasimanickam, Vanmathy R; Kasimanickam, Ramanathan K; Dernell, William S

    2014-01-01

    Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution

  1. Dysregulated microRNA Clusters in Response to Retinoic Acid and CYP26B1 Inhibitor Induced Testicular Function in Dogs

    PubMed Central

    Kasimanickam, Vanmathy R.; Kasimanickam, Ramanathan K.; Dernell, William S.

    2014-01-01

    Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution

  2. MicroRNA targets in Drosophila

    PubMed Central

    Enright, Anton J; John, Bino; Gaul, Ulrike; Tuschl, Thomas; Sander, Chris; Marks, Debora S

    2004-01-01

    Background The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method is validated using known examples. For each miRNA, target genes are selected on the basis of three properties: sequence complementarity using a position-weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Application to the D. melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known miRNAs. Results These potential targets are rich in genes that are expressed at specific developmental stages and that are involved in cell fate specification, morphogenesis and the coordination of developmental processes, as well as genes that are active in the mature nervous system. High-ranking target genes are enriched in transcription factors two-fold and include genes already known to be under translational regulation. Our results reaffirm the thesis that miRNAs have an important role in establishing the complex spatial and temporal patterns of gene activity necessary for the orderly progression of development and suggest additional roles in the function of the mature organism. In addition the results point the way to directed experiments to determine miRNA functions. Conclusions The emerging combinatorics of miRNA target sites in the 3' untranslated regions of messenger RNAs are reminiscent of transcriptional regulation in promoter regions of DNA, with both one-to-many and many-to-one relationships between regulator and target. Typically, more than one miRNA regulates one message, indicative of cooperative translational control. Conversely, one miRNA may have

  3. Method for microRNA isolation from clinical serum samples.

    PubMed

    Li, Yu; Kowdley, Kris V

    2012-12-01

    MicroRNAs are a group of intracellular noncoding RNA molecules that have been implicated in a variety of human diseases. Because of their high stability in blood, microRNAs released into circulation could be potentially utilized as noninvasive biomarkers for diagnosis or prognosis. Current microRNA isolation protocols are specifically designed for solid tissues and are impractical for biomarker development utilizing small-volume serum samples on a large scale. Thus, a protocol for microRNA isolation from serum is needed to accommodate these conditions in biomarker development. To establish such a protocol, we developed a simplified approach to normalize sample input by using single synthetic spike-in microRNA. We evaluated three commonly used commercial microRNA isolation kits for the best performance by comparing RNA quality and yield. The manufacturer's protocol was further modified to improve the microRNA yield from 200μl of human serum. MicroRNAs isolated from a large set of clinical serum samples were tested on the miRCURY LNA real-time PCR panel and confirmed to be suitable for high-throughput microRNA profiling. In conclusion, we have established a proven method for microRNA isolation from clinical serum samples suitable for microRNA biomarker development.

  4. Towards computational prediction of microRNA function and activity

    PubMed Central

    Ulitsky, Igor; Laurent, Louise C.; Shamir, Ron

    2010-01-01

    While it has been established that microRNAs (miRNAs) play key roles throughout development and are dysregulated in many human pathologies, the specific processes and pathways regulated by individual miRNAs are mostly unknown. Here, we use computational target predictions in order to automatically infer the processes affected by human miRNAs. Our approach improves upon standard statistical tools by addressing specific characteristics of miRNA regulation. Our analysis is based on a novel compendium of experimentally verified miRNA-pathway and miRNA-process associations that we constructed, which can be a useful resource by itself. Our method also predicts novel miRNA-regulated pathways, refines the annotation of miRNAs for which only crude functions are known, and assigns differential functions to miRNAs with closely related sequences. Applying our approach to groups of co-expressed genes allows us to identify miRNAs and genomic miRNA clusters with functional importance in specific stages of early human development. A full list of the predicted mRNA functions is available at http://acgt.cs.tau.ac.il/fame/. PMID:20576699

  5. MicroRNA evolution by arm switching.

    PubMed

    Griffiths-Jones, Sam; Hui, Jerome H L; Marco, Antonio; Ronshaugen, Matthew

    2011-02-01

    MicroRNAs (miRNAs) modulate transcript stability and translation. Functional mature miRNAs are processed from one or both arms of the hairpin precursor. The miR-100/10 family has undergone three independent evolutionary events that have switched the arm from which the functional miRNA is processed. The dominant miR-10 sequences in the insects Drosophila melanogaster and Tribolium castaneum are processed from opposite arms. However, the duplex produced by Dicer cleavage has an identical sequence in fly and beetle. Expression of the Tribolium miR-10 sequence in Drosophila S2 cells recapitulates the native beetle pattern. Thus, arm usage is encoded in the primary miRNA sequence, but outside the mature miRNA duplex. We show that the predicted messenger RNA targets and inferred function of sequences from opposite arms differ significantly. Arm switching is likely to be general, and provides a fundamental mechanism to evolve the function of a miRNA locus and target gene network.

  6. Bioinformatic tools for microRNA dissection

    PubMed Central

    Akhtar, Most Mauluda; Micolucci, Luigina; Islam, Md Soriful; Olivieri, Fabiola; Procopio, Antonio Domenico

    2016-01-01

    Recently, microRNAs (miRNAs) have emerged as important elements of gene regulatory networks. MiRNAs are endogenous single-stranded non-coding RNAs (∼22-nt long) that regulate gene expression at the post-transcriptional level. Through pairing with mRNA, miRNAs can down-regulate gene expression by inhibiting translation or stimulating mRNA degradation. In some cases they can also up-regulate the expression of a target gene. MiRNAs influence a variety of cellular pathways that range from development to carcinogenesis. The involvement of miRNAs in several human diseases, particularly cancer, makes them potential diagnostic and prognostic biomarkers. Recent technological advances, especially high-throughput sequencing, have led to an exponential growth in the generation of miRNA-related data. A number of bioinformatic tools and databases have been devised to manage this growing body of data. We analyze 129 miRNA tools that are being used in diverse areas of miRNA research, to assist investigators in choosing the most appropriate tools for their needs. PMID:26578605

  7. Macros in microRNA target identification

    PubMed Central

    Tarang, Shikha; Weston, Michael D

    2014-01-01

    MicroRNAs (miRNAs) are short RNA molecules that modulate post-transcriptional gene expression by partial or incomplete base-pairing to the complementary sequences on their target genes. Sequence-based miRNA target gene recognition enables the utilization of computational methods, which are highly informative in identifying a subset of putative miRNA targets from the genome. Subsequently, single miRNA–target gene binding is evaluated experimentally by in vitro assays to validate and quantify the transcriptional or post-transcriptional effects of miRNA–target gene interaction. Although ex vivo approaches are instructive in providing a basis for further analyses, in vivo genetic studies are critical to determine the occurrence and biological relevance of miRNA targets under physiological conditions. In the present review, we summarize the important features of each of the experimental approaches, their technical and biological limitations, and future challenges in light of the complexity of miRNA target gene recognition. PMID:24717361

  8. Bioinformatic tools for microRNA dissection.

    PubMed

    Akhtar, Most Mauluda; Micolucci, Luigina; Islam, Md Soriful; Olivieri, Fabiola; Procopio, Antonio Domenico

    2016-01-01

    Recently, microRNAs (miRNAs) have emerged as important elements of gene regulatory networks. MiRNAs are endogenous single-stranded non-coding RNAs (~22-nt long) that regulate gene expression at the post-transcriptional level. Through pairing with mRNA, miRNAs can down-regulate gene expression by inhibiting translation or stimulating mRNA degradation. In some cases they can also up-regulate the expression of a target gene. MiRNAs influence a variety of cellular pathways that range from development to carcinogenesis. The involvement of miRNAs in several human diseases, particularly cancer, makes them potential diagnostic and prognostic biomarkers. Recent technological advances, especially high-throughput sequencing, have led to an exponential growth in the generation of miRNA-related data. A number of bioinformatic tools and databases have been devised to manage this growing body of data. We analyze 129 miRNA tools that are being used in diverse areas of miRNA research, to assist investigators in choosing the most appropriate tools for their needs.

  9. Modulation of microRNA Activity by Semi-microRNAs

    PubMed Central

    Plante, Isabelle; Plé, Hélène; Landry, Patricia; Gunaratne, Preethi H.; Provost, Patrick

    2012-01-01

    The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19–24-nucleotide (nt) long microRNAs. Subsequently incorporated into Argonaute 2 (Ago2) effector complexes, microRNAs are known to regulate messenger RNA (mRNA) translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5′ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that the 12-nt RNA species, generated along the microRNA pathway, may participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo. PMID:22675332

  10. Sequence fingerprints of microRNA conservation.

    PubMed

    Shi, Bing; Gao, Wei; Wang, Juan

    2012-01-01

    It is known that the conservation of protein-coding genes is associated with their sequences both various species, such as animals and plants. However, the association between microRNA (miRNA) conservation and their sequences in various species remains unexplored. Here we report the association of miRNA conservation with its sequence features, such as base content and cleavage sites, suggesting that miRNA sequences contain the fingerprints for miRNA conservation. More interestingly, different species show different and even opposite patterns between miRNA conservation and sequence features. For example, mammalian miRNAs show a positive/negative correlation between conservation and AU/GC content, whereas plant miRNAs show a negative/positive correlation between conservation and AU/GC content. Further analysis puts forward the hypothesis that the introns of protein-coding genes may be a main driving force for the origin and evolution of mammalian miRNAs. At the 5' end, conserved miRNAs have a preference for base U, while less-conserved miRNAs have a preference for a non-U base in mammals. This difference does not exist in insects and plants, in which both conserved miRNAs and less-conserved miRNAs have a preference for base U at the 5' end. We further revealed that the non-U preference at the 5' end of less-conserved mammalian miRNAs is associated with miRNA function diversity, which may have evolved from the pressure of a highly sophisticated environmental stimulus the mammals encountered during evolution. These results indicated that miRNA sequences contain the fingerprints for conservation, and these fingerprints vary according to species. More importantly, the results suggest that although species share common mechanisms by which miRNAs originate and evolve, mammals may develop a novel mechanism for miRNA origin and evolution. In addition, the fingerprint found in this study can be predictor of miRNA conservation, and the findings are helpful in achieving a

  11. Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2

    PubMed Central

    Bazot, Quentin; Paschos, Kostas; Skalska, Lenka; Kalchschmidt, Jens S.; Parker, Gillian A.; Allday, Martin J.

    2015-01-01

    We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters – widely reported to have cell transformation-associated activity – are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours – including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs. PMID:26153983

  12. Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation

    PubMed Central

    Manakov, Sergei A; Grant, Seth GN; Enright, Anton J

    2009-01-01

    Background Synapse formation and the development of neural networks are known to be controlled by a coordinated program of mRNA synthesis. microRNAs are now recognized to be important regulators of mRNA translation and stability in a wide variety of organisms. While specific microRNAs are known to be involved in neural development, the extent to which global microRNA and mRNA profiles are coordinately regulated in neural development is unknown. Results We examined mouse primary neuronal cultures, analyzing microRNA and mRNA expression. Three main developmental patterns of microRNA expression were observed: steady-state levels, up-regulated and down-regulated. Co-expressed microRNAs were found to have related target recognition sites and to be encoded in distinct genomic locations. A number of 43 differentially expressed miRNAs were located in five genomic clusters. Their predicted mRNA targets show reciprocal levels of expression. We identified a set of reciprocally expressed microRNAs that target mRNAs encoding postsynaptic density proteins and high-level steady-state microRNAs that target non-neuronal low-level expressed mRNAs. Conclusion We characterized hundreds of miRNAs in neuronal culture development and identified three major modes of miRNA expression. We predict these miRNAs to regulate reciprocally expressed protein coding genes, including many genes involved in synaptogenesis. The identification of miRNAs that target mRNAs during synaptogenesis indicates a new level of regulation of the synapse. PMID:19737397

  13. Mammalian 5′-capped microRNA precursors that generate a single microRNA

    PubMed Central

    Xie, Mingyi; Li, Mingfeng; Vilborg, Anna; Lee, Nara; Shu, Mei-Di; Yartseva, Valeria; Šestan, Nenad; Steitz, Joan A.

    2014-01-01

    Summary MicroRNAs (miRNAs) are short RNA gene regulators typically produced from primary transcripts that are cleaved by the nuclear Microprocessor complex, with the resulting precursor miRNA hairpins exported by Exportin-5 and processed by cytoplasmic Dicer to yield two (5p- and 3p-) miRNAs. Here, we document Microprocessor-independent 7-methylguanosine (m7G) capped pre-miRNAs, whose 5′ ends coincide with transcription start sites, while the 3′ ends are most likely generated by transcription termination. By establishing a small RNA Cap-seq method that employs the cap-binding protein eIF4E, we identified a group of murine m7G-capped pre-miRNAs genome-wide. The m7G-capped pre-miRNAs are exported via the PHAX-Exportin-1 pathway. After Dicer cleavage, only the 3p-miRNA is efficiently loaded onto Argonaute to form a functional microRNP. This unusual miRNA biogenesis pathway, which differs in pre-miRNA synthesis, nuclear-cytoplasmic transport and guide strand selection, enables the development of shRNA expression constructs that produce a single 3p-siRNA. PMID:24360278

  14. MicroRNA in United Airway Diseases

    PubMed Central

    Liu, Zheng; Zhang, Xin-Hao; Callejas-Díaz, Borja; Mullol, Joaquim

    2016-01-01

    The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD. PMID:27187364

  15. microRNA and Cardiac Regeneration.

    PubMed

    Gnecchi, Massimiliano; Pisano, Federica; Bariani, Riccardo

    2015-01-01

    Heart diseases are a very common health problem in developed as well as developing countries. In particular, ischemic heart disease and heart failure represent a plague for the patients and for the society. Loss of cardiac tissue after myocardial infarction or dysfunctioning tissue in nonischemic cardiomyopathies may result in cardiac failure. Despite great advancements in the treatment of these diseases, there is a substantial unmet need for novel therapies, ideally addressing repair and regeneration of the damaged or lost myocardium. Along this line, cardiac cell based therapies have gained substantial attention. Three main approaches are currently under investigation: stem cell therapy with either embryonic or adult stem cells; generation of patient-specific induced pluripotent stem cells; stimulation of endogenous regeneration trough direct reprogramming of fibroblasts into cardiomyocytes, activation of resident cardiac stem cells or induction of native resident cardiomyocytes to reenter the cell cycle. All these strategies need to be optimized since their efficiency is low.It has recently become clear that cardiac signaling and transcriptional pathways are intimately intertwined with microRNA molecules which act as modulators of cardiac development, function, and disease. Moreover, miRNA also regulates stem cell differentiation. Here we describe how miRNA may circumvent hurdles that hamper the field of cardiac regeneration and stem cell therapy, and how miRNA may result as the most suitable solution for the damaged heart.

  16. MicroRNA in Teleost Fish

    PubMed Central

    Bizuayehu, Teshome Tilahun; Babiak, Igor

    2014-01-01

    MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts. PMID:25053657

  17. Structural Basis for microRNA Targeting

    PubMed Central

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2015-01-01

    Summary MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides 2–5 for initial target pairing. Pairing to nt 2–5 promotes conformational changes that expose nt 2–8 and 13–16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, while an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide pairing patterns in animal miRNA target sites first observed over two decades ago. PMID:25359968

  18. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells.

    PubMed

    Guo, Yong; Wang, Yang; Liu, Yinqin; Liu, Yongming; Zeng, Qiangcheng; Zhao, Yumin; Zhang, Xinchang; Zhang, Xizheng

    2015-08-01

    MicroRNA (miRNA) is an important regulator of cell differentiation and function. Mechanical strain is important in the growth and differentiation of osteoblasts. Therefore, mechanresponsive miRNA may be important in the response of osteoblasts to mechanical strain. The purpose of the present study was to select and identify the mechanoresponsive miRNAs of osteoblasts. Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with a mechanical tensile strain of 2,50 με at 0.5 Hz, and the activity of alkaline phosphatase (ALP), mRNA levels of ALP, osteocalcin (OCN), and collagen type I (Col I), and protein levels of bone morphogenetic proteins (BMPs) in the cell culture medium were assayed. Following miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the mechanically strained cells and unstrained cells were selected and identified. Using bioinformatics analysis, the target genes of the miRNAs were then predicted. The results revealed that the mechanical strain of 2,500 με increased the activity of ALP, the mRNA levels of ALP, OCN and Col I, and the protein levels of bone morphogenetic protein(BMP)-2 and BMP-4 Continuous mechanical stimulation for 8 h had the most marked stimulant effects. miR-218, miR-191*, miR-3070a and miR-33 were identified as differentially expressed miRNAs in the mechanically strained MC3T3-E1 cells. Certain target genes of these four miRNAs were involved in osteoblastic differentiation. These findings indicated that a mechanical strain of 2,500 με, particularly for a period of 8 h, promoted osteoblastic differentiation, and the four mechanoresponsive miRNAs identified may be a potential regulator of osteoblastic differentiation and their response to mechanical strain.

  19. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans

    PubMed Central

    Ren, Zhiji; Veksler-Lublinsky, Isana; Morrissey, David; Ambros, Victor

    2016-01-01

    The double-stranded RNA-binding protein Staufen has been implicated in various posttranscriptional gene regulatory processes. Here, we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer, and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3′ untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs or other small RNA populations between wild-type and stau-1 mutants, with the exception of certain endogenous siRNAs in the WAGO pathway. The modulation of microRNA activity by STAU-1 does not seem to be associated with the previously reported enhanced exogenous RNAi (Eri) phenotype of stau-1 mutants, since eri-1 exhibits the opposite effect on microRNA activity. Altogether, our results suggest that STAU-1 negatively modulates microRNA activity downstream of microRNA biogenesis, possibly by competing with microRNAs for binding on the 3′ untranslated region of target mRNAs. PMID:26921297

  20. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans.

    PubMed

    Ren, Zhiji; Veksler-Lublinsky, Isana; Morrissey, David; Ambros, Victor

    2016-01-01

    The double-stranded RNA-binding protein Staufen has been implicated in various posttranscriptional gene regulatory processes. Here, we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer, and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3' untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs or other small RNA populations between wild-type and stau-1 mutants, with the exception of certain endogenous siRNAs in the WAGO pathway. The modulation of microRNA activity by STAU-1 does not seem to be associated with the previously reported enhanced exogenous RNAi (Eri) phenotype of stau-1 mutants, since eri-1 exhibits the opposite effect on microRNA activity. Altogether, our results suggest that STAU-1 negatively modulates microRNA activity downstream of microRNA biogenesis, possibly by competing with microRNAs for binding on the 3' untranslated region of target mRNAs. PMID:26921297

  1. MicroRNA Therapeutics: the Next Magic Bullet?

    PubMed Central

    Simonson, Bridget; Das, Saumya

    2015-01-01

    MicroRNAs are short noncoding 18–25 nucleotide long RNA which bind and inhibit mRNA. Currently, there are over 1000 known human microRNAs, and microRNAs control over 50% of mammalian protein coding genes. MicroRNAs can be overexpressed or repressed in different diseases and inhibition or replacement of microRNAs is a promising area of study for therapeutics. Here we review the current knowledge of microRNA therapy, and discuss ways in which they can be utilized. We also discuss different methods of delivery of miRNA, and current clinical trials of microRNA-based therapies for disease. Finally we discuss the current limitations in the field, and how these limitations are being overcome. PMID:25807941

  2. Placental microRNA expression in pregnancies complicated by preeclampsia

    PubMed Central

    Enquobahrie, Daniel A.; Abetew, Dejene F.; Sorensen, Tanya K.; Willoughby, David; Chidambaram, Kumaravel; Williams, Michelle A.

    2010-01-01

    Objective The role of post-transcription regulation in preeclampsia is largely unknown. We investigated preeclampsia related placental microRNA (miRNA) expression using microarray and confirmatory qRT-PCR experiments. Study design Placental expressions of characterized and novel miRNAs (1,295 probes) were measured in samples collected from 20 preeclampsia cases and 20 controls. Differential expression was evaluated using Students T-test and fold change analyses. In pathway analysis, we examined functions/functional relationships of targets of differentially expressed miRNAs. Results Eight miRNAs were differentially expressed (1 up- and 7 down-regulated) among preeclampsia cases compared with controls. These included previously identified candidates (miR-210, miR-1 and a miRNA in the 14q32.31 cluster region) and others that are novel (miR- 584 and miR-34c-5p). These miRNAs target genes that participate in organ/system development (cardiovascular and reproductive system), immunologic dysfunction, cell adhesion, cell cycle and signaling. Conclusion Expression of microRNAs that target genes in diverse pathophysiological processes is altered in the setting of preeclampsia. PMID:21093846

  3. microRNA regulation of fruit growth.

    PubMed

    José Ripoll, Juan; Bailey, Lindsay J; Mai, Quynh-Anh; Wu, Scott L; Hon, Cindy T; Chapman, Elisabeth J; Ditta, Gary S; Estelle, Mark; Yanofsky, Martin F

    2015-01-01

    Growth is a major factor in plant organ morphogenesis and is influenced by exogenous and endogenous signals including hormones. Although recent studies have identified regulatory pathways for the control of growth during vegetative development, there is little mechanistic understanding of how growth is controlled during the reproductive phase. Using Arabidopsis fruit morphogenesis as a platform for our studies, we show that the microRNA miR172 is critical for fruit growth, as the growth of fruit is blocked when miR172 activity is compromised. Furthermore, our data are consistent with the FRUITFULL (FUL) MADS-domain protein and Auxin Response Factors (ARFs) directly activating the expression of a miR172-encoding gene to promote fruit valve growth. We have also revealed that MADS-domain (such as FUL) and ARF proteins directly associate in planta. This study defines a novel and conserved microRNA-dependent regulatory module integrating developmental and hormone signalling pathways in the control of plant growth. PMID:27247036

  4. microRNA regulation of fruit growth.

    PubMed

    José Ripoll, Juan; Bailey, Lindsay J; Mai, Quynh-Anh; Wu, Scott L; Hon, Cindy T; Chapman, Elisabeth J; Ditta, Gary S; Estelle, Mark; Yanofsky, Martin F

    2015-03-30

    Growth is a major factor in plant organ morphogenesis and is influenced by exogenous and endogenous signals including hormones. Although recent studies have identified regulatory pathways for the control of growth during vegetative development, there is little mechanistic understanding of how growth is controlled during the reproductive phase. Using Arabidopsis fruit morphogenesis as a platform for our studies, we show that the microRNA miR172 is critical for fruit growth, as the growth of fruit is blocked when miR172 activity is compromised. Furthermore, our data are consistent with the FRUITFULL (FUL) MADS-domain protein and Auxin Response Factors (ARFs) directly activating the expression of a miR172-encoding gene to promote fruit valve growth. We have also revealed that MADS-domain (such as FUL) and ARF proteins directly associate in planta. This study defines a novel and conserved microRNA-dependent regulatory module integrating developmental and hormone signalling pathways in the control of plant growth.

  5. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner

    PubMed Central

    Woldemichael, Bisrat T.; Jawaid, Ali; Kremer, Eloïse A.; Gaur, Niharika; Krol, Jacek; Marchais, Antonin; Mansuy, Isabelle M.

    2016-01-01

    Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain. PMID:27558292

  6. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner.

    PubMed

    Woldemichael, Bisrat T; Jawaid, Ali; Kremer, Eloïse A; Gaur, Niharika; Krol, Jacek; Marchais, Antonin; Mansuy, Isabelle M

    2016-01-01

    Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain. PMID:27558292

  7. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    PubMed

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  8. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.

    PubMed

    Bellemer, Clément; Bortolin-Cavaillé, Marie-Line; Schmidt, Ute; Jensen, Stig Mølgaard Rask; Kjems, Jørgen; Bertrand, Edouard; Cavaillé, Jérôme

    2012-06-01

    Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.

  9. An Integrative Analysis of microRNA and mRNA Profiling in CML Stem Cells.

    PubMed

    Nassar, Farah J; El Eit, Rabab; Nasr, Rihab

    2016-01-01

    Integrative analysis of microRNA (miRNA) and messenger RNA (mRNA) in Chronic Myeloid leukemia (CML) stem cells is an important technique to study the involvement of miRNA and their targets in CML stem cells self-renewal, maintenance, and therapeutic resistance. Here, we describe a simplified integrative analysis using Ingenuity Pathway Analysis software after performing proper RNA extraction, miRNA and mRNA microarray and data analysis. PMID:27581151

  10. MicroRNA-155 Reinforces HIV Latency*

    PubMed Central

    Ruelas, Debbie S.; Chan, Jonathan K.; Oh, Eugene; Heidersbach, Amy J.; Hebbeler, Andrew M.; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C.

    2015-01-01

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. PMID:25873391

  11. MicroRNA and Cancer Chemoprevention

    PubMed Central

    Yi, Bin; Piazza, Gary A.; Su, Xiulan; Xi, Yaguang

    2013-01-01

    MicroRNAs (miRNAs) are a group of naturally occurring, small, non-coding, and single-strand RNA molecules that regulate gene expression at the post-transcriptional and translational levels. By controlling the expression of oncogenic and tumor suppressor proteins, miRNAs are believed to play an important role in pathological processes associated with malignant progression including tumor cell proliferation, apoptosis, differentiation, angiogenesis, invasion and metastasis. However, relatively few studies have investigated the influence of chemopreventive agents on miRNA expression and their regulation of target genes. Given the significance of miRNAs in modulating gene expression, such research can provide insight into the pleiotropic biological effects that chemopreventive agents often display and a deeper understanding of their mechanism of action to inhibit carcinogenesis. Additionally, miRNAs can provide useful biomarkers for assessing antineoplastic activity of these agents in preclinical and clinical observations. In this review, we summarize recent publications that highlight a potentially important role of miRNAs in cancer chemoprevention research. PMID:23531448

  12. MicroRNA Regulation of Atherosclerosis.

    PubMed

    Feinberg, Mark W; Moore, Kathryn J

    2016-02-19

    Atherosclerosis and its attendant clinical complications, such as myocardial infarction, stroke, and peripheral artery disease, are the leading cause of morbidity and mortality in Western societies. In response to biochemical and biomechanical stimuli, atherosclerotic lesion formation occurs from the participation of a range of cell types, inflammatory mediators, and shear stress. Over the past decade, microRNAs (miRNAs) have emerged as evolutionarily conserved, noncoding small RNAs that serve as important regulators and fine-tuners of a range of pathophysiological cellular effects and molecular signaling pathways involved in atherosclerosis. Accumulating studies reveal the importance of miRNAs in regulating key signaling and lipid homeostasis pathways that alter the balance of atherosclerotic plaque progression and regression. In this review, we highlight current paradigms of miRNA-mediated effects in atherosclerosis progression and regression. We provide an update on the potential use of miRNAs diagnostically for detecting increasing severity of coronary disease and clinical events. Finally, we provide a perspective on therapeutic opportunities and challenges for miRNA delivery in the field.

  13. Epigenetics, microRNA, and addiction.

    PubMed

    Kenny, Paul J

    2014-09-01

    Drug addiction is characterized by uncontrolled drug consumption and high rates of relapse to drug taking during periods of attempted abstinence. Addiction is now largely considered a disorder of experience-dependent neuroplasticity, driven by remodeling of synapses in reward and motivation relevant brain circuits in response to a history of prolonged drug intake. Alterations in gene expression play a central role in addiction-relevant neuroplasticity, but the mechanisms by which additive drugs remodel brain motivation circuits remains unclear. MicroRNAs (miRNAs) are a class of noncoding RNA that can regulate the expression of large numbers of protein-coding mRNA transcripts by binding to the 3' untranslated region (3' UTR) of target transcripts and blocking their translation into the encoded protein or triggering their destabilization and degradation. Emerging evidence has implicated miRNAs in regulating addiction-relevant neuroplasticity in the brain, and in controlling the motivational properties of cocaine and other drugs of abuse. Here, the role for miRNAs in regulating basic aspects of neuronal function is reviewed. The involvement of miRNAs in controlling the motivational properties of addictive drugs is also summarized. Finally, mechanisms by which miRNAs exert their actions on drug intake, when known, are considered.

  14. MicroRNA modulation in obesity and periodontitis.

    PubMed

    Perri, R; Nares, S; Zhang, S; Barros, S P; Offenbacher, S

    2012-01-01

    The aim of this pilot investigation was to determine if microRNA expression differed in the presence or absence of obesity, comparing gingival biopsies obtained from patients with or without periodontal disease. Total RNA was extracted from gingival biopsy samples collected from 20 patients: 10 non-obese patients (BMI < 30 kg/m(2)) and 10 obese patients (BMI > 30 kg/m(2)), each group with 5 periodontally healthy sites and 5 chronic periodontitis sites. MicroRNA expression patterns were assessed with a quantitative microRNA PCR array to survey 88 candidate microRNA species. Four microRNA databases were used to identify potential relevant mRNA target genes of differentially expressed microRNAs. Two microRNA species (miR-18a, miR-30e) were up-regulated among obese individuals with a healthy periodontium. Two microRNA species (miR-30e, miR-106b) were up-regulated in non-obese individuals with periodontal disease. In the presence of periodontal disease and obesity, 9 of 11 listed microRNAs were significantly up-regulated (miR-15a, miR-18a, miR-22, miR-30d, miR-30e, miR-103, miR-106b, miR-130a, miR-142-3p, miR-185, and miR-210). Predicted targets include 69 different mRNAs from genes that comprise cytokines, chemokines, specific collagens, and regulators of glucose and lipid metabolism. The expression of specific microRNA species in obesity, which could also target and post-transcriptionally modulate cytokine mRNA, provides new insight into possible mechanisms of how risk factors might modify periodontal inflammation and may represent novel therapeutic targets. PMID:22043006

  15. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  16. MicroRNA in rectal cancer

    PubMed Central

    Azizian, Azadeh; Gruber, Jens; Ghadimi, B Michael; Gaedcke, Jochen

    2016-01-01

    In rectal cancer, one of the most common cancers worldwide, the proper staging of the disease determines the subsequent therapy. For those with locally advanced rectal cancer, a neoadjuvant chemoradiotherapy (CRT) is recommended before any surgery. However, response to CRT ranges from complete response (responders) to complete resistance (non-responders). To date we are not able to separate in advance the first group from the second, due to the absence of a valid biomarker. Therefore all patients receive the same therapy regardless of whether they reap benefits. On the other hand almost all patients receive a surgical resection after the CRT, although a watch-and-wait procedure or an endoscopic resection might be sufficient for those who responded well to the CRT. Being highly conserved regulators of gene expression, microRNAs (miRNAs) seem to be promising candidates for biomarkers. Many studies have been analyzing the miRNAs expressed in rectal cancer tissue to determine a specific miRNA profile for the ailment. Unfortunately, there is only a small overlap of identified miRNAs between different studies, posing the question as to whether different methods or differences in tissue storage may contribute to that fact or if the results simply are not reproducible, due to unknown factors with undetected influences on miRNA expression. Other studies sought to find miRNAs which correlate to clinical parameters (tumor grade, nodal stage, metastasis, survival) and therapy response. Although several miRNAs seem to have an impact on the response to CRT or might predict nodal stage, there is still only little overlap between different studies. We here aimed to summarize the current literature on rectal cancer and miRNA expression with respect to the different relevant clinical parameters. PMID:27190581

  17. MicroRNA profiles in various hepatocellular carcinoma cell lines

    PubMed Central

    Morishita, Asahiro; Iwama, Hisakazu; Fujihara, Shintaro; Sakamoto, Teppei; Fujita, Koji; Tani, Joji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Himoto, Takashi; Masaki, Tsutomu

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortality worldwide. Although surgery is considered the most effective treatment for patients with HCC, its indication is restricted by limited criteria and a high relapse rate following surgery; therefore, systemic chemotherapy is required for patients with advanced-stage HCC to prolong their survival. MicroRNAs (miRNAs) are endogenous non-coding RNAs of 18–22 nucleotides in length. It has been reported that aberrant expression of miRNAs is a feature shared by various types of human cancer. Previous studies have indicated that the modulation of non-coding RNAs, particularly miRNAs, may be a valuable therapeutic target for HCC. The aim of the present study was to elucidate the miRNA profiles associated with differentiation and hepatitis B virus (HBV) infection observed in HCC cell lines. The human Alex, Hep3B, HepG2, HuH1, HuH7, JHH1, JHH2, JHH5, JHH6, HLE, HLF and Li-7 HCC cell lines were used for an miRNA array. Replicate data were analyzed following their classification into: i) Poorly- and well-differentiated human HCC cells and ii) HBV-positive and -negative human HCC cells. Out of the 1,719 miRNAs, 4 were found to be significantly upregulated and 52 significantly downregulated in the poorly-differentiated cells, as compared with the well-differentiated cells. Conversely, in the HBV-positive cells 125 miRNAs were found to be upregulated and 2 downregulated, as compared with the HBV-negative cells. Unsupervised hierarchical clustering analysis with Pearson's correlation revealed that the miRNA expression levels were clustered both together and separately in each group. In conclusion, miRNA profile characterization based on various parameters may be a novel approach to determine the etiology of HCC. PMID:27588118

  18. MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms

    PubMed Central

    Heair, Hannah M.; Kemper, Austin G.; Roy, Bhaskar; Lopes, Helena B.; Rashid, Harunur; Clarke, John C.; Afreen, Lubana K.; Ferraz, Emanuela P.; Kim, Eddy; Javed, Amjad; Beloti, Marcio M.; MacDougall, Mary

    2015-01-01

    Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis. PMID:26124283

  19. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis

    PubMed Central

    Srivastava, Monika; Duan, Guowen; Kershaw, Nadia J.; Athanasopoulos, Vicki; Yeo, Janet H. C.; Ose, Toyoyuki; Hu, Desheng; Brown, Simon H. J.; Jergic, Slobodan; Patel, Hardip R.; Pratama, Alvin; Richards, Sashika; Verma, Anil; Jones, E. Yvonne; Heissmeyer, Vigo; Preiss, Thomas; Dixon, Nicholas E.; Chong, Mark M. W.; Babon, Jeffrey J.; Vinuesa, Carola G.

    2015-01-01

    Roquin is an RNA-binding protein that prevents autoimmunity and inflammation via repression of bound target mRNAs such as inducible costimulator (Icos). When Roquin is absent or mutated (Roquinsan), Icos is overexpressed in T cells. Here we show that Roquin enhances Dicer-mediated processing of pre-miR-146a. Roquin also directly binds Argonaute2, a central component of the RNA-induced silencing complex, and miR-146a, a microRNA that targets Icos mRNA. In the absence of functional Roquin, miR-146a accumulates in T cells. Its accumulation is not due to increased transcription or processing, rather due to enhanced stability of mature miR-146a. This is associated with decreased 3′ end uridylation of the miRNA. Crystallographic studies reveal that Roquin contains a unique HEPN domain and identify the structural basis of the ‘san’ mutation and Roquin’s ability to bind multiple RNAs. Roquin emerges as a protein that can bind Ago2, miRNAs and target mRNAs, to control homeostasis of both RNA species. PMID:25697406

  20. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  1. RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway.

    PubMed

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%-60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP's interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  2. Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures.

    PubMed

    Stik, Grégoire; Muylkens, Benoît; Coupeau, Damien; Laurent, Sylvie; Dambrine, Ginette; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Pfeffer, Sébastien; Rasschaert, Denis

    2014-07-10

    The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied

  3. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood

    PubMed Central

    2010-01-01

    Background MicroRNAs are a class of small non-coding RNAs that regulate mRNA expression at the post - transcriptional level and thereby many fundamental biological processes. A number of methods, such as multiplex polymerase chain reaction, microarrays have been developed for profiling levels of known miRNAs. These methods lack the ability to identify novel miRNAs and accurately determine expression at a range of concentrations. Deep or massively parallel sequencing methods are providing suitable platforms for genome wide transcriptome analysis and have the ability to identify novel transcripts. Results The results of analysis of small RNA sequences obtained by Solexa technology of normal peripheral blood mononuclear cells, tumor cell lines K562 and HL60 are presented. In general K562 cells displayed overall low level of miRNA population and also low levels of DICER. Some of the highly expressed miRNAs in the leukocytes include several members of the let-7 family, miR-21, 103, 185, 191 and 320a. Comparison of the miRNA profiles of normal versus K562 or HL60 cells revealed a specific set of differentially expressed molecules. Correlation of the miRNA with that of mRNA expression profiles, obtained by microarray, revealed a set of target genes showing inverse correlation with miRNA levels. Relative expression levels of individual miRNAs belonging to a cluster were found to be highly variable. Our computational pipeline also predicted a number of novel miRNAs. Some of the predictions were validated by Real-time RT-PCR and or RNase protection assay. Organization of some of the novel miRNAs in human genome suggests that these may also be part of existing clusters or form new clusters. Conclusions We conclude that about 904 miRNAs are expressed in human leukocytes. Out of these 370 are novel miRNAs. We have identified miRNAs that are differentially regulated in normal PBMC with respect to cancer cells, K562 and HL60. Our results suggest that post - transcriptional

  4. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA

    PubMed Central

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-01-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414

  5. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.

    PubMed

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-12-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex.

