Science.gov

Sample records for micro structures sensors

  1. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  2. Piezoelectric cellular micro-structured PDMS material for micro-sensors and energy harvesting

    NASA Astrophysics Data System (ADS)

    Kachroudi, A.; Basrour, S.; Rufer, L.; Jomni, F.

    2015-12-01

    This paper reports a novel low-cost fabrication process of a charged cellular microstructured polydimethylsiloxane (PDMS) material referred as piezo-electret or ferro-electret for micro-sensors applications. The dielectric spectra reached on these structures exhibit a high piezoelectric longitudinal coefficient d33 of 350pC/N. A mechanical characterization method proves the reliability of this material for low-frequencies applications around 100Hz.

  3. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    PubMed Central

    Roh, Sookyoung; Chung, Taerin; Lee, Byoungho

    2011-01-01

    The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR) based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes) with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors. PMID:22319369

  4. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yaxun; Zhang, Yu; Wang, Zhenzhen; Liu, Zhihai; Wei, Yong; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo

    2016-09-01

    We propose and demonstrate a novel Michelson Fabry-Perot hybrid fiber interference sensor. By integrating a Michelson interferometer in a two-core fiber and a Fabry-Perot interferometer in a micro silica-capillary, we produce the Michelson Fabry-Perot hybrid interference sensor. Owing to the structure characteristic of the micro-structured fiber, this hybrid fiber interference sensor can achieve the measurement of the axial strain and radial bending simultaneously. The measurement sensitivity of the axial train is 0.015 nm/με and the measurement sensitivity of the radial bending is 1.393 nm/m-1.

  5. Highly sensitive methane catalytic combustion micro-sensor based on mesoporous structure and nano-catalyst.

    PubMed

    Su, Jiacan; Cao, Liehu; Li, Liang; Wei, Jie; Li, Gengnan; Yuan, Yinyin

    2013-10-21

    In order to get a methane catalytic combustion micro-sensor, two different catalytic systems used in traditional methane catalytic combustion sensors were fabricated into a mesoporous structure and their catalytic activities were investigated. In comparison, the Rh2O3-Al2O3 system can form more a uniform mesoporous structure and has a much higher specific surface area. Even more importantly, it has relatively higher catalytic activity and stability for the methane catalytic combustion reaction. After being coated on a microelectro-mechanical system (MEMS) micro-heater, a catalytic combustion type methane micro-sensor was fabricated. The meso-structured Rh2O3-Al2O3 hybrid based MEMS sensor demonstrated a short T90 response time, relatively high signal output, high enough signal/noise ratio for practical detecting and strong anti-poison properties.

  6. Electrochemical micro sensor

    DOEpatents

    Setter, Joseph R.; Maclay, G. Jordan

    1989-09-12

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  7. Dielectric properties modelling of cellular structures with PDMS for micro-sensor applications

    NASA Astrophysics Data System (ADS)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2015-12-01

    Electro-active polymers are emerging in the fields of actuators and micro-sensors because their good dielectric and mechanical properties makes them suitable for such applications. In this work, we focus on micro-structured (cellular) polymer materials (referred as piezoelectrets or ferroelectrets) that need prior charging to attain piezoelectric behaviour. The development of such applications requires an in-depth knowledge of the intrinsic dielectric properties of such structures and models to enable the accurate prediction of a given micro-structured material’s dielectric properties. Various polymers including polypropylene, polytetrafluoroethylene, fluoroethylenepropylene, cyclo-olefines and poly(ethylene terephthalate) in a cellular form have been studied by researchers over the last fifteen years. However, there is still a lack of information on the intrinsic dielectric properties of the most recently used dielectric polymer (polydimethylsiloxane, PDMS) over wide frequency and temperature ranges. In this work, we shall propose an exhaustive equivalent electrical circuit model and explain how it can be used to predict the micro-structured PDMS complex permittivity versus frequency and temperature. The results obtained from the model were found to be in good agreement with experimental data for various micro-structured PDMS materials. Typically, for micro-sensor applications, the dielectric constant and dielectric losses are key factors which need to be minimized. We have developed a configuration which enables both to be strongly reduced with a reduction of 16% in the dielectric constant of a micro-structured PDMS compared with the bulk material. In addition, the phenomena responsible for dielectric losses variations with frequency and temperature are discussed and correlated with the theoretical model. Our model is thus proved to be a powerful tool for the control of the dielectric properties of micro-structured PDMS material for micro-sensor applications.