  6. High-Throughput Functional MicroRNA Profiling Using Recombinant AAV-Based MicroRNA Sensor Arrays

    PubMed Central

    Tian, Wenhong; Dong, Xiaoyan; Wu, Xiaobing; Wu, Zhijian

    2014-01-01

    There is a lack of methods for high-throughput functional microRNA (miRNA) profiling. In this chapter, we describe a recombinant adeno-associated virus-based miRNA sensor array (miRNA Asensor array), which is able to profile functional miRNAs in cultured cells. The preparation of an miRNA Asensor array and its usage are discussed. PMID:24026702

  7. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  8. MicroRNA and Heart Failure

    PubMed Central

    Wong, Lee Lee; Wang, Juan; Liew, Oi Wah; Richards, Arthur Mark; Chen, Yei-Tsung

    2016-01-01

    Heart failure (HF) imposes significant economic and public health burdens upon modern society. It is known that disturbances in neurohormonal status play an important role in the pathogenesis of HF. Therapeutics that antagonize selected neurohormonal pathways, specifically the renin-angiotensin-aldosterone and sympathetic nervous systems, have significantly improved patient outcomes in HF. Nevertheless, mortality remains high with about 50% of HF patients dying within five years of diagnosis thus mandating ongoing efforts to improve HF management. The discovery of short noncoding microRNAs (miRNAs) and our increasing understanding of their functions, has presented potential therapeutic applications in complex diseases, including HF. Results from several genome-wide miRNA studies have identified miRNAs differentially expressed in HF cohorts suggesting their possible involvement in the pathogenesis of HF and their potential as both biomarkers and as therapeutic targets. Unravelling the functional relevance of miRNAs within pathogenic pathways is a major challenge in cardiovascular research. In this article, we provide an overview of the role of miRNAs in the cardiovascular system. We highlight several HF-related miRNAs reported from selected cohorts and review their putative roles in neurohormonal signaling. PMID:27058529

  9. MicroRNA dysregulation in melanoma.

    PubMed

    Latchana, Nicholas; Ganju, Akaansha; Howard, J Harrison; Carson, William E

    2016-09-01

    Melanoma is the deadliest form of skin cancer. Current challenges facing the management of melanoma include accurate prediction of individuals who will respond to adjuvant therapies as well as early detection of recurrences. These and other challenges have prompted investigation into biomarkers that could be used as diagnostic, prognostic and therapeutic aids. MicroRNAs (miRs) are small 19-22 nucleotide RNA inhibitors of protein translation. Over 800 different miRs are present within cells and importantly miR expression profiles may vary across different cells types and stages of malignancy. Unique expression profiles have been described for malignant melanoma; however, this work has yet to be translated into routine clinical practice. We highlight pertinent studies involving common miRs implicated in the oncogenesis of melanoma including miR-21, miR-125b, miR-150, miR-155, miR-205, and miR-211. In particular, emphasis is placed upon differential expression across different stages of melanoma progression, prognostic implications and potential mechanistic involvement. Focused efforts on inhibition of these miRs could be the most efficient method of translating preclinical endeavors into clinically meaningful applications. PMID:27566021

  10. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  11. MicroRNA-33 in atherosclerosis etiology and pathophysiology.

    PubMed

    Chen, Wu-Jun; Zhang, Min; Zhao, Guo-Jun; Fu, Yuchang; Zhang, Da-Wei; Zhu, Hai-Bo; Tang, Chao-Ke

    2013-04-01

    MicroRNAs are a group of endogenous, small non-coding RNA molecules that can induce translation repression of target genes within metazoan cells by specific base pairing with the mRNA of target genes. Recently, microRNA-33 has been discovered as a key regulator in the initiation and progression of atherosclerosis. This review highlights the impact of microRNA-33-mediated regulation in the major cardiometabolic risk factors of atherosclerosis including lipid metabolism (HDL biogenesis and cholesterol homeostasis, fatty acid, phospholipid and triglyceride, bile acids metabolism), inflammatory response, insulin signaling and glucose/energy homeostasis, cell cycle progression and proliferation, and myeloid cell differentiation. Understanding the etiology and pathophysiology of microRNA-33 in atherosclerosis may provide basic knowledge for the development of novel therapeutic targets for ameliorating atherosclerosis and cardiovascular disease.

  12. Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors

    PubMed Central

    Hollensen, Anne Kruse; Bak, Rasmus O.; Haslund, Didde; Mikkelsen, Jacob Giehm

    2013-01-01

    MicroRNAs (miRNAs) are ubiquitous regulators of gene expression that contribute to almost any cellular process. Methods for managing of miRNA activity are attracting increasing attention in relation to diverse experimental and therapeutic applications. DNA-encoded miRNA inhibitors expressed from plasmid or virus-based vectors provide persistent miRNA suppression and options of tissue-directed micromanaging. In this report, we explore the potential of exploiting short, hairpin-shaped RNAs for simultaneous suppression of two or more miRNAs. Based on the “Tough Decoy” (TuD) design, we create dual-targeting hairpins carrying two miRNA recognition sites and demonstrate potent co-suppression of different pairs of unrelated miRNAs by a single DNA-encoded inhibitor RNA. In addition, enhanced miRNA suppression is achieved by expression of RNA polymerase II-transcribed inhibitors carrying clustered TuD hairpins with up to a total of eight miRNA recognition sites. Notably, by expressing clustered TuD inhibitors harboring a single recognition site for each of a total of six miRNAs, we document robust parallel suppression of multiple miRNAs by inhibitor RNA molecules encoded by a single expression cassette. These findings unveil a new potential of TuD-based miRNA inhibitors and pave the way for standardizing synchronized suppression of families or clusters of miRNAs. PMID:23324610

  13. Functions of microRNA-33a/b and microRNA therapeutics.

    PubMed

    Ono, Koh

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall. It is characterized by subendothelial accumulation of low-density lipoprotein cholesterol, and its subsequent modification at athero-prone areas leads to further activation of the vascular wall and maintains vascular inflammation. An entirely new level of post-transcriptional gene regulation through microRNA (miR) expression has emerged recently as an important mechanism in the development and progression of numerous diseases, including atherosclerosis. Recently, miR-33a/b have been shown to act as post-transcriptional regulators of lipid metabolism, and their pharmacological inhibition diminished atherosclerosis by raising plasma high-density lipoprotein levels. This review summarizes the current understanding of the functions of miR-33a/b and the progress in miRNA therapeutics for treatment of various diseases, including atherosclerosis.

  14. NPK macronutrients and microRNA homeostasis.

    PubMed

    Kulcheski, Franceli R; Côrrea, Régis; Gomes, Igor A; de Lima, Júlio C; Margis, Rogerio

    2015-01-01

    Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding. PMID:26136763

  15. NPK macronutrients and microRNA homeostasis

    PubMed Central

    Kulcheski, Franceli R.; Côrrea, Régis; Gomes, Igor A.; de Lima, Júlio C.; Margis, Rogerio

    2015-01-01

    Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant–microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding. PMID:26136763

  16. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    PubMed Central

    Kruhøffer, Mogens; Dyrskjøt, Lars; Voss, Thorsten; Lindberg, Raija L.P.; Wyrich, Ralf; Thykjaer, Thomas; Orntoft, Torben F.

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated microRNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis. PMID:17690207

  17. MicroRNA and Transcriptional Crosstalk in Myelinating Glia

    PubMed Central

    Svaren, John

    2014-01-01

    Several recent studies have addressed the important role of microRNA in regulation of differentiation of myelinating glia. While Schwann cells and oligodendrocytes in the peripheral and central nervous systems, respectively, exhibit significant morphological and regulatory differences, some aspects of transcriptional and microRNA regulation are shared between these two cell types. This review focuses on the intersection of microRNAs with transcriptional regulation in Schwann cell and oligodendrocyte differentiation. In particular, several microRNAs have been shown to modulate expression of critical transcription factors, and in turn, the regulation of microRNA expression is enmeshed within transcriptional networks that coordinate both coding gene and noncoding RNA profiles of myelinating cells. These hubs of regulation control both myelin gene expression as well as the cell cycle transitions of Schwann cells and oligodendrocytes as they terminally differentiate. In addition, some studies have begin to highlight the combinatorial effects of different microRNAs that establish the narrow range of gene regulation required for efficient and stable myelin formation. Overall, the integration of microRNA and transcriptional aspects will help elucidate mechanistic control of the myelination process. PMID:24979526

  18. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes.

    PubMed

    Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald

    2014-01-01

    Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40-50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92-or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed-about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to "Cellular Growth and Proliferation" and "Cell Cycle." Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID:25202322

  19. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes.

    PubMed

    Wang, Yirong; Luo, Junjie; Zhang, Hong; Lu, Jian

    2016-09-01

    MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a "functional co-adaptation" model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17-92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering. PMID:27189568

  20. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes

    PubMed Central

    Wang, Yirong; Luo, Junjie; Zhang, Hong; Lu, Jian

    2016-01-01

    MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a “functional co-adaptation” model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17–92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering. PMID:27189568

  1. Electron ionization study of ammonia micro-clusters

    PubMed

    Pelc; Michalak

    2000-01-01

    An electron impact ion source on a double focusing sector field mass spectrometer was used to investigate ammonia micro-clusters produced by the adiabatic free jet expansion of ammonia gas. The appearance energies for [NH(3)](n)(+), n clusters are described for a range of operating conditions. An empirical formula describing the ammonia clusters production is proposed. Copyright 2000 John Wiley & Sons, Ltd.

  2. Characterization of the rainbow trout oocyte microRNA transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-specific miRN...

  3. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    PubMed

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area.

  4. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  5. High-throughput microRNA profiling of pediatric high-grade gliomas

    PubMed Central

    Miele, Evelina; Buttarelli, Francesca Romana; Arcella, Antonella; Begalli, Federica; Garg, Neha; Silvano, Marianna; Po, Agnese; Baldi, Caterina; Carissimo, Giuseppe; Antonelli, Manila; Spinelli, Gian Paolo; Capalbo, Carlo; Donofrio, Vittoria; Morra, Isabella; Nozza, Paolo; Gulino, Alberto; Giangaspero, Felice; Ferretti, Elisabetta

    2014-01-01

    Background High-grade gliomas (HGGs) account for 15% of all pediatric brain tumors and are a leading cause of cancer-related mortality and morbidity. Pediatric HGGs (pHGGs) are histologically indistinguishable from their counterpart in adulthood. However, recent investigations indicate that differences occur at the molecular level, thus suggesting that the molecular path to gliomagenesis in childhood is distinct from that of adults. MicroRNAs (miRNAs) have been identified as key molecules in gene expression regulation, both in development and in cancer. miRNAs have been investigated in adult high-grade gliomas (aHGGs), but scant information is available for pHGGs. Methods We explored the differences in microRNAs between pHGG and aHGG, in both fresh-frozen and paraffin-embedded tissue, by high-throughput miRNA profiling. We also evaluated the biological effects of miR-17-92 cluster silencing on a pHGG cell line. Results Comparison of miRNA expression patterns in formalin versus frozen specimens resulted in high correlation between both types of samples. The analysis of miRNA profiling revealed a specific microRNA pattern in pHGG with an overexpression and a proliferative role of the miR-17-92 cluster. Moreover, we highlighted a possible quenching function of miR-17-92 cluster on its target gene PTEN, together with an activation of tumorigenic signaling such as sonic hedgehog in pHGG. Conclusions Our results suggest that microRNA profiling represents a tool to distinguishing pediatric from adult HGG and that miR-17-92 cluster sustains pHGG. PMID:24305714

  6. MR-05GLIOMA STEM CELL SPECIFIC microRNA-mRNA INTERACTION NETWORK

    PubMed Central

    Singh, Sanjay; Burrell, Kelly; Alamsahebpour, Amir; Koch, Elizabeth; Agnihotri, Sameer; Gumin, Joy; Sulman, Erik; Lang, Frederick; Wouters, Bradley; Aldape, Kenneth; Zadeh, Gelareh

    2014-01-01

    microRNAs have been shown to have oncogenic or tumor suppressor function in glioblastoma (GBM). It has been postulated that there exists an extensive microRNA-mediated RNA-RNA interaction network in GBMs utilizing systems biology approach supporting a competitive endogenous RNA (ce-RNA). MicroRNAs have functional relevance in the regulation of critical genes and pathways implicated in the maintenance of glioma stem cell (GSC) properties. To address this, we have applied biochemical methods to establish direct miRNA-mRNA interaction network relevant and specific to GSCs. To avoid inclusion of the inherent bias of miRNA-target prediction algorithms, we have generated an unbiased global miRNA mediated RNA-RNA interactome by performing RNA-sequencing all RNA species (small and large RNAs) isolated from AGO2-microRNA-induced silencing complex (miRISC) of GSCs and normal human neural stem cells (hNSCs). Additionally, we have also established this interactome after exposure of GSCs and normal hNSCs to hypoxia, a key tumor micro-environmental factor that is known to be pivotal in generating GBM heterogeneity. In all, three independent GSC lines and one NSC line were profiled, and results compared with each other. miRNA-mRNA interaction nodes were determined by RNA read counts from RNA-seq data and combinations of miRNA target prediction softwares. The rank order list of miRNA-mRNA interaction nodes generated from RNA sequence reads reveals that enrichment of specific RNAs in functional AGO2-miRISC is not a direct function of their relative abundance in cells, thus this biochemically generated interactome is distinct from that generated by bioinformatics tools. Our data shows that MYC as one of the key networks targetted by microRNAs specifically in GSCs under hypoxic conditions. We demonstrate that scope and influence of GSC specific miRNA-mRNA network and specific nodes of this interactome varies with hypoxia and tumor region in GBMs

  7. MicroRNA Expression Characterizes Oligometastasis(es)

    PubMed Central

    Lussier, Yves A.; Darga, Thomas E.; Malik, Renuka; Fan, Hanli; Perakis, Samantha; Filippo, Matthew; Corbin, Kimberly; Lee, Younghee; Posner, Mitchell C.; Chmura, Steven J.; Hellman, Samuel; Weichselbaum, Ralph R.

    2011-01-01

    Background Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy. Methods Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy. Results Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression. Conclusions These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment. PMID:22174856

  8. Scleral Micro-RNA Signatures in Adult and Fetal Eyes

    PubMed Central

    Metlapally, Ravikanth; Gonzalez, Pedro; Hawthorne, Felicia A.; Tran-Viet, Khanh-Nhat; Wildsoet, Christine F.; Young, Terri L.

    2013-01-01

    Introduction In human eyes, ocular enlargement/growth reflects active extracellular matrix remodeling of the outer scleral shell. Micro-RNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences. They serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses micro-RNAs, some of which modulate genes regulating ocular growth. In this study, the scleral micro-RNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses. Methods Scleral samples from normal human fetal (24 wk) and normal adult donor eyes were obtained (n=4 to 6, each group), and RNA extracted. Genome-wide micro-RNA profiling was performed using the Agilent micro-RNA microarray platform. Micro-RNA target predictions were obtained using Microcosm, TargetScan and PicTar algorithms. TaqMan® micro-RNA assays targeting micro-RNAs showing either highest significance, detection, or fold differences, and collagen specificity, were applied to scleral samples from posterior and peripheral ocular regions (n=7, each group). Microarray data were analyzed using R, and quantitative PCR data with 2^-deltaCt methods. Results Human sclera was found to express micro-RNAs, and comparison of microarray results for adult and fetal samples revealed many to be differentially expressed (p<0.01, min p= 6.5x1011). Specifically, fetal sclera showed increased expression of mir-214, let-7c, let-7e, mir-103, mir-107, and mir-98 (1.5 to 4 fold changes, p<0.01). However, no significant regionally specific differences .i.e., posterior vs. peripheral sclera, were observed for either adult or fetal samples. Conclusion For the first time, micro-RNA expression has been catalogued in human sclera. Some micro-RNAs show age-related differential regulation, higher in the sclera of rapidly growing fetal eyes, consistent with a role in ocular growth

  9. MicroRNA Polymorphisms in Cancer: A Literature Analysis

    PubMed Central

    Pipan, Veronika; Zorc, Minja; Kunej, Tanja

    2015-01-01

    Single nucleotide polymorphisms (SNPs) located in microRNA (miRNA) genes (miR-SNPs) have attracted increasing attention in recent years due to their involvement in the development of various types of cancer. Therefore, a systematic review on this topic was needed. From 55 scientific publications we collected 20 SNPs, which are located within 18 miRNA encoding genes and have been associated with 16 types of cancer. Among 20 miRNA gene polymorphisms 13 are located within the premature miRNA region, five within mature, and two within mature seed miRNA region. We graphically visualized a network of miRNA-cancer associations which revealed miRNA genes and cancer types with the highest number of connections. Our study showed that, despite a large number of variations currently known to be located within miRNA genes in humans, most of them have not yet been tested for association with cancer. MicroRNA SNPs collected in this study represent only 0.43% of known miRNA gene variations (20/4687). Results of the present study will be useful to researchers investigating the clinical use of miRNAs, such as the roles of miRNAs as diagnostic markers and therapeutic targets. PMID:26371044

  10. Identification of microRNA Genes in Three Opisthorchiids

    PubMed Central

    Ovchinnikov, Vladimir Y.; Afonnikov, Dmitry A.; Vasiliev, Gennady V.; Kashina, Elena V.; Sripa, Banchob; Mordvinov, Viacheslav A.; Katokhin, Alexey V.

    2015-01-01

    Background Opisthorchis felineus, O. viverrini, and Clonorchis sinensis (family Opisthorchiidae) are parasitic flatworms that pose a serious threat to humans in some countries and cause opisthorchiasis/clonorchiasis. Chronic disease may lead to a risk of carcinogenesis in the biliary ducts. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression at post-transcriptional level and are implicated in the regulation of various cellular processes during the parasite- host interplay. However, to date, the miRNAs of opisthorchiid flukes, in particular those essential for maintaining their complex biology and parasitic mode of existence, have not been satisfactorily described. Methodology/Principal Findings Using a SOLiD deep sequencing-bioinformatic approach, we identified 43 novel and 18 conserved miRNAs for O. felineus (miracidia, metacercariae and adult worms), 20 novel and 16 conserved miRNAs for O. viverrini (adult worms), and 33 novel and 18 conserved miRNAs for C. sinensis (adult worms). The analysis of the data revealed differences in the expression level of conserved miRNAs among the three species and among three the developmental stages of O. felineus. Analysis of miRNA genes revealed two gene clusters, one cluster-like region and one intronic miRNA in the genome. The presence and structure of the two gene clusters were validated using a PCR-based approach in the three flukes. Conclusions This study represents a comprehensive description of miRNAs in three members of the family Opistorchiidae, significantly expands our knowledge of miRNAs in multicellular parasites and provides a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites. Results of this study also provides novel resources for deeper understanding the complex parasite biology, for further research on the pathogenesis and molecular events of disease induced by the liver flukes. The present data may also facilitate the development of novel

  11. A Complex Genome-MicroRNA Interplay in Human Mitochondria

    PubMed Central

    Shinde, Santosh; Bhadra, Utpal

    2015-01-01

    Small noncoding regulatory RNA exist in wide spectrum of organisms ranging from prokaryote bacteria to humans. In human, a systematic search for noncoding RNA is mainly limited to the nuclear and cytosolic compartments. To investigate whether endogenous small regulatory RNA are present in cell organelles, human mitochondrial genome was also explored for prediction of precursor microRNA (pre-miRNA) and mature miRNA (miRNA) sequences. Six novel miRNA were predicted from the organelle genome by bioinformatics analysis. The structures are conserved in other five mammals including chimp, orangutan, mouse, rat, and rhesus genome. Experimentally, six human miRNA are well accumulated or deposited in human mitochondria. Three of them are expressed less prominently in Northern analysis. To ascertain their presence in human skeletal muscles, total RNA was extracted from enriched mitochondria by an immunomagnetic method. The expression of six novel pre-miRNA and miRNA was confirmed by Northern blot analysis; however, low level of remaining miRNA was found by sensitive Northern analysis. Their presence is further confirmed by real time RT-PCR. The six miRNA find their multiple targets throughout the human genome in three different types of software. The luciferase assay was used to confirm that MT-RNR2 gene was the potential target of hsa-miR-mit3 and hsa-miR-mit4. PMID:25695052

  12. A microRNA Link to Glioblastoma Heterogeneity

    PubMed Central

    Singh, Sanjay K.; Vartanian, Alenoush; Burrell, Kelly; Zadeh, Gelareh

    2012-01-01

    Glioblastomas (GBM) are one of the most malignant adult primary brain tumors. Through decades of research using various model systems and GBM patients, we have gained considerable insights into the mechanisms regulating GBM pathogenesis, but have mostly failed to significantly improve clinical outcome. For the most part GBM heterogeneity is responsible for this lack of progress. Here, we have discussed sources of cellular and microenvironmental heterogeneity in GBMs and their potential regulation through microRNA mediated mechanisms. We have focused on the role of individual microRNAs (miRNA) through their specific targets and miRNA mediated RNA-RNA interaction networks with the potential to influence various aspects of GBM heterogeneity including tumor neo-vascularization. We believe a better understanding of such mechanisms for regulation of GBM pathogenesis will be instrumental for future therapeutic options. PMID:24213470

  13. MicroRNA-regulated viral vectors for gene therapy.

    PubMed

    Geisler, Anja; Fechner, Henry

    2016-05-20

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  14. MicroRNA-regulated viral vectors for gene therapy

    PubMed Central

    Geisler, Anja; Fechner, Henry

    2016-01-01

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3’ untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3’ UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  15. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes

    PubMed Central

    Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald

    2014-01-01

    Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40–50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92—or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed—about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to “Cellular Growth and Proliferation” and “Cell Cycle.” Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID

  16. RNA Polymerase II cluster dynamics predict mRNA output in living cells

    PubMed Central

    Cho, Won-Ki; Jayanth, Namrata; English, Brian P; Inoue, Takuma; Andrews, J Owen; Conway, William; Grimm, Jonathan B; Spille, Jan-Hendrik; Lavis, Luke D; Lionnet, Timothée; Cisse, Ibrahim I

    2016-01-01

    Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001 PMID:27138339

  17. MicroRNA profiling in the malignant progression of gliomas

    NASA Astrophysics Data System (ADS)

    Stupak, E. V.; Veryaskina, Yu. A.; Titov, S. E.; Achmerova, L. G.; Stupak, V. V.; Ivanov, M. K.; Zhimulev, I. F.; Kolesnikov, N. N.

    2016-08-01

    Wealth of data indicates that microRNAs (miRNAs) are directly involved in carcinogenesis and that miRNA can, on their own, act as diagnostic and prognostic markers for various types of cancers, including gliomas. The aim of this study was to conduct a comparative analysis of expression profile for 10 microRNAs (miR-124, -125b, -16, -181b, -191, -21, -221, -223, -31, and -451) in surgical specimens of various hystotypes of glioimatissues vs adjacent normal tissues from the same patient (n = 77). The study identified specific microRNA expression profiles for different histotypes of tumors that are related to their degree of malignancy. We have outlined approaches to development of miRNA-based diagnostic and prognostic panel, which may be used to compensate for the lack of appropriate screening methods.

  18. The locus of microRNA-10b

    PubMed Central

    Biagioni, Francesca; Bossel Ben-Moshe, Noa; Fontemaggi, Giulia; Yarden, Yosef; Domany, Eytan; Blandino, Giovanni

    2013-01-01

    Contemporary microRNA research has led to significant advances in our understanding of the process of tumorigenesis. MicroRNAs participate in different events of a cancer cell’s life, through their ability to target hundreds of putative transcripts involved in almost every cellular function, including cell cycle, apoptosis, and differentiation. The relevance of these small molecules is even more evident in light of the emerging linkage between their expression and both prognosis and clinical outcome of many types of human cancers. This identifies microRNAs as potential therapeutic modifiers of cancer phenotypes. From this perspective, we overview here the miR-10b locus and its involvement in cancer, focusing on its role in the establishment (miR-10b*) and spreading (miR-10b) of breast cancer. We conclude that targeting the locus of microRNA 10b holds great potential for cancer treatment. PMID:23839045

  19. PmiRKB: a plant microRNA knowledge base

    PubMed Central

    Meng, Yijun; Gou, Lingfeng; Chen, Dijun; Mao, Chuanzao; Jin, Yongfeng; Wu, Ping; Chen, Ming

    2011-01-01

    MicroRNAs (miRNAs), one type of small RNAs (sRNAs) in plants, play an essential role in gene regulation. Several miRNA databases were established; however, successively generated new datasets need to be collected, organized and analyzed. To this end, we have constructed a plant miRNA knowledge base (PmiRKB) that provides four major functional modules. In the ‘SNP’ module, single nucleotide polymorphism (SNP) data of seven Arabidopsis (Arabidopsis thaliana) accessions and 21 rice (Oryza sativa) subspecies were collected to inspect the SNPs within pre-miRNAs (precursor microRNAs) and miRNA—target RNA duplexes. Depending on their locations, SNPs can affect the secondary structures of pre-miRNAs, or interactions between miRNAs and their targets. A second module, ‘Pri-miR’, can be used to investigate the tissue-specific, transcriptional contexts of pre- and pri-miRNAs (primary microRNAs), based on massively parallel signature sequencing data. The third module, ‘MiR–Tar’, was designed to validate thousands of miRNA—target pairs by using parallel analysis of RNA end (PARE) data. Correspondingly, the fourth module, ‘Self-reg’, also used PARE data to investigate the metabolism of miRNA precursors, including precursor processing and miRNA- or miRNA*-mediated self-regulation effects on their host precursors. PmiRKB can be freely accessed at http://bis.zju.edu.cn/pmirkb/. PMID:20719744

  20. MicroRNA, Nutrition, and Cancer Prevention1

    PubMed Central

    Ross, Sharon A.; Davis, Cindy D.

    2011-01-01

    MicroRNA (miRNA) are small noncoding RNA molecules that are involved in post-transcriptional gene silencing. Alterations in miRNA expression are observed in and may underlie many different human diseases, including cancer. In fact, miRNA have been shown to affect the hallmarks of cancer, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Genetic and epigenetic alterations may explain aberrant miRNA expression in cancer cells and may also contribute to cancer risk. It is now thought that by circulating through the bloodstream, miRNA can exert their effects at distant sites as well as within the cells of origin. Recent evidence suggests that nutrients and other bioactive food components protect against cancer through modulation of miRNA expression. Moreover, dietary factors have been shown to modify miRNA expression and their mRNA targets in various cancer processes, including apoptosis, cell cycle regulation, differentiation, inflammation, angiogenesis, and metastasis as well as pathways in stress response. Herein, we provide a brief overview of dietary modulation of miRNA expression and its potential role in cancer prevention. Understanding the affect of dietary factors on miRNA expression and function may provide insight on prevention strategies to reduce the burden of cancer. PMID:22332090

  1. Micro RNA in Exosomes from HIV-Infected Macrophages.

    PubMed

    Roth, William W; Huang, Ming Bo; Addae Konadu, Kateena; Powell, Michael D; Bond, Vincent C

    2015-12-22

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  2. MicroRNA Imaging in Combination with Diagnostic Ultrasound and Bubble Liposomes for MicroRNA Delivery.

    PubMed

    Endo-Takahashi, Yoko; Negishi, Yoichi; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2016-01-01

    MicroRNA (miRNA) is expected to play an important role in the diagnosis and therapy of various diseases. In miRNA therapy, the development of delivery tools to the target site is considered to be essential. By using a delivery tool possessing imaging ability, miRNA colocalized with the carrier could be visualized after administration. We prepared polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, "Bubble liposomes" (BLs), and confirmed that BLs containing cationic lipid were capable of loading miRNA. Furthermore, we also achieved the imaging and delivery of systemically injected miRNA to target site in combination with ultrasound exposure. MiRNA-loaded BLs could be a useful tool for imaging and therapy.

  3. Practical Aspects of microRNA Target Prediction.

    PubMed

    Witkos, T M; Koscianska, E; Krzyzosiak, W J

    2011-03-01

    microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington's disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1).

  4. Assessment of microRNA differential expression and detection in multiplexed small RNA sequencing data.

    PubMed

    Campbell, Joshua D; Liu, Gang; Luo, Lingqi; Xiao, Ji; Gerrein, Joseph; Juan-Guardela, Brenda; Tedrow, John; Alekseyev, Yuriy O; Yang, Ivana V; Correll, Mick; Geraci, Mark; Quackenbush, John; Sciurba, Frank; Schwartz, David A; Kaminski, Naftali; Johnson, W Evan; Monti, Stefano; Spira, Avrum; Beane, Jennifer; Lenburg, Marc E

    2015-02-01

    Small RNA sequencing can be used to gain an unprecedented amount of detail into the microRNA transcriptome. The relatively high cost and low throughput of sequencing bases technologies can potentially be offset by the use of multiplexing. However, multiplexing involves a trade-off between increased number of sequenced samples and reduced number of reads per sample (i.e., lower depth of coverage). To assess the effect of different sequencing depths owing to multiplexing on microRNA differential expression and detection, we sequenced the small RNA of lung tissue samples collected in a clinical setting by multiplexing one, three, six, nine, or 12 samples per lane using the Illumina HiSeq 2000. As expected, the numbers of reads obtained per sample decreased as the number of samples in a multiplex increased. Furthermore, after normalization, replicate samples included in distinct multiplexes were highly correlated (R > 0.97). When detecting differential microRNA expression between groups of samples, microRNAs with average expression >1 reads per million (RPM) had reproducible fold change estimates (signal to noise) independent of the degree of multiplexing. The number of microRNAs detected was strongly correlated with the log2 number of reads aligning to microRNA loci (R = 0.96). However, most additional microRNAs detected in samples with greater sequencing depth were in the range of expression which had lower fold change reproducibility. These findings elucidate the trade-off between increasing the number of samples in a multiplex with decreasing sequencing depth and will aid in the design of large-scale clinical studies exploring microRNA expression and its role in disease.

  5. The Whereabouts of microRNA Actions: Cytoplasm and Beyond.

    PubMed

    Leung, Anthony K L

    2015-10-01

    MicroRNAs (miRNAs) are a conserved class of approximately 22 nucleotide (nt) short noncoding RNAs that normally silence gene expression via translational repression and/or degradation of targeted mRNAs in plants and animals. Identifying the whereabouts of miRNAs potentially informs miRNA functions, some of which are perhaps specialized to specific cellular compartments. In this review, the significance of miRNA localizations in the cytoplasm, including those at RNA granules and endomembranes, and the export of miRNAs to extracellular space will be discussed. How miRNA localizations and functions are regulated by protein modifications on the core miRNA-binding protein Argonaute (AGO) during normal and stress conditions will be explored, and in conclusion new AGO partners, non-AGO miRNA-binding proteins, and the emergent understanding of miRNAs found in the nucleoplasm, nucleoli, and mitochondria will be discussed. PMID:26410406

  6. Progress in micro RNA focused research in endocrinology.

    PubMed

    Voglova, K; Bezakova, J; Herichova, Iveta

    2016-04-01

    Micro RNAs (miRNAs) are small regulatory molecules of increasing biologists' interest. miRNAs, unlikely mRNA, do not encode proteins. It is a class of small double stranded RNA molecules that via their seed sequence interact with mRNA and inhibit its expression. It has been estimated that 30% of human gene expression is regulated by miRNAs. One miRNA usually targets several mRNAs and one mRNA can be regulated by several miRNAs. miRNA biogenesis is realized by key enzymes, Drosha and Dicer. miRNA/mRNA interaction depends on binding to RNA-induced silencing complex. Today, complete commercially available methodical proposals for miRNA investigation are available. There are techniques allowing the identification of new miRNAs and new miRNA targets, validation of predicted targets, measurement of miRNAs and their precursor levels, and validation of physiological role of miRNAs under in vitro and in vivo conditions. miRNAs have been shown to influence gene expression in several endocrine glands, including pancreas, ovary, testes, hypothalamus, and pituitary. PMID:27560640

  7. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells.

    PubMed

    Shi, Changgui; Qi, Jin; Huang, Ping; Jiang, Min; Zhou, Qi; Zhou, Hanbing; Kang, Hui; Qian, Niandong; Yang, Qiumeng; Guo, Lei; Deng, Lianfu

    2014-11-01

    Glucocorticoids act on the osteoblasts to up-regulate the expression of RANKL, which is very important in the etiology of glucocorticoid-induced osteoclast differentiation and bone resorption. The mechanisms of this process are still not completely understood. Recent studies have shown that glucocorticoids mediate osteoblast function by decreasing the expression of microRNA-17-92a cluster. Coincidentally, we found that the microRNA-17/20a (microRNA-17, microRNA-20a) seed sequences were also complementary to a sequence conserved in the 3'- untranslated region of RANKL mRNA. Therefore, we hypothesized that glucocorticoids might promote osteoblast-derived RANKL expression by down-regulating microRNA-17/20a, which favors differentiation and function of the osteoclasts. In the present study, Western blot analysis showed that microRNA-17/20a markedly lowered the levels of RANKL protein and attenuated dexamethasone-induced RANKL expression in the osteoblasts. The post-transcriptional repression of RANKL by microRNA-17/20a was further confirmed by the luciferase reporter assay. Furthermore, we found that dexamethasone-induced osteoclast differentiation and function were significantly attenuated in co-culture with osteoblast over-expressed microRNA-17/20a and osteoclast progenitors. These results showed that microRNA-17/20a may play a significant role in glucocorticoid-induced osteoclast differentiation and function by targeting the RANKL expression in osteoblast cells.

  8. Analysis of microRNA Levels in Intestinal Epithelial Cells.

    PubMed

    Nguyen, Hang Thi Thu

    2016-01-01

    The field of microRNA (miRNA) research is expanding rapidly with the crucial role of miRNAs in almost every biological process and their implication in many diseases. The role of miRNAs in modulating inflammatory responses in the gut has attracted many research groups including us. Here, we first briefly summarize our current understanding of the role of miRNAs in maintaining and regulating gut physiopathology and in inflammatory bowel diseases. We then describe in detail our techniques to analyze miRNA levels with notes that we have collected and summarized during our experiments. PMID:27246025

  9. Control of metastatic progression by microRNA regulatory networks.

    PubMed

    Pencheva, Nora; Tavazoie, Sohail F

    2013-06-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, whereas others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention.

  10. Control of Metastatic Progression by microRNA Regulatory Networks

    PubMed Central

    Pencheva, Nora; Tavazoie, Sohail F.

    2015-01-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. These miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, while others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460

  11. Micro-terminator: 'Hasta la vista, lncRNA!'.

    PubMed

    Diederichs, Sven

    2015-04-01

    Transcriptional termination is an important yet incompletely understood aspect of gene expression. Proudfoot, Jopling and colleagues now identify a new Microprocessor-mediated mechanism of transcriptional termination, which acts specifically on long noncoding transcripts that serve as microRNA precursors.

  12. piRNA clusters and open chromatin structure

    PubMed Central

    2014-01-01

    Transposable elements (TEs) are major structural components of eukaryotic genomes; however, mobilization of TEs generally has negative effects on the host genome. To counteract this threat, host cells have evolved genetic and epigenetic mechanisms that keep TEs silenced. One such mechanism involves the Piwi-piRNA complex, which represses TEs in animal gonads either by cleaving TE transcripts in the cytoplasm or by directing specific chromatin modifications at TE loci in the nucleus. Most Piwi-interacting RNAs (piRNAs) are derived from genomic piRNA clusters. There has been remarkable progress in our understanding of the mechanisms underlying piRNA biogenesis. However, little is known about how a specific locus in the genome is converted into a piRNA-producing site. In this review, we will discuss a possible link between chromatin boundaries and piRNA cluster formation. PMID:25126116

  13. Developmental MicroRNA Expression Profiling of Murine Embryonic Orofacial Tissue

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Pihur, Vasyl; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    BACKGROUND Orofacial development is a multifaceted process involving precise, spatio-temporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs involved in gene silencing, represent critical regulators of cell and tissue differentiation. MicroRNA gene expression profiling is an effective means of acquiring novel and valuable information regarding the expression and regulation of genes, under the control of miRNA, involved in mammalian orofacial development. METHODS To identify differentially expressed miRNAs during mammalian orofacial ontogenesis, miRNA expression profiles from gestation day (GD) -12, -13 and -14 murine orofacial tissue were compared utilizing miRXplore microarrays from Miltenyi Biotech. Quantitative real-time PCR was utilized for validation of gene expression changes. Cluster analysis of the microarray data was conducted with the clValid R package and the UPGMA clustering method. Functional relationships between selected miRNAs were investigated using Ingenuity Pathway Analysis. RESULTS Expression of over 26% of the 588 murine miRNA genes examined was detected in murine orofacial tissues from GD-12–GD-14. Among these expressed genes, several clusters were seen to be developmentally regulated. Differential expression of miRNAs within such clusters were shown to target genes encoding proteins involved in cell proliferation, cell adhesion, differentiation, apoptosis and epithelial-mesenchymal transformation, all processes critical for normal orofacial development. CONCLUSIONS Using miRNA microarray technology, unique gene expression signatures of hundreds of miRNAs in embryonic orofacial tissue were defined. Gene targeting and functional analysis revealed that the expression of numerous protein-encoding genes, crucial to normal orofacial ontogeny, may be regulated by specific miRNAs. PMID:20589883

  14. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings. PMID:25030917

  15. MicroRNA regulation of lymphocyte tolerance and autoimmunity.

    PubMed

    Simpson, Laura J; Ansel, K Mark

    2015-06-01

    Understanding the cell-intrinsic cues that permit self-reactivity in lymphocytes, and therefore autoimmunity, requires an understanding of the transcriptional and posttranscriptional regulation of gene expression in these cells. In this Review, we address seminal and recent research on microRNA (miRNA) regulation of central and peripheral tolerance. Human and mouse studies demonstrate that the PI3K pathway is a critical point of miRNA regulation of immune cell development and function that affects the development of autoimmunity. We also discuss how miRNA expression profiling in human autoimmune diseases has inspired mechanistic studies of miRNA function in the pathogenesis of multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and asthma. PMID:26030228

  16. Plant-based microRNA presences in mice and human sera to breast milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant foods contain hundreds of thousands of different small RNAs, including microRNAs (miRNAs). A microRNA (miRNA) is a tiny (19-24 nucleotide) piece of RNA that attaches to a specific protein-making mRNA, thus inhibiting protein production. A recent finding shows that a miRNA in rice survives dige...

  17. Class Restricted Clustering and Micro-Perturbation for Data Privacy.

    PubMed

    Li, Xiao-Bai; Sarkar, Sumit

    2013-04-01

    The extensive use of information technologies by organizations to collect and share personal data has raised strong privacy concerns. To respond to the public's demand for data privacy, a class of clustering-based data masking techniques is increasingly being used for privacy-preserving data sharing and analytics. Traditional clustering-based approaches for masking numeric attributes, while addressing re-identification risks, typically do not consider the disclosure risk of categorical confidential attributes. We propose a new approach to deal with this problem. The proposed method clusters data such that the data points within a group are similar in the non-confidential attribute values whereas the confidential attribute values within a group are well distributed. To accomplish this, the clustering method, which is based on a minimum spanning tree (MST) technique, uses two risk-utility tradeoff measures in the growing and pruning stages of the MST technique respectively. As part of our approach we also propose a novel cluster-level micro-perturbation method for masking data that overcomes a common problem of traditional clustering-based methods for data masking, which is their inability to preserve important statistical properties such as the variance of attributes and the covariance across attributes. We show that the mean vector and the covariance matrix of the masked data generated using the micro-perturbation method are unbiased estimates of the original mean vector and covariance matrix. An experimental study on several real-world datasets demonstrates the effectiveness of the proposed approach.

  18. Functional anatomy of the Drosophila microRNA-generating enzyme.

    PubMed

    Ye, Xuecheng; Paroo, Zain; Liu, Qinghua

    2007-09-28

    In Drosophila melanogaster, the multidomain RNase III Dicer-1 (Dcr-1) functions in tandem with the double-stranded (ds)RNA-binding protein Loquacious (Loqs) to catalyze the maturation of microRNAs (miRNAs) from precursor (pre)-miRNAs. Here we dissect the molecular mechanism of pre-miRNA processing by the Dcr-1-Loqs complex. The tandem RNase III (RIII) domains of Dcr-1 form an intramolecular dimer such that one RIII domain cleaves the 3' strand, whereas the other cuts the 5' strand of pre-miRNA. We show that the functional core of Dcr-1 consists of a DUF283 domain, a PAZ domain, and two RIII domains. Dcr-1 preferentially associates with the Loqs-PB splice isoform. Loqs-PB uses the second dsRNA-binding domain to bind pre-miRNA and the third dsRNA-binding domain to interact with Dcr-1. Both domains of Loqs-PB are required for efficient miRNA production by enhancing the affinity of Dcr-1 for pre-miRNA. Thus, our results provide further insights into the functional anatomy of the Drosophila miRNA-generating enzyme.

  19. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  20. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  1. Discovery of MicroRNA169 Gene Copies in Genomes of Flowering Plants through Positional Information

    PubMed Central

    Calviño, Martín; Messing, Joachim

    2013-01-01

    Expansion and contraction of microRNA (miRNA) families can be studied in sequenced plant genomes through sequence alignments. Here, we focused on miR169 in sorghum because of its implications in drought tolerance and stem-sugar content. We were able to discover many miR169 copies that have escaped standard genome annotation methods. A new miR169 cluster was found on sorghum chromosome 1. This cluster is composed of the previously annotated sbi-MIR169o together with two newly found MIR169 copies, named sbi-MIR169t and sbi-MIR169u. We also found that a miR169 cluster on sorghum chr7 consisting of sbi-MIR169l, sbi-MIR169m, and sbi-MIR169n is contained within a chromosomal inversion of at least 500 kb that occurred in sorghum relative to Brachypodium, rice, foxtail millet, and maize. Surprisingly, synteny of chromosomal segments containing MIR169 copies with linked bHLH and CONSTANS-LIKE genes extended from Brachypodium to dictotyledonous species such as grapevine, soybean, and cassava, indicating a strong conservation of linkages of certain flowering and/or plant height genes and microRNAs, which may explain linkage drag of drought and flowering traits and would have consequences for breeding new varieties. Furthermore, alignment of rice and sorghum orthologous regions revealed the presence of two additional miR169 gene copies (miR169r and miR169s) on sorghum chr7 that formed an antisense miRNA gene pair. Both copies are expressed and target different set of genes. Synteny-based analysis of microRNAs among different plant species should lead to the discovery of new microRNAs in general and contribute to our understanding of their evolution. PMID:23348041

  2. Highly repetitive tRNA(Pro)-tRNA(His) gene cluster from Photobacterium phosphoreum.

    PubMed Central

    Giroux, S; Beaudet, J; Cedergren, R

    1988-01-01

    A DNA fragment comprising the four tRNA gene sequences of the Escherichia coli argT locus hybridized with two Sau3A-generated DNA fragments from the vibrio Photobacterium phosphoreum (ATCC 11040). Detailed sequence analysis of the longer fragment shows the following gene organization: 5'-promoter-tRNA(Pro)-tRNAPro-tRNA(Pro)-tRNA(His)-tRNA(Pro)-tRNA(Pro)- tRNA(His)-tRNA(Pro)-five pseudogenes derived from the upstream tRNAPro interspersed by putative Rho-independent terminators. This sequence demonstrates the presence of highly repetitive, tandem tRNA genes in a bacterial genome. Furthermore, a stretch of 304 nucleotides from this cluster was found virtually unchanged in the other (shorter) fragment which was previously sequenced. The two clusters together contain eight tRNA(Pro) pseudogenes and eight fully intact tRNA(Pro) genes, an unusually high number for a single eubacterial isoacceptor tRNA. These results show that the organization of some tRNA operons is highly variable in eubacteria. Images PMID:3056906

  3. Potent microRNA suppression by RNA Pol II-transcribed ‘Tough Decoy’ inhibitors

    PubMed Central

    Bak, Rasmus O.; Hollensen, Anne Kruse; Primo, Maria Nascimento; Sørensen, Camilla Darum; Mikkelsen, Jacob Giehm

    2013-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression and modulators of diverse biological pathways. Analyses of miRNA function as well as therapeutic managing of miRNAs rely on cellular administration of miRNA inhibitors which may be achieved by the use of viral vehicles. This study explores the miRNA-suppressive capacity of inhibitors expressed intracellularly from lentivirus-derived gene vectors. Superior activity of two decoy-type inhibitors, a “Bulged Sponge” with eight miRNA recognition sites and a hairpin-shaped “Tough Decoy” containing two miRNA recognition sites, is demonstrated in a side-by-side comparison of seven types of miRNA inhibitors transcribed as short RNAs from an RNA Pol III promoter. We find that lentiviral vectors expressing Tough Decoy inhibitors are less vulnerable than Bulged Sponge-encoding vectors to targeting by the cognate miRNA and less prone, therefore, to reductions in transfer efficiency. Importantly, it is demonstrated that Tough Decoy inhibitors retain their miRNA suppression capacity in the context of longer RNA transcripts expressed from an RNA Pol II promoter. Such RNA Pol II-transcribed Tough Decoy inhibitors are new tools in managing of miRNAs and may have potential for temporal and spatial regulation of miRNA activity as well as for therapeutic targeting of miRNAs that are aberrantly expressed in human disease. PMID:23249752

  4. MicroRNA-mediated regulation in the mammalian circadian rhythm.

    PubMed

    Liu, Kaihui; Wang, Ruiqi

    2012-07-01

    Mammalian circadian rhythms have been extensively studied for many years and many computational models have been presented. Most of the circadian rhythms are based on interlocked positive and negative feedback loops involving coding regions of some 'clock' genes. Recent works have implicated that microRNAs (miRNAs) may play crucial roles in modulating the circadian clock. Here we develop a computational model involving four genes, Per, Cry, Bmal1, and Clock, and two miRNAs, miRNA-219 and miRNA-132, to show their post-transcriptional roles in the modulation of the circadian rhythm. The model is based on experimental observations, by which the miRNAs are incorporated into a classic model including only coding genes. In agreement with experimental observations, the model predicts that miRNA-mediated regulation plays critical roles in modulating the circadian clock. In addition, parameter sensitivity analysis indicates that the period of circadian rhythm with miRNA-mediated regulation is more insensitive to perturbations, showing that the miRNA-mediated regulation can enhance the robustness of the circadian rhythms. This study may help us understand the microRNA-mediated regulation in the mammalian circadian rhythm more clearly.

  5. Clinical Potential of microRNA-7 in Cancer

    PubMed Central

    Horsham, Jessica L.; Kalinowski, Felicity C.; Epis, Michael R.; Ganda, Clarissa; Brown, Rikki A. M.; Leedman, Peter J.

    2015-01-01

    microRNAs (miRNAs) are a family of short, non-coding RNA molecules that drive a complex network of post-transcriptional gene regulation by enhancing target mRNA decay and/or inhibiting protein synthesis from mRNA transcripts. They regulate genes involved in key aspects of normal cell growth, development and the maintenance of body homeostasis and have been closely linked to the development and progression of human disease, in particular cancer. Over recent years there has been much interest regarding their potential as biomarkers and as therapeutic agents or targets. microRNA-7 (miR-7) is a 23 nucleotide (nt) miRNA known primarily to act as a tumour suppressor. miR-7 directly inhibits a number of oncogenic targets and impedes various aspects of cancer progression in vitro and in vivo, however, some studies have also implicated miR-7 in oncogenic roles. This review summarises the role of miR-7 in cancer, its potential in miRNA-based replacement therapy and its capacity as both a diagnostic and prognostic biomarker. PMID:26308064

  6. The Expansion of Animal MicroRNA Families Revisited.

    PubMed

    Hertel, Jana; Stadler, Peter F

    2015-01-01

    MicroRNAs are important regulatory small RNAs in many eukaryotes. Due to their small size and simple structure, they are readily innovated de novo. Throughout the evolution of animals, the emergence of novel microRNA families traces key morphological innovations. Here, we use a computational approach based on homology search and parsimony-based presence/absence analysis to draw a comprehensive picture of microRNA evolution in 159 animal species. We confirm previous observations regarding bursts of innovations accompanying the three rounds of genome duplications in vertebrate evolution and in the early evolution of placental mammals. With a much better resolution for the invertebrate lineage compared to large-scale studies, we observe additional bursts of innovation, e.g., in Rhabditoidea. More importantly, we see clear evidence that loss of microRNA families is not an uncommon phenomenon. The Enoplea may serve as a second dramatic example beyond the tunicates. The large-scale analysis presented here also highlights several generic technical issues in the analysis of very large gene families that will require further research. PMID:25780960

  7. The Expansion of Animal MicroRNA Families Revisited

    PubMed Central

    Hertel, Jana; Stadler, Peter F.

    2015-01-01

    MicroRNAs are important regulatory small RNAs in many eukaryotes. Due to their small size and simple structure, they are readily innovated de novo. Throughout the evolution of animals, the emergence of novel microRNA families traces key morphological innovations. Here, we use a computational approach based on homology search and parsimony-based presence/absence analysis to draw a comprehensive picture of microRNA evolution in 159 animal species. We confirm previous observations regarding bursts of innovations accompanying the three rounds of genome duplications in vertebrate evolution and in the early evolution of placental mammals. With a much better resolution for the invertebrate lineage compared to large-scale studies, we observe additional bursts of innovation, e.g., in Rhabditoidea. More importantly, we see clear evidence that loss of microRNA families is not an uncommon phenomenon. The Enoplea may serve as a second dramatic example beyond the tunicates. The large-scale analysis presented here also highlights several generic technical issues in the analysis of very large gene families that will require further research. PMID:25780960

  8. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein

    PubMed Central

    Acevedo, Roderico; Orench-Rivera, Nichole; Quarles, Kaycee A.; Showalter, Scott A.

    2015-01-01

    Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. PMID:25608000

  9. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  10. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms. PMID:26663195

  11. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    PubMed

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  12. Discovery and Validation of Barrett's Esophagus MicroRNA Transcriptome by Next Generation Sequencing

    PubMed Central

    Bansal, Ajay; Mathur, Sharad C.; Tawfik, Ossama; Rastogi, Amit; Buttar, Navtej; Visvanathan, Mahesh; Sharma, Prateek; Christenson, Lane K.

    2013-01-01

    Objective Barrett's esophagus (BE) is transition from squamous to columnar mucosa as a result of gastroesophageal reflux disease (GERD). The role of microRNA during this transition has not been systematically studied. Design For initial screening, total RNA from 5 GERD and 6 BE patients was size fractionated. RNA <70 nucleotides was subjected to SOLiD 3 library preparation and next generation sequencing (NGS). Bioinformatics analysis was performed using R package “DEseq”. A p value<0.05 adjusted for a false discovery rate of 5% was considered significant. NGS-identified miRNA were validated using qRT-PCR in an independent group of 40 GERD and 27 BE patients. MicroRNA expression of human BE tissues was also compared with three BE cell lines. Results NGS detected 19.6 million raw reads per sample. 53.1% of filtered reads mapped to miRBase version 18. NGS analysis followed by qRT-PCR validation found 10 differentially expressed miRNA; several are novel (-708-5p, -944, -224-5p and -3065-5p). Up- or down- regulation predicted by NGS was matched by qRT-PCR in every case. Human BE tissues and BE cell lines showed a high degree of concordance (70–80%) in miRNA expression. Prediction analysis identified targets that mapped to developmental signaling pathways such as TGFβ and Notch and inflammatory pathways such as toll-like receptor signaling and TGFβ. Cluster analysis found similarly regulated (up or down) miRNA to share common targets suggesting coordination between miRNA. Conclusion Using highly sensitive next-generation sequencing, we have performed a comprehensive genome wide analysis of microRNA in BE and GERD patients. Differentially expressed miRNA between BE and GERD have been further validated. Expression of miRNA between BE human tissues and BE cell lines are highly correlated. These miRNA should be studied in biological models to further understand BE development. PMID:23372692

  13. Intratumoral heterogeneity of microRNA expression in breast cancer.

    PubMed

    Raychaudhuri, Mithu; Schuster, Tibor; Buchner, Theresa; Malinowsky, Katharina; Bronger, Holger; Schwarz-Boeger, Ulrike; Höfler, Heinz; Avril, Stefanie

    2012-07-01

    Profiling studies have identified specific microRNA (miRNA) signatures in malignant tumors including breast cancer. Our aim was to assess intratumoral heterogeneity in miRNA expression levels within primary breast cancers and between axillary lymph node metastases from the same patient. Specimens of 16 primary breast cancers were sampled in 8-10 distinct locations including the peripheral, intermediate, and central tumor zones, as well as two to five axillary lymph node metastases (n = 9). Total RNA was extracted from 132 paraffin-embedded samples, and the expression of miR-10b, miR-210, miR-31, and miR-335 was assessed as well as the reproducibility of RNA extraction and miRNA analysis by quantitative RT-PCR. Considerable intratumoral heterogeneity existed for all four miRNAs within primary breast cancers (CV 40%). No significant differences within (CV 34%) or between different tumor zones (CV 33%) were found. A similar variation in miRNA expression was observed between corresponding lymph node metastases (mean CV 40%). In comparison, the variation among different patients showed a CV of 80% for primary tumors and 103% for lymph node metastases. Both miRNA extraction procedures and quantitative RT-PCR showed high reproducibility (CV ≤ 2%). Thus, the intratumoral heterogeneity of miRNA expression in breast cancers can lead to significant sampling bias. Assessment of breast cancer miRNA profiles may require sampling at several different tumor locations and of several tumor-involved lymph nodes when deriving miRNA expression profiles of metastases.

  14. Evolutionary Transitions of MicroRNA-Target Pairs.

    PubMed

    Nozawa, Masafumi; Fujimi, Mai; Iwamoto, Chie; Onizuka, Kanako; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2016-06-04

    How newly generated microRNA (miRNA) genes are integrated into gene regulatory networks during evolution is fundamental in understanding the molecular and evolutionary bases of robustness and plasticity in gene regulation. A recent model proposed that after the birth of a miRNA, the miRNA is generally integrated into the network by decreasing the number of target genes during evolution. However, this decreasing model remains to be carefully examined by considering in vivo conditions. In this study, we therefore compared the number of target genes among miRNAs with different ages, combining experiments with bioinformatics predictions. First, we focused on three Drosophila miRNAs with different ages. As a result, we found that an older miRNA has a greater number of target genes than a younger miRNA, suggesting the increasing number of targets for each miRNA during evolution (increasing model). To further confirm our results, we also predicted all target genes for all miRNAs in D. melanogaster, considering co-expression of miRNAs and mRNAs in vivo The results obtained also do not support the decreasing model but are reasonably consistent with the increasing model of miRNA-target pairs. Furthermore, our large-scale analyses of currently available experimental data of miRNA-target pairs also showed a weak but the same trend in humans. These results indicate that the current decreasing model of miRNA-target pairs should be reconsidered and the increasing model may be more appropriate to explain the evolutionary transitions of miRNA-target pairs in many organisms.

  15. Evolutionary Transitions of MicroRNA-Target Pairs

    PubMed Central

    Nozawa, Masafumi; Fujimi, Mai; Iwamoto, Chie; Onizuka, Kanako; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    How newly generated microRNA (miRNA) genes are integrated into gene regulatory networks during evolution is fundamental in understanding the molecular and evolutionary bases of robustness and plasticity in gene regulation. A recent model proposed that after the birth of a miRNA, the miRNA is generally integrated into the network by decreasing the number of target genes during evolution. However, this decreasing model remains to be carefully examined by considering in vivo conditions. In this study, we therefore compared the number of target genes among miRNAs with different ages, combining experiments with bioinformatics predictions. First, we focused on three Drosophila miRNAs with different ages. As a result, we found that an older miRNA has a greater number of target genes than a younger miRNA, suggesting the increasing number of targets for each miRNA during evolution (increasing model). To further confirm our results, we also predicted all target genes for all miRNAs in D. melanogaster, considering co-expression of miRNAs and mRNAs in vivo. The results obtained also do not support the decreasing model but are reasonably consistent with the increasing model of miRNA-target pairs. Furthermore, our large-scale analyses of currently available experimental data of miRNA-target pairs also showed a weak but the same trend in humans. These results indicate that the current decreasing model of miRNA-target pairs should be reconsidered and the increasing model may be more appropriate to explain the evolutionary transitions of miRNA-target pairs in many organisms. PMID:27189995

  16. Estrogen Regulation of microRNAs, Target Genes, and microRNA Expression Associated with Vitellogenesis in the Zebrafish

    PubMed Central

    Cohen, Amit

    2014-01-01

    Abstract Estrogen is a steroid hormone that has been implicated in a variety of cellular and physiological processes and in the development of diseases such as cancer. Here we show a remarkable widespread microRNA (miRNA) downregulation in the zebrafish (Danio rerio) liver following 17β-estradiol (E2) treatment. This unique miRNA expression signature in the fish liver was further supported by a combination of computational predictions with gene expression microarray data, showing a significant bias toward upregulation of miRNA target genes after E2 treatment. Using pathway analysis of target genes, their involvement in the processes of cell cycle, DNA replication, and proteasome was observed, suggesting that miRNAs are incorporated into robust regulatory networks controlled by estrogen. In oviparous vertebrates, including fish, the formation of yolky eggs during a process known as vitellogenesis is regulated by estrogen. Microarrays were used to compare miRNA expression profiles between the livers of vitellogenic and nonvitellogenic zebrafish females. Among the upregulated miRNAs in vitellogenic females, were five members of the miR-17-92, a polycistronic miRNA cluster with a role in cell proliferation and cancer. Furthermore, a number of miRNA target genes related to fish vitellogenesis were revealed, including vtg3, a putative target of miR-122; the most abundant miRNA in the liver. Moreover, several of the differentially expressed miRNAs were only conserved in oviparous animals, which suggest an additional novel level of regulation during vitellogenesis by miRNAs and consequently, improves our knowledge of the process of oocyte growth in egg-laying animals. PMID:23767875

  17. Micro-RNA Expression and Function in Lymphomas

    PubMed Central

    Sandhu, Sukhinder K.; Croce, Carlo M.; Garzon, Ramiro

    2011-01-01

    The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas. PMID:21461378

  18. A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics.

    PubMed

    Santulli, Gaetano

    2015-01-01

    MicroRNAs (miRs) are important regulators of gene expression in numerous biological processes. Their maturation process is herein described, including the most updated insights from the current literature. Circa 2000 miR sequences have been identified in the human genome, with over 50,000 miR-target interactions, including enzymes involved in epigenetic modulation of gene expression. Moreover, some "pieces of RNA" previously annotated as noncoding have been recently found to encode micropeptides that carry out critical mechanistic functions in the cell. Advanced techniques now available will certainly allow a precise scanning of the genome looking for micropeptides hidden within the "noncoding" RNA. PMID:26662983

  19. Sequence-non-specific effects of RNA interference triggers and microRNA regulators

    PubMed Central

    Olejniczak, Marta; Galka, Paulina; Krzyzosiak, Wlodzimierz J.

    2010-01-01

    RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells. PMID:19843612

  20. MicroRNA Detection: Current Technology and Research Strategies

    NASA Astrophysics Data System (ADS)

    Hunt, Eric A.; Broyles, David; Head, Trajen; Deo, Sapna K.

    2015-07-01

    The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.

  1. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  2. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis.

    PubMed

    Asahara, Hiroshi

    2016-08-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  3. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy.

  4. Inferring causative variants in microRNA target sites.

    PubMed

    Thomas, Laurent F; Saito, Takaya; Sætrom, Pål

    2011-09-01

    MicroRNAs (miRNAs) regulate genes post transcription by pairing with messenger RNA (mRNA). Variants such as single nucleotide polymorphisms (SNPs) in miRNA regulatory regions might result in altered protein levels and disease. Genome-wide association studies (GWAS) aim at identifying genomic regions that contain variants associated with disease, but lack tools for finding causative variants. We present a computational tool that can help identifying SNPs associated with diseases, by focusing on SNPs affecting miRNA-regulation of genes. The tool predicts the effects of SNPs in miRNA target sites and uses linkage disequilibrium to map these miRNA-related variants to SNPs of interest in GWAS. We compared our predicted SNP effects in miRNA target sites with measured SNP effects from allelic imbalance sequencing. Our predictions fit measured effects better than effects based on differences in free energy or differences of TargetScan context scores. We also used our tool to analyse data from published breast cancer and Parkinson's disease GWAS and significant trait-associated SNPs from the NHGRI GWAS Catalog. A database of predicted SNP effects is available at http://www.bigr.medisin.ntnu.no/mirsnpscore/. The database is based on haplotype data from the CEU HapMap population and miRNAs from miRBase 16.0.

  5. miEAA: microRNA enrichment analysis and annotation

    PubMed Central

    Backes, Christina; Khaleeq, Qurratulain T.; Meese, Eckart; Keller, Andreas

    2016-01-01

    Similar to the development of gene set enrichment and gene regulatory network analysis tools over a decade ago, microRNA enrichment tools are currently gaining importance. Building on our experience with the gene set analysis toolkit GeneTrail, we implemented the miRNA Enrichment Analysis and Annotation tool (miEAA). MiEAA is a web-based application that offers a variety of commonly applied statistical tests such as over-representation analysis and miRNA set enrichment analysis, which is similar to Gene Set Enrichment Analysis. Besides the different statistical tests, miEAA also provides rich functionality in terms of miRNA categories. Altogether, over 14 000 miRNA sets have been added, including pathways, diseases, organs and target genes. Importantly, our tool can be applied for miRNA precursors as well as mature miRNAs. To make the tool as useful as possible we additionally implemented supporting tools such as converters between different miRBase versions and converters from miRNA names to precursor names. We evaluated the performance of miEAA on two sets of miRNAs that are affected in lung adenocarcinomas and have been detected by array analysis. The web-based application is freely accessible at: http://www.ccb.uni-saarland.de/mieaa_tool/. PMID:27131362

  6. Vulnerability of microRNA biogenesis in FTD-ALS.

    PubMed

    Eitan, Chen; Hornstein, Eran

    2016-09-15

    The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTD-ALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the 'microprocessor' complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. PMID:26778173

  7. Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions.

    PubMed

    Atwood, Blake L; Woolnough, Jessica L; Lefevre, Gaelle M; Saint Just Ribeiro, Mariana; Felsenfeld, Gary; Giles, Keith E

    2016-08-19

    The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF. PMID:27288410

  8. MicroRNA Profiles Discriminate among Colon Cancer Metastasis

    PubMed Central

    Drusco, Alessandra; Nuovo, Gerard J.; Zanesi, Nicola; Di Leva, Gianpiero; Pichiorri, Flavia; Volinia, Stefano; Fernandez, Cecilia; Antenucci, Anna; Costinean, Stefan; Bottoni, Arianna; Rosito, Immacolata A.; Liu, Chang-Gong; Burch, Aaron; Acunzo, Mario; Pekarsky, Yuri; Alder, Hansjuerg; Ciardi, Antonio; Croce, Carlo M.

    2014-01-01

    MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor. PMID:24921248

  9. Development of microRNA therapeutics is coming of age

    PubMed Central

    van Rooij, Eva; Kauppinen, Sakari

    2014-01-01

    MicroRNAs (miRNAs) play key regulatory roles in diverse biological processes and are frequently dysregulated in human diseases. Thus, miRNAs have emerged as a class of promising targets for therapeutic intervention. Here, we describe the current strategies for therapeutic modulation of miRNAs and provide an update on the development of miRNA-based therapeutics for the treatment of cancer, cardiovascular disease and hepatitis C virus (HCV) infection. PMID:24935956

  10. An alanine tRNA gene cluster from Nephila clavipes.

    PubMed

    Luciano, E; Candelas, G C

    1996-06-01

    We report the sequence of a 2.3-kb genomic DNA fragment from the orb-web spider, Nephila clavipes (Nc). The fragment contains four regions of high homology to tRNA(Ala). The members of this irregularly spaced cluster of genes are oriented in the same direction and have the same anticodon (GCA), but their sequence differs at several positions. Initiation and termination signals, as well as consensus intragenic promoter sequences characteristic of tRNA genes, have been identified in all genes. tRNA(Ala) are involved in the regulation of the fibroin synthesis in the large ampullate Nc glands.

  11. Validated MicroRNA Target Databases: An Evaluation.

    PubMed

    Lee, Yun Ji Diana; Kim, Veronica; Muth, Dillon C; Witwer, Kenneth W

    2015-11-01

    Preclinical Research Positive findings from preclinical and clinical studies involving depletion or supplementation of microRNA (miRNA) engender optimism about miRNA-based therapeutics. However, off-target effects must be considered. Predicting these effects is complicated. Each miRNA may target many gene transcripts, and the rules governing imperfectly complementary miRNA: target interactions are incompletely understood. Several databases provide lists of the relatively small number of experimentally confirmed miRNA: target pairs. Although incomplete, this information might allow assessment of at least some of the off-target effects. We evaluated the performance of four databases of experimentally validated miRNA: target interactions (miRWalk 2.0, miRTarBase, miRecords, and TarBase 7.0) using a list of 50 alphabetically consecutive genes. We examined the provided citations to determine the degree to which each interaction was experimentally supported. To assess stability, we tested at the beginning and end of a five-month period. Results varied widely by database. Two of the databases changed significantly over the course of 5 months. Most reported evidence for miRNA: target interactions were indirect or otherwise weak, and relatively few interactions were supported by more than one publication. Some returned results appear to arise from simplistic text searches that offer no insight into the relationship of the search terms, may not even include the reported gene or miRNA, and may thus, be invalid. We conclude that validation databases provide important information, but not all information in all extant databases is up-to-date or accurate. Nevertheless, the more comprehensive validation databases may provide useful starting points for investigation of off-target effects of proposed small RNA therapies.

  12. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    PubMed Central

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  13. MicroRNA-429 Modulates Hepatocellular Carcinoma Prognosis and Tumorigenesis

    PubMed Central

    Huang, Xiao-Ying; Yao, Jin-Guang; Wang, Chao; Ma, Yun; Xia, Qiang

    2013-01-01

    MicroRNA-429 (miR-429) may modify the development and progression of cancers; however, the role of this microRNA in the hepatocellular carcinoma (HCC) has not been well elaborated. Here, we tested miR-429 expression in 138 pathology-diagnosed HCC cases and SMMC-7721 cells. We found that miR-429 was upregulated in HCC tumor tissues and that the high expression of miR-429 was significantly correlated with larger tumor size (odd ratio (OR), 2.70; 95% confidence interval (CI), 1.28–5.56) and higher aflatoxin B1-DNA adducts (OR = 3.13, 95% CI = 1.47–6.67). Furthermore, this microRNA overexpression modified the recurrence-free survival and overall survival of HCC patients. Functionally, miR-429 overexpression progressed tumor cells proliferation and inhibited cell apoptosis. These results indicate for the first time that miR-429 may modify HCC prognosis and tumorigenesis and may be a potential tumor therapeutic target. PMID:24204382

  14. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells.

    PubMed

    Li, Hailong; Xie, Shoupin; Liu, Xiaojun; Wu, Hongyan; Lin, Xingyao; Gu, Jing; Wang, Huping; Duan, Yongqiang

    2014-11-01

    Matrine, a major alkaloid extracted from Sophora flavescens, has been reported to possess antitumor properties in several types of cancers, including gastric cancer. However, its mechanisms of action on gastric cancer remain poorly understood. Dysregulation of microRNAs, a class of small, non-coding, regulatory RNA molecules involved in gene expression, is strongly correlated with cancer. The aim of the present study was to demonstrate that matrine treatment altered miRNA expression in SGC7901 cells. Using miRCURY™ microarray analysis, we identified 128 miRNAs substantially exhibiting >2-fold expression changes in matrine-treated cells relative to their expression levels in untreated cells. RT-qPCR was used to show that the levels of 8 miRNAs whose target genes were clustered in the cell cycle pathway increased, while levels of 14 miRNAs whose target genes were clustered in the MAPK signaling pathway decreased. These results were consistent with those from the miRNA microarray experiment. Bioinformatical analysis revealed that the majority of 57 identified enrichment pathways were highly involved in tumorigenesis. In conclusion, the results demonstrated that matrine induces considerable changes in the miRNA expression profiles of SGC7901 cells, suggesting miRNA microarray combined with RT-qPCR validation and bioinformatical analysis provide a novel and promising approach to identify anticancer targets and the mechanisms of matrine involved.

  15. Class Restricted Clustering and Micro-Perturbation for Data Privacy

    PubMed Central

    Li, Xiao-Bai; Sarkar, Sumit

    2013-01-01

    The extensive use of information technologies by organizations to collect and share personal data has raised strong privacy concerns. To respond to the public’s demand for data privacy, a class of clustering-based data masking techniques is increasingly being used for privacy-preserving data sharing and analytics. Traditional clustering-based approaches for masking numeric attributes, while addressing re-identification risks, typically do not consider the disclosure risk of categorical confidential attributes. We propose a new approach to deal with this problem. The proposed method clusters data such that the data points within a group are similar in the non-confidential attribute values whereas the confidential attribute values within a group are well distributed. To accomplish this, the clustering method, which is based on a minimum spanning tree (MST) technique, uses two risk-utility tradeoff measures in the growing and pruning stages of the MST technique respectively. As part of our approach we also propose a novel cluster-level micro-perturbation method for masking data that overcomes a common problem of traditional clustering-based methods for data masking, which is their inability to preserve important statistical properties such as the variance of attributes and the covariance across attributes. We show that the mean vector and the covariance matrix of the masked data generated using the micro-perturbation method are unbiased estimates of the original mean vector and covariance matrix. An experimental study on several real-world datasets demonstrates the effectiveness of the proposed approach. PMID:24307745

  16. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    PubMed

    Vanas, Vanita; Haigl, Barbara; Stockhammer, Verena; Sutterlüty-Fall, Hedwig

    2016-01-01

    Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin. PMID:27513462

  17. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells

    PubMed Central

    Vanas, Vanita; Haigl, Barbara; Stockhammer, Verena; Sutterlüty-Fall, Hedwig

    2016-01-01

    Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin. PMID:27513462

  18. Regulation of Senescence by microRNA Biogenesis Factors

    PubMed Central

    Abdelmohsen, Kotb; Srikantan, Subramanya; Kang, Min-Ju; Gorospe, Myriam

    2012-01-01

    Senescence represents a state of indefinite growth arrest in cells that have reached their replicative life span, have become damaged, or express aberrant levels of cancer-related proteins. While senescence is widely considered to represent tumor-suppressive mechanism, the accumulation of senescent cells in tissues of older organisms is believed to underlie age-associated losses in physiologic function and age-related diseases. With the emergence of microRNAs (miRNAs) as a major class of molecular regulators of senescence, we review the transcriptional and post-transcriptional factors that control senescence-associated microRNA biosynthesis. Focusing on their enhancement or repression of senescence, we describe the transcription factors that govern the synthesis of primary (pri-)miRNAs, the proteins that control the nuclear processing of pri-miRNAs into precursor (pre-)miRNAs, including RNA editing enzymes, RNases, and RNA helicases, and the cytoplasmic proteins that affect the final processing of pre-miRNAs into mature miRNAs. We discuss how miRNA biogenesis proteins enhance or repress senescence, and thus influence the senescent phenotype that affects normal tissue function and pathology. PMID:22306790

  19. MicroRNA and cancer--a brief overview.

    PubMed

    Acunzo, Mario; Romano, Giulia; Wernicke, Dorothee; Croce, Carlo M

    2015-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with a length of ∼22 nucleotides, involved in posttranscriptional regulation of gene expression. Until now, over 2588 miRNAs have been identified in humans and the list is growing. MicroRNAs have an important role in all biological processes and aberrant miRNA expression is associated with many diseases including cancer. In the year 2002 the first connection between cancer and miRNA deregulation was discovered. Since then, a lot of information about the key role which miRNAs play in cancer development and drug resistance has been gained. However, there is still a long way to go to fully understand the miRNA world. In this review, we briefly describe miRNA biogenesis and discuss the role of miRNAs in cancer development and drug resistance. Finally we explain how miRNAs can be used as biomarkers and as a novel therapeutic approach in cancer.

  20. Catalog of microRNA seed polymorphisms in vertebrates.

    PubMed

    Zorc, Minja; Skok, Dasa Jevsinek; Godnic, Irena; Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies.

  1. Modeling microRNA-mRNA Interactions Using PLS Regression in Human Colon Cancer

    PubMed Central

    2011-01-01

    Background Changes in microRNA (miRNA) expression patterns have been extensively characterized in several cancers, including human colon cancer. However, how these miRNAs and their putative mRNA targets contribute to the etiology of cancer is poorly understood. In this work, a bioinformatics computational approach with miRNA and mRNA expression data was used to identify the putative targets of miRNAs and to construct association networks between miRNAs and mRNAs to gain some insights into the underlined molecular mechanisms of human colon cancer. Method The miRNA and mRNA microarray expression profiles from the same tissues including 7 human colon tumor tissues and 4 normal tissues, collected by the Broad Institute, were used to identify significant associations between miRNA and mRNA. We applied the partial least square (PLS) regression method and bootstrap based statistical tests to the joint expression profiles of differentially expressed miRNAs and mRNAs. From this analysis, we predicted putative miRNA targets and association networks between miRNAs and mRNAs. Pathway analysis was employed to identify biological processes related to these miRNAs and their associated predicted mRNA targets. Results Most significantly associated up-regulated mRNAs with a down-regulated miRNA identified by the proposed methodology were considered to be the miRNA targets. On average, approximately 16.5% and 11.0% of targets predicted by this approach were also predicted as targets by the common prediction algorithms TargetScan and miRanda, respectively. We demonstrated that our method detects more targets than a simple correlation based association. Integrative mRNA:miRNA predictive networks from our analysis were constructed with the aid of Cytoscape software. Pathway analysis validated the miRNAs through their predicted targets that may be involved in cancer-associated biological networks. Conclusion We have identified an alternative bioinformatics approach for predicting miRNA

  2. A fluorescence probe for assaying micro RNA maturation.

    PubMed

    Davies, Brian P; Arenz, Christoph

    2008-01-01

    A class of small RNAs known as micro-RNAs (miRNAs) has been shown to play an important role in development and cellular regulation in eukaryotes. Recent evidence also associates aberrant expression of various miRNAs with multiple diseases in humans including many types of cancer. An up- or downregulation of certain miRNAs may play a significant role in the course of these diseases. We were interested in whether binding of small molecules to the inactive miRNA precursors would block their cleavage into the active miRNAs by the enzyme Dicer. The inhibition of miRNA maturation might provide a new rationale for future therapeutic strategies. We have developed a fluorescence beacon with which to study the maturation of miRNAs. Details are provided of a homogeneous assay for detecting potential inhibitors of miRNA maturation in a high-throughput format.

  3. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves

    PubMed Central

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S. Y.; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  4. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves.

    PubMed

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S Y; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  5. Intronic microRNA precursors that bypass Drosha processing

    PubMed Central

    Ruby, J. Graham; Jan, Calvin H.; Bartel, David P.