  8. Fabrication and Characterization of a-Si Micro and Nano-Gap Structure for Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Dhahi, Th. S.; Hashim, U.; Ahmed, N. M.; Ali, Md. Eaqub

    2011-05-01

    The development and application of micro gap for electrochemical sensors and biomolecule detection are reviewed in this article. The preparation methods for micro- and nano-gaps and their properties are discussed along with their advantages in electrochemical sensors and biomolecule detection. Biology and medicine have seen great advances in biosensors and biochips capable of characterizing and quantifying electrochemical sensor. To understand the important relationship between sensibility and nano structure, we introduce the fabrication and characterization of micro- and nano-gap structures for electrochemical sensor. In this paper, two mask designs are proposed. The first is the lateral micro- and nano-gap with aluminum (Al) electrode, and the second mask is for pad Al electrode pattern. Lateral micro-gaps are introduced in the fabrication process using amorphous silicon (a-Si) and Al as an electrode. Conventional ultraviolet lithography technique and dry etching for a-Si layer with wet etching for Al surface processes are used to fabricate the micro- and nano-gaps based on the standard complementary metal-oxide-semiconductor technology and characterization of its conductivity. Electrical characterization is applied using Semiconductor Parameter Analyzer, Spectrum Analyzer, current-voltage (IV)-capacitance-voltage (CV) station for electrical characteristics. Conductivity, resistance, and capacitance tests are performed to characterize and verify the structure of the device, resulting in a small micro-gap as revealed by a further IV curve result showing a current in nano amps. The characteristics of the fabricated gap are close to those of a micro-gap, as verified by the literature.

  9. Flexible micro flow sensor for micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-04-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  10. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS).

    PubMed

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.

  11. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS)

    PubMed Central

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960

  12. A micro-force sensor with slotted-quad-beam structure for measuring the friction in MEMS bearings.

    PubMed

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-09-30

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  13. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    PubMed Central

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-01-01

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines. PMID:24084112

  14. A Multiscale Approach to the Smart Deployment of Micro-Sensors over Lightweight Structures

    PubMed Central

    Capellari, Giovanni

    2017-01-01

    A topology optimization approach has been recently proposed to maximize the sensitivity to damage of measurements, collected through a network of sensors to be deployed over thin plates for structural health monitoring purposes. Within such a frame, damage is meant as a change in the structural health characterized by a reduction of relevant stiffness and load-carrying properties. The sensitivity to a damage of unknown amplitude and location is computed by comparing the response to the external actions of the healthy structure and of a set of auxiliary damaged structures, each one featuring reduced mechanical properties in a small region only. The topology optimization scheme has been devised to properly account for the information coming from all of the sensors to be placed on the structure and for damage depending on its location. In this work, we extend the approach within a multiscale frame to account for three different length scales: a macroscopic one, linked to the dimensions of the whole structure to be monitored; a mesoscopic one, linked to the characteristic size of the damaged region; a microscopic one, linked to the size of inertial microelectromechanical systems (MEMS) to be used within a marginally-invasive health monitoring system. Results are provided for a square plate and for a section of fuselage with stiffeners, to show how the micro-sensors have to be deployed to maximize the capability to detect a damage, to assess the sensitivity of the results to the measurement noise and to also discuss the speedup in designing the network topology against a standard single-scale approach. PMID:28714888

  15. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures

    PubMed Central

    Ham, Suyun; Popovics, John S.

    2015-01-01

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. Objective: To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology. PMID:25897497

  16. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  17. A Micro Bubble Structure Based Fabry–Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics

    PubMed Central

    Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang

    2017-01-01

    A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/με. PMID:28282960

  18. Micro sun sensor

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Mobasser, S.; Wrigley, C. J.; Bae, Y.; Howard, A.; Schroeder, J.

    2002-01-01

    A new generation of sun sensors is emerging. These sun sensors utilize an imaging detector and the sun sensor determines the sun angles based on an image of fringes or centroids on the detector plane. Typically determines the sun angle in two axes.

  19. Fiber Bragg grating sensors written by femtosecond laser pulses in micro-structured fiber for downhole pressure monitoring

    NASA Astrophysics Data System (ADS)

    Huang, J.-Y.; Van Roosbroeck, J.; Bueno Martinez, A.; Geernaert, T.; Berghmans, F.; Caucheteur, C.; Van Hoe, B.; Lindner, E.; Vlekken, J.

    2017-04-01

    In this paper, we demonstrate that femtosecond laser pulse written fiber Bragg gratings (FBGs) fabricated in specialty highly birefringent micro-structured optical fiber (MSF) can be used for high pressure and high temperature monitoring in downhole applications. The design of the micro-structure allows encoding the pressure information into the spectral separation between the two Bragg peaks reflected by the obtained MS-FBG. We obtained a differential pressure sensitivity of 3.30 pm/bar over a pressure range from atmospheric up to 1400 bar and at temperatures between 40 °C and 290 °C. Owing to the negligible differential pressure-temperature cross-sensitivity of 6.06E-3 bar/°C, the proposed MSFBG sensor is an ideal candidate for pressure monitoring in the presence of high temperature transients.