    2008-01-01

    MicroRNAs (miRNAs) are ~22-nucleotide endogenous RNAs that often repress the expression of complementary messenger RNAs1. In animals, miRNAs derive from characteristic hairpins in primary transcripts through two sequential RNase III-mediated cleavages; Drosha cleaves near the base of the stem to liberate a ~60-nucleotide pre-miRNA hairpin, then Dicer cleaves near the loop to generate a miRNA:miRNA* duplex2,3. From that duplex, the mature miRNA is incorporated into the silencing complex. Here we identify an alternative pathway for miRNA biogenesis, in which certain debranched introns mimic the structural features of pre-miRNAs to enter the miRNA-processing pathway without Drosha-mediated cleavage. We call these pre-miRNAs/introns ‘mirtrons’, and have identified 14 mirtrons in Drosophila melanogaster and another four in Caenorhabditis elegans (including the reclassification of mir-62). Some of these have been selectively maintained during evolution with patterns of sequence conservation suggesting important regulatory functions in the animal. The abundance of introns comparable in size to pre-miRNAs appears to have created a context favourable for the emergence of mirtrons in flies and nematodes. This suggests that other lineages with many similarly sized introns probably also have mirtrons, and that the mirtron pathway could have provided an early avenue for the emergence of miRNAs before the advent of Drosha. PMID:17589500

  6. MicroRNA-mediated repression of nonsense mRNAs

    PubMed Central

    Zhao, Ya; Lin, Jimin; Xu, Beiying; Hu, Sida; Zhang, Xue; Wu, Ligang

    2014-01-01

    Numerous studies have established important roles for microRNAs (miRNAs) in regulating gene expression. Here, we report that miRNAs also serve as a surveillance system to repress the expression of nonsense mRNAs that may produce harmful truncated proteins. Upon recognition of the premature termination codon by the translating ribosome, the downstream portion of the coding region of an mRNA is redefined as part of the 3′ untranslated region; as a result, the miRNA-responsive elements embedded in this region can be detected by miRNAs, triggering accelerated mRNA deadenylation and translational inhibition. We demonstrate that naturally occurring cancer-causing APC (adenomatous polyposis coli) nonsense mutants which escape nonsense-mediated mRNA decay (NMD) are repressed by miRNA-mediated surveillance. In addition, we show that miRNA-mediated surveillance and exon–exon junction complex-mediated NMD are not mutually exclusive and act additively to enhance the repressive activity. Therefore, we have uncovered a new role for miRNAs in repressing nonsense mutant mRNAs. DOI: http://dx.doi.org/10.7554/eLife.03032.001 PMID:25107276

  7. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.

    PubMed

    Tay, Felix Chang; Lim, Jia Kai; Zhu, Haibao; Hin, Lau Cia; Wang, Shu

    2015-01-01

    Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy. PMID:24859534

  8. Distinct microRNA expression signatures in human right atrial and ventricular myocardium.

    PubMed

    Zhang, Yangyang; Wang, Xiaowei; Xu, Xiaohan; Wang, Jun; Liu, Xiang; Chen, Yijiang

    2012-12-01

    Human atrial and ventricular myocardium has distinct structure and physiology. MicroRNAs (miRNAs) are the central players in the regulation of gene expression, participating in many physiological processes. A comprehensive knowledge of miRNA expression in the human heart is essential for the understanding of myocardial function. The aim of this study was to compare the miRNA signature in human right atrial and ventricular myocardium. Agilent human miRNA arrays were used to indicate the miRNA expression signatures of the right atrial (n = 8) and ventricular (n = 9) myocardium of healthy individuals. Quantitative reverse transcription-polymerase chain reactions (qRT-PCRs) were used to validate the array results. DIANA-mirPath was used to incorporate the miRNAs into pathways. MiRNA arrays showed that 169 miRNAs were expressed at different levels in human right atrial and ventricular myocardium. The unsupervised hierarchical clustering analysis based on the 169 dysregulated miRNAs showed that miRNA expression categorized two well-defined clusters that corresponded to human right atrial and ventricular myocardium. The qRT-PCR results correlated well with the microarray data. Bioinformatic analysis indicated the potential miRNA targets and molecular pathways. This study indicates that distinct miRNA expression signatures in human right atrial and ventricular myocardium. The findings provide a novel understanding of the molecular differences between human atrial and ventricular myocardium and may establish a framework for an anatomically detailed evaluation of cardiac function regulation.

  9. The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity.

    PubMed

    Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia

    2010-08-01

    Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3' UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic.A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry.When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing.

  10. Efficient synthesis of stably adenylated DNA and RNA adapters for microRNA capture using T4 RNA ligase 1.

    PubMed

    Song, Yunke; Liu, Kelvin J; Wang, Tza-Huei

    2015-01-01

    MicroRNA profiling methods have become increasingly important due to the rapid rise of microRNA in both basic and translational sciences. A critical step in many microRNA profiling assays is adapter ligation using pre-adenylated adapters. While pre-adenylated adapters can be chemically or enzymatically prepared, enzymatic adenylation is preferred due to its ease and high yield. However, previously reported enzymatic methods either require tedious purification steps or use thermostable ligases that can generate side products during the subsequent ligation step. We have developed a highly efficient, template- and purification-free, adapter adenylation method using T4 RNA ligase 1. This method is capable of adenylating large amounts of adapter at ~100% efficiency and can efficiently adenylate both DNA and RNA bases. We find that the adenylation reaction speed can differ between DNA and RNA and between terminal nucleotides, leading to bias if reactions are not allowed to run to completion. We further find that the addition of high PEG levels can effectively suppress these differences.

  11. Cell and Microvesicle Urine microRNA Deep Sequencing Profiles from Healthy Individuals: Observations with Potential Impact on Biomarker Studies

    PubMed Central

    Ben-Dov, Iddo Z.; Whalen, Veronica M.; Goilav, Beatrice; Max, Klaas E. A.; Tuschl, Thomas

    2016-01-01

    Background Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA, including microRNA, is present in the urine enclosed in detached cells or in extracellular vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and disease-specific microRNA in urine may aid early diagnosis of organ-specific pathology. In this study, we applied barcoded deep sequencing to profile microRNAs in urine of healthy volunteers, and characterized the effects of sex, urine fraction (cells vs. EVs) and repeated voids by the same individuals. Results Compared to urine-cell-derived small RNA libraries, urine-EV-derived libraries were relatively enriched with miRNA, and accordingly had lesser content of other small RNA such as rRNA, tRNA and sn/snoRNA. Unsupervised clustering of specimens in relation to miRNA expression levels showed prominent bundling by specimen type (urine cells or EVs) and by sex, as well as a tendency of repeated (first and second void) samples to neighbor closely. Likewise, miRNA profile correlations between void repeats, as well as fraction counterparts (cells and EVs from the same specimen) were distinctly higher than correlations between miRNA profiles overall. Differential miRNA expression by sex was similar in cells and EVs. Conclusions miRNA profiling of both urine EVs and sediment cells can convey biologically important differences between individuals. However, to be useful as urine biomarkers, careful consideration is needed for biofluid fractionation and sex-specific analysis, while the time of voiding appears to be less important. PMID:26785265

  12. Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients

    SciTech Connect

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2011-06-01

    Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  13. MicroRNA related polymorphisms and breast cancer risk.

    PubMed

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  14. MicroRNA related polymorphisms and breast cancer risk.

    PubMed

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  15. Methylated MicroRNA Genes of the Developing Murine Palate

    PubMed Central

    Seelan, Ratnam S.; Mukhopadhyay, Partha; Warner, Dennis R.; Appana, Savitri N.; Brock, Guy N.; Pisano, M. Michele; Greene, Robert M.

    2016-01-01

    Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein-encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs. PMID:25642850

  16. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization.

    PubMed

    Gilchrist, Graham C; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  17. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization

    PubMed Central

    Gilchrist, Graham C.; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  18. MicroRNA Related Polymorphisms and Breast Cancer Risk

    PubMed Central

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L.; Muranen, Taru A.; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K.; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L.; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J.; Hunter, David J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Schmidt, Marjanka K.; Broeks, Annegien; Veer, Laura J. V. a. n't.; Hogervorst, Frans B.; Fasching, Peter A.; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M.; Perez, Jose I. A.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Olson, Janet E.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Kristensen, Vessela N.; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J.; Martens, John W. M.; Collée, J. Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G.; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F.; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  19. Identification of factors involved in target RNA-directed microRNA degradation.

    PubMed

    Haas, Gabrielle; Cetin, Semih; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Terenzi, Olivier; Chicher, Johana; Kuhn, Lauriane; Hammann, Philippe; Pfeffer, Sébastien

    2016-04-01

    The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3'-5' exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection. PMID:26809675

  20. Identification of factors involved in target RNA-directed microRNA degradation

    PubMed Central

    Haas, Gabrielle; Cetin, Semih; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Terenzi, Olivier; Chicher, Johana; Kuhn, Lauriane; Hammann, Philippe; Pfeffer, Sébastien

    2016-01-01

    The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3′-5′ exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection. PMID:26809675

  1. Multifaceted enrichment analysis of RNA–RNA crosstalk reveals cooperating micro-societies in human colorectal cancer

    PubMed Central

    Mazza, Tommaso; Mazzoccoli, Gianluigi; Fusilli, Caterina; Capocefalo, Daniele; Panza, Anna; Biagini, Tommaso; Castellana, Stefano; Gentile, Annamaria; De Cata, Angelo; Palumbo, Orazio; Stallone, Raffaella; Rubino, Rosa; Carella, Massimo; Piepoli, Ada

    2016-01-01

    Alterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA–miRNA and miRNA–miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non-tumorous mucosa. This investigation resulted in a hypernetwork-based model, whose functional backbone was fulfilled by tight micro-societies of miRNAs. These proved to modulate several genes that are known to control a set of significantly enriched cancer-enhancer and cancer-protection biological processes, and that an array of upstream regulatory analyses demonstrated to be dependent on miR-145, a cell cycle and MAPK signaling cascade master regulator. In conclusion, we reveal miRNA-gene clusters and gene families with close functional relationships and highlight the role of miR-145 as potent upstream regulator of a complex RNA–RNA crosstalk, which mechanistically modulates several signaling pathways and regulatory circuits that when deranged are relevant to the changes occurring in colorectal carcinogenesis. PMID:27067546

  2. Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Piacentini, Luca; Chiesa, Mattia; Kesharwani, Rupesh K.; Frati, Caterina; Capogrossi, Maurizio C.; Gaetano, Carlo; Pompilio, Giulio

    2014-01-01

    MicroRNAs are key modulators at molecular level in different biological processes, including determination of cell fate and differentiation. Herein, microRNA expression profiling experiments were performed on syngeneic cardiac (CStC) and bone marrow (BMStC) mesenchymal stromal cells cultured in standard growth medium and then in vitro exposed to adipogenic, osteogenic, cardiomyogenic and endothelial differentiation media. Analysis identified a tissue-specific microRNA signature composed of 16 microRNAs that univocally discriminated cell type of origin and that were completely unaffected by in vitro differentiation media: 4 microRNAs were over-expressed in cardiac stromal cells, and 12 were overexpressed or present only in bone marrow stromal cells. Further, results revealed microRNA subsets specifically modulated by each differentiation medium, irrespective of the cell type of origin, and a subset of 7 microRNAs that were down-regulated by all media with respect to growth medium. Finally, we identified 16 microRNAs that were differentially modulated by the media when comparing the two tissues of origin. The existence of a tissue-specific microRNA signature surviving to any differentiation stimuli, strongly support the role if microRNAs determining cell identity related to tissue origin. Moreover, we identified microRNA subsets modulated by different culture conditions in a tissue-specific manner, pointing out their importance during differentiation processes. PMID:25232725

  3. Quadratic isothermal amplification for the detection of microRNA.

    PubMed

    Duan, Ruixue; Zuo, Xiaolei; Wang, Shutao; Quan, Xiyun; Chen, Dongliang; Chen, Zhifei; Jiang, Lei; Fan, Chunhai; Xia, Fan

    2014-03-01

    This protocol describes an isothermal amplification approach for ultrasensitive detection of specific microRNAs (miRNAs). It achieves this level of sensitivity through quadratic amplification of the target oligonucleotide by using a Bst DNA polymerase-induced strand-displacement reaction and a lambda exonuclease-aided recycling reaction. First, the target miRNA binds to a specifically designed molecular beacon, causing it to become a fluorescence emitter. A primer then binds to the activated beacon, and Bst polymerase initiates the synthesis of a double-stranded DNA segment templated on the molecular beacon. This causes the concomitant release of the target miRNA from the beacon--the first round of 'recycling'. Second, the duplex beacon thus produced is a suitable substrate for a nicking enzyme present in solution. After the duplex beacon is nicked, the lambda exonuclease digests the beacon and releases the DNA single strand just synthesized, which is complementary to the molecular beacon, inducing the second round of recycling. The miRNA detection limit of this protocol is 10 fmol at 37 °C and 1 amol at 4 °C. This approach also affords high selectivity when applied to miRNA extracted from MCF-7 and PC3 cell lines and even from breast cancer tissue samples. Upon isolation of miRNA, the detection process can be completed in ∼2 h.

  4. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.

    PubMed

    Jiang, Qian; Meng, Xing; Meng, Lingwei; Chang, Nannan; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai

    2014-01-01

    MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.

  5. A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent

    PubMed Central

    Cao, H; Yu, W; Li, X; Wang, J; Gao, S; Holton, N E; Eliason, S; Sharp, T; Amendt, B A

    2016-01-01

    Current tools for the inhibition of microRNA (miR) function are limited to modified antisense oligonucleotides, sponges and decoy RNA molecules and none have been used to understand miR function during development. CRISPR/Cas-mediated deletion of miR sequences within the genome requires multiple chromosomal deletions to remove all functional miR family members because of duplications. Here, we report a novel plasmid-based miR inhibitor system (PMIS) that expresses a new RNA molecule, which inhibits miR family members in cells and mice. The PMIS engineered RNA optimal secondary structure, flanking sequences and specific antisense miR oligonucleotide sequence bind the miR in a stable complex to inhibit miR activity. In cells, one PMIS can effectively inhibit miR family members that share the same seed sequence. The PMIS shows no off-target effects or toxicity and is highly specific for miRs sharing identical seed sequences. Transgenic mice expressing both PMIS-miR-17-18 and PMIS-miR-19-92 show similar phenotypes of miR-17-92-knockout mice. Interestingly, mice only expressing PMIS-miR-17-18 have developmental defects distinct from mice only expressing PMIS-miR-19-92 demonstrating usefulness of the PMIS system to dissect different functions of miRs within clusters. Different PMIS miR inhibitors can be linked together to knock down multiple miRs expressed from different chromosomes. Inhibition of the miR-17-92, miR-106a-363 and miR-106b-25 clusters reveals new mechanisms and developmental defects for these miRs. We report a new tool to dissect the role of miRs in development without genome editing, inhibit miR function in cells and as a potential new therapeutic reagent. PMID:26934100

  6. MicroRNA expression profiling of male breast cancer

    PubMed Central

    Fassan, Matteo; Baffa, Raffaele; Palazzo, Juan P; Lloyd, Joshua; Crosariol, Marco; Liu, Chang-Gong; Volinia, Stefano; Alder, Hannes; Rugge, Massimo; Croce, Carlo M; Rosenberg, Anne

    2009-01-01

    Introduction MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. To test the hypothesis that there is a specific miRNA expression signature which characterizes male breast cancers, we performed miRNA microarray analysis in a series of male breast cancers and compared them with cases of male gynecomastia and female breast cancers. Methods Paraffin blocks were obtained at the Department of Pathology of Thomas Jefferson University from 28 male patients including 23 breast cancers and five cases of male gynecomastia, and from 10 female ductal breast carcinomas. The RNA harvested was hybridized to miRNA microarrays (~1,100 miRNA probes, including 326 human and 249 mouse miRNA genes, spotted in duplicate). To further support the microarray data, an immunohistochemical analysis for two specific miRNA gene targets (HOXD10 and VEGF) was performed in a small series of male breast carcinoma and gynecomastia samples. Results We identified a male breast cancer miRNA signature composed of a large portion of underexpressed miRNAs. In particular, 17 miRNAs with increased expression and 26 miRNAs with decreased expression were identified in male breast cancer compared with gynecomastia. Among these miRNAs, some had well-characterized cancer development association and some showed a deregulation in cancer specimens similar to the one previously observed in the published signatures of female breast cancer. Comparing male with female breast cancer miRNA expression signatures, 17 significantly deregulated miRNAs were observed (four overexpressed and 13 underexpressed in male breast cancers). The HOXD10 and VEGF gene immunohistochemical expression significantly follows the corresponding miRNA deregulation. Conclusions Our results suggest that specific miRNAs may be directly involved in male

  7. Global microRNA modification in cotton (Gossypium hirsutum L.).

    PubMed

    Xie, Fuliang; Wang, Qinglian; Zhang, Baohong

    2015-05-01

    MicroRNAs (miRNAs) are small noncoding RNAs participating in versatile biological processes via post-transcriptionally gene regulation. However, how miRNAs are modified or degraded remains unknown, despite years of studies have unravelled much details of miRNA biogenesis and function. Here, we systematically investigated miRNA modification using six small RNA sequencing libraries generated from cotton seedling as well as cotton fibre at five developmental stages. Our results show that 1-2-nt truncation and addition on both 5' and 3' ends of miRNAs are the major modification forms. The 5' and 3' end miRNA modification was almost equal in the six development stages. Truncation was more common than addition on both 5' and 3' end. Structure analysis of the 5' and 3' ends of miRNAs and isomiRs shows that uridine is the preferential nucleotide at the first position of both 5' and 3' ends. According to analysis of nucleotides truncated and tailed from miRNAs, both miRNAs and isomiRs share a similar positional structure distribution at their 5' and 3' ends, respectively. Furthermore, opposite to previous reports, cytodine is more frequently truncated and tailed from the two ends of isomiRs, implying existence of a complex cytodine balance in isomiRs. Comparison of isomiR expression shows differential miRNA modification amongst the six developmental stages in terms of selective modification form, development-dependent modification and differential expression abundance. Our results globally uncovered miRNA modification features in cotton, which could contribute us to understanding miRNA's postmature modification and its regulatory function.

  8. Evolution of a research field—a micro (RNA) example

    PubMed Central

    Casey, Máire-Caitlín; Kerin, Michael J.

    2015-01-01

    Background. Every new scientific field can be traced back to a single, seminal publication. Therefore, a bibliometric analysis can yield significant insights into the history and potential future of a research field. This year marks 21 years since that first ground-breaking microRNA (miRNA) publication. Here, we make the case that the miRNA field is mature, utilising bibliometrics. Methods. Utilising the Web of Science™ (WoS) database publication and citation information, we charted the history of miRNA-related publications, describing and dissecting contributions by publication type (plus category, pay-per-view or open access), journal (highlighting dominant journals), by country, citations and languages. Results. We found that the United States of America (USA) publishes the most miRNA papers, followed by China and Germany. Significantly, publications attributed to the USA also receive the most citations per publication, followed by a close grouping of England, Germany and France. We also describe the relevance and acceptance of the miRNA field to different research areas, through its uptake in areas from oncology to plant sciences. Exploring the recent momentous change in publishing, we find that although pay-per view articles vastly out-number open-access articles, the citation rate of pay-per-view articles is currently less than double that of open-access. Conclusions. We believe the trends described here represent the typical evolution of a research field. By analysing publications, citations and distribution patterns, key moments in the evolution of this research area are recognised, indicating the maturation of the miRNA field and providing guidance for future research endeavours. PMID:25802804

  9. Evolution of a research field-a micro (RNA) example.

    PubMed

    Casey, Máire-Caitlín; Kerin, Michael J; Brown, James A; Sweeney, Karl J

    2015-01-01

    Background. Every new scientific field can be traced back to a single, seminal publication. Therefore, a bibliometric analysis can yield significant insights into the history and potential future of a research field. This year marks 21 years since that first ground-breaking microRNA (miRNA) publication. Here, we make the case that the miRNA field is mature, utilising bibliometrics. Methods. Utilising the Web of Science™ (WoS) database publication and citation information, we charted the history of miRNA-related publications, describing and dissecting contributions by publication type (plus category, pay-per-view or open access), journal (highlighting dominant journals), by country, citations and languages. Results. We found that the United States of America (USA) publishes the most miRNA papers, followed by China and Germany. Significantly, publications attributed to the USA also receive the most citations per publication, followed by a close grouping of England, Germany and France. We also describe the relevance and acceptance of the miRNA field to different research areas, through its uptake in areas from oncology to plant sciences. Exploring the recent momentous change in publishing, we find that although pay-per view articles vastly out-number open-access articles, the citation rate of pay-per-view articles is currently less than double that of open-access. Conclusions. We believe the trends described here represent the typical evolution of a research field. By analysing publications, citations and distribution patterns, key moments in the evolution of this research area are recognised, indicating the maturation of the miRNA field and providing guidance for future research endeavours.

  10. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  11. A microRNA signature associated with early recurrence in breast cancer.

    PubMed

    Pérez-Rivas, Luis G; Jerez, José M; Carmona, Rosario; de Luque, Vanessa; Vicioso, Luis; Claros, M Gonzalo; Viguera, Enrique; Pajares, Bella; Sánchez, Alfonso; Ribelles, Nuria; Alba, Emilio; Lozano, José

    2014-01-01

    Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.

  12. A microRNA Signature Associated with Early Recurrence in Breast Cancer

    PubMed Central

    Carmona, Rosario; de Luque, Vanessa; Vicioso, Luis; Claros, M. Gonzalo; Viguera, Enrique; Pajares, Bella; Sánchez, Alfonso; Ribelles, Nuria; Alba, Emilio; Lozano, José

    2014-01-01

    Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery. PMID:24632820

  13. MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential

    PubMed Central

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S.; Taylor, Stephen; Dunlop, Heather M.; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H.; Tramonti, Daniela; Saunders, Nigel J.; Boultwood, Jacqueline; Wainscoat, James S.; Pezzella, Francesco; Whittaker, Sean J.; Tensen, Cornelius P.; Hatton, Christian S. R.

    2010-01-01

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells. PMID:20448109

  14. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential.

    PubMed

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S; Taylor, Stephen; Dunlop, Heather M; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H; Tramonti, Daniela; Saunders, Nigel J; Boultwood, Jacqueline; Wainscoat, James S; Pezzella, Francesco; Whittaker, Sean J; Tensen, Cornelius P; Hatton, Christian S R; Lawrie, Charles H

    2010-08-19

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4(+)) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4(+) T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.

  15. Microbial pattern recognition causes distinct functional micro-RNA signatures in primary human monocytes.

    PubMed

    Häsler, Robert; Jacobs, Gunnar; Till, Andreas; Grabe, Nils; Cordes, Christian; Nikolaus, Susanna; Lao, Kaiqin; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    Micro-RNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post transcriptionally. Several studies have demonstrated the relevance of miRNAs for a wide range of cellular mechanisms, however, the current knowledge on how miRNAs respond to relevant external stimuli, e.g. in disease scenarios is very limited. To generate a descriptive picture of the miRNA network associated to inflammatory responses, we quantified the levels of 330 miRNAs upon stimulation with a panel of pro-inflammatory components such as microbial pattern molecules (flagellin, diacylated lipopeptide lipopolysaccharide, muramyl dipeptide), infection with Listeria monocytogenes and TNF-α as pro-inflammatory control in primary human monocytes using real time PCR. As a result, we found distinct miRNA response clusters for each stimulus used. Additionally, we identified potential target genes of three selected miRNAs miR-129-5p, miR-146a and miR-378 which were part of PAMP-specific response clusters by transfecting THP1 monocytes with the corresponding pre- or anti-miRNAs and microfluidic PCR arrays. The miRNAs induced distinct transcriptomal signatures, e.g. overexpression of miRNA129-5p, which was selectively upregulated by the NOD2-elicitor MDP, led to an upregulation of DEFB1, IRAK1, FBXW7 and IKK γ (Nemo). Our findings on highly co-regulated clusters of miRNAs support the hypothesis that miRNAs act in functional groups. This study indicates that miRNAs play an important role in fine-tuning inflammatory mechanisms. Further investigation in the field of miRNA responses will help to understand their effects on gene expression and may close the regulatory gap between mRNA and protein expression in inflammatory diseases. PMID:22363568

  16. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development.

    PubMed

    Choi, Yoori; Hwang, Do Won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  17. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development

    PubMed Central

    Choi, Yoori; Hwang, Do won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  18. Comprehensive microRNA Profiling of Prostate Cancer.

    PubMed

    Walter, Beatriz A; Valera, Vladimir A; Pinto, Peter A; Merino, Maria J

    2013-01-01

    MicroRNAs are small non-coding RNA molecules that have been shown to regulate the expression of genes linked to cancer. The relevance of microRNAs in the development, progression and prognosis of prostate cancer is not fully understood. It is also possible that these specific molecules may assist in the recognition of aggressive tumors and the development of new molecular targets. Our study investigated the importance of several microRNAs in cases of prostate cancer from 37 patients that were manually microdissected to obtain pure populations of tumor cells, normal epithelium and adjacent stroma. MicroRNA was extracted for PCR array profiling. Differentially expressed miRNAs for each case were used to compare tumor vs. normal epithelium and tumor-adjacent stroma samples. Loss of 18 miRNAs (e.g.miR-34c, miR-29b, miR-212 and miR-10b) and upregulation of miR-143 and miR-146b were significantly found in all the tumors in comparison with normal epithelium and/or stroma (p≤ 0.001). A different signature was found in the high grade tumors (Gleason score ≥ 8) when compared with tumors Gleason score 6. Upregulation of miR-122, miR-335, miR-184, miR-193, miR-34, miR-138, miR-373, miR-9, miR-198, miR-144 and miR-215 and downregulation of miR-96, miR-222, miR-148, miR-92, miR-27, miR-125, miR-126, miR-27 were found in the high grade tumors. MicroRNA profiling in prostate cancer appears to have unique expression patterns in comparison with normal tissue. These differential expressed miRNAs may provide novel diagnostic and prognostic tools that will assist in the recognition of prostate cancers with aggressive behavior.

  19. MicroRNA: Key regulators of oligodendrocyte development and pathobiology.

    PubMed

    Fitzpatrick, John-Mark K; Anderson, Rebecca C; McDermott, Kieran W

    2015-08-01

    MicroRNAs (miRNAs or miRs) are a group of small non-coding RNAs that function through binding to messenger RNA (mRNA) targets and downregulating gene expression. miRNAs have been shown to regulate many cellular functions including proliferation, differentiation, development and apoptosis. Recently, evidence has grown which shows the involvement of miRs in oligodendrocyte (OL) specification and development. In particular, miRs-138, -219, -338, and -9 have been classified as key regulators of OL development, acting at various points in the OL lineage and influencing precursor cell transit into mature myelinating OLs. Many studies have emerged which link miRNAs with OL and myelin pathology in various central nervous system (CNS) diseases including multiple sclerosis (MS), ischemic stroke, spinal cord injury, and adult-onset autosomal dominant leukodystrophy (ADLD).

  20. MicroRNA Regulators of Anxiety and Metabolic Disorders.

    PubMed

    Meydan, Chanan; Shenhar-Tsarfaty, Shani; Soreq, Hermona

    2016-09-01

    Anxiety-related and metabolic disorders are under intense research focus. Anxiety-induced microRNAs (miRNAs) are emerging as regulators that are not only capable of suppressing inflammation but can also induce metabolic syndrome-related processes. We summarize here evidence linking miRNA pathways which share regulatory networks in metabolic and anxiety-related conditions. In particular, miRNAs involved in these disorders include regulators of acetylcholine signaling in the nervous system and their accompanying molecular machinery. These have been associated with anxiety-prone states in individuals, while also acting as inflammatory suppressors. In peripheral tissues, altered miRNA pathways can lead to dysregulated metabolism. Common pathways in metabolic and anxiety-related phenomena might offer an opportunity to reclassify 'healthy' and 'unhealthy', as well as metabolic and anxiety-prone biological states, and inform putative strategies to treat these disorders. PMID:27496210

  1. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke

    PubMed Central

    Liu, Wansheng; Chen, Xiaosheng; Zhang, Yu

    2016-01-01

    Objectives: The purpose of our study was aimed to investigate the effects of microRNA-21 (miR-21) and microRNA-24 (miR-24) inhibitors on ischemic stroke. Methods: MiR-21 inhibitor or miR-24 inhibitor was delivered to Sprague Dawley (SD) rats by continuous intracerebroventricular infusion. Two days later, middle cerebral artery occlusion (MCAO) was performed to induce ischemic stroke. Quantitative real-time PCR was performed to confirm transfection efficiency. The number of apoptotic neurons was detected using TUNEL method. Besides, primary hippocampal or cortical neuronal cultures were prepared from embryonic day 16-18 C57BL/6 mice. These cells were transfected with miR-21 inhibitor, miR-24 inhibitor, or negative scramble RNA. Then the cell viability was detected after transfection, as well as the protein levels of Caspase-3, B-cell lymphoma (Bcl)-xL, and heat shock protein (HSP) 70. Results: Both the levels of miR-21 and miR-24 were significantly reduced by transfection with inhibitors compared to control group or scramble RNA group (both P < 0.05). The apoptosis was significantly reduced in both hippocampal neuron and cortical neuron by miR-24 inhibitor rather than miR-21 inhibitor (P < 0.05), while the cell viability was significantly increased compared to the control group or the scramble group (P < 0.05). In addition, the levels of Bcl-xL and HSP70 were significantly increased, and the levels of Caspase-3 were statistically decreased by transfection with miR-24 inhibitor. Conclusion: MiRNA-24 but not miR-21 inhibitor prevents apoptosis in ischemic stroke by regulation of Bcl-xL, Caspase-3 and HSP70. PMID:27508039

  2. Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets

    PubMed Central

    Bossel Ben-Moshe, Noa; Avraham, Roi; Kedmi, Merav; Zeisel, Amit; Yitzhaky, Assif; Yarden, Yosef; Domany, Eytan

    2012-01-01

    MicroRNAs (miRs) function primarily as post-transcriptional negative regulators of gene expression through binding to their mRNA targets. Reliable prediction of a miR’s targets is a considerable bioinformatic challenge of great importance for inferring the miR’s function. Sequence-based prediction algorithms have high false-positive rates, are not in agreement, and are not biological context specific. Here we introduce CoSMic (Context-Specific MicroRNA analysis), an algorithm that combines sequence-based prediction with miR and mRNA expression data. CoSMic differs from existing methods—it identifies miRs that play active roles in the specific biological system of interest and predicts with less false positives their functional targets. We applied CoSMic to search for miRs that regulate the migratory response of human mammary cells to epidermal growth factor (EGF) stimulation. Several such miRs, whose putative targets were significantly enriched by migration processes were identified. We tested three of these miRs experimentally, and showed that they indeed affected the migratory phenotype; we also tested three negative controls. In comparison to other algorithms CoSMic indeed filters out false positives and allows improved identification of context-specific targets. CoSMic can greatly facilitate miR research in general and, in particular, advance our understanding of individual miRs’ function in a specific context. PMID:22977182

  3. A population-based statistical approach identifies parameters characteristic of human microRNA-mRNA interactions

    PubMed Central

    Smalheiser, Neil R; Torvik, Vetle I

    2004-01-01

    Background MicroRNAs are ~17–24 nt. noncoding RNAs found in all eukaryotes that degrade messenger RNAs via RNA interference (if they bind in a perfect or near-perfect complementarity to the target mRNA), or arrest translation (if the binding is imperfect). Several microRNA targets have been identified in lower organisms, but only one mammalian microRNA target has yet been validated experimentally. Results We carried out a population-wide statistical analysis of how human microRNAs interact complementarily with human mRNAs, looking for characteristics that differ significantly as compared with scrambled control sequences. These characteristics were used to identify a set of 71 outlier mRNAs unlikely to have been hit by chance. Unlike the case in C. elegans and Drosophila, many human microRNAs exhibited long exact matches (10 or more bases in a row), up to and including perfect target complementarity. Human microRNAs hit outlier mRNAs within the protein coding region about 2/3 of the time. And, the stretches of perfect complementarity within microRNA hits onto outlier mRNAs were not biased near the 5'-end of the microRNA. In several cases, an individual microRNA hit multiple mRNAs that belonged to the same functional class. Conclusions The analysis supports the notion that sequence complementarity is the basis by which microRNAs recognize their biological targets, but raises the possibility that human microRNA-mRNA target interactions follow different rules than have been previously characterized in Drosophila and C. elegans. PMID:15453917

  4. MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy

    PubMed Central

    Ruiz, Autumn J.; Hadac, Elizabeth M.; Nace, Rebecca A.

    2016-01-01

    ABSTRACT Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated

  5. MicroRNA in human cancer and chronic inflammatory diseases.

    PubMed

    Kanwar, Jagat R; Mahidhara, Ganesh; Kanwar, Rupinder K

    2010-06-01

    MicroRNAs (miRNAs) are the non-coding RNAs that act as post-translational regulators to their complimentary messenger RNAs (mRNA). Due to their specific gene silencing property, miRNAs have been implicated in a number of cellular and developmental processes. Also, it has been proposed that a particular set of miRNA spectrum is expressed only in a particular type of tissue. Many interesting findings related to the differential expression of miRNAs in various human diseases including several types of cancers, neurodegenerative diseases and metabolic diseases have been reported. Deregulation of miRNA expression in different types of human diseases and the roles various miRNAs play as tumour suppressors as well as oncogenes, suggest their contribution to cancer and/or in other disease development. These findings have possible implications in the development of diagnostics and/or therapeutics in human malignancies. In this review, we discuss various miRNAs that are differentially expressed in human chronic inflammatory diseases, neurodegenerative diseases, cancer and the further prospective development of miRNA based diagnostics and therapeutics.

  6. Identification and Expression Profiles of microRNA in Dolphin.

    PubMed

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins.

  7. MicroRNA Targeting to Modulate Tumor Microenvironment

    PubMed Central

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, Gert; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players involved in the development of cancer and its progression. miRNAs are small endogenous non-protein-coding RNAs that negatively regulate the expression of multiple target genes at post-transcriptional level and thereby control many cellular processes. In this review, we provide a comprehensive overview of miRNAs dysregulated in different stromal cells and their impact on the regulation of intercellular crosstalk in the tumor microenvironment. We also discuss the therapeutic significance potential of miRNAs to modulate the tumor microenvironment. Since miRNA delivery is quite challenging and the biggest hurdle for clinical translation of miRNA therapeutics, we review various non-viral miRNA delivery systems that can potentially be used for targeting miRNA to stromal cells within the tumor microenvironment. PMID:26835418

  8. Dysregulation of microRNA biogenesis machinery in cancer.

    PubMed

    Hata, Akiko; Kashima, Risa

    2016-01-01

    MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer. PMID:26628006

  9. Identification and Expression Profiles of microRNA in Dolphin.

    PubMed

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins. PMID:26853874

  10. Subtypes of asthma defined by epithelial cell expression of messenger RNA and microRNA.

    PubMed

    Woodruff, Prescott G

    2013-12-01

    Human asthma can be subcategorized in several ways, but one powerful approach is to subtype asthma on the basis of underlying cellular and molecular mechanisms. Groups of patients with a disease that share a common underlying biology are termed an "endotype." Endotypes of asthma have been studied at both the cellular level (by cytological examination of induced sputum) and, increasingly, at the molecular level. Genome-wide analyses of mRNA expression within the lung have been useful in the identification of molecular endotypes of asthma and point to protein biomarkers of those endotypes that can be measured in the blood. More recently, studies of microRNA expression in airway epithelial cells in asthma have identified additional candidate biomarkers of asthma endotypes. One potentially valuable property of microRNAs is that they can also be measured in extracellular fluids and therefore have the potential to serve directly as noninvasively measured biomarkers.

  11. Specific Inhibition of MicroRNA Processing Using L-RNA Aptamers.

    PubMed

    Sczepanski, Jonathan T; Joyce, Gerald F

    2015-12-30

    In vitro selection was used to obtain l-RNA aptamers that bind the distal stem-loop of various precursor microRNAs (pre-miRs). These l-aptamers, termed "aptamiRs", bind their corresponding pre-miR target through highly specific tertiary interactions rather than Watson-Crick pairing. Formation of a pre-miR-aptamiR complex inhibits Dicer-mediated processing of the pre-miR, which is required to form the mature functional microRNA. One of the aptamiRs, which was selected to bind oncogenic pre-miR-155, inhibits Dicer processing under simulated physiological conditions, with an IC50 of 87 nM. Given that l-RNAs are intrinsically resistant to nuclease degradation, these results suggest that aptamiRs might be pursued as a new class of miR inhibitors. PMID:26652064

  12. MicroRNA Predictors of Longevity in Caenorhabditis elegans

    PubMed Central

    Pincus, Zachary; Smith-Vikos, Thalyana; Slack, Frank J.

    2011-01-01

    Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan. PMID:21980307

  13. Expression of members of the miRNA17-92 cluster during development and in carcinogenesis.

    PubMed

    Jevnaker, Anne-Marthe; Khuu, Cuong; Kjøle, Elisabeth; Bryne, Magne; Osmundsen, Harald

    2011-09-01

    The six microRNAs (miRNA) encoded by the miR-17-92 cluster, also named oncomir-1, have been associated with carcinogenesis and typically exhibit-increased expression in tumors. Despite the well-established role for the miR-17-92 cluster in an oncogenic network, the physiological function of these miRNAs in normal tissues remains unresolved. In order to investigate whether there are similar patterns of miR-17-92 expression during embryogenesis and carcinogenesis, we have preformed a systematic study of the expression in cultured carcinoma cells, cultured primary human keratinocytes (KC), and during development of some murine tissues. Both levels of expression of the primary transcript (pri-miRNA) and levels of expression of the individual members of the cluster were monitored. Irrespectively of tissue examined we found that the level of expression decreased markedly during development. With cultured primary human KCs their levels of expression of some of these microRNAs decreased as the number of cell passages increased. Their levels of expression in cultured carcinoma cells, in contrasts, increased, or remained unchanged, with increasing number of cell passages. The results suggest these microRNAs are involved in the regulation of foetal development and that they may promote proliferation and inhibit differentiation during embryogenesis and carcinogenesis. Additionally, the six microRNAs exhibit variable tissue expression, suggesting selective processing of these microRNAs. PMID:21660949

  14. Hierarchical Generative Biclustering for MicroRNA Expression Analysis

    NASA Astrophysics Data System (ADS)

    Caldas, José; Kaski, Samuel

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

  15. MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation

    PubMed Central

    Zhao, Jin; Schnitzler, Gavin R.; Iyer, Lakshmanan K.; Aronovitz, Mark J.; Baur, Wendy E.; Karas, Richard H.

    2016-01-01

    MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a “seed region” of moR-21 as well as a “seed match region” in the target gene 3’UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active. PMID:27276022

  16. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  17. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  18. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  19. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle.

    PubMed

    Del Rosario, Ricardo C H; Damasco, Joseph Ray Clarence G; Aguda, Baltazar D

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  20. Self containment, a property of modular RNA structures, distinguishes microRNAs.

    PubMed

    Lee, Miler T; Kim, Junhyong

    2008-01-01

    RNA molecules will tend to adopt a folded conformation through the pairing of bases on a single strand; the resulting so-called secondary structure is critical to the function of many types of RNA. The secondary structure of a particular substring of functional RNA may depend on its surrounding sequence. Yet, some RNAs such as microRNAs retain their specific structures during biogenesis, which involves extraction of the substructure from a larger structural context, while other functional RNAs may be composed of a fusion of independent substructures. Such observations raise the question of whether particular functional RNA substructures may be selected for invariance of secondary structure to their surrounding nucleotide context. We define the property of self containment to be the tendency for an RNA sequence to robustly adopt the same optimal secondary structure regardless of whether it exists in isolation or is a substring of a longer sequence of arbitrary nucleotide content. We measured degree of self containment using a scoring method we call the self-containment index and found that miRNA stem loops exhibit high self containment, consistent with the requirement for structural invariance imposed by the miRNA biogenesis pathway, while most other structured RNAs do not. Further analysis revealed a trend toward higher self containment among clustered and conserved miRNAs, suggesting that high self containment may be a characteristic of novel miRNAs acquiring new genomic contexts. We found that miRNAs display significantly enhanced self containment compared to other functional RNAs, but we also found a trend toward natural selection for self containment in most functional RNA classes. We suggest that self containment arises out of selection for robustness against perturbations, invariance during biogenesis, and modular composition of structural function. Analysis of self containment will be important for both annotation and design of functional RNAs. A Python

  1. MicroRNA in TLR signaling and endotoxin tolerance

    PubMed Central

    Nahid, Md A; Satoh, Minoru; Chan, Edward KL

    2011-01-01

    Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases. PMID:21822296

  2. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    PubMed Central

    2010-01-01

    Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a) represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b) the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c) the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d) the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC) and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX), VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1, ERBB4, and (SLC12A1, TCF

  3. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  4. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis

    PubMed Central

    de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan

    2015-01-01

    In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864

  5. MicroRNA signatures from multidrug‑resistant Mycobacterium tuberculosis.

    PubMed

    Ren, Na; Gao, Guiju; Sun, Yue; Zhang, Ling; Wang, Huizhu; Hua, Wenhao; Wan, Kanglin; Li, Xingwang

    2015-11-01

    Tuberculosis (TB) infections, caused by multidrug‑resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug‑resistance in MTB. PMID:26324150

  6. MicroRNA expression profiling in human Barrett's carcinogenesis

    PubMed Central

    Fassan, Matteo; Volinia, Stefano; Palatini, Jeff; Pizzi, Marco; Baffa, Raffaele; De Bernard, Marina; Battaglia, Giorgio; Parente, Paola; Croce, Carlo M.; Zaninotto, Giovanni; Ancona, Ermanno; Rugge, Massimo

    2015-01-01

    Barrett's esophagus (BE) is characterized by the native stratified squamous epithelium (N) lining the esophagus being replaced by a columnar epithelium with intestinal differentiation (Barrett's mucosa; BM). BM is considered as the main risk factor for esophageal adenocarcinoma (Barrett's adenocarcinoma; BAc). MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting messenger RNAs and they are reportedly dysregulated in BM. To test the hypothesis that a specific miRNA expression signature characterizes BM development and progression, we performed miRNA microarray analysis comparing native esophageal mucosa with all the phenotypic lesions seen in the Barrett's carcinogenic process. Specimens were collected from 14 BE patients who had undergone esophagectomy, including: 14 with N, 14 with BM, 7 with low-grade intraepithelial neoplasia, 5 with high-grade intra-epithelial neoplasia and 11 with BAc. Microarray findings were further validated by quantitive real-time polymerase chain reaction and in situ hybridization analyses using a different series of consecutive cases (162 biopsy samples and 5 esophagectomies) of histologically proven, long-segment BE. We identified a miRNA signature of Barrett's carcinogenesis consisting of an increased expression of 6 miRNAs and a reduced expression of 7 miRNAs. To further support these results, we investigated target gene expression using the Oncomine database and/or immunohistochemical analysis. We found that target gene expression correlated significantly with miRNA dysregulation. Specific miRNAs are directly involved in BE progression to cancer. miRNA profiling significantly expands current knowledge on the molecular history of Barrett's carcinogenesis, also identifying molecular markers of cancer progression. PMID:21128279

  7. miRBase: integrating microRNA annotation and deep-sequencing data.

    PubMed

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  8. microRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma

    PubMed Central

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie; Shen, Yulei; Dabrowska, Magdalena Julia; Dybkaer, Karen; Lim, Megan S.; Piva, Roberto; Barreca, Antonella; Pellegrino, Elisa; Spaccarotella, Elisa; Lachel, Cynthia M.; Kucuk, Can; Jiang, Chun-Sun; Hu, Xiaozhou; Bhagavathi, Sharathkumar; Greiner, Timothy C.; Weisenburger, Dennis D.; Aoun, Patricia; Perkins, Sherrie L.; McKeithan, Timothy W.; Inghirami, Giorgio

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[−]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(–) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(+) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(–) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway. PMID:23801630

  9. Label-free high-throughput microRNA expression profiling from total RNA

    PubMed Central

    Duan, Demin; Zheng, Ke-xiao; Shen, Ye; Cao, Rong; Jiang, Li; Lu, Zhuoxuan; Yan, Xiyun; Li, Jiong

    2011-01-01

    MicroRNAs (miRNAs) are key biological regulators and promising disease markers whose detection technologies hold great potentials in advancing fundamental research and medical diagnostics. Currently, miRNAs in biological samples have to be labeled before being applied to most high-throughput assays. Although effective, these labeling-based approaches are usually labor-intensive, time-consuming and liable to bias. Besides, the cross-hybridization of co-existing miRNA precursors (pre-miRNAs) is not adequately addressed in most assays that use total RNA as input. Here, we present a hybridization-triggered fluorescence strategy for label-free, microarray-based high-throughput miRNA expression profiling. The total RNA is directly applied to the microarray with a short fluorophore-linked oligonucleotide Universal Tag which can be selectively captured by the target-bound probes via base-stacking effects. This Stacking-Hybridized Universal Tag (SHUT) assay has been successfully used to analyze as little as 100 ng total RNA from human tissues, and found to be highly specific to homogenous miRNAs. Superb discrimination toward single-base mismatch at the 5′ or 3′ end has been demonstrated. Importantly, the pre-miRNAs generated negligible signals, validating the direct use of total RNA. PMID:21976734

  10. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  11. Rational design of microRNA-siRNA chimeras for multifunctional target suppression.

    PubMed

    Jiang, Zhou; Liu, Weijun; Wang, Yuhui; Gao, Zhen; Gao, Ge; Wang, Xiaowei

    2013-12-01

    MicroRNAs (miRNAs) are involved in a variety of human diseases by simultaneously suppressing many gene targets. Thus, the therapeutic value of miRNAs has been intensely studied. However, there are potential limitations with miRNA-based therapeutics such as a relatively moderate impact on gene target regulation and cellular phenotypic control. To address these issues, we proposed to design new chimeric small RNAs (aiRNAs) by incorporating sequences from both miRNAs and siRNAs. These aiRNAs not only inherited functions from natural miRNAs, but also gained new functions of gene knockdown in an siRNA-like fashion. The improved efficacy of multifunctional aiRNAs was demonstrated in our study by design and testing of an aiRNA that inherited the functions of both miR-200a and an AKT1-targeting siRNA for simultaneous suppression of cancer cell motility and proliferation. The general principles of aiRNA design were further validated by engineering new aiRNAs mimicking another miRNA, miR-9. By regulating multiple cellular functions, aiRNAs could be used as an improved tool over miRNAs to target disease-related genes, thus alleviating our dependency on a limited number of miRNAs for the development of RNAi-based therapeutics.

  12. MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer

    PubMed Central

    Dahiya, Neetu; Sherman-Baust, Cheryl A.; Wang, Tian-Li; Davidson, Ben; Shih, Ie-Ming; Zhang, Yongqing; Wood, William; Becker, Kevin G.; Morin, Patrice J.

    2008-01-01

    Background MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes. Methodology/Principal Findings Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels. Interestingly, there was little overlap between the predicted and the experimental targets or pathways, or between experimental targets/pathways obtained using different cell lines, highlighting the complexity of miRNA target selection. Conclusion/Significance Our results identify several differentially expressed miRNAs in ovarian cancer and identify potential target transcripts that may be regulated by these miRNAs. These miRNAs and their targets may have important roles in the initiation and development of ovarian cancer. PMID:18560586

  13. Modeling microRNA-transcription factor networks in cancer.

    PubMed

    Aguda, Baltazar D

    2013-01-01

    An increasing number of transcription factors (TFs) and microRNAs (miRNAs) is known to form feedback loops (FBLs) of interactions where a TF positively or negatively regulates the expression of a miRNA, and the miRNA suppresses the translation of the TF messenger RNA. FBLs are potential sources of instability in a gene regulatory network. Positive FBLs can give rise to switching behaviors while negative FBLs can generate periodic oscillations. This chapter presents documented examples of FBLs and their relevance to stem cell renewal and differentiation in gliomas. Feed-forward loops (FFLs) are only discussed briefly because they do not affect network stability unless they are members of cycles. A primer on qualitative network stability analysis is given and then used to demonstrate the network destabilizing role of FBLs. Steps in model formulation and computer simulations are illustrated using the miR-17-92/Myc/E2F network as an example. This example possesses both negative and positive FBLs.

  14. MicroRNA and Pathogenesis of Enterovirus Infection

    PubMed Central

    Ho, Bing-Ching; Yang, Pan-Chyr; Yu, Sung-Liang

    2016-01-01

    There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy. PMID:26751468

  15. MicroRNA expression profiling of cat and dog kidneys.

    PubMed

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  16. MicroRNA and Pathogenesis of Enterovirus Infection.

    PubMed

    Ho, Bing-Ching; Yang, Pan-Chyr; Yu, Sung-Liang

    2016-01-06

    There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.

  17. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  18. A microRNA isolation method from clinical samples

    PubMed Central

    Zununi Vahed, Sepideh; Barzegari, Abolfazl; Rahbar Saadat, Yalda; Mohammadi, Somayeh; Samadi, Nasser

    2016-01-01

    Introduction: microRNAs (miRNAs) are considered to be novel molecular biomakers that could be exploited in the diagnosis and treatment of different diseases. The present study aimed to develop an efficient miRNA isolation method from different clinical specimens. Methods: Total RNAs were isolated by Trizol reagent followed by precipitation of the large RNAs with potassium acetate (KCH3COOH), polyethylene glycol (PEG) 4000 and 6000, and lithium chloride (LiCl). Then, small RNAs were enriched and recovered from the supernatants by applying a combination of LiCl and ethanol. The efficiency of the method was evaluated through the quality, quantity, and integrity of the recovered RNAs using the A260/280 absorbance ratio, reverse transcription PCR (RT-PCR), and quantitative real-time PCR (q-PCR). Results: Comparison of different RNA isolation methods based on the precipitation of DNA and large RNAs, high miRNA recovery and PCR efficiency revealed that applying potassium acetate with final precipitation of small RNAs using 2.5 M LiCl plus ethanol can provide high yield and quality small RNAs that can be exploited for clinical purposes. Conclusion: The current isolation method can be applied for most clinical samples including cells, formalin-fixed and paraffin-embedded (FFPE) tissues and even body fluids with a wide applicability in molecular biology investigations. PMID:27340621

  19. Circulating microRNA-based screening tool for breast cancer

    PubMed Central

    Boukerroucha, Meriem; Fasquelle, Corinne; Thiry, Jérôme; Bovy, Nicolas; Struman, Ingrid; Geurts, Pierre; Collignon, Joëlle; Schroeder, Hélène; Kridelka, Frédéric; Lifrange, Eric; Jossa, Véronique

    2016-01-01

    Circulating microRNAs (miRNAs) are increasingly recognized as powerful biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels were measured to be used as an alternative screening procedure to mammography for breast cancer diagnosis. A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A diagnostic model was designed based on the expression of 8 miRNAs measured first in a profiling cohort composed of 41 primary breast cancers and 45 controls, and further validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors. A receiver operating characteristic curve derived from the 8-miRNA random forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy of the diagnostic tool remained unchanged considering age and tumor stage. The miRNA signature correctly identified patients with metastatic breast cancer. The use of the classification model on cohorts of patients with breast cancers in remission and with gynecologic cancers yielded prediction distributions similar to that of the control group. Using a multivariate supervised learning method and a set of 8 circulating miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer. PMID:26734993

  20. Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica.

    PubMed

    Wang, Sishuo; Adams, Keith L

    2015-03-01

    Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression and function. Little is known about conservation and divergence of microRNA binding sites in duplicated genes in plants. We analyzed microRNA binding sites in duplicated genes in Arabidopsis thaliana and Brassica rapa. We found that duplicates are more often targeted by microRNAs than singletons. The vast majority of duplicated genes in A. thaliana with microRNA binding sites show divergence in those sites between paralogs. Analysis of microRNA binding sites in genes derived from the ancient whole-genome triplication in B. rapa also revealed extensive divergence. Paralog pairs with divergent microRNA binding sites show more divergence in expression patterns compared with paralog pairs with the same microRNA binding sites in Arabidopsis. Close to half of the cases of binding site divergence are caused by microRNAs that are specific to the Arabidopsis genus, indicating evolutionarily recent gain of binding sites after target gene duplication. We also show rapid evolution of microRNA binding sites in a jacalin gene family. Our analyses reveal a dynamic process of changes in microRNA binding sites after gene duplication in Arabidopsis and highlight the role of microRNA regulation in the divergence and contrasting evolutionary fates of duplicated genes.

  1. Review of MicroRNA Deregulation in Oral Cancer. Part I

    PubMed Central

    Miloro, Michael; Zhou, Xiaofeng

    2011-01-01

    ABSTRACT Objectives Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer. The purpose of this article was to review the literature related to microRNA deregulation in the head and neck/oral cavity cancers. Material and Methods A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review. Results Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified. Conclusions These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy. PMID:24421988

  2. Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica.

    PubMed

    Wang, Sishuo; Adams, Keith L

    2015-03-01

    Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression and function. Little is known about conservation and divergence of microRNA binding sites in duplicated genes in plants. We analyzed microRNA binding sites in duplicated genes in Arabidopsis thaliana and Brassica rapa. We found that duplicates are more often targeted by microRNAs than singletons. The vast majority of duplicated genes in A. thaliana with microRNA binding sites show divergence in those sites between paralogs. Analysis of microRNA binding sites in genes derived from the ancient whole-genome triplication in B. rapa also revealed extensive divergence. Paralog pairs with divergent microRNA binding sites show more divergence in expression patterns compared with paralog pairs with the same microRNA binding sites in Arabidopsis. Close to half of the cases of binding site divergence are caused by microRNAs that are specific to the Arabidopsis genus, indicating evolutionarily recent gain of binding sites after target gene duplication. We also show rapid evolution of microRNA binding sites in a jacalin gene family. Our analyses reveal a dynamic process of changes in microRNA binding sites after gene duplication in Arabidopsis and highlight the role of microRNA regulation in the divergence and contrasting evolutionary fates of duplicated genes. PMID:25644246

  3. MicroRNA Dysregulation in the Spinal Cord following Traumatic Injury

    PubMed Central

    Yunta, Mónica; Nieto-Díaz, Manuel; Esteban, Francisco J.; Caballero-López, Marcos; Navarro-Ruíz, Rosa; Reigada, David; Pita-Thomas, D. Wolfgang; del Águila, Ángela; Muñoz-Galdeano, Teresa; Maza, Rodrigo M.

    2012-01-01

    Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury. PMID:22511948

  4. microPIR2: a comprehensive database for human-mouse comparative study of microRNA-promoter interactions.

    PubMed

    Piriyapongsa, Jittima; Bootchai, Chaiwat; Ngamphiw, Chumpol; Tongsima, Sissades

    2014-01-01

    microRNA (miRNA)-promoter interaction resource (microPIR) is a public database containing over 15 million predicted miRNA target sites located within human promoter sequences. These predicted targets are presented along with their related genomic and experimental data, making the microPIR database the most comprehensive repository of miRNA promoter target sites. Here, we describe major updates of the microPIR database including new target predictions in the mouse genome and revised human target predictions. The updated database (microPIR2) now provides ∼80 million human and 40 million mouse predicted target sites. In addition to being a reference database, microPIR2 is a tool for comparative analysis of target sites on the promoters of human-mouse orthologous genes. In particular, this new feature was designed to identify potential miRNA-promoter interactions conserved between species that could be stronger candidates for further experimental validation. We also incorporated additional supporting information to microPIR2 such as nuclear and cytoplasmic localization of miRNAs and miRNA-disease association. Extra search features were also implemented to enable various investigations of targets of interest. Database URL: http://www4a.biotec.or.th/micropir2

  5. Dietary MicroRNA Database (DMD): An Archive Database and Analytic Tool for Food-Borne microRNAs.

    PubMed

    Chiang, Kevin; Shu, Jiang; Zempleni, Janos; Cui, Juan

    2015-01-01

    With the advent of high throughput technology, a huge amount of microRNA information has been added to the growing body of knowledge for non-coding RNAs. Here we present the Dietary MicroRNA Databases (DMD), the first repository for archiving and analyzing the published and novel microRNAs discovered in dietary resources. Currently there are fifteen types of dietary species, such as apple, grape, cow milk, and cow fat, included in the database originating from 9 plant and 5 animal species. Annotation for each entry, a mature microRNA indexed as DM0000*, covers information of the mature sequences, genome locations, hairpin structures of parental pre-microRNAs, cross-species sequence comparison, disease relevance, and the experimentally validated gene targets. Furthermore, a few functional analyses including target prediction, pathway enrichment and gene network construction have been integrated into the system, which enable users to generate functional insights through viewing the functional pathways and building protein-protein interaction networks associated with each microRNA. Another unique feature of DMD is that it provides a feature generator where a total of 411 descriptive attributes can be calculated for any given microRNAs based on their sequences and structures. DMD would be particularly useful for research groups studying microRNA regulation from a nutrition point of view. The database can be accessed at http://sbbi.unl.edu/dmd/.

  6. A custom microarray platform for analysis of microRNA gene expression.

    PubMed

    Thomson, J Michael; Parker, Joel; Perou, Charles M; Hammond, Scott M

    2004-10-01

    MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.

  7. An Improved microRNA Annotation of the Canine Genome.

    PubMed

    Penso-Dolfin, Luca; Swofford, Ross; Johnson, Jeremy; Alföldi, Jessica; Lindblad-Toh, Kerstin; Swarbreck, David; Moxon, Simon; Di Palma, Federica

    2016-01-01

    The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions. PMID:27119849

  8. An Improved microRNA Annotation of the Canine Genome

    PubMed Central

    Swofford, Ross; Johnson, Jeremy; Alföldi, Jessica; Lindblad-Toh, Kerstin; Swarbreck, David; Moxon, Simon; Di Palma, Federica

    2016-01-01

    The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions. PMID:27119849

  9. MicroRNA and Male Infertility: A Potential for Diagnosis.

    PubMed

    Khazaie, Yahya; Nasr Esfahani, Mohammad Hossein

    2014-07-01

    MicroRNAs (miRNAs) are small non-coding single stranded RNA molecules that are physiologically produced in eukaryotic cells to regulate or mostly down-regulate genes by pairing with their complementary base-sequence in related mRNA molecules in the cytoplasm. It has been reported that other than its function in many physiological cell processes, dysregulation of miRNAs plays a role in the development of many diseases. In this short review, the association between miRNAs and some male reproductive disorders is surveyed. Male factor Infertility is a devastating problem from which a notable percentage of couples suffer. However, the molecular mechanism of many infertility disorders has not been clearly elucidated. Since miRNAs have an important role in numerous biological cell processes and cellular dysfunctions, it is of interest to review the related literature on the role of miRNAs in the male reproductive organs. Aberrant expression of specific miRNAs is associated with certain male reproductive dysfunctions. For this reason, assessment of expression of such miRNAs may serve as a suitable molecular biomarker for diagnosis of those male infertility disorders. The presence of a single nucleotide polymorphism (SNP) at the miRNAs' binding site in its targeted mRNA has been reported to have an association with idiopathic male infertility. Also, a relation with male infertility has been shown with SNP in the genes of the factors necessary for miRNA biogenesis. Therefore, focusing on the role of miRNAs in male reproductive disorders can further elucidate the molecular mechanisms of male infertility and generate the potential for locating efficient biomarkers and therapeutic agents for these disorders.

  10. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  11. MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response

    PubMed Central

    Pothof, Joris; Verkaik, Nicole S; van IJcken, Wilfred; Wiemer, Erik A C; Ta, Van T B; van der Horst, Gijsbertus T J; Jaspers, Nicolaas G J; van Gent, Dik C; Hoeijmakers, Jan H J; Persengiev, Stephan P

    2009-01-01

    DNA damage provokes DNA repair, cell-cycle regulation and apoptosis. This DNA-damage response encompasses gene-expression regulation at the transcriptional and post-translational levels. We show that cellular responses to UV-induced DNA damage are also regulated at the post-transcriptional level by microRNAs. Survival and checkpoint response after UV damage was severely reduced on microRNA-mediated gene-silencing inhibition by knocking down essential components of the microRNA-processing pathway (Dicer and Ago2). UV damage triggered a cell-cycle-dependent relocalization of Ago2 into stress granules and various microRNA-expression changes. Ago2 relocalization required CDK activity, but was independent of ATM/ATR checkpoint signalling, whereas UV-responsive microRNA expression was only partially ATM/ATR independent. Both microRNA-expression changes and stress-granule formation were most pronounced within the first hours after genotoxic stress, suggesting that microRNA-mediated gene regulation operates earlier than most transcriptional responses. The functionality of the microRNA response is illustrated by the UV-inducible miR-16 that downregulates checkpoint-gene CDC25a and regulates cell proliferation. We conclude that microRNA-mediated gene regulation adds a new dimension to the DNA-damage response. PMID:19536137

  12. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses.

    PubMed

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.

  13. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses

    PubMed Central

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M.; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species. PMID:26089831

  14. [Selection of microRNA for providing tumor specificity of transgene expression in cancer gene therapy].

    PubMed

    Shepelev, M V; Kalinichenko, S V; Vikhreva, P N; Korobko, I V

    2016-01-01

    The use of tumor-specific microRNA loss to inhibit transgene expression in normal cells is considered as a way to increase the specificity of gene-therapeutic antitumor drugs. This method assumes the introduction of recognition sites of suppressed in tumor cells microRNAs into transgene transcipt. In the presented work, the efficiency of the strategy for providing the tumor specificity of transgene expression depending on parameters of microRNA expression in normal and tumor cells was studied. It was established that microRNA suppression in tumor cells and the determination of absolute microRNA levels in tumor and normal cells are not sufficient for the adequate estimation of the possibility of specific microRNA usage in the scheme of cancer gene therapy, and particularly do not allow to exclude a significant decrease in the efficiency of the gene-therapeutic drug upon the introduction of microRNA recognition sites. These parameters are only suitable for the preliminary selection of microRNA. The effect of introduction of microRNA recognition sites on transgene expression level in target tumor cells should be validated experimentally. It is suggested that this should be done directly in the cancer gene therapy scheme with monitoring of the therapeutic transgene activity. PMID:27239854

  15. mirConnX: condition-specific mRNA-microRNA network integrator

    PubMed Central

    Huang, Grace T.; Athanassiou, Charalambos; Benos, Panayiotis V.

    2011-01-01

    mirConnX is a user-friendly web interface for inferring, displaying and parsing mRNA and microRNA (miRNA) gene regulatory networks. mirConnX combines sequence information with gene expression data analysis to create a disease-specific, genome-wide regulatory network. A prior, static network has been constructed for all human and mouse genes. It consists of computationally predicted transcription factor (TF)-gene associations and miRNA target predictions. The prior network is supplemented with known interactions from the literature. Dynamic TF- and miRNA-gene associations are inferred from user-provided expression data using an association measure of choice. The static and dynamic networks are then combined using an integration function with user-specified weights. Visualization of the network and subsequent analysis are provided via a very responsive graphic user interface. Two organisms are currently supported: Homo sapiens and Mus musculus. The intuitive user interface and large database make mirConnX a useful tool for clinical scientists for hypothesis generation and explorations. mirConnX is freely available for academic use at http://www.benoslab.pitt.edu/mirconnx. PMID:21558324

  16. The effects of environmental chemical carcinogens on the microRNA machinery.

    PubMed

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.

  17. The effects of environmental chemical carcinogens on the microRNA machinery.

    PubMed

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. PMID:24560354

  18. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay

    PubMed Central

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U.; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs’ 3′-ends by addition of a linker-adapter. The adapter is then used as ‘anchor’ to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  19. Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets

    PubMed Central

    Jin, Daeyong; Lee, Hyunju

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of target genes, and they are involved in cancer initiation and progression. Even though many cancer-related miRNAs were identified, their functional impact may vary, depending on their effects on the regulation of other miRNAs and genes. In this study, we propose a novel method for the prioritization of candidate cancer-related miRNAs that may affect the expression of other miRNAs and genes across the entire biological network. For this, we propose three important features: the average expression of a miRNA in multiple cancer samples, the average of the absolute correlation values between the expression of a miRNA and expression of all genes, and the number of predicted miRNA target genes. These three features were integrated using order statistics. By applying the proposed approach to four cancer types, glioblastoma, ovarian cancer, prostate cancer, and breast cancer, we prioritized candidate cancer-related miRNAs and determined their functional roles in cancer-related pathways. The proposed approach can be used to identify miRNAs that play crucial roles in driving cancer development, and the elucidation of novel potential therapeutic targets for cancer treatment. PMID:27734929

  20. Emerging role of microRNA-21 in cancer

    PubMed Central

    Feng, Yin-Hsun; Tsao, Chao-Jung

    2016-01-01

    MicroRNAs (miRs) are a class of single-stranded RNA molecules of 15–27 nucleotides in length that regulate gene expression at the post-translational level. miR-21 is one of the earliest identified cancer-promoting ‘oncomiRs’, targeting numerous tumor suppressor genes associated with proliferation, apoptosis and invasion. The regulation of miR-21 and its role in carcinogenesis have been extensively investigated. Recent studies have focused on the diagnostic and prognostic value of miR-21 as well as its implication in the drug resistance of human malignancies. The further use of miR-21 as a biomarker and target for cancer treatments is likely to improve the outcome for patients with cancer. The present review highlights recent findings associated with the importance of miR-21 in hematological and non-hematological malignancies. PMID:27699004

  1. The MicroRNA-21 in Autoimmune Diseases

    PubMed Central

    Wang, Shaowen; Wan, Xiaochun; Ruan, Qingguo

    2016-01-01

    MicroRNA-21 (miR-21) is an oncomiR and significantly upregulated in a wide range of cancers. It is strongly involved in apoptosis and oncogenesis, since most of its reported targets are tumor suppressors. Recently, miR-21 was found to be correlated with the pathogenesis of autoimmune diseases and may play an essential role in regulating autoimmune responses. In particular, miR-21 promotes Th17 cell differentiation, which mediates the development of multiple autoimmune diseases. In this article, we review the current research on the mechanisms that regulate miR-21 expression, the potential of miR-21 as a diagnostic biomarker for autoimmune disease and the mechanisms by which miR-21 promotes the development of autoimmune disease. We also discussed the therapeutic potential of targeting miR-21 in treating patients with autoimmune disease. PMID:27271606

  2. MicroRNA as tools and therapeutics in lung cancer.

    PubMed

    Barger, Jennifer F; Nana-Sinkam, S Patrick

    2015-07-01

    Lung cancer is the number one cause of cancer related deaths. The lack of specific and accurate tools for early diagnosis and minimal targeted therapeutics both contribute to poor outcomes. The recent discovery of microRNAs (miRNAs) revealed a novel mechanism for post-transcriptional regulation in cancer and has created new opportunities for the development of diagnostics, prognostics and targeted therapeutics. In lung cancer, miRNA expression profiles distinguish histological subtypes, predict chemotherapeutic response and are associated with prognosis, metastasis and survival. Furthermore, miRNAs circulate in body fluids and hence may serve as important biomarkers for early diagnosis or stratify patients for personalized therapeutic strategies. Here, we provide an overview of the miRNAs implicated in lung cancer, with an emphasis on their clinical utility.

  3. A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics

    PubMed Central

    2016-01-01

    MicroRNAs (miRs) are important regulators of gene expression in numerous biological processes. Their maturation process is herein described, including the most updated insights from the current literature. Circa 2000 miR sequences have been identified in the human genome, with over 50,000 miR-target interactions, including enzymes involved in epigenetic modulation of gene expression. Moreover, some “pieces of RNA” previously annotated as noncoding have been recently found to encode micropeptides that carry out critical mechanistic functions in the cell. Advanced techniques now available will certainly allow a precise scanning of the genome looking for micropeptides hidden within the “noncoding” RNA. PMID:26662983

  4. MicroRNA-9 controls dendritic development by targeting REST

    PubMed Central

    Giusti, Sebastian A; Vogl, Annette M; Brockmann, Marisa M; Vercelli, Claudia A; Rein, Martin L; Trümbach, Dietrich; Wurst, Wolfgang; Cazalla, Demian; Stein, Valentin; Deussing, Jan M; Refojo, Damian

    2014-01-01

    MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth. DOI: http://dx.doi.org/10.7554/eLife.02755.001 PMID:25406064

  5. MicroRNA networks regulate development of brown adipocytes.

    PubMed

    Trajkovski, Mirko; Lodish, Harvey

    2013-09-01

    Brown adipose tissue (BAT) is specialized for heat generation and energy expenditure as a defense against cold and obesity; in both humans and mice increased amounts of BAT are associated with a lean phenotype and resistance to development of the metabolic syndrome and its complications. Here we summarize recent research showing that several BAT-expressed microRNAs (miRNAs) play important roles in regulating differentiation and metabolism of brown and beige adipocytes; we discuss the key mRNA targets downregulated by these miRNAs and show how these miRNAs affect directly or indirectly transcription factors important for BAT development. We suggest that these miRNAs could be part of novel therapeutics to increase BAT in humans.

  6. Role of microRNA-7 in digestive system malignancy

    PubMed Central

    Chen, Wan-Qun; Hu, Ling; Chen, Geng-Xin; Deng, Hai-Xia

    2016-01-01

    There are several malignancies of the digestive system (including gastric, pancreatic and colorectal cancers, and hepatocellular carcinoma), which are the most common types of cancer and a major cause of death worldwide. MicroRNA (miR)-7 is abundant in the pancreas, playing an important role in pancreatic development and endocrine function. Expression of miR-7 is downregulated in digestive system malignancies compared with normal tissue. Although there are contrasting results for miR-7 expression, almost all research reveals that miR-7 is a tumor suppressor, by targeting various genes in specific pathways. Moreover, miR-7 can target different genes simultaneously in different malignancies of the digestive system. By acting on many cytokines, miR-7 is also involved in many gastrointestinal inflammatory diseases as a significant carcinogenic factor. Consequently, miR-7 might be a biomarker or therapeutic target gene in digestive system malignancies. PMID:26798443

  7. Apoptosis and the target genes of microRNA-21

    PubMed Central

    Buscaglia, Lindsey E. Becker; Li, Yong

    2011-01-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majority of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an Oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21. PMID:21627859

  8. The MicroRNA-21 in Autoimmune Diseases.

    PubMed

    Wang, Shaowen; Wan, Xiaochun; Ruan, Qingguo

    2016-06-03

    MicroRNA-21 (miR-21) is an oncomiR and significantly upregulated in a wide range of cancers. It is strongly involved in apoptosis and oncogenesis, since most of its reported targets are tumor suppressors. Recently, miR-21 was found to be correlated with the pathogenesis of autoimmune diseases and may play an essential role in regulating autoimmune responses. In particular, miR-21 promotes Th17 cell differentiation, which mediates the development of multiple autoimmune diseases. In this article, we review the current research on the mechanisms that regulate miR-21 expression, the potential of miR-21 as a diagnostic biomarker for autoimmune disease and the mechanisms by which miR-21 promotes the development of autoimmune disease. We also discussed the therapeutic potential of targeting miR-21 in treating patients with autoimmune disease.

  9. Emerging role of microRNA-21 in cancer

    PubMed Central

    Feng, Yin-Hsun; Tsao, Chao-Jung

    2016-01-01

    MicroRNAs (miRs) are a class of single-stranded RNA molecules of 15–27 nucleotides in length that regulate gene expression at the post-translational level. miR-21 is one of the earliest identified cancer-promoting ‘oncomiRs’, targeting numerous tumor suppressor genes associated with proliferation, apoptosis and invasion. The regulation of miR-21 and its role in carcinogenesis have been extensively investigated. Recent studies have focused on the diagnostic and prognostic value of miR-21 as well as its implication in the drug resistance of human malignancies. The further use of miR-21 as a biomarker and target for cancer treatments is likely to improve the outcome for patients with cancer. The present review highlights recent findings associated with the importance of miR-21 in hematological and non-hematological malignancies.