  20. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    SciTech Connect

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  1. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  2. Self-assembled micro-structured sensors for food safety in paper based food packaging.

    PubMed

    Hakovirta, M; Aksoy, B; Hakovirta, J

    2015-08-01

    Natural self-assembled microstructured particles (diatomaceous earth) were used to develop a gas sensor paper with detection mechanism based on visible and distinct color changes of the sensor paper when exposed to volatile basic nitrogen compounds. The coating formulation for paper was prepared by applying diatomites, polyvinyl alcohol (PVOH), and pH sensitive dyes on acidic paper substrate. The surface coating was designed to allow a maximum gas flow through the diatomite sensors. The produced sensor paper was tested for sensitivity using different ammonia concentrations and we observed a sensitivity lower limit at 63 ppm. As a comparison, the results show comparable sensitivity levels to carbon nanotube based sensor technologies reported in literature.

  3. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.

    PubMed

    Ma, Xingfa; Gao, Mingjun; He, Xiaochun; Li, Guang

    2010-11-01

    Conductive polymer is one of the important multi-functional materials. It has many applications in light-emitting diodes, chemical sensors, biosensors, et al. This paper provides a relatively comprehensive review on the progress of conductive polymer and composite as sensitive film for sensors to chemical vapors including patents, papers and our preliminary research results. Especially, the feature of conjugated polymers, the processing technology, doping characteristics and some factors affecting gas responses are discussed. Otherwise, the developments of nanostructured conductive polymer and organic-inorganic hybrid film sensor with high sensitivity and rapid response to vapors are also described, and some suggestions are proposed.

  4. Micro Sun Sensor for Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl; Bae, Youngsam; Schroeder, Jeffrey; Wrigley, Chris

    2004-01-01

    A report describes the development of a compact micro Sun sensor for use as a part of the attitude determination subsystem aboard future miniature spacecraft and planetary robotic vehicles. The prototype unit has a mass of only 9 g, a volume of only 4.2 cm(sup 3), a power consumption of only 30 mW, and a 120 degree field of view. The unit has demonstrated an accuracy of 1 arcminute. The unit consists of a multiple pinhole camera: A micromachined mask containing a rectangular array of microscopic pinholes, machined utilizing the microectromechanical systems (MEMS), is mounted in front of an active-pixel sensor (APS) image detector. The APS consists of a 512 x 512-pixel array, on-chip 10-bit analog to digital converter (ADC), on-chip bias generation, and on-chip timing control for self-sequencing and easy programmability. The digitized output of the APS is processed to compute the centroids of the pinhole Sun images on the APS. The Sun angle, relative to a coordinate system fixed to the sensor unit, is then computed from the positions of the centroids.

  5. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-01

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 μg. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 μg increments up to 120 μg of total removed mass. In general, frequency shifts of 2.8 Hz.μg-1 were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  6. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    SciTech Connect

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-15

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 {mu}g. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 {mu}g increments up to 120 {mu}g of total removed mass. In general, frequency shifts of 2.8 Hz{center_dot}{mu}g{sup -1} were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  7. Flight Qualified Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted

  8. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  9. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Mcginley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)

    1994-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  10. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors

    DTIC Science & Technology

    2010-11-01

    1 ELECTROKINETICS MODELS FOR MICRO AND NANO FLUIDIC IMPEDANCE SENSORS Yi Wang*, Hongjun Song, Ketan Bhatt, Kapil Pant CFD Research Corporation...analysis, design, and protocol development of novel micro - and nano - fluidics based impedance sensors. 1. INTRODUCTION Exposure to toxic...electrokinetic transport process at the micro - and nano -scale and to interrogate the sensor performance subject to the variations in design

  11. Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Lin, Chien-Hen; Lo, Yi-Man

    2011-01-01

    Micro reformers still face obstacles in minimizing their size, decreasing the concentration of CO, conversion efficiency and the feasibility of integrated fabrication with fuel cells. By using a micro temperature sensor fabricated on a stainless steel-based micro reformer, this work attempts to measure the inner temperature and increase the conversion efficiency. Micro temperature sensors on a stainless steel substrate are fabricated using micro-electro-mechanical systems (MEMS) and then placed separately inside the micro reformer. Micro temperature sensors are characterized by their higher accuracy and sensitivity than those of a conventional thermocouple. To the best of our knowledge, micro temperature sensors have not been embedded before in micro reformers and commercial products, therefore, this work presents a novel approach to integrating micro temperature sensors in a stainless steel-based micro reformer in order to evaluate inner local temperature distributions and enhance reformer performance. PMID:22163817

  12. Micro-sensors for space applications

    SciTech Connect

    Butler, M.A.; Frye-Mason, G.C.; Osbourn, G.C.