  10. MicroRNA Gene Expression Signature Driven by miR-9 Overexpression in Ovarian Clear Cell Carcinoma.

    PubMed

    Yanaihara, Nozomu; Noguchi, Yukiko; Saito, Misato; Takenaka, Masataka; Takakura, Satoshi; Yamada, Kyosuke; Okamoto, Aikou

    2016-01-01

    Previous studies have identified microRNA (miRNA) involvement in human cancers. This study aimed to elucidate potential clinical and biological associations of ovarian cancer-related miRNA gene expression profiles in high-grade serous carcinoma (HGSC) and ovarian clear cell carcinoma (OCCC). Accordingly, we investigated 27 patients with ovarian cancer (12 HGSC and 15 OCCC cases) using quantitative real-time reverse transcription polymerase chain reaction to determine the cancer-related miRNA expressions. Gene Cluster 3.0 was used for hierarchical clustering analysis, and differentially expressed miRNAs between HGSC and OCCC were identified by the class comparison analysis using BRB-ArrayTools. An unsupervised hierarchical clustering analysis identified two distinct miRNA expression clusters, with histological subtype-related significant differences in the associations between clusters and clinicopathological features. A comparison of miRNA expression in HGSCs and OCCCs identified five miRNAs (miR-132, miR-9, miR-126, miR-34a, and miR-21), with OCCCs demonstrating a statistically higher expression. Further investigation of the biological significance of miR-9 overexpression in OCCC revealed that miR-9 inhibition reduced the cell invasion ability and upregulated E-cadherin expression. Using a luciferase reporter assay, we further demonstrated the direct binding of miR-9 to E-cadherin. Global cancer-related miRNA expression analysis identified statistically unique profiles that could discriminate ovarian cancer histotypes. In OCCC, miR-9 overexpression may affect pathogenesis by targeting E-cadherin, thereby inducing an epithelial-mesenchymal transition. Therefore, miR-9 may be a promising therapeutic target strategy for OCCC. PMID:27612152

  11. MicroRNA Gene Expression Signature Driven by miR-9 Overexpression in Ovarian Clear Cell Carcinoma

    PubMed Central

    Saito, Misato; Takenaka, Masataka; Takakura, Satoshi; Yamada, Kyosuke; Okamoto, Aikou

    2016-01-01

    Previous studies have identified microRNA (miRNA) involvement in human cancers. This study aimed to elucidate potential clinical and biological associations of ovarian cancer-related miRNA gene expression profiles in high-grade serous carcinoma (HGSC) and ovarian clear cell carcinoma (OCCC). Accordingly, we investigated 27 patients with ovarian cancer (12 HGSC and 15 OCCC cases) using quantitative real-time reverse transcription polymerase chain reaction to determine the cancer-related miRNA expressions. Gene Cluster 3.0 was used for hierarchical clustering analysis, and differentially expressed miRNAs between HGSC and OCCC were identified by the class comparison analysis using BRB-ArrayTools. An unsupervised hierarchical clustering analysis identified two distinct miRNA expression clusters, with histological subtype-related significant differences in the associations between clusters and clinicopathological features. A comparison of miRNA expression in HGSCs and OCCCs identified five miRNAs (miR-132, miR-9, miR-126, miR-34a, and miR-21), with OCCCs demonstrating a statistically higher expression. Further investigation of the biological significance of miR-9 overexpression in OCCC revealed that miR-9 inhibition reduced the cell invasion ability and upregulated E-cadherin expression. Using a luciferase reporter assay, we further demonstrated the direct binding of miR-9 to E-cadherin. Global cancer-related miRNA expression analysis identified statistically unique profiles that could discriminate ovarian cancer histotypes. In OCCC, miR-9 overexpression may affect pathogenesis by targeting E-cadherin, thereby inducing an epithelial–mesenchymal transition. Therefore, miR-9 may be a promising therapeutic target strategy for OCCC. PMID:27612152

  12. The multiple roles of microRNA-155 in oncogenesis

    PubMed Central

    2013-01-01

    The microRNA miR-155 is prominent in cancer biology. Among microRNAs that have been linked to cancer, it is the most commonly overexpressed in malignancies (PNAS 109:20047-20052, 2012). Since its discovery, miR-155 has been implicated in promoting cancers of the breast, lung, liver, and lymphatic system. As such, targeted therapies may prove beneficial to cancer treatment. This review discusses the important role of miR-155 in oncogenesis. It synthesizes information from ten recent papers on miR-155, and includes an analysis and discussion of its association with cancer, interactions with other miRNAs, mechanisms of action, and the most promising available treatment options. Current debates in the field include the importance of miRNAs in general and their utility as targets in preventing tumorigenesis (Blood 119:513-520, 2012). Most of the papers being reviewed here confirm the role of miR-155 in oncogenesis (EMBO Mol Med 1:288-295, 2009). While there is some controversy surrounding recent research that claims that miR-155 may display anti-oncogenic or pro-immunological benefits (Cell Rep 2:1697–1709, 2012), most research seems to point to the importance of anti-miRs, with anti-miR-155 in particular, for cancer therapy. PMID:24073882

  13. microRNA-149 targets caspase-2 in glioma progression

    PubMed Central

    Liao, Wenfeng; Wang, Jiwen; Chen, Huanjun; Yao, Yanli; Liu, Houbao; Ding, Kan

    2016-01-01

    Malignant gliomas are the most common form of intrinsic primary brain tumors worldwide. Alterations in microRNAs play a role in highly invasive malignant glioma, but detail mechanism still unknown. In this study, the role and mechanism of microRNA-149 (miR-149) in glioma are investigated. We show that miR-149 is expressed at substantially higher levels in glioma than in normal tissues. Stable overexpression of miR-149 augments potent prosurvival activity, as evidenced by promotion of cell viability, inhibition of apoptosis, and induced xenografted tumor growth in vivo. We further show that Caspase-2 is identified as a functional target of miR-149 and expression of caspase-2 is inversely associated with miR-149 in vitro. In addition, miR-149 promotes tumor survival in the U87-MG and A172 cell lines and it targets caspase-2 via inactivation of the p53 and p21 pathways. There results support a special role for miR-149 by targeting Caspase-2 to impact on p53 signaling pathway. We speculate that miR-149 has distinct biological functions in p53 wild type cells and p53 mutation cells, and the mechanisms involved remain to be explored in future. Our study suggests that targeting miR-149 may be a novel therapy strategy for treating p53 wild type glioma tumors in humans. PMID:27049919

  14. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Wu, Feng; Qu, Lina

    Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.

  15. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  16. The Role of MicroRNA-200 in Progression of Human Colorectal and Breast Cancer

    PubMed Central

    Bojmar, Linda; Karlsson, Elin; Ellegård, Sander; Olsson, Hans; Björnsson, Bergthor; Hallböök, Olof; Larsson, Marie; Stål, Olle; Sandström, Per

    2013-01-01

    The role of the epithelial-mesenchymal transition (EMT) in cancer has been studied extensively in vitro, but involvement of the EMT in tumorigenesis in vivo is largely unknown. We investigated the potential of microRNAs as clinical markers and analyzed participation of the EMT-associated microRNA-200–ZEB–E-cadherin pathway in cancer progression. Expression of the microRNA-200 family was quantified by real-time RT-PCR analysis of fresh-frozen and microdissected formalin-fixed paraffin-embedded primary colorectal tumors, normal colon mucosa, and matched liver metastases. MicroRNA expression was validated by in situ hybridization and after in vitro culture of the malignant cells. To assess EMT as a predictive marker, factors considered relevant in colorectal cancer were investigated in 98 primary breast tumors from a treatment-randomized study. Associations between the studied EMT-markers were found in primary breast tumors and in colorectal liver metastases. MicroRNA-200 expression in epithelial cells was lower in malignant mucosa than in normal mucosa, and was also decreased in metastatic compared to non-metastatic colorectal cancer. Low microRNA-200 expression in colorectal liver metastases was associated with bad prognosis. In breast cancer, low levels of microRNA-200 were related to reduced survival and high expression of microRNA-200 was predictive of benefit from radiotheraphy. MicroRNA-200 was associated with ER positive status, and inversely correlated to HER2 and overactivation of the PI3K/AKT pathway, that was associated with high ZEB1 mRNA expression. Our findings suggest that the stability of microRNAs makes them suitable as clinical markers and that the EMT-related microRNA-200 – ZEB – E-cadherin signaling pathway is connected to established clinical characteristics and can give useful prognostic and treatment-predictive information in progressive breast and colorectal cancers. PMID:24376848

  17. MicroRNA in aqueous humor from patients with cataract.

    PubMed

    Dunmire, Jeffrey J; Lagouros, Evan; Bouhenni, Rachida A; Jones, Marc; Edward, Deepak P

    2013-03-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules with regulatory function and marked tissue specificity that can modulate multiple gene targets. They have been detected in body fluids and are associated with various physiologic and pathologic processes. We analyzed aqueous humor (AH) from human subjects undergoing cataract surgery to establish the presence and relative quantities of known miRNAs. AH was collected from patients without known ocular diseases other than cataract and a normal systemic history. Quantitative real-time PCR in an array platform was used to detect known miRNAs present in the AH. Among the 264 miRNAs tested, 110 were present in the AH. The top 5 abundant miRNAs identified were miR-202, miR-193b, miR-135a, miR-365, and miR-376a. The presence of miRNAs in AH suggests that they may have functional roles in regulating target genes in tissues lining the anterior chamber. Further analysis of the AH miRNA population may identify potential gene targets and provide insights regarding their roles in AH regulation, glaucoma and anterior segment disease processes.

  18. Neutral evolution of robustness in Drosophila microRNA precursors.

    PubMed

    Price, Nicholas; Cartwright, Reed A; Sabath, Niv; Graur, Dan; Azevedo, Ricardo B R

    2011-07-01

    Mutational robustness describes the extent to which a phenotype remains unchanged in the face of mutations. Theory predicts that the strength of direct selection for mutational robustness is at most the magnitude of the rate of deleterious mutation. As far as nucleic acid sequences are concerned, only long sequences in organisms with high deleterious mutation rates and large population sizes are expected to evolve mutational robustness. Surprisingly, recent studies have concluded that molecules that meet none of these conditions--the microRNA precursors (pre-miRNAs) of multicellular eukaryotes--show signs of selection for mutational and/or environmental robustness. To resolve the apparent disagreement between theory and these studies, we have reconstructed the evolutionary history of Drosophila pre-miRNAs and compared the robustness of each sequence to that of its reconstructed ancestor. In addition, we "replayed the tape" of pre-miRNA evolution via simulation under different evolutionary assumptions and compared these alternative histories with the actual one. We found that Drosophila pre-miRNAs have evolved under strong purifying selection against changes in secondary structure. Contrary to earlier claims, there is no evidence that these RNAs have been shaped by either direct or congruent selection for any kind of robustness. Instead, the high robustness of Drosophila pre-miRNAs appears to be mostly intrinsic and likely a consequence of selection for functional structures.

  19. MicroRNA Biomarkers of Toxicity in Biological Matrices.

    PubMed

    Harrill, Alison H; McCullough, Shaun D; Wood, Charles E; Kahle, Juliette J; Chorley, Brian N

    2016-08-01

    Biomarker measurements that reliably correlate with tissue injury and that can be measured within accessible biofluids offer benefits in terms of cost, time, and convenience when assessing chemical and drug-induced toxicity in model systems or human cohorts. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarker for monitoring toxicity. Recent enthusiasm for miRNA biomarker research has been fueled by evidence that certain miRNAs are cell-type specific and are released during injury, thus raising the possibility of using biofluid-based miRNAs as a "liquid biopsy" that may be obtained by sampling extracellular fluids. As biomarkers, miRNAs demonstrate improved stability as compared with many protein markers and sequences are largely conserved across species, simplifying analytical techniques. Recent efforts have sought to identify miRNAs that are released into accessible biofluids following xenobiotic exposure, using compounds that target specific organs. Whereas still early in the discovery phase, miRNA biomarkers will have an increasingly important role in the assessment of adverse effects of both environmental chemicals and pharmaceutical drugs. Here, we review the current findings of biofluid-based miRNAs, as well as highlight technical challenges in assessing toxicologic pathology using these biomarkers. PMID:27462126

  20. MicroRNA in neurodegenerative drug discovery: the way forward?

    PubMed

    Campbell, Kristyn; Booth, Stephanie A

    2015-01-01

    Neurodegenerative diseases occur when neuronal cells in the brain or spinal cord progressively lose function and eventually die. Pathological analysis of these tissues reveals changes that include the loss of synapses, tangles of misfolded protein and immune cell activation, even during very early stages of disease well before debilitating clinical signs are apparent. This suggests that if neurodegeneration is treated early enough, drugs designed to delay the progress of these diseases by either repairing the early damage and loss of neurons, or protecting neuron functionality from further insult, may be efficacious. MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate gene expression. They are particularly numerous within neurons where many are expressed with high specificity, which suggests that they have important roles in the healthy brain. Indeed, miRNAs are essential for the post-mitotic survival of neurons, implying a crucial role in survival and neuroprotection. This has focused attention on exploring the use of miRNA-based drugs as a means to correct cellular abnormalities and maintain neuronal function in neurodegenerative diseases. These efforts are spurred on by the rapid progress to clinical trials for a number of miRNA-based therapies for other diseases such as cardiovascular diseases, fibrosis and cancer.

  1. MicroRNA and MET in lung cancer

    PubMed Central

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-protein coding RNAs that modulate important cellular functions via their post-transcriptional regulation of messenger RNAs (mRNAs). Recent evidences from multiple tumor types and model systems implicate miRNA dysregulation as a common mechanism of tumorigenesis, cancer progression and resistance to therapy. Several miRNAs are dysregulated in cancers and a single miRNA can have multiple targets involved in different oncogenic pathways. MET, the tyrosine kinase receptor for hepatocyte growth factor (HGF), has a central role in lung cancer development and in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors; it has been predicted and shown to be the target gene of multiple miRNAs, which play a crucial role in controlling its activity in a stimulatory or inhibitory sense. In this review we will focus on the most important and recent studies about the role of miRNAs in the control of MET expression, reporting also the progress made using miRNAs for therapy of lung cancer. PMID:25992367

  2. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed. PMID:27562993

  3. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

  4. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells

    PubMed Central

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Marincola, Francesco M; Stroncek, David F

    2009-01-01

    Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic

  5. Altered microRNA expression profiles in a rat model of spina bifida

    PubMed Central

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  6. MicroRNA binding sites in C. elegans 3' UTRs.

    PubMed

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org. PMID:24827614

  7. MicroRNA Signatures of Drought Signaling in Rice Root

    PubMed Central

    Nikpay, Nava; Ebrahimi, Mohammad Ali; Bihamta, Mohammad Reza; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2016-01-01

    Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation. PMID:27276090

  8. Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering*

    PubMed Central

    Jung, Jae-Hoon; Seo, Pil Joon; Ahn, Ji Hoon; Park, Chung-Mo

    2012-01-01

    Ambient temperature fluctuates diurnally and seasonally. It profoundly influences the timing of flowering in plants. The floral integrator FLOWERING LOCUS T (FT) mediates ambient temperature signals via the thermosensory pathway in Arabidopsis flowering. microRNA172 (miR172), which promotes flowering by inducing FT, also responds to changes in ambient temperature. However, it is largely unknown how miR172 integrates ambient temperature signals into the flowering genetic network. Here, we show that Arabidopsis RNA-binding protein FCA promotes the processing of primary microRNA172 transcripts (pri-miR172) in response to changes in ambient temperature. Ambient temperature regulates miR172 biogenesis primarily at the pri-miR172 processing step. miR172 abundance is elevated at 23 °C but not at 16 °C. miR172 accumulation at 23 °C requires functional FCA. FCA binds to the flanking sequences of the stem-loop within the pri-miR172 transcripts via the RNA recognition motif. FCA also binds to the primary transcripts of other temperature-responsive miRNAs, such as miR398 and miR399. Notably, levels of FCA mRNAs and proteins increase at 23 °C but remain low at 16 °C, supporting the role of FCA in temperature perception. Our data show that FCA regulation of miR172 processing is an early event in the thermosensory flowering pathway. We propose that the FCA-miR172 regulon provides an adaptive strategy that fine tunes the onset of flowering under fluctuating ambient temperature conditions. PMID:22431732

  9. MicroRNA-590 is an EMT-suppressive microRNA involved in the TGFβ signaling pathway

    PubMed Central

    LIU, TIANMING; NIE, FANG; YANG, XIANGGUI; WANG, XIAOYAN; YUAN, YUE; LV, ZHONGSHI; ZHOU, LI; PENG, RUI; NI, DONGSHENG; GU, YUPING; ZHOU, QIN; WENG, YAGUANG

    2015-01-01

    Over the last few decades, the epithelial-to-mesenchymal transition (EMT) has been identified as being involved in a number of aspects of physiological processes and various pathological events, including embryonic development and renal fibrosis. Transforming growth factor-β receptor 2 (TGFβR2) is a widely studied gene, which fulfils a vital role in the TGFβ signaling pathway and exerts a crucial function in the progression of EMT. Previous studies demonstrated that the dysregulation of microRNAs (miRNAs) is considered to be associated with the EMT process. However, the precise functional involvement of miRNAs in EMT remains to be fully elucidated. In the present study, the level of miR-590 was decreased in an EMT model in vitro and in vivo. Furthermore, the overexpression of miR-590 inhibited EMT by upregulating the epithelial marker, E-cadherin, and downregulating the mesenchymal markers, laminin, α-smooth muscle actin (α-SMA) and collagen, in the human kidney 2 (HK2) cell line. Furthermore, TGFβR2 was negatively regulated by miR-590. In addition, performing a knockdown of TGFβR2 with small-interfering RNA had an effect similar to miR-590 on EMT in the HK2 cell line, whereas the transfection of pCMV-tag2B-TGFβR2 reversed the effect of miR-590 on EMT in HK2 cells. Taken together, the present study demonstrated that miR-590 is a novel EMT-suppressive microRNA, which targets TGFβR2. PMID:26459119

  10. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – Evidence of unique microRNA cargos

    PubMed Central

    Lunavat, Taral R; Cheng, Lesley; Kim, Dae-Kyum; Bhadury, Joydeep; Jang, Su Chul; Lässer, Cecilia; Sharples, Robyn A; López, Marcela Dávila; Nilsson, Jonas; Gho, Yong Song; Hill, Andrew F; Lötvall, Jan

    2015-01-01

    Melanoma cells release different types of extracellular vesicles (EVs) into the extracellular milieu that are involved with communication and signaling in the tumor microenvironment. Subsets of EVs include exosomes, microvesicles, and apoptotic bodies that carry protein and genetic (RNA) cargos. To define the contribution of the RNA cargo of melanoma cell derived EVs we performed small RNA sequencing to identify different small RNAs in the EV subsets. Using validated centrifugation protocols, we separated these EV subsets released by the melanoma cell line MML-1, and performed RNA sequencing with the Ion Torrent platform. Various, but different, non-coding RNAs were detected in the EV subsets, including microRNA, mitochondrial associated tRNA, small nucleolar RNA, small nuclear RNA, Ro associated Y-RNA, vault RNA and Y-RNA. We identified in total 1041 miRNAs in cells and EV subsets. Hierarchical clustering showed enrichment of specific miRNAs in exosomes, including hsa-miR-214-3p, hsa-miR-199a-3p and hsa-miR-155-5p, all being associated with melanoma progression. Comparison of exosomal miRNAs with miRNAs in clinical melanoma samples indicate that multiple miRNAs in exosomes also are expressed specifically in melanoma tissues, but not in benign naevi. This study shows for the first time the presence of distinct small RNAs in subsets of EVs released by melanoma cells, with significant similarities to clinical melanoma tissue, and provides unique insights into the contribution of EV associated extracellular RNA in cancer. PMID:26176991

  11. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma.

    PubMed

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni; Roslind, Anne; Giese, Nathalia; Horn, Thomas; Wøjdemann, Morten; Johansen, Julia S

    2012-12-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced). Several of these microRNAs have not before been related to diagnosis of pancreatic cancer (eg, miR-492, miR-614, miR-622). MiR-614, miR-492, miR-622, miR-135b and miR-196 were most differently expressed. MicroRNA profiles of pancreatic and ampullary adenocarcinomas were correlated (0.990). MicroRNA expression profiles for pancreatic cancer described in the literature were consistent with our findings, and the microRNA profile for pancreatic adenocarcinoma (miR-196b-miR-217) was validated. We identified a more significant expression profile, the difference between miR-411 and miR-198 (P=2.06 × 10(-54)) and a diagnostic LASSO classifier using 19 microRNAs (sensitivity 98.5%; positive predictive value 97.8%; accuracy 97.0%). We also identified microRNA profiles to subclassify ampullary adenocarcinomas into pancreatobiliary or intestinal type. In conclusion, we found that combinations of two microRNAs could roughly separate neoplastic from non-neoplastic samples. A diagnostic 19 microRNA classifier was constructed which without micro-dissection could discriminate pancreatic

  12. MicroRNA Target Site Identification by Integrating Sequence and Binding Information

    PubMed Central

    Majoros, William H.; Lekprasert, Parawee; Mukherjee, Neelanjan; Skalsky, Rebecca L.; Corcoran, David L.; Cullen, Bryan R.; Ohler, Uwe

    2013-01-01

    High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute protein members can pinpoint microRNA target sites within tens of bases, but leaves the identity of the microRNA unresolved. A flexible computational framework that integrates sequence with cross-linking features reliably identifies the microRNA family involved in each binding event, considerably outperforms sequence-only approaches, and quantifies the prevalence of noncanonical binding modes. PMID:23708386

  13. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review).

    PubMed

    Piva, Roberta; Spandidos, Demetrios A; Gambari, Roberto

    2013-10-01

    MicroRNAs (miRNAs or miRs) are a family of small non‑coding RNAs that regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation, depending on the degree of complementarity with target mRNA sequences. miRNAs play a crucial role in cancer. In the case of breast tumors, several studies have demonstrated a correlation between: i) the expression profile of oncogenic miRNAs (oncomiRs) and tumor suppressor miRNAs; and ii) the tumorigenic potential of triple-negative [estrogen receptor (ER), progesterone receptor (PR) and Her2/neu] primary breast cancers. Among the miRNAs involved in breast cancer, miR-221 plays a crucial role for the following reasons: i) miR-221 is significantly overexpressed in triple-negative primary breast cancer; ii) the oncosuppressor p27Kip1, a validated miR-221 target is downregulated in aggressive cancer cell lines; and iii) the upregulation of a key transcription factor, Slug, appears to be crucial, since it binds to the miR-221/miR-222 promoter and is responsible for the high expression of the miR-221/miR-222 cluster in breast cancer cells. A Slug/miR-221 network has been suggested, linking miR-221 activity with the downregulation of a Slug repressor, leading to Slug/miR-221 upregulation and p27Kip1 downregulation. Interference with this process can be achieved using antisense miRNA (antagomiR) molecules targeting miR-221, inducing the downregulation of Slug and the upregulation of p27Kip1.

  14. Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma

    PubMed Central

    Kemeny, Nancy; Kingham, T. Peter; Allen, Peter J.; D’Angelica, Michael I.; DeMatteo, Ronald P.; Betel, Doron; Klimstra, David; Jarnagin, William R.; Ventura, Andrea

    2016-01-01

    Background MicroRNAs (miRNAs) are potential biomarkers in various malignancies. We aim to characterize miRNA expression in intrahepatic cholangiocarcinoma (ICC) and identify circulating plasma miRNAs with potential diagnostic and prognostic utility. Methods Using deep-sequencing techniques, miRNA expression between tumor samples and non-neoplastic liver parenchyma were compared. Overexpressed miRNAs were measured in plasma from an independent cohort of patients with cholangiocarcinoma using RT-qPCR and compared with that healthy volunteers. The discriminatory ability of the evaluated plasma miRNAs between patients and controls was evaluated with receiving operating characteristic (ROC) curves. Results Small RNAs from 12 ICC and 11 tumor-free liver samples were evaluated. Unsupervised hierarchical clustering using the miRNA expression data showed clear grouping of ICC vs. non-neoplastic liver parenchyma. We identified 134 down-regulated and 128 upregulated miRNAs. Based on overexpression and high fold-change, miR21, miR200b, miR221, and miR34c were measured in plasma from an independent cohort of patients with ICC (n = 25) and healthy controls (n = 7). Significant overexpression of miR-21 and miR-221 was found in plasma from ICC patients. Furthermore, circulating miR-21 demonstrated a high discriminatory ability between patients with ICC and healthy controls (AUC: 0.94). Conclusion Among the differentially expressed miRNAs in ICC, miR-21 and miR-221 are overexpressed and detectable in the circulation. Plasma expression levels of these miRNAs, particularly miR-21, accurately differentiates patients with ICC from healthy controls and could potentially serve as adjuncts in diagnosis. Prospective validation and comparison with other hepatobiliary malignancies is required to establish their potential role as diagnostic and prognostic biomarkers. PMID:27685844

  15. Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease.

    PubMed

    Hong, Yeong Ho; Dinh, Hue; Lillehoj, Hyun S; Song, Ki-Duk; Oh, Jae-Don

    2014-06-01

    Necrotic enteritis (NE) is a re-emerging disease as a result of increased restriction on the use of antibiotics in poultry. However, the molecular mechanisms underlying the pathogenesis of NE are unclear. Small RNA transcriptome analysis was performed using spleen and intestinal intraepithelial lymphocytes (IEL) from 2 inbred chicken lines selected for resistance or susceptibility to Marek's disease (MD) in an experimentally induced model of avian NE to investigate whether microRNA (miRNA) control the expression of genes associated with host response to pathogen challenge. Unique miRNA represented only 0.02 to 0.04% of the total number of sequences obtained, of which 544 were unambiguously identified. Hierarchical clustering revealed that most of miRNA in IEL were highly expressed in the MD-susceptible line 7.2 compared with MD-resistant line 6.3. Reduced CXCL14 gene expression was correlated with differential expression of several unique miRNA in MD-resistant chickens, whereas TGFβR2 gene expression was correlated with altered gga-miR-216 miRNA levels in MD-susceptible animals. In conclusion, miRNA profiling and deep sequencing of small RNA in experimental models of infectious diseases may be useful for further understanding of host-pathogen interactions, and for providing insights into genetic markers of disease resistance.

  16. microRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T-lymphocytes

    PubMed Central

    Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Hart, Traver; Nakorchevsky, Aleksey A.; Chen, Caifu; Campbell, Daniel; Head, Steven R.; Yates, John R.; Salomon, Daniel. R

    2011-01-01

    MicroRNAs (miRNAs) regulate specific immune mechanisms but their genome-wide regulation of T-lymphocyte activation is largely unknown. We performed a multidimensional functional genomics analysis to integrate genome-wide differential mRNA, miRNA, and protein expression as a function of human T-lymphocyte activation and time. We surveyed expression of 420 human miRNAs in parallel with genome-wide mRNA expression. We identified a unique signature of 71 differentially expressed miRNAs, 57 of which were previously not known as regulators of immune activation. The majority of miRNAs are upregulated, mRNA expression of these target genes is downregulated and this is a function of binding multiple miRNAs (combinatorial targeting). Our data reveal that consideration of this complex signature, rather than single miRNAs, is necessary to construct a full picture of miRNA-mediated regulation. Molecular network mapping of miRNA targets revealed the regulation of activation-induced immune signaling. In contrast, pathways populated by genes that are not miRNA targets are enriched for metabolism and biosynthesis. Finally, we specifically validated miR-155 (known) and miR-221 (novel in T-lymphocytes) using locked nucleic acid inhibitors. Inhibition of these 2 highly upregulated miRNAs in CD4+ T cells were shown to increase proliferation by removing suppression of 4 target genes linked to proliferation and survival. Thus, multiple lines of evidence link top functional networks directly to T-lymphocyte immunity underlining the value of mapping global gene, protein and miRNA expression. PMID:21788445

  17. Genome-wide in silico screening for microRNA genetic variability in livestock species.

    PubMed

    Jevsinek Skok, D; Godnic, I; Zorc, M; Horvat, S; Dovc, P; Kovac, M; Kunej, T

    2013-12-01

    MicroRNAs are a class of non-coding RNAs that post-transcriptionally regulate target gene expression. Previous studies have shown that microRNA gene variability can interfere with its function, resulting in phenotypic variation. Polymorphisms within microRNA genes present a source of novel biomarkers for phenotypic traits in animal breeding. However, little is known about microRNA genetic variability in livestock species, which is also due to incomplete data in genomic resource databases. Therefore, the aim of this study was to perform a genome-wide in silico screening of genomic sources and determine the genetic variability of microRNA genes in livestock species using mirna sniper 3.0 (http://www.integratomics-time.com/miRNA-SNiPer/), a new version of our previously developed tool. By examining Ensembl and miRBase genome builds, it was possible to design a tool-based generated search of 16 genomes including four livestock species: pig, horse, cattle and chicken. The analysis revealed 65 polymorphisms located within mature microRNA regions in these four species, including 28% within the seed region in cattle and chicken. Polymorphic microRNA genes in cattle and chicken were further examined for mapping to quantitative trait loci regions associated with production and health traits. The developed bioinformatics tool enables the analysis of polymorphic microRNA genes and prioritization of potential regulatory polymorphisms and therefore contributes to the development of microRNA-based biomarkers in livestock species. The assembled catalog and the developed tool can serve the animal science community to efficiently select microRNA SNPs for further quantitative and molecular genetic evaluations of their phenotypic effects and causal associations with livestock production traits.

  18. Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-β receptor 2.

    PubMed

    Dai, Xiaodan; Rao, Chunbao; Li, Huirong; Chen, Yu; Fan, Lilv; Geng, Huiqin; Li, Shuang; Qu, Jia; Hou, Ling

    2015-03-01

    There is growing evidence that microRNAs are important regulators of gene expression in a variety of cell types. Using immortalized cell lines and primary neural crest cell explants, we show that microRNA-211, previously implicated in the regulation of melanoma proliferation and invasiveness, promotes pigmentation in melanoblasts and melanocytes. Expression of this microRNA is regulated by the key melanocyte transcription factor MITF and regulates pigmentation by targeting the TGF-β receptor 2. Transfection with pre-miR-211 precursor molecules in melb-a and melan-a cells leads to a decrease in the expression of TGF-β receptor 2 and reduces the TGF-β signaling-mediated downregulation of two melanogenic enzymes, tyrosinase and tyrosinase-related protein 1. Conversely, downregulation of microRNA-211 using specific microRNA inhibitors has the opposite effects. It appears, therefore, that microRNA-211 serves as a negative regulator of TGF-β signaling which is known to play a important roles in vivo in melanocyte stem cell maintenance and pigmentation.

  19. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  20. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods.

    PubMed

    Zou, Quan; Li, Jinjin; Hong, Qingqi; Lin, Ziyu; Wu, Yun; Shi, Hua; Ju, Ying

    2015-01-01

    MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development. MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods outperformed the state-of-the-art methods.

  1. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods

    PubMed Central

    Zou, Quan; Li, Jinjin; Hong, Qingqi; Lin, Ziyu; Wu, Yun; Shi, Hua; Ju, Ying

    2015-01-01

    MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development. MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods outperformed the state-of-the-art methods. PMID:26273645

  2. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.

    PubMed

    Liu, Zhaowen; Zhang, Junying; Yuan, Xiguo; Liu, Baobao; Liu, Yajun; Li, Aimin; Zhang, Yuanyuan; Sun, Xiaohan; Tuo, Shouheng

    2015-08-01

    MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers. PMID:26052692

  3. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages.

    PubMed

    Izumi, Hirohisa; Tsuda, Muneya; Sato, Yohei; Kosaka, Nobuyoshi; Ochiya, Takahiro; Iwamoto, Hiroshi; Namba, Kazuyoshi; Takeda, Yasuhiro

    2015-05-01

    We reported previously that microRNA (miRNA) are present in whey fractions of human breast milk, bovine milk, and rat milk. Moreover, we also confirmed that so many mRNA species are present in rat milk whey. These RNA were resistant to acidic conditions and to RNase, but were degraded by detergent. Thus, these RNA are likely packaged in membrane vesicles such as exosomes. However, functional extracellular circulating RNA in bodily fluids, such as blood miRNA, are present in various forms. In the current study, we used bovine raw milk and total RNA purified from exosomes (prepared by ultracentrifugation) and ultracentrifuged supernatants, and analyzed them using miRNA and mRNA microarrays to clarify which miRNA and mRNA species are present in exosomes, and which species exist in other forms. Microarray analyses revealed that most mRNA in milk whey were present in exosomes, whereas miRNA in milk whey were present in supernatant as well as exosomes. The RNA in exosomes might exert functional effects because of their stability. Therefore, we also investigated whether bovine milk-derived exosomes could affect human cells using THP-1 cells. Flow cytometry and fluorescent microscopy studies revealed that bovine milk exosomes were incorporated into differentiated THP-1 cells. These results suggest that bovine milk exosomes might have effects in human cells by containing RNA.

  4. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  5. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions

    PubMed Central

    Chavali, Pavithra Lakshminarasimhan; Funa, Keiko; Chavali, Sreenivas

    2011-01-01

    microRNAs (miRNAs) spatio-temporally modulate gene expression; however, very little is known about the regulation of their expression. Here, we hypothesized that the well-known cis-regulatory elements of gene expression, scaffold/matrix-attachment regions (MARs) could modulate miRNA expression. Accordingly, we found MARs to be enriched in the upstream regions of miRNA genes. To determine their role in cell type-specific expression of miRNAs, we examined four individual miRNAs (let-7b, miR-17, miR-93 and miR-221) and the miR-17–92 cluster, known to be overexpressed in neuroblastoma. Our results show that MARs indeed define the cell-specific expression of these miRNAs by tethering the chromatin to nuclear matrix. This is brought about by cell type-specific binding of HMG I/Y protein to MARs that then promotes the local acetylation of histones, serving as boundary elements for gene activation. The binding, chromatin tethering and gene activation by HMG I/Y was not observed in fibroblast control cells but were restricted to neuroblastoma cells. This study implies that the association of MAR binding proteins to MARs could dictate the tissue/context specific regulation of miRNA genes by serving as a boundary element signaling the transcriptional activation. PMID:21586588

  6. MicroRNA-based molecular classification of non-BRCA1/2 hereditary breast tumours

    PubMed Central

    Tanic, M; Andrés, E; M Rodriguez-Pinilla, S; Marquez-Rodas, I; Cebollero-Presmanes, M; Fernandez, V; Osorio, A; Benítez, J; Martinez-Delgado, B

    2013-01-01

    Background: Hereditary breast cancer comprises 5–10% of all breast cancers. Mutations in two high-risk susceptibility genes, BRCA1 and BRCA2, along with rare intermediate-risk genes and common low-penetrance alleles identified, altogether explain no more than 45% of the high-risk breast cancer families, although the majority of cases are unaccounted for and are designated as BRCAX tumours. Micro RNAs have called great attention for classification of different cancer types and have been implicated in a range of important biological processes and are deregulated in cancer pathogenesis. Methods: Here we have performed an exploratory hypothesis-generating study of miRNA expression profiles in a large series of 66 primary hereditary breast tumours by microarray analysis. Results: Unsupervised clustering analysis of miRNA molecular profiles revealed distinct subgroups of BRCAX tumours, ‘normal-like' BRCAX-A, ‘proliferative' BRCAX-B, ‘BRCA1/2-like' BRCAX-C and ‘undefined' BRCAX-D subgroup. These findings introduce a new insight in the biology of hereditary breast cancer, defining specific BRCAX subgroups, which could help in the search for novel susceptibility pathways in hereditary breast cancer. Conclusion: Our data demonstrate that BRCAX hereditary breast tumours can be sub-classified into four previously unknown homogenous groups characterised by specific miRNA expression signatures and histopathological features. PMID:24104964

  7. MicroRNA-34a regulation of endothelial senescence

    SciTech Connect

    Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu

    2010-08-06

    Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.

  8. miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data

    PubMed Central

    2015-01-01

    Background MicroRNAs (miRNA) are short nucleotides that down-regulate its target genes. Various miRNA target prediction algorithms have used sequence complementarity between miRNA and its targets. Recently, other algorithms tried to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. Some web-based tools are also introduced to help researchers predict targets of miRNAs from miRNA-mRNA expression profile data. A demand for a miRNA-mRNA visual analysis tool that features novel miRNA prediction algorithms and more interactive visualization techniques exists. Results We designed and implemented miRTarVis, which is an interactive visual analysis tool that predicts targets of miRNAs from miRNA-mRNA expression profile data and visualizes the resulting miRNA-target interaction network. miRTarVis has intuitive interface design in accordance with the analysis procedure of load, filter, predict, and visualize. It predicts targets of miRNA by adopting Bayesian inference and MINE analyses, as well as conventional correlation and mutual information analyses. It visualizes a resulting miRNA-mRNA network in an interactive Treemap, as well as a conventional node-link diagram. miRTarVis is available at http://hcil.snu.ac.kr/~rati/miRTarVis/index.html. Conclusions We reported findings from miRNA-mRNA expression profile data of asthma patients using miRTarVis in a case study. miRTarVis helps to predict and understand targets of miRNA from miRNA-mRNA expression profile data. PMID:26361498

  9. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia

    PubMed Central

    2012-01-01

    Background Bronchopulmonary dysplasia is a chronic lung disease of premature neonates characterized by arrested pulmonary alveolar development. There is increasing evidence that microRNAs (miRNAs) regulate translation of messenger RNAs (mRNAs) during lung organogenesis. The potential role of miRNAs in the pathogenesis of BPD is unclear. Results Following exposure of neonatal mice to 80% O2 or room air (RA) for either 14 or 29 days, lungs of hyperoxic mice displayed histological changes consistent with BPD. Comprehensive miRNA and mRNA profiling was performed using lung tissue from both O2 and RA treated mice, identifying a number of dynamically regulated miRNAs and associated mRNA target genes. Gene ontology enrichment and pathway analysis revealed that hyperoxia modulated genes involved in a variety of lung developmental processes, including cell cycle, cell adhesion, mobility and taxis, inflammation, and angiogenesis. MiR-29 was prominently increased in the lungs of hyperoxic mice, and several predicted mRNA targets of miR-29 were validated with real-time PCR, western blotting and immunohistochemistry. Direct miR-29 targets were further validated in vitro using bronchoalveolar stem cells. Conclusion In newborn mice, prolonged hyperoxia induces an arrest of alveolar development similar to that seen in human neonates with BPD. This abnormal lung development is accompanied by significant increases in the levels of multiple miRNAs and corresponding decreases in the levels of predicted mRNA targets, many of which have known or suspected roles in pathways altered in BPD. These data support the hypothesis that dynamic regulation of miRNAs plays a prominent role in the pathophysiology of BPD. PMID:22646479

  10. Identification of microRNA-regulated pathways using an integration of microRNA-mRNA microarray and bioinformatics analysis in CD34+ cells of myelodysplastic syndromes.

    PubMed

    Xu, Feng; Zhu, Yang; He, Qi; Wu, Ling-Yun; Zhang, Zheng; Shi, Wen-Hui; Liu, Li; Chang, Chun-Kang; Li, Xiao

    2016-01-01

    The effect of microRNA (miRNA) and targeted mRNA on signal transduction is not fully understood in myelodysplastic syndromes (MDS). Here, we tried to identify the miRNAs-regulated pathways through a combination of miRNA and mRNA microarray in CD34+ cells from MDS patients. We identified 34 differentially expressed miRNAs and 1783 mRNAs in MDS. 25 dysregulated miRNAs and 394 targeted mRNAs were screened by a combination of Pearson's correlation analysis and software prediction. Pathway analysis showed that several pathways such as Notch, PI3K/Akt might be regulated by those miRNA-mRNAs pairs. Through a combination of Pathway and miRNA-Gene or GO-Network analysis, miRNAs-regulated pathways, such as miR-195-5p/DLL1/Notch signaling pathway, were identified. Further qRT-PCR showed that miR-195-5p was up-regulated while DLL1 was down-regulated in patients with low-grade MDS compared with normal controls. Luciferase assay showed that DLL1 was a direct target of miR-195-5p. Overexpression of miR-195-5p led to increased cell apoptosis and reduced cell growth through inhibition of Notch signaling pathway. In conclusion, alteration expression of miRNAs and targeted mRNAs might have an important impact on cancer-related cellular pathways in MDS. Inhibition of Notch signaling pathway by miR-195-5p-DLL1 axis contributes to the excess apoptosis in low-grade MDS. PMID:27571714

  11. Identification of microRNA-regulated pathways using an integration of microRNA-mRNA microarray and bioinformatics analysis in CD34+ cells of myelodysplastic syndromes

    PubMed Central

    Xu, Feng; Zhu, Yang; He, Qi; Wu, Ling-Yun; Zhang, Zheng; Shi, Wen-Hui; Liu, Li; Chang, Chun-Kang; Li, Xiao

    2016-01-01

    The effect of microRNA (miRNA) and targeted mRNA on signal transduction is not fully understood in myelodysplastic syndromes (MDS). Here, we tried to identify the miRNAs-regulated pathways through a combination of miRNA and mRNA microarray in CD34+ cells from MDS patients. We identified 34 differentially expressed miRNAs and 1783 mRNAs in MDS. 25 dysregulated miRNAs and 394 targeted mRNAs were screened by a combination of Pearson’s correlation analysis and software prediction. Pathway analysis showed that several pathways such as Notch, PI3K/Akt might be regulated by those miRNA-mRNAs pairs. Through a combination of Pathway and miRNA-Gene or GO-Network analysis, miRNAs-regulated pathways, such as miR-195-5p/DLL1/Notch signaling pathway, were identified. Further qRT-PCR showed that miR-195-5p was up-regulated while DLL1 was down-regulated in patients with low-grade MDS compared with normal controls. Luciferase assay showed that DLL1 was a direct target of miR-195-5p. Overexpression of miR-195-5p led to increased cell apoptosis and reduced cell growth through inhibition of Notch signaling pathway. In conclusion, alteration expression of miRNAs and targeted mRNAs might have an important impact on cancer-related cellular pathways in MDS. Inhibition of Notch signaling pathway by miR-195-5p-DLL1 axis contributes to the excess apoptosis in low-grade MDS. PMID:27571714

  12. Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of MicroRNAs in Skeletal Myocyte Differentiation in Response to TNF-α or IGF1

    PubMed Central

    Meyer, Swanhild U.; Sass, Steffen; Mueller, Nikola S.; Krebs, Stefan; Bauersachs, Stefan; Kaiser, Sebastian; Blum, Helmut; Thirion, Christian; Krause, Sabine; Theis, Fabian J.; Pfaffl, Michael W.

    2015-01-01

    Introduction Skeletal muscle cell differentiation is impaired by elevated levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α) with pathological significance in chronic diseases or inherited muscle disorders. Insulin like growth factor-1 (IGF1) positively regulates muscle cell differentiation. Both, TNF-α and IGF1 affect gene and microRNA (miRNA) expression in this process. However, computational prediction of miRNA-mRNA relations is challenged by false positives and targets which might be irrelevant in the respective cellular transcriptome context. Thus, this study is focused on functional information about miRNA affected target transcripts by integrating miRNA and mRNA expression profiling data. Methodology/Principal Findings Murine skeletal myocytes PMI28 were differentiated for 24 hours with concomitant TNF-α or IGF1 treatment. Both, mRNA and miRNA expression profiling was performed. The data-driven integration of target prediction and paired mRNA/miRNA expression profiling data revealed that i) the quantity of predicted miRNA-mRNA relations was reduced, ii) miRNA targets with a function in cell cycle and axon guidance were enriched, iii) differential regulation of anti-differentiation miR-155-5p and miR-29b-3p as well as pro-differentiation miR-335-3p, miR-335-5p, miR-322-3p, and miR-322-5p seemed to be of primary importance during skeletal myoblast differentiation compared to the other miRNAs, iv) the abundance of targets and affected biological processes was miRNA specific, and v) subsets of miRNAs may collectively regulate gene expression. Conclusions Joint analysis of mRNA and miRNA profiling data increased the process-specificity and quality of predicted relations by statistically selecting miRNA-target interactions. Moreover, this study revealed miRNA-specific predominant biological implications in skeletal muscle cell differentiation and in response to TNF-α or IGF1 treatment. Furthermore, myoblast differentiation-associated mi

  13. Prognostic Role of microRNA-21 Expression in Brain Tumors: a Meta-analysis.

    PubMed

    He, Xiao-Yan; Liao, Yu-Dong; Guo, Xiao-Qing; Wang, Robin; Xiao, Zhen-Yu; Wang, Yan-Gang

    2016-04-01

    Many studies have shown that microRNAs have important roles in the development and progression of various cancers. Recent studies also showed that microRNA-21 expression may be associated with the prognosis of patients with several common cancers. However, there was still lack of evidence for the prognostic role of microRNA-21 expression in brain tumors. We performed a systemic review and meta-analysis of published and unpublished studies to assess the prognostic role of microRNA-21 expression in patients with brain tumors. PubMed, Embase, and Google Scholar databases were searched for eligible studies with data assessing the prognostic role of microRNA-21 expression in brain tumors. Pooled hazard ratios (HRs) of microRNA-21 expression for overall survival and 95% confidence intervals (CI) were calculated. Six studies from five publications were finally included into the meta-analysis. Those six studies included a total of 747 patients with brain tumors and 654 patients with gliomas. For overall survival, the pooled HR of higher microRNA-21 expression in patients with brain tumors was 1.82 (95% CI 1.29-2.58, P = 0.001). In patients with gliomas, the HR for overall survival of higher microRNA-21 expression was 1.83 (95% CI 1.09-3.09, P = 0.023). Sensitivity analysis by omitting one study by turns also showed there was no obvious influence of individual study on the pooled HRs. There was no obvious risk of publication bias in the meta-analysis. The present meta-analysis suggests that microRNA-21 is associated with the prognosis of patients with brain tumors, and high expression of microRNA-21 can predict poor prognosis in patients with brain tumors.

  14. Circulating microRNA-200 Family as Diagnostic Marker in Hepatocellular Carcinoma

    PubMed Central

    Dhayat, Sameer A.; Hüsing, Anna; Senninger, Norbert; Schmidt, Hartmut H.; Haier, Jörg

    2015-01-01

    Goals In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC). Background Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined. Methods Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22) and of healthy volunteers (n = 15) served as controls. Results MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007) and healthy controls (p<0.002). MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC) values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy. Conclusions Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC. PMID:26447841

  15. TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation

    PubMed Central

    Drasin, David J.; Guarnieri, Anna L.; Neelakantan, Deepika; Kim, Jihye; Cabrera, Joshua H.; Wang, Chu-An; Zaberezhnyy, Vadym; Gasparini, Pierluigi; Cascione, Luciano; Huebner, Kay; Tan, Aik-Choon; Ford, Heide L.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that microRNA-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, microRNA-424 increases motility, decreases adhesion and induces a growth arrest, changes associated with a complete EMT, that can be reversed when microRNA-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient microRNA-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, microRNA-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, microRNA-424 decreases tumor initiation and is post-transcriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed microRNA-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK/ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest microRNA-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis. PMID

  16. Circulating microRNA Profiles during the Bovine Oestrous Cycle.

    PubMed

    Ioannidis, Jason; Donadeu, F Xavier

    2016-01-01

    Up to 50% of ovulations go undetected in modern dairy herds due to attenuated oestrus behavior and a lack of high-accuracy methods for detection of fertile oestrus. This significantly reduces overall herd productivity and constitutes a high economic burden to the dairy industry. MicroRNAs (miRNAs) are ubiquitous regulators of gene expression during both health and disease and they have been shown to regulate different reproductive processes. Extracellular miRNAs are stable and can provide useful biomarkers of tissue function; changes in circulating miRNA profiles have been reported during menstrual cycles. This study sought to establish the potential of circulating miRNAs as biomarkers of oestrus in cattle. We collected plasma samples from 8 Holstein-Friesian heifers on days Days 0, 8 and 16 of an oestrous cycle and analysed small RNA populations on each Day using two independent high-throughput approaches, namely, Illumina sequencing (n = 24 samples) and Qiagen PCR arrays (n = 9 sample pools, 3-4 samples / pool). Subsequently, we used RT-qPCR (n = 24 samples) to validate the results of high-throughput analyses, as well as to establish the expression profiles of additional miRNAs previously reported to be differentially expressed during reproductive cycles. Overall, we identified four miRNAs (let-7f, miR-125b, miR-145 and miR-99a-5p), the plasma levels of which distinctly increased (up to 2.2-fold, P < 0.05) during oestrus (Day 0) relative to other stages of the cycle (Days 8 and 16). Moreover, we identified several hundred different isomiRs and established their relative abundance in bovine plasma. In summary, our results reveal the dynamic nature of plasma miRNAs during the oestrous cycle and provide evidence of the feasibility of using circulating miRNAs as biomarkers of reproductive function in livestock in the future. PMID:27340826

  17. Circulating microRNA Profiles during the Bovine Oestrous Cycle

    PubMed Central

    Ioannidis, Jason; Donadeu, F. Xavier

    2016-01-01

    Up to 50% of ovulations go undetected in modern dairy herds due to attenuated oestrus behavior and a lack of high-accuracy methods for detection of fertile oestrus. This significantly reduces overall herd productivity and constitutes a high economic burden to the dairy industry. MicroRNAs (miRNAs) are ubiquitous regulators of gene expression during both health and disease and they have been shown to regulate different reproductive processes. Extracellular miRNAs are stable and can provide useful biomarkers of tissue function; changes in circulating miRNA profiles have been reported during menstrual cycles. This study sought to establish the potential of circulating miRNAs as biomarkers of oestrus in cattle. We collected plasma samples from 8 Holstein-Friesian heifers on days Days 0, 8 and 16 of an oestrous cycle and analysed small RNA populations on each Day using two independent high-throughput approaches, namely, Illumina sequencing (n = 24 samples) and Qiagen PCR arrays (n = 9 sample pools, 3–4 samples / pool). Subsequently, we used RT-qPCR (n = 24 samples) to validate the results of high-throughput analyses, as well as to establish the expression profiles of additional miRNAs previously reported to be differentially expressed during reproductive cycles. Overall, we identified four miRNAs (let-7f, miR-125b, miR-145 and miR-99a-5p), the plasma levels of which distinctly increased (up to 2.2-fold, P < 0.05) during oestrus (Day 0) relative to other stages of the cycle (Days 8 and 16). Moreover, we identified several hundred different isomiRs and established their relative abundance in bovine plasma. In summary, our results reveal the dynamic nature of plasma miRNAs during the oestrous cycle and provide evidence of the feasibility of using circulating miRNAs as biomarkers of reproductive function in livestock in the future. PMID:27340826

  18. Clustering siRNA conjugates for MMP-responsive therapeutics in chronic wounds of diabetic animals

    NASA Astrophysics Data System (ADS)

    Kim, Hye Sung; Son, Young Ju; Yoo, Hyuk Sang

    2016-07-01

    The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was efficiently endocytosed by cells. An in vivo fluorescence resonance energy transfer (FRET) study also revealed that the clusters were effectively dissociated in MMP-rich environments of dorsal wounds in diabetic animals. In addition, diabetic ulcers treated with the clusters showed a faster wound closure rate and the recovered tissue expressed a larger amount of cytokeratin along with a lower expression level of MMP-2 compared to the other groups.The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was

  19. MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells

    PubMed Central

    Xu, Kai; Lin, Jing; Zandi, Roza; Roth, Jack A.; Ji, Lin

    2016-01-01

    MicroRNAs (miRNAs) play an important role in targeted gene silencing by facilitating posttranscriptional and translational repression. However, the precise mechanism of mammalian miRNA-mediated gene silencing remains to be elucidated. Here, we used a stem-loop array reverse-transcription polymerase chain reaction assay to analyse miRNA-induced mRNA recognition, cleavage, posttranscriptional modification, and degradation. We detected endogenous let-7 miRNA-induced and Argonaute-catalysed endonucleolytic cleavage on target mRNAs at various sites within partially paired miRNA:mRNA sequences. Most of the cleaved mRNA 5′-fragments were 3′-oligouridylated by activities of terminal uridylyl transferases (TUTases) in miRNA-induced silencing complexes and temporarily accumulated in the cytosol for 5′-3′ degradation or other molecular fates. Some 3′-5′ decayed mRNA fragments could also be captured by the miRNA-induced silencing complex stationed at the specific miRNA:mRNA target site and oligouridylated by other TUTases at its proximity without involving Argonaute-mediated RNA cleavage. Our findings provide new insights into the molecular mechanics of mammalian miRNA-mediated gene silencing by coordinated target mRNA recognition, cleavage, uridylation and degradation. PMID:27440378

  20. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development

    PubMed Central

    Li, Tianpeng; Ling, Shucai

    2016-01-01

    Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development. PMID:27166676

  1. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development.

    PubMed

    Sun, Tingting; Li, Weiyun; Li, Tianpeng; Ling, Shucai

    2016-01-01

    Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development. PMID:27166676

  2. The microRNA feedback regulation of p63 in cancer progression

    PubMed Central

    Lin, Changwei; Li, Xiaorong; Zhang, Yi; Guo, Yihang; Zhou, Jianyu; Gao, Kai; Dai, Jing; Hu, Gui; Lv, Lv; Du, Juan; Zhang, Yi

    2015-01-01

    The transcription factor p63 is a member of the p53 gene family that plays a complex role in cancer due to its involvement in epithelial differentiation, cell cycle arrest and apoptosis. MicroRNAs are a class of small, non-coding RNAs with an important regulatory role in various cellular processes, as well as in the development and progression of cancer. A number of microRNAs have been shown to function as transcriptional targets of p63. Conversely, microRNAs also can modulate the expression and activity of p63. However, the p63–microRNA regulatory circuit has not been addressed in depth so far. Here, computational genomic analysis was performed using miRtarBase, Targetscan, microRNA.ORG, DIANA-MICROT, RNA22-HSA and miRDB to analyze miRNA binding to the 3′UTR of p63. JASPAR (profile score threshold 80%) and TFSEARCH datasets were used to search transcriptional start sites for p53/p63 response elements. Remarkably, these data revealed 63 microRNAs that targeted p63. Furthermore, there were 39 microRNAs targeting p63 that were predicted to be regulated by p63. These analyses suggest a crosstalk between p63 and microRNAs. Here, we discuss the crosstalk between p63 and the microRNA network, and the role of their interactions in cancer. PMID:25726529

  3. Skeletal Micro-RNA Responses to Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Thomas, Nicholas J.; Choi, Catherine Y.; Alwood, Joshua S.

    2016-01-01

    Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotides), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 7) were hindlimb unloaded up to 12 days. Age-matched and normally ambulating mice served as controls (n=7). To assess the expression of miRNAs in skeletal tissue, the tibia was collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 0.5 times that of the control levels and increased the expression of 5 miRNAs relative to the control mice between 1.2-1.5-fold (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRsystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness modulated systemic hormonal levels or hormonal transduction that additionally contributed to bone loss. We plan to follow up

  4. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy.

    PubMed

    Magner, William J; Weinstock-Guttman, Bianca; Rho, Mina; Hojnacki, David; Ghazi, Rabia; Ramanathan, Murali; Tomasi, Thomas B

    2016-03-15

    Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target.

  5. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy.

    PubMed

    Magner, William J; Weinstock-Guttman, Bianca; Rho, Mina; Hojnacki, David; Ghazi, Rabia; Ramanathan, Murali; Tomasi, Thomas B

    2016-03-15

    Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target. PMID:26943961

  6. microRNA modulation of circadian clock period and entrainment

    PubMed Central

    Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl

    2007-01-01

    microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428

  7. Breast cancer metastasis: a microRNA story.

    PubMed

    Negrini, Massimo; Calin, George Adrian

    2008-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs with regulatory functions, which play an important role in breast cancer. Several studies have shown that miRNAs can act either as tumor suppressors or as oncogenes, and that measurement of miRNA expression in malignancies may have diagnostic and prognostic implications. This article highlights a series of three recent studies that prove the involvement of miRNAs in breast cancer metastases. The first proves that miR-10b indirectly activates the pro-metastatic gene RHOC by suppressing HOXD10, thus leading to tumor invasion and metastasis. The second proves that miR-373 and miR-520c can also promote tumor invasion and metastasis, at least in part by regulating the gene CD44. The third identifies miR-335, miR-206, and miR-126 as suppressors of breast cancer metastasis. Loss of miR-335 leads to the activation of SOX4 and TNC (encoding tenascin C), which are responsible for the acquisition of metastatic properties. Altogether, these remarkable findings are important for our understanding of malignant transformation in the breast and may have implications for the management of patients with advanced breast cancer. The use of miRNAs as anticancer therapeutic agents is promising, and such fine molecular studies certainly help in bringing miRNAs closer to clinical practice.

  8. MicroRNA miR-125b causes leukemia.

    PubMed

    Bousquet, Marina; Harris, Marian H; Zhou, Beiyan; Lodish, Harvey F

    2010-12-14

    MicroRNA miR-125b has been implicated in several kinds of leukemia. The chromosomal translocation t(2;11)(p21;q23) found in patients with myelodysplasia and acute myeloid leukemia leads to an overexpression of miR-125b of up to 90-fold normal. Moreover, miR-125b is also up-regulated in patients with B-cell acute lymphoblastic leukemia carrying the t(11;14)(q24;q32) translocation. To decipher the presumed oncogenic mechanism of miR-125b, we used transplantation experiments in mice. All mice transplanted with fetal liver cells ectopically expressing miR-125b showed an increase in white blood cell count, in particular in neutrophils and monocytes, associated with a macrocytic anemia. Among these mice, half died of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, or a myeloproliferative neoplasm, suggesting an important role for miR-125b in early hematopoiesis. Furthermore, coexpression of miR-125b and the BCR-ABL fusion gene in transplanted cells accelerated the development of leukemia in mice, compared with control mice expressing only BCR-ABL, suggesting that miR-125b confers a proliferative advantage to the leukemic cells. Thus, we show that overexpression of miR-125b is sufficient both to shorten the latency of BCR-ABL-induced leukemia and to independently induce leukemia in a mouse model.

  9. MicroRNA Targeted Therapeutic Approach for Pancreatic Cancer

    PubMed Central

    Li, Yiwei; Sarkar, Fazlul H.

    2016-01-01

    Pancreatic cancer remains the fourth leading cause of cancer-related death in the US and is expected to be the second leading cause of cancer-related death by 2030. Therefore, it is important to better understand the molecular pathogenesis, phenotypes and features of pancreatic cancer in order to design novel molecularly targeted therapies for achieving better therapeutic outcome of patients with pancreatic cancer. Recently, the roles of microRNAs (miRNAs) in the development and progression of pancreatic cancer became a hot topic in the scientific community of pancreatic cancer research. By conducting miRNA expression profiling, the aberrant expression of miRNAs was revealed in the serum and in cancer tissues from patients with pancreatic cancer. These aberrantly expressed miRNAs are critically correlated with the disease stage, drug resistance, and survival of pancreatic cancer patients. Hence, targeting these tiny molecules, the specific miRNAs, could provide an efficient and optimal approach in the therapy of pancreatic cancer. Indeed, the pre-clinical and in vivo experiments showed that nanoparticle delivery of synthetic oligonucleotides or treatment with natural agents could be useful to modulate the expression of miRNAs and thereby inhibit pancreatic cancer growth and progression, suggesting that targeting miRNAs combined with conventional anti-cancer therapeutics could be a novel therapeutic strategy for increasing drug sensitivity and achieving better therapeutic outcome of patients diagnosed with pancreatic cancer. PMID:26929739

  10. Striatal microRNA controls cocaine intake through CREB signalling.

    PubMed

    Hollander, Jonathan A; Im, Heh-In; Amelio, Antonio L; Kocerha, Jannet; Bali, Purva; Lu, Qun; Willoughby, David; Wahlestedt, Claes; Conkright, Michael D; Kenny, Paul J

    2010-07-01

    Cocaine addiction is characterized by a gradual loss of control over drug use, but the molecular mechanisms regulating vulnerability to this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with a history of extended access to cocaine. Striatal miR-212 decreases responsiveness to the motivational properties of cocaine by markedly amplifying the stimulatory effects of the drug on cAMP response element binding protein (CREB) signalling. This action occurs through miR-212-enhanced Raf1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (transducer of regulated CREB; also known as CRTC). Our findings indicate that striatal miR-212 signalling has a key role in determining vulnerability to cocaine addiction, reveal new molecular regulators that control the complex actions of cocaine in brain reward circuitries and provide an entirely new direction for the development of anti-addiction therapeutics based on the modulation of noncoding RNAs.

  11. NoFold: RNA structure clustering without folding or alignment.

    PubMed

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures.

  12. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway.

    PubMed

    Hasler, Daniele; Lehmann, Gerhard; Murakawa, Yasuhiro; Klironomos, Filippos; Jakob, Leonhard; Grässer, Friedrich A; Rajewsky, Nikolaus; Landthaler, Markus; Meister, Gunter

    2016-07-01

    The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading. PMID:27345152

  13. EpCAM Knockdown Alters MicroRNA Expression in Retinoblastoma- Functional Implication of EpCAM Regulated MiRNA in Tumor Progression

    PubMed Central

    Beta, Madhu; Khetan, Vikas; Chatterjee, Nivedita; Suganeswari, Ganesan; Rishi, Pukhraj; Biswas, Jyotirmay; Krishnakumar, Subramanian

    2014-01-01

    The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes. PMID:25502397

  14. EpCAM knockdown alters microRNA expression in retinoblastoma--functional implication of EpCAM regulated miRNA in tumor progression.

    PubMed

    Beta, Madhu; Khetan, Vikas; Chatterjee, Nivedita; Suganeswari, Ganesan; Rishi, Pukhraj; Biswas, Jyotirmay; Krishnakumar, Subramanian

    2014-01-01

    The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes. PMID:25502397

  15. RNACluster: An integrated tool for RNA secondary structure comparison and clustering.

    PubMed

    Liu, Qi; Olman, V; Liu, Huiqing; Ye, Xiuzi; Qiu, Shilun; Xu, Ying

    2008-07-15

    RNA structure comparison is a fundamental problem in structural biology, structural chemistry, and bioinformatics. It can be used for analysis of RNA energy landscapes, conformational switches, and facilitating RNA structure prediction. The purpose of our integrated tool RNACluster is twofold: to provide a platform for computing and comparison of different distances between RNA secondary structures, and to perform cluster identification to derive useful information of RNA structure ensembles, using a minimum spanning tree (MST) based clustering algorithm. RNACluster employs a cluster identification approach based on a MST representation of the RNA ensemble data and currently supports six distance measures between RNA secondary structures. RNACluster provides a user-friendly graphical interface to allow a user to compare different structural distances, analyze the structure ensembles, and visualize predicted structural clusters. PMID:18271070

  16. RNACluster: An integrated tool for RNA secondary structure comparison and clustering.

    PubMed

    Liu, Qi; Olman, V; Liu, Huiqing; Ye, Xiuzi; Qiu, Shilun; Xu, Ying

    2008-07-15

    RNA structure comparison is a fundamental problem in structural biology, structural chemistry, and bioinformatics. It can be used for analysis of RNA energy landscapes, conformational switches, and facilitating RNA structure prediction. The purpose of our integrated tool RNACluster is twofold: to provide a platform for computing and comparison of different distances between RNA secondary structures, and to perform cluster identification to derive useful information of RNA structure ensembles, using a minimum spanning tree (MST) based clustering algorithm. RNACluster employs a cluster identification approach based on a MST representation of the RNA ensemble data and currently supports six distance measures between RNA secondary structures. RNACluster provides a user-friendly graphical interface to allow a user to compare different structural distances, analyze the structure ensembles, and visualize predicted structural clusters.

  17. MicroRNA screening identifies circulating microRNAs as potential biomarkers for osteosarcoma

    PubMed Central

    LI, HUI; ZHANG, KUN; LIU, LI-HONG; OUYANG, YURONG; GUO, HONG-BIN; ZHANG, HANCHONG; BU, JIE; XIAO, TAO

    2015-01-01

    MicroRNAs (miRNAs) are a family of small non-protein coding RNAs, which regulate the expression of a wide variety of genes at the post-transcriptional level to control numerous biological and pathological processes. Various circulating miRNAs have been identified as potential diagnostic and prognostic biomarkers in multiple types of cancer and disease. The aim of the present study was to identify potential miRNA biomarkers for the early diagnosis and relapse prediction of osteosarcoma (OS). miRNA profiling was performed on serum from patients with osteosarcoma and healthy controls. All putative miRNAs were verified by reverse transcription-quantitative polymerase chain reaction analysis of 20 pre-therapeutic OS patients and 20 healthy individuals. The expression of miR-106a-5p, miR16-5p, miR-20a-5p, miR-425-5p, miR451a, miR-25-3p and miR139-5p was demonstrated to be downregulated in the serum of OS patients when compared with that of the healthy controls. Receiver-operating characteristic curve analyses indicated that these 7 miRNAs may be used as diagnostic biomarkers with the ability to discriminate between the healthy cohort and patients with OS. These results provide novel insights into the use of miRNAs in early blood screening for OS. PMID:26622728

  18. Integrated mRNA-MicroRNA Profiling of Human NK Cell Differentiation Identifies MiR-583 as a Negative Regulator of IL2Rγ Expression

    PubMed Central

    Kim, Jung Min; Lee, Hyun-Jun; Song, Hae Young; Kim, Young Kyeung; Jung, Haiyoung; Park, Young-Jun; Yoon, Suk Ran; Oh, Sei-Ryang; Kim, Tae-Don; Choi, Inpyo

    2014-01-01

    Natural killer (NK) cells are innate immune effector cells that protect against cancer and some viral infections. Until recently, most studies have investigated the molecular signatures of human or mouse NK cells to identify genes that are specifically expressed during NK cell development. However, the mechanism regulating NK cell development remains unclear. Here, we report a regulatory network of potential interactions during in vitro differentiation of human NK cells, identified using genome-wide mRNA and miRNA databases through hierarchical clustering analysis, gene ontology analysis and a miRNA target prediction program. The microRNA (miR)-583, which demonstrated the largest ratio change in mature NK cells, was highly correlated with IL2 receptor gamma (IL2Rγ) expression. The overexpression of miR-583 had an inhibitory effect on NK cell differentiation. In a reporter assay, the suppressive effect of miR-583 was ablated by mutating the putative miR-583 binding site of the IL2Rγ 3′ UTR. Therefore, we show that miR-583 acts as a negative regulator of NK cell differentiation by silencing IL2Rγ. Additionally, we provide a comprehensive database of genome-wide mRNA and miRNA expression during human NK cell differentiation, offering a better understanding of basic human NK cell biology for the application of human NK cells in immunotherapy. PMID:25313504

  19. MicroRNA-449 and MicroRNA-34b/c Function Redundantly in Murine Testes by Targeting E2F Transcription Factor-Retinoblastoma Protein (E2F-pRb) Pathway*

    PubMed Central

    Bao, Jianqiang; Li, Ding; Wang, Li; Wu, Jingwen; Hu, Yanqin; Wang, Zhugang; Chen, Yan; Cao, Xinkai; Jiang, Cizhong; Yan, Wei; Xu, Chen

    2012-01-01

    MicroRNAs (miRNAs) mainly function as post-transcriptional regulators and are involved in a wide range of physiological and pathophysiological processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. Mouse testes express a large number of miRNAs. However, the physiological roles of these testicular miRNAs remain largely unknown. Using microarray and quantitative real time PCR assays, we identified that miRNAs of the microRNA-449 (miR-449) cluster were preferentially expressed in the mouse testis, and their levels were drastically up-regulated upon meiotic initiation during testicular development and in adult spermatogenesis. The expression pattern of the miR-449 cluster resembled that of microRNA-34b/c (miR-34b/c) during spermatogenesis. Further analyses identified that cAMP-responsive element modulator τ and SOX5, two transcription factors essential for regulating male germ cell gene expression, acted as the upstream transactivators to stimulate the expression of the miR-449 cluster in mouse testes. Despite its abundant expression in testicular germ cells, miR-449-null male mice developed normally and exhibited normal spermatogenesis and fertility. Our data further demonstrated that miR-449 shared a cohort of target genes that belong to the E2F transcription factor-retinoblastoma protein pathway with the miR-34 family, and levels of miR-34b/c were significantly up-regulated in miR-449-null testes. Taken together, our data suggest that the miR-449 cluster and miR-34b/c function redundantly in the regulation of male germ cell development in murine testes. PMID:22570483

  20. Describing a Transcription Factor Dependent Regulation of the MicroRNA Transcriptome.

    PubMed

    Rozovski, Uri; Hazan-Halevy, Inbal; Calin, George; Harris, David; Li, Ping; Liu, Zhiming; Keating, Michael J; Estrov, Zeev

    2016-01-01

    While the transcription regulation of protein coding genes was extensively studied, little is known on how transcription factors are involved in transcription of non-coding RNAs, specifically of microRNAs. Here, we propose a strategy to study the potential role of transcription factor in regulating transcription of microRNAs using publically available data, computational resources and high throughput data. We use the H3K4me3 epigenetic signature to identify microRNA promoters and chromatin immunoprecipitation (ChIP)-sequencing data from the ENCODE project to identify microRNA promoters that are enriched with transcription factor binding sites. By transfecting cells of interest with shRNA targeting a transcription factor of interest and subjecting the cells to microRNA array, we study the effect of this transcription factor on the microRNA transcriptome. As an illustrative example we use our study on the effect of STAT3 on the microRNA transcriptome of chronic lymphocytic leukemia (CLL) cells. PMID:27341356

  1. Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila.

    PubMed

    Reimão-Pinto, Madalena M; Ignatova, Valentina; Burkard, Thomas R; Hung, Jui-Hung; Manzenreither, Raphael A; Sowemimo, Ivica; Herzog, Veronika A; Reichholf, Brian; Fariña-Lopez, Sara; Ameres, Stefan L

    2015-07-16

    Uridylation of RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms, and mammals. Here, we report Tailor, an uridylyltransferase that is required for the majority of 3' end modifications of microRNAs in Drosophila and predominantly targets precursor hairpins. Uridylation modulates the characteristic two-nucleotide 3' overhang of microRNA hairpins, which regulates processing by Dicer-1 and destabilizes RNA hairpins. Tailor preferentially uridylates mirtron hairpins, thereby impeding the production of non-canonical microRNAs. Mirtron selectivity is explained by primary sequence specificity of Tailor, selecting substrates ending with a 3' guanosine. In contrast to mirtrons, conserved Drosophila precursor microRNAs are significantly depleted in 3' guanosine, thereby escaping regulatory uridylation. Our data support the hypothesis that evolutionary adaptation to Tailor-directed uridylation shapes the nucleotide composition of precursor microRNA 3' ends. Hence, hairpin uridylation may serve as a barrier for the de novo creation of microRNAs in Drosophila. PMID:26145176

  2. [MicroRNA's role in sepsis and endotoxin tolerance. More players on the stage].

    PubMed

    Gîză, D E; Vasilescu, C

    2010-01-01

    MicroRNAs are non-coding RNA fragments, well characterized and well preserved along the evolution of the species and whose essential role is to regulate gene expression. MicroRNAs perform its action on messenger RNA ("target"). They induce degradation or repression of target translation with a significant decrease in the quantity and the activity of proteins. MicroRNAs are involved in normal cell function. Abnormal levels of microRNA were found in several pathological contiditions such as cancer, autoimmune diseases, viral infections, sepsis. Sepsis appears as a result of an improper inflammatory response after systemic bacterial infection. It remains a disease with a high incidence and mortality despite the evolution of diagnostic and treatment techniques. Sepsis patients have similar features to those found in the endotoxin tolerance phenomenon. Endotoxin tolerance is a state of hyporesponsivness to endotoxin challenge induced by a prior exposure. Due to its important role in repression of the pro-inflammatory cytokines translation, microRNA can be considered a new mechanism of endotoxin tolerance and a new mechanism involved in sepsis pathogenesis. In sepsis patients abnormal levels of the following types of microRNA were found: miR-146, miR-155, miR150, miR-132. Further studies are carried out to demonstrate the potential role of microRNA as biomarkers in sepsis.

  3. MicroRNA-122 targets genes related to liver metabolism in chickens.

    PubMed

    Wang, Xingguo; Shao, Fang; Yu, Jianfeng; Jiang, Honglin; Gong, Daoqing; Gu, Zhiliang

    2015-06-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting mRNAs. MicroRNA-122 (miR-122) has important functions in mammalian and fish livers, but its functions in the poultry liver are largely unknown. In this study, we determined the expression patterns of miR-122 in the chicken and identified its target genes in the chicken liver. We found that chicken miR-122 was highly expressed in the liver and that its expression in the liver was up-regulated during the early posthatch life. By bioinformatics and reporter gene analyses, we identified PKM2, TGFB3, FABP5 and ARCN1 as miR-122 target genes in the chicken liver. miR-122 knockdown in primary chicken hepatocytes and expression analysis of miR-122 and predicted target mRNAs in the chicken liver suggested that the expression of PKM2 and FABP5 in the chicken liver is regulated by miR-122. Knockdown of miR-122 affected the expression of 123 genes in cultured chicken hepatocytes. Among these genes, the largest cluster, which consisted of 21 genes, was involved in liver metabolism. These findings suggest that miR-122 plays a role in liver metabolism in the chicken by directly or indirectly regulating the expression of genes involved in liver metabolism.

  4. Combined RT-qPCR of mRNA and microRNA Targets within One Fluidigm Integrated Fluidic Circuit.

    PubMed

    Baldwin, Don A; Horan, Annamarie D; Hesketh, Patrick J; Mehta, Samir

    2016-07-01

    The ability to profile expression levels of a large number of mRNAs and microRNAs (miRNAs) within the same sample, using a single assay method, would facilitate investigations of miRNA effects on mRNA abundance and streamline biomarker screening across multiple RNA classes. A protocol is described for reverse transcription of long RNA and miRNA targets, followed by preassay amplification of the pooled cDNAs and quantitative PCR (qPCR) detection for a mixed panel of candidate RNA biomarkers. The method provides flexibility for designing custom target panels, is robust over a range of input RNA amounts, and demonstrated a high assay success rate.

  5. Combined RT-qPCR of mRNA and microRNA Targets within One Fluidigm Integrated Fluidic Circuit

    PubMed Central

    Baldwin, Don A.; Horan, Annamarie D.; Hesketh, Patrick J.

    2016-01-01

    The ability to profile expression levels of a large number of mRNAs and microRNAs (miRNAs) within the same sample, using a single assay method, would facilitate investigations of miRNA effects on mRNA abundance and streamline biomarker screening across multiple RNA classes. A protocol is described for reverse transcription of long RNA and miRNA targets, followed by preassay amplification of the pooled cDNAs and quantitative PCR (qPCR) detection for a mixed panel of candidate RNA biomarkers. The method provides flexibility for designing custom target panels, is robust over a range of input RNA amounts, and demonstrated a high assay success rate. PMID:26977138

  6. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    PubMed

    Zhang, Jingcheng; Gao, Yang; Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  7. MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells.

    PubMed

    Riemondy, Kent; Wang, Xiao-jing; Torchia, Enrique C; Roop, Dennis R; Yi, Rui

    2015-07-23

    In many mouse models of skin cancer, only a few tumors typically form even though many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations suggest an active selection process for tumor-initiating cells. Here, we use quantitative mRNA- and miR-Seq to determine the impact of Hras(G12V) on the transcriptome of keratinocytes. We discover that microRNA-203 is downregulated by Hras(G12V). Using a knockout mouse model, we demonstrate that loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely, restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells. We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These targets include critical regulators of the Ras pathway and essential genes required for cell division. This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-mediated tumorigenesis.

  8. MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells

    PubMed Central

    Riemondy, Kent; Wang, Xiao-jing; Torchia, Enrique C; Roop, Dennis R; Yi, Rui

    2015-01-01

    In many mouse models of skin cancer, only a few tumors typically form even though many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations suggest an active selection process for tumor-initiating cells. Here, we use quantitative mRNA- and miR-Seq to determine the impact of HrasG12V on the transcriptome of keratinocytes. We discover that microRNA-203 is downregulated by HrasG12V. Using a knockout mouse model, we demonstrate that loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely, restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells. We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These targets include critical regulators of the Ras pathway and essential genes required for cell division. This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-mediated tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.07004.001 PMID:26203562

  9. MicroRNA profile in very young women with breast cancer

    PubMed Central

    2014-01-01

    Background Breast cancer is rarely diagnosed in very young women (35years old or younger), and it often presents with distinct clinical-pathological features related to a more aggressive phenotype and worse prognosis when diagnosed at this early age. A pending question is whether breast cancer in very young women arises from the deregulation of different underlying mechanisms, something that will make this disease an entity differentiated from breast cancer diagnosed in older patients. Methods We performed a comprehensive study of miRNA expression using miRNA Affymetrix2.0 array on paraffin-embedded tumour tissue of 42 breast cancer patients 35 years old or younger, 17 patients between 45 and 65 years old and 29 older than 65 years. Data were statistically analyzed by t-test and a hierarchical clustering via average linkage method was conducted. Results were validated by qRT-PCR. Putative targeted pathways were obtained using DIANA miRPath online software. Results The results show a differential and unique miRNA expression profile of 121 miRNAs (p-value <0.05), 96 of those with a FDR-value <0.05. Hierarchical clustering grouped the samples according to their age, but not by subtype nor by tumour characteristics. We were able to validate by qRT-PCR differences in the expression of 6 miRNAs: miR-1228*, miR-3196, miR-1275, miR-92b, miR-139 and miR-1207. Moreover, all of the miRNAs maintained the expression trend. The validated miRNAs pointed out pathways related to cell motility, invasion and proliferation. Conclusions The study suggests that breast cancer in very young women appears as a distinct molecular signature. To our knowledge, this is the first time that a validated microRNA profile, distinctive to breast cancer in very young women, has been presented. The miRNA signature may be relevant to open an important field of research in order to elucidate the underlying mechanism in this particular disease, which in a more clinical setting, could potentially help to

  10. Down-regulation of a host microRNA by a viral noncoding RNA.

    PubMed

    Cazalla, D; Steitz, J A

    2010-01-01

    Primate herpesviruses express more noncoding RNAs (ncRNAs) than any other class of mammalian viruses during either latency or the lytic phase of the viral life cycle. T cells transformed by the monkey virus Herpesvirus saimiri (HVS) express seven viral U-rich ncRNAs called HSURs. Conserved sequences in HSURs1 and 2 exhibit complementarity to three host-cell microRNAs (miRNAs). The predicted interactions of HSURs1 and 2 with these miRNAs were confirmed by coimmuno-precipitation experiments performed on extracts of marmoset T cells transformed by a wild-type or a mutant HVS lacking these two HSURs. Mutational analyses demonstrated that the binding of miR-27 to HSUR1 and that of miR-16 to HSUR2 involves base pairing. One of these miRNAs, miR-27, is dramatically lowered in abundance in HVS-transformed cells, with consequent effects on the expression of miR-27 target genes. Transient knockdown and ectopic expression of HSUR1 demonstrated that degradation of mature miR-27 occurs in a sequence-specific and binding-dependent manner but does not occur by AU-rich element (ARE)-mediated decay, which controls the intracellular level of HSUR1 itself. This viral strategy exemplifies the use of an ncRNA to control host-cell gene expression via the miRNA pathway and has potential applications both experimentally and therapeutically. PMID:21139068

  11. Clustering siRNA conjugates for MMP-responsive therapeutics in chronic wounds of diabetic animals.

    PubMed

    Kim, Hye Sung; Son, Young Ju; Yoo, Hyuk Sang

    2016-07-21

    The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was efficiently endocytosed by cells. An in vivo fluorescence resonance energy transfer (FRET) study also revealed that the clusters were effectively dissociated in MMP-rich environments of dorsal wounds in diabetic animals. In addition, diabetic ulcers treated with the clusters showed a faster wound closure rate and the recovered tissue expressed a larger amount of cytokeratin along with a lower expression level of MMP-2 compared to the other groups. PMID:27251781

  12. MicroRNA epigenetic signatures in human disease.

    PubMed

    Piletič, Klara; Kunej, Tanja

    2016-10-01

    MicroRNAs (miRNAs) are short non-coding RNAs that act as important regulators of gene expression as part of the epigenetic machinery. In addition to posttranscriptional gene silencing by miRNAs, the epigenetic mechanisms also include DNA methylation, histone modifications and their crosstalk. Epigenetic modifications were reported to play an important role in many disease onsets and progressions and can be used to explain several features of complex diseases, such as late onset and fluctuation of symptoms. However, miRNAs not only function as a part of epigenetic machinery, but are also epigenetically modified by DNA methylation and histone modification like any other protein-coding gene. There is a strong connection between epigenome and miRNome, and any dysregulation of this complex system can result in various physiological and pathological conditions. In addition, miRNAs play an important role in toxicogenomics and may explain the relationship between toxicant exposure and tumorigenesis. The present review provides information on 63 miRNA genes shown to be epigenetically regulated in association with 21 diseases, including 11 cancer types: cardiac fibrosis, cardiovascular disease, preeclampsia, Hirschsprung's disease, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, temporal lobe epilepsy, autism, pulmonary fibrosis, melanoma, acute myeloid leukemia, chronic lymphocytic leukemia, colorectal, gastric, cervical, ovarian, prostate, lung, breast, and bladder cancer. The review revealed that hsa-miR-34a, hsa-miR-34b, and hsa-miR-34c are the most frequently reported epigenetically dysregulated miRNAs. There is a need to further study molecular mechanisms of various diseases to better understand the crosstalk between epigenetics and gene expression and to develop new therapeutic options and biomarkers. PMID:27557899

  13. The emerging role of MicroRNA in schizophrenia.

    PubMed

    Caputo, Viviana; Ciolfi, Andrea; Macri, Simone; Pizzuti, Antonio

    2015-01-01

    MicroRNAs (miRNAs) are ~22 nucleotide non-coding RNAs that control gene expression post-transcriptionally by base pairing to mRNAs. MiRNAs are predicted to target ~50% of all protein-coding genes and functional studies indicate that they participate in the regulation of almost every cellular process. They also play a key role in pathogenetic mechanisms underlying several diseases, e.g. cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases. Several miRNAs are expressed in the human brain where they contribute to equilibrium between maintenance and differentiation of neural stem cells. MiRNAs specific mechanisms of action and their roles in brain development and synaptic plasticity resulted in a great interest in the analysis of their potential role in the pathogenesis and pathophysiology of neuropsychiatric disorders. Currently, schizophrenia is one of the fields in psychiatry where miRNAs have been most widely investigated. The understanding of miRNAs role in schizophrenia has been achieved through association, functional and expression profiling studies on post mortem brain and peripheral tissues. Several studies identified association between neuropsychiatric disorders and variants in miRNAs including variations in miRNA/primary-/precursor-miRNAs sequences, in miRNAs biogenesis machinery genes, in the 3'UTR of target genes and in miRNAs expression. In summary, there is growing evidence that miRNAs exert a crucial role in gene expression regulation in the central nervous system and are altered in the development, presentation and response to treatment of psychiatric disorders. In this review we summarize the most significant results of experimental studies aimed at highlighting the involvement of human miRNAs in schizophrenia.

  14. MicroRNA-214 Antagonism Protects against Renal Fibrosis

    PubMed Central

    Ramdas, Vasudev; Lu, Ruifang; Conway, Bryan R.; Grant, Jennifer S.; Dickinson, Brent; Aurora, Arin B.; McClure, John D.; Kipgen, David; Delles, Christian; van Rooij, Eva

    2014-01-01

    Renal tubulointerstitial fibrosis is the common end point of progressive renal disease. MicroRNA (miR)-214 and miR-21 are upregulated in models of renal injury, but the function of miR-214 in this setting and the effect of its manipulation remain unknown. We assessed the effect of inhibiting miR-214 in an animal model of renal fibrosis. In mice, genetic deletion of miR-214 significantly attenuated interstitial fibrosis induced by unilateral ureteral obstruction (UUO). Treatment of wild-type mice with an anti-miR directed against miR-214 (anti-miR-214) before UUO resulted in similar antifibrotic effects, and in vivo biodistribution studies demonstrated that anti–miR-214 accumulated at the highest levels in the kidney. Notably, in vivo inhibition of canonical TGF-β signaling did not alter the regulation of endogenous miR-214 or miR-21. Whereas miR-21 antagonism blocked Smad 2/3 activation, miR-214 antagonism did not, suggesting that miR-214 induces antifibrotic effects independent of Smad 2/3. Furthermore, TGF-β blockade combined with miR-214 deletion afforded additional renal protection. These phenotypic effects of miR-214 depletion were mediated through broad regulation of the transcriptional response to injury, as evidenced by microarray analysis. In human kidney tissue, miR-214 was detected in cells of the glomerulus and tubules as well as in infiltrating immune cells in diseased tissue. These studies demonstrate that miR-214 functions to promote fibrosis in renal injury independent of TGF-β signaling in vivo and that antagonism of miR-214 may represent a novel antifibrotic treatment in the kidney. PMID:24158985

  15. Performance comparison of digital microRNA profiling technologies applied on human breast cancer cell lines.

    PubMed

    Knutsen, Erik; Fiskaa, Tonje; Ursvik, Anita; Jørgensen, Tor Erik; Perander, Maria; Lund, Eiliv; Seternes, Ole Morten; Johansen, Steinar D; Andreassen, Morten

    2013-01-01

    MicroRNA profiling represents an important first-step in deducting individual RNA-based regulatory function in a cell, tissue, or at a specific developmental stage. Currently there are several different platforms to choose from in order to make the initial miRNA profiles. In this study we investigate recently developed digital microRNA high-throughput technologies. Four different platforms were compared including next generation SOLiD ligation sequencing and Illumina HiSeq sequencing, hybridization-based NanoString nCounter, and miRCURY locked nucleic acid RT-qPCR. For all four technologies, full microRNA profiles were generated from human cell lines that represent noninvasive and invasive tumorigenic breast cancer. This study reports the correlation between platforms, as well as a more extensive analysis of the accuracy and sensitivity of data generated when using different platforms and important consideration when verifying results by the use of additional technologies. We found all the platforms to be highly capable for microRNA analysis. Furthermore, the two NGS platforms and RT-qPCR all have equally high sensitivity, and the fold change accuracy is independent of individual miRNA concentration for NGS and RT-qPCR. Based on these findings we propose new guidelines and considerations when performing microRNA profiling.

  16. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode.

    PubMed

    Miao, Peng; Wang, Bidou; Meng, Fanyu; Yin, Jian; Tang, Yuguo

    2015-03-18

    MicroRNAs are a class of evolutionally conserved, small noncoding RNAs involved in the regulation of gene expression and affect a variety of biological processes including cellular differentiation, immunological response, tumor development, and so on. Recently, microRNAs have been identified as promising disease biomarkers. In this work, we have fabricated a novel electrochemical method for ultrasensitive detection of microRNA. Generally, a DNA tetrahedron decorated gold electrode is employed as the recognition interface. Then, hybridizations between DNA tetrahedron, microRNA, and primer probe initiate rolling circle amplification (RCA) on the electrode surface. Silver nanoparticles attached to the RCA products provide significant electrochemical signals and a limit of detection as low as 50 aM is achieved. Moreover, homology microRNA family members with only one or two mismatches can be successfully distinguished. Therefore, this proposed method reveals great advancements toward improved disease diagnosis and prognosis.

  17. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment.

    PubMed

    Morlando, Mariangela; Dini Modigliani, Stefano; Torrelli, Giulia; Rosa, Alessandro; Di Carlo, Valerio; Caffarelli, Elisa; Bozzoni, Irene

    2012-12-12

    microRNA abundance has been shown to depend on the amount of the microprocessor components or, in some cases, on specific auxiliary co-factors. In this paper, we show that the FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, associated with familial forms of Amyotrophic Lateral Sclerosis (ALS), contributes to the biogenesis of a specific subset of microRNAs. Among them, species with roles in neuronal function, differentiation and synaptogenesis were identified. We also show that FUS/TLS is recruited to chromatin at sites of their transcription and binds the corresponding pri-microRNAs. Moreover, FUS/TLS depletion leads to decreased Drosha level at the same chromatin loci. Limited FUS/TLS depletion leads to a reduced microRNA biogenesis and we suggest a possible link between FUS mutations affecting nuclear/cytoplasmic partitioning of the protein and altered neuronal microRNA biogenesis in ALS pathogenesis.

  18. [Detection technologies of microRNA and their prospects for forensic applications].

    PubMed

    Wang, Zheng; Zhang, Ji; Tang, Dan-Zhou; Wang, Yan-Bin; Hou, Yi-Ping

    2014-02-01

    MicroRNA (miRNA) belongs to a class of small, non-coding RNA molecules that contains 18-25 nucleotides and regulates gene expression at post-transcriptional level. Many miRNAs are highly conserved and display timing- and tissue-specific expression. With the advance of the miRNA detection technologies, miRNA has been introduced to forensic science as a potentially novel set of genetic markers of forensic body fluid identification, species identification and PMI estimation. In this article, the detection methodologies of miRNA are reviewed, and their potential applications in forensic practice and research future are also discussed.

  19. The role of RNA structure at 5′ untranslated region in microRNA-mediated gene regulation

    PubMed Central

    Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-01-01

    Recent studies have suggested that the secondary structure of the 5′ untranslated region (5′ UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5′ UTR; however, the general role of the 5′ UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5′ UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5′ cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5′ UTR, number of miRNA target sites, and 5′ UTR length may influence mRNA structure near the 5′ cap. Our results suggest that the 5′ UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5′ cap site, rather than the structure of the full-length 5′ UTR sequences, plays an important role in miRNA-mediated gene regulation. PMID:25002673

  20. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics

    PubMed Central

    Nieto-Diaz, Manuel; Esteban, Francisco J.; Reigada, David; Muñoz-Galdeano, Teresa; Yunta, Mónica; Caballero-López, Marcos; Navarro-Ruiz, Rosa; del Águila, Ángela; Maza, Rodrigo M.

    2014-01-01

    Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI. PMID:24701199

  1. The Bull Sperm MicroRNAome and the Effect of Fescue Toxicosis on Sperm MicroRNA Expression

    PubMed Central

    Stowe, Heather M.; Calcatera, Samantha M.; Dimmick, Marcy A.; Andrae, John G.; Duckett, Susan K.; Pratt, Scott L.

    2014-01-01

    Tall fescue [Schedonorus phoenix (Scop.) Holub] accounts for nearly 16 million hectares of pasture in the Southeastern and Mid-Atlantic U.S. due to its heat, drought, and pest resistance, conferred to the plant by its symbiotic relationship with the endophyte Neotyphodium coenophialum. The endophyte produces ergot alkaloids that have negative effects on the growth and reproduction of animals, resulting in the syndrome known as fescue toxicosis. The objectives of our study were to identify microRNA (miRNA) present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression. Angus bulls were assigned to treatments of either toxic or non-toxic fescue seed diets. Semen was collected and subjected to RNA isolation. Three samples from each treatment group were chosen and pooled for deep sequencing. To compare miRNA expression between treatment groups, a microarray was designed and conducted. For each of the top ten expressed miRNA, target prediction analysis was conducted using TargetScan. Gene ontology enrichment was assessed using the Database for Annotation, Visualization and Integrated Discovery. Sequencing results elucidated the presence of 1,582 unique small RNA present in sperm. Of those sequences, 382 were known Bos taurus miRNA, 22 were known but novel to Bos taurus, and 816 were predicted candidate miRNA that did not map to any currently reported miRNA. Of the sequences chosen for microarray, twenty-two showed significant differential expression between treatment groups. Gene pathways of interest included: regulation of transcription, embryonic development (including blastocyst formation), Wnt and Hedgehog signaling, oocyte meiosis, and kinase and phosphatase activity. MicroRNA present in mature sperm appears to not only be left over from spermatogenic processes, but may actually serve important regulatory roles in fertilization and early developmental processes. Further, our results indicate the possibility that environmental

  2. The bull sperm microRNAome and the effect of fescue toxicosis on sperm microRNA expression.

    PubMed

    Stowe, Heather M; Calcatera, Samantha M; Dimmick, Marcy A; Andrae, John G; Duckett, Susan K; Pratt, Scott L

    2014-01-01

    Tall fescue [Schedonorus phoenix (Scop.) Holub] accounts for nearly 16 million hectares of pasture in the Southeastern and Mid-Atlantic U.S. due to its heat, drought, and pest resistance, conferred to the plant by its symbiotic relationship with the endophyte Neotyphodium coenophialum. The endophyte produces ergot alkaloids that have negative effects on the growth and reproduction of animals, resulting in the syndrome known as fescue toxicosis. The objectives of our study were to identify microRNA (miRNA) present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression. Angus bulls were assigned to treatments of either toxic or non-toxic fescue seed diets. Semen was collected and subjected to RNA isolation. Three samples from each treatment group were chosen and pooled for deep sequencing. To compare miRNA expression between treatment groups, a microarray was designed and conducted. For each of the top ten expressed miRNA, target prediction analysis was conducted using TargetScan. Gene ontology enrichment was assessed using the Database for Annotation, Visualization and Integrated Discovery. Sequencing results elucidated the presence of 1,582 unique small RNA present in sperm. Of those sequences, 382 were known Bos taurus miRNA, 22 were known but novel to Bos taurus, and 816 were predicted candidate miRNA that did not map to any currently reported miRNA. Of the sequences chosen for microarray, twenty-two showed significant differential expression between treatment groups. Gene pathways of interest included: regulation of transcription, embryonic development (including blastocyst formation), Wnt and Hedgehog signaling, oocyte meiosis, and kinase and phosphatase activity. MicroRNA present in mature sperm appears to not only be left over from spermatogenic processes, but may actually serve important regulatory roles in fertilization and early developmental processes. Further, our results indicate the possibility that environmental

  3. (Dicer)phering roles of microRNA in platelets.

    PubMed

    Boilard, Eric; Belleannée, Clémence

    2016-04-01

    In this issue of Blood, Rowley et al report that noncoding RNAs precisely regulate the messenger RNA (mRNA) profile in platelets. Interfering in this process using genetically engineered mice affects hemostatic and thrombotic functions of platelets. PMID:27056990

  4. MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata.

    PubMed

    Wang, Xiaolu; Yin, Danqing; Li, Peng; Yin, Shaowu; Wang, Li; Jia, Yihe; Shu, Xinhua

    2015-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.

  5. MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata

    PubMed Central

    Li, Peng; Yin, Shaowu; Wang, Li; Jia, Yihe; Shu, Xinhua

    2015-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish. PMID:26301415

  6. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach.

    PubMed

    Baba, Naoto; Elmetwaly, Shereef; Kim, Namhee; Schlick, Tamar

    2016-02-27

    An analysis and expansion of our resource for classifying, predicting, and designing RNA structures, RAG (RNA-As-Graphs), is presented, with the goal of understanding features of RNA-like and non-RNA-like motifs and exploiting this information for RNA design. RAG was first reported in 2004 for cataloging RNA secondary structure motifs using graph representations. In 2011, the RAG resource was updated with the increased availability of RNA structures and was improved by utilities for analyzing RNA structures, including substructuring and search tools. We also classified RNA structures as graphs up to 10 vertices (~200 nucleotides) into three classes: existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree graphs and evaluate the newly founded RNAs since 2011, which also support our refined predictions of RNA-like motifs. We expand the RAG resource for large tree graphs up to 13 vertices (~260 nucleotides), thereby cataloging more than 10 times as many secondary structures. We apply clustering algorithms based on features of RNA secondary structures translated from known tertiary structures to suggest which hypothetical large RNA motifs can be considered "RNA-like". The results by the PAM (Partitioning Around Medoids) approach, in particular, reveal good accuracy, with small error for the largest cases. The RAG update here up to 13 vertices offers a useful graph-based tool for exploring RNA motifs and suggesting large RNA motifs for design. PMID:26478223

  7. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach.

    PubMed

    Baba, Naoto; Elmetwaly, Shereef; Kim, Namhee; Schlick, Tamar

    2016-02-27

    An analysis and expansion of our resource for classifying, predicting, and designing RNA structures, RAG (RNA-As-Graphs), is presented, with the goal of understanding features of RNA-like and non-RNA-like motifs and exploiting this information for RNA design. RAG was first reported in 2004 for cataloging RNA secondary structure motifs using graph representations. In 2011, the RAG resource was updated with the increased availability of RNA structures and was improved by utilities for analyzing RNA structures, including substructuring and search tools. We also classified RNA structures as graphs up to 10 vertices (~200 nucleotides) into three classes: existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree graphs and evaluate the newly founded RNAs since 2011, which also support our refined predictions of RNA-like motifs. We expand the RAG resource for large tree graphs up to 13 vertices (~260 nucleotides), thereby cataloging more than 10 times as many secondary structures. We apply clustering algorithms based on features of RNA secondary structures translated from known tertiary structures to suggest which hypothetical large RNA motifs can be considered "RNA-like". The results by the PAM (Partitioning Around Medoids) approach, in particular, reveal good accuracy, with small error for the largest cases. The RAG update here up to 13 vertices offers a useful graph-based tool for exploring RNA motifs and suggesting large RNA motifs for design.

  8. mRNA Targeting to Endoplasmic Reticulum Precedes Ago Protein Interaction and MicroRNA (miRNA)-mediated Translation Repression in Mammalian Cells.

    PubMed

    Barman, Bahnisikha; Bhattacharyya, Suvendra N

    2015-10-01

    MicroRNA (miRNA) binds to the 3'-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state. PMID:26304123

  9. mRNA Targeting to Endoplasmic Reticulum Precedes Ago Protein Interaction and MicroRNA (miRNA)-mediated Translation Repression in Mammalian Cells.

    PubMed

    Barman, Bahnisikha; Bhattacharyya, Suvendra N

    2015-10-01

    MicroRNA (miRNA) binds to the 3'-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state.

  10. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP.

    PubMed

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi; Miyata, Maiko; Huang, Peng; Ishiguro, Naoki; Hamaguchi, Michinari; Iwamoto, Takashi

    2008-08-01

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have not responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.

  11. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP

    SciTech Connect

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi; Miyata, Maiko; Huang, Peng; Ishiguro, Naoki; Hamaguchi, Michinari; Iwamoto, Takashi

    2008-08-08

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have not responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.

  12. MicroRNA expression is altered in lateral septum across reproductive stages.

    PubMed

    Saul, M C; Zhao, C; Driessen, T M; Eisinger, B E; Gammie, S C

    2016-01-15

    MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find

  13. MicroRNA expression is altered in lateral septum across reproductive stages.

    PubMed

    Saul, M C; Zhao, C; Driessen, T M; Eisinger, B E; Gammie, S C

    2016-01-15

    MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find

  14. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites

    PubMed Central

    Ghosal, Suman; Saha, Shekhar; Das, Shaoli; Sen, Rituparno; Goswami, Swagata; Jana, Siddhartha S.; Chakrabarti, Jayprokas

    2016-01-01

    Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3′ end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3′ end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3′ UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites. PMID:26923536

  15. Roles of microRNA-99 family in human glioma

    PubMed Central

    Zhang, Mingyu; Guo, Yong; Wu, Jun; Chen, Fenghua; Dai, Zhijie; Fan, Shuangshi; Li, Pengcheng; Song, Tao

    2016-01-01

    Objective Deregulation of microRNA (miR)-99 family members (miR-99a, miR-99b, and miR-100) has been reported to play a crucial role in many cancer types. However, their roles in human gliomas have not been fully elucidated. This study aimed to investigate the expression patterns of miR-99a, miR-99b, and miR-100 in glioma tissues and to evaluate their expression profiles with respect to tumor progression. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression levels of miR-99a, miR-99b, and miR-100 in glioma and matched non-neoplastic brain tissues. Then, the associations of their expression with various clinicopathological features of glioma patients were statistically analyzed. Moreover, the roles of miR-99a, miR-99b, and miR-100 in regulating glioma cell migration and invasion were determined via transwell assay in vitro. Results Compared with non-neoplastic brain tissues, miR-99a, miR-99b, and miR-100 expression levels were all significantly decreased in glioma tissues (all P<0.001). miR-99a-low, miR-99b-low, and miR-100-low expression more frequently occurred in glioma patients with low Karnofsky performance score (<90) and high World Health Organization grade (III–IV). Further functional experiments revealed that the enforced expression of miR-99a, miR-99b, and miR-100 resulted in the inhibition of cellular migration and invasion in glioma cells. Conclusion Our results strongly suggest that the aberrant expression of miR-99a, miR-99b, and miR-100 may be a common feature in human gliomas with aggressive clinicopathological features and may participate in malignant phenotypes of the tumors. These findings highlight the potential of the three miR-99 family members as novel therapeutic targets for human gliomas. PMID:27382299

  16. miRIAD—integrating microRNA inter- and intragenic data

    PubMed Central

    Hinske, Ludwig Christian; França, Gustavo S.; Torres, Hugo A. M.; Ohara, Daniel T.; Lopes-Ramos, Camila M.; Heyn, Jens; Reis, Luiz F. L.; Ohno-Machado, Lucila; Kreth, Simone

    2014-01-01

    MicroRNAs (miRNAs) are a class of small (∼22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter- and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein–protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations. Database URL: http://www.miriad-database.org PMID:25288656

  17. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area promising future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important role ...

  18. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure [Poster 2015

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area that promises future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important r...

  19. Similarity computation strategies in the microRNA-disease network: a survey.

    PubMed

    Zou, Quan; Li, Jinjin; Song, Li; Zeng, Xiangxiang; Wang, Guohua

    2016-01-01

    Various microRNAs have been demonstrated to play roles in a number of human diseases. Several microRNA-disease network reconstruction methods have been used to describe the association from a systems biology perspective. The key problem for the network is the similarity computation model. In this article, we reviewed the main similarity computation methods and discussed these methods and future works. This survey may prompt and guide systems biology and bioinformatics researchers to build more perfect microRNA-disease associations and may make the network relationship clear for medical researchers.

  20. Solid tumors of childhood display specific serum microRNA profiles

    PubMed Central

    Murray, Matthew J.; Raby, Katie L.; Saini, Harpreet K.; Bailey, Shivani; Wool, Sophie V.; Tunnacliffe, Jane M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2014-01-01

    Background Serum biomarkers for diagnosis and risk-stratification of childhood solid tumors would improve the accuracy/timeliness of diagnosis and reduce the need for invasive biopsies. We hypothesized that differential expression and/or release of microRNAs by such tumors may be detected as altered serum microRNA profiles. Methods We undertook global quantitative-RT-PCR microRNA profiling (n=741) on RNA from 53 serum samples, representing 33 diagnostic cases of common childhood cancers plus 20 controls. Technical confirmation was performed in a subset of 21 cases, plus four independent samples. Results We incorporated robust quality-control steps for RNA extraction, qRT-PCR efficiency and hemolysis quantification. We evaluated multiple methods to normalize global profiling data and identified the ‘global-mean’ approach as optimal. We generated a panel of six microRNAs that were most stable in pediatric serum samples and therefore most suitable for normalization of targeted microRNA qRT-PCR data. Tumor-specific serum microRNA profiles were identified for each tumor type and selected microRNAs underwent confirmatory testing. We identified a panel of microRNAs (miR-124-3p/miR-9-3p/miR-218-5p/miR-490-5p/miR-1538) of potential importance in the clinical management of neuroblastoma, as they were consistently highly over-expressed in MYCN-amplified high-risk cases (MYCN-NB). We also derived candidate microRNA panels for non-invasive differential diagnosis of a liver mass (hepatoblastoma vs. combined MYCN-NB/NB), an abdominal mass (Wilms tumor vs. combined MYCN-NB/NB), and sarcoma subtypes. Conclusions This study describes a pipeline for robust diagnostic serum microRNA profiling in childhood solid tumors, and has identified candidate microRNA profiles for prospective testing. Impact We propose a new non-invasive method with the potential to diagnose childhood solid tumors. PMID:25416717

  1. Highly improved specificity for hybridization-based microRNA detection by controlled surface dissociation.

    PubMed

    Yoon, Hye Ryeon; Lee, Jeong Min; Jung, Juyeon; Lee, Chang-Soo; Chung, Bong Hyun; Jung, Yongwon

    2014-01-01

    Poor specificity has been a lingering problem in many microRNA profiling methods, particularly surface hybridization-based methods such as microarrays. Here, we carefully investigated surface hybridization and dissociation processes of a number of sequentially similar microRNAs against nucleic acid capture probes. Single-base mismatched microRNAs were similarly hybridized to a complementary DNA capture probe and thereby poorly discriminated during conventional stringent hybridization. Interestingly, however, mismatched microRNAs showed significantly faster dissociation from the probe than the perfectly matched microRNA. Systematic analysis of various washing conditions clearly demonstrated that extremely high specificity can be obtained by releasing non-specific microRNAs from assay surfaces during a stringent and controlled dissociation step. For instance, compared with stringent hybridization, surface dissociation control provided up to 6-fold better specificity for Let-7a detection than for other Let-7 family microRNAs. In addition, a synthetically introduced single-base mismatch on miR206 was almost completely discriminated by optimized surface dissociation of captured microRNAs, while this mismatch was barely distinguished from target miR206 during stringent hybridization. Furthermore, a single dissociation condition was successfully used to simultaneously measure four different microRNAs with extremely high specificity using melting temperature-equalized capture probes. The present study on selective dissociation of surface bound microRNAs can be easily applied to various hybridization based detection methods for improved specificity.

  2. Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors

    PubMed Central

    Zhang, Liye; Yang, Chih-Sheng; Varelas, Xaralabos; Monti, Stefano

    2016-01-01

    RNA editing is a molecular event that alters specific nucleotides in RNA post-transcriptionally. RNA editing has the potential to impact a variety of cellular processes and is implicated in diseases such as cancer. Yet, the precise mechanisms by which RNA editing controls cellular processes are poorly understood. Here, we characterize sequences altered by RNA editing in patient samples from lymphoma, neuroblastoma and head and neck cancers. We show that A-to-I RNA editing sites are highly conserved across samples of the same tissue type and that most editing sites identified in tumors are also detectable in normal tissues. Next, we identify the significant changes in editing levels of known sites between tumor and paired “normal” tissues across 14 cancer types (627 pairs) from The Cancer Genome Atlas project and show that the complexity of RNA editing regulation cannot be captured by the activity of ADAR family genes alone. Our pan-cancer analysis confirms previous results on individual tumor types and suggests that changes of RNA editing levels in coding and 3′UTR regions could be a general mechanism to promote tumor growth. We also propose a model explaining how altered RNA editing levels affect microRNA-mediated post-transcriptional regulation of oncogenes and tumor-suppressors. PMID:26980570

  3. A critical appraisal of the use of microRNA data in phylogenetics

    PubMed Central

    Thomson, Robert C.; Plachetzki, David C.; Mahler, D. Luke; Moore, Brian R.

    2014-01-01

    Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation. PMID:25071211

  4. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets.

    PubMed

    Pani, Alok; Mahapatra, Rajani Kanta; Behera, Niranjan; Naik, Pradeep Kumar

    2011-12-01

    Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in artemisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.

  5. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis.

    PubMed

    Gadde, Suresh; Rayner, Katey J

    2016-09-01

    Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD.

  6. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis.

    PubMed

    Gadde, Suresh; Rayner, Katey J

    2016-09-01

    Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD. PMID:27559146

  7. Identification of androgenic gland microRNA and their target genes to discover sex-related microRNA in the oriental river prawn, Macrobrachium nipponense.

    PubMed

    Jin, S B; Fu, H T; Jiang, S F; Xiong, Y W; Qiao, H; Zhang, W Y; Gong, Y S; Wu, Y

    2015-01-01

    The oriental river prawn, Macrobrachium nipponense, is an important aquaculture species in China. The androgenic gland produces hormones that play crucial roles in the differentiation of crustaceans to the male sex. MicroRNA (miRNA) post-transcriptionally regulates many protein-coding genes, influencing important biological and metabolic processes. However, currently, there is no published data identifying miRNA in M. nipponense. In this study, we identified novel miRNA in the androgenic gland of M. nipponense. Using the high-throughput Illumina Solexa system, 1077 miRNA were identified from small RNA libraries by aligning with the de novo androgenic gland transcriptome of M. nipponense (obtained from RNA-Seq) and the sequences in the miRBase21 database. A total of 8,248, 76,011, and 78,307 target genes were predicted in the EST and SRA sequences provided in the NCBI database, and the androgenic gland transcriptome of M. nipponense, respectively. Some potential sex-related miRNA were identified based on the function of the predicted target genes. The results of our study provide new information regarding the miRNA expression in M. nipponense, which could be the basis for further genetic studies on decapod crustaceans. PMID:26782487

  8. Rapid reversal of translational silencing: Emerging role of microRNA degradation pathways in neuronal plasticity.

    PubMed

    Fu, Xiuping; Shah, Aparna; Baraban, Jay M

    2016-09-01

    As microRNAs silence translation, rapid reversal of this process has emerged as an attractive mechanism for driving de novo protein synthesis mediating neuronal plasticity. Herein, we summarize recent studies identifying neuronal stimuli that trigger rapid decreases in microRNA levels and reverse translational silencing of plasticity transcripts. Although these findings indicate that neuronal stimulation elicits rapid degradation of selected microRNAs, we are only beginning to decipher the molecular pathways involved. Accordingly, we present an overview of several molecular pathways implicated in mediating microRNA degradation: Lin-28, translin/trax, and MCPIP1. As these degradation pathways target distinct subsets of microRNAs, they enable neurons to reverse silencing rapidly, yet selectively. PMID:27107971

  9. The use of molecular beacons to detect and quantify microRNA.

    PubMed

    Baker, Meredith B; Bao, Gang; Searles, Charles D

    2013-01-01

    Molecular beacons are oligonucleotide (DNA or RNA) probes that have become increasingly important tools for RNA sensitive detection both in vitro and in living cells. From their inception, molecular beacons have been used to determine the expression levels of RNA transcripts, but they also have the specificity to identify splice variants and single-nucleotide polymorphisms. Our group has performed extensive studies on molecular beacon design, molecular beacon hybridization assays, and cellular imaging of mRNA molecules. Compared to other methods for assessing RNA transcript expression, such as qRT-PCR, the beacon-based approach is potentially simpler, faster, more cost effective, and more specific. Recently, our group demonstrated that molecular beacons can readily distinguish mature- and precursor microRNAs, and reliably quantify microRNA expression. MicroRNAs (miRNAs) are a class of short (19-25 nt), single-stranded, noncoding RNAs that regulate an array of cellular functions through the degradation and translational repression of mRNA targets. Importantly, tissue levels of specific miRNAs have been shown to correlate with pathological development of diseases. Thus, a rapid and efficient method of assessing miRNA expression is useful for diagnosing diseases and identifying novel therapeutic targets. Here, we describe the methods for designing and using molecular beacons to detect and quantify miRNA.

  10. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  11. MicroRNA expression profiling of the developing murine upper lip

    PubMed Central

    Warner, Dennis R.; Mukhopadhyay, Partha; Brock, Guy; Webb, Cindy L.; Pisano, M. Michele; Greene, Robert M.

    2015-01-01

    Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0-GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 169 microRNAs were differentially expressed across gestation days 10.0 to 11.5 in the medial nasal processes, and 77 in the maxillary processes of the first branchial arch with 49 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were 5 members of the Let-7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA-302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA-199a-3p and Let-7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial processes while that for microRNA-203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA-203 and microRNA-302/367 family). Integration of these data with corresponding proteomic data sets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip. PMID:24849136

  12. A method for clustering of miRNA sequences using fragmented programming.

    PubMed

    Ivashchenko, Anatoly; Pyrkova, Anna; Niyazova, Raigul

    2016-01-01

    Clustering of miRNA sequences is an important problem in molecular genetics associated cellular biology. Thousands of such sequences are known today through advancement in sophisticated molecular tools, sequencing techniques, computational resources and rule based mathematical models. Analysis of such large-scale miRNA sequences for inferring patterns towards deducing cellular function is a great challenge in modern molecular biology. Therefore, it is of interest to develop mathematical models specific for miRNA sequences. The process is to group (cluster) such miRNA sequences using well-defined known features. We describe a method for clustering of miRNA sequences using fragmented programming. Subsequently, we illustrated the utility of the model using a dendrogram (a tree diagram) for publically known A.thaliana miRNA nucleotide sequences towards the inference of observed conserved patterns. PMID:27212839

  13. A method for clustering of miRNA sequences using fragmented programming

    PubMed Central

    Ivashchenko, Anatoly; Pyrkova, Anna; Niyazova, Raigul

    2016-01-01

    Clustering of miRNA sequences is an important problem in molecular genetics associated cellular biology. Thousands of such sequences are known today through advancement in sophisticated molecular tools, sequencing techniques, computational resources and rule based mathematical models. Analysis of such large-scale miRNA sequences for inferring patterns towards deducing cellular function is a great challenge in modern molecular biology. Therefore, it is of interest to develop mathematical models specific for miRNA sequences. The process is to group (cluster) such miRNA sequences using well-defined known features. We describe a method for clustering of miRNA sequences using fragmented programming. Subsequently, we illustrated the utility of the model using a dendrogram (a tree diagram) for publically known A.thaliana miRNA nucleotide sequences towards the inference of observed conserved patterns PMID:27212839

  14. Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns.

    PubMed

    Razak, Siti Razila Abdul; Ueno, Kazuko; Takayama, Naoya; Nariai, Naoki; Nagasaki, Masao; Saito, Rika; Koso, Hideto; Lai, Chen-Yi; Murakami, Miyako; Tsuji, Koichiro; Michiue, Tatsuo; Nakauchi, Hiromitsu; Otsu, Makoto; Watanabe, Sumiko

    2013-01-01

    Using quantitative PCR-based miRNA arrays, we comprehensively analyzed the expression profiles of miRNAs in human and mouse embryonic stem (ES), induced pluripotent stem (iPS), and somatic cells. Immature pluripotent cells were purified using SSEA-1 or SSEA-4 and were used for miRNA profiling. Hierarchical clustering and consensus clustering by nonnegative matrix factorization showed two major clusters, human ES/iPS cells and other cell groups, as previously reported. Principal components analysis (PCA) to identify miRNAs that segregate in these two groups identified miR-187, 299-3p, 499-5p, 628-5p, and 888 as new miRNAs that specifically characterize human ES/iPS cells. Detailed direct comparisons of miRNA expression levels in human ES and iPS cells showed that several miRNAs included in the chromosome 19 miRNA cluster were more strongly expressed in iPS cells than in ES cells. Similar analysis was conducted with mouse ES/iPS cells and somatic cells, and several miRNAs that had not been reported to be expressed in mouse ES/iPS cells were suggested to be ES/iPS cell-specific miRNAs by PCA. Comparison of the average expression levels of miRNAs in ES/iPS cells in humans and mice showed quite similar expression patterns of human/mouse miRNAs. However, several mouse- or human-specific miRNAs are ranked as high expressers. Time course tracing of miRNA levels during embryoid body formation revealed drastic and different patterns of changes in their levels. In summary, our miRNA expression profiling encompassing human and mouse ES and iPS cells gave various perspectives in understanding the miRNA core regulatory networks regulating pluripotent cells characteristics.

  15. Prognostic significance of NPM1 mutation-modulated microRNA-mRNA regulation in acute myeloid leukemia.