    1999-12-08

    Important factors in the application of sensing technology to space applications are low mass, small size, and low power. All of these attributes are enabled by the application of MEMS and micro-fabrication technology to microsensors. Two types of sensors are utilized in space applications: remotes sensing from orbit around the earth or another planetary body, and point sensing in the spacecraft or external to it. Several Sandia projects that apply microfabrication technologies to the development of new sensing capabilities having the potential for space applications will be briefly described. The Micro-Navigator is a project to develop a MEMS-based device to measure acceleration and rotation in all three axes for local area navigation. The Polychromator project is a joint project with Honeywell and MIT to develop an electrically programmable diffraction grating that can be programmed to synthesize the spectra of molecules. This grating will be used as the reference cell in a gas correlation radiometer to enable remote chemical detection of most chemical species. Another area of research where microfabrication is having a large impact is the development of a lab on a chip. Sandia's efforts to develop the {mu}ChemLab{trademark} will be described including the development of microfabricated pre-concentrators, chromatographic columns, and detectors. Smart sensors that allow the spacecraft independent decision making capabilities depend on pattern recognition. Sandia's development of a new pattern recognition methodology that can be used to interpret sensor response as well as for target recognition applications will be described.

  13. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  14. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  15. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    SciTech Connect

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  16. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    PubMed

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  17. Confocal micro-optical distance sensor: realization and results

    NASA Astrophysics Data System (ADS)

    Lucke, Peter; Last, Arndt; Mohr, Jurgen; Ruprecht, Aiko K.; Pruss, Christof; Tiziani, Hans J.; Osten, Wolfgang; Lehmann, Peter; Schonfelder, Sven

    2005-06-01

    In this paper, the realization and characterization of a microoptical sensor using the chromatic confocal principle is presented. The sensor head is designed for distance gauging applications in high aspect ratio cavities with a diameter of about 2 mm. The first part of this paper focuses on the design and fabrication process of the hybrid optical benches, which combines refractive and diffractive micro optical components. Very tight tolerances of the optical path are required for the functionality of the sensor. Therefore the alignment structures and mounts between the different optical elements are produced from PMMA using deep X-ray lithography, the first step of the LIGA process. In the second part of this paper the characterization of first prototypes using different light sources are described and results presented.

  18. Hair-based sensors for micro-autonomous systems

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil

    2012-06-01

    We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.

  19. Design of micro bending deformer for optical fiber weight sensor

    NASA Astrophysics Data System (ADS)

    Ula, R. K.; Hanto, D.; Waluyo, T. B.; Adinanta, H.; Widiyatmoko, B.

    2017-04-01

    The road damage due to excessive load is one of the causes of accidents on the road. A device to measure weight of the passing vehicles needs to be planted in the road structure. Thus, a weight sensor for the passing vehicles is required. In this study, we designed a weight sensor for a static load based on a power loss due to a micro bending on the optical fiber flanked on a board. The following main components are used i.e. LED 1310 nm as a light source, a multimode fiber optic as a transmission media and a power meter for measuring power loss. This works focuses on obtaining a suitable deformer design for weight sensor. Experimental results show that deformer design with 1.5 mm single side has level of accuracy as 4.32% while the design with 1.5 mm double side has level of accuracy as 98.77%. Increasing deformer length to 2.5 mm gives 71.18% level of accuracy for single side, and 76.94% level of accuracy for double side. Micro bending design with 1.5 mm double side has a high sensitivity and it is also capable of measuring load up to 100 kg. The sensor designed has been tested for measuring the weight of motor cycle, and it can be upgraded for measuring heavy vehicles.

  20. Micro-position sensor using faraday effect

    DOEpatents

    McElfresh, Michael; Lucas, Matthew; Silveira, Joseph P.; Groves, Scott E.

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  1. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    PubMed Central

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  2. Micro-lens maker equation of a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yang

    2007-09-01

    The demand of a large resolution CMOS image sensor (CIS) in a small package drives the pixel pitch size down to the neighborhood of 2 μm. Double-micro-lens (ML) structure is a promising technology to obtain the high focusing capability required by such a small pixel. In this work, an optical model of a double-ML is derived from the well-known lens maker equation. This model predicts the critical back focal length (BFL) and the effective focal length (EFL) of the double-ML embedded in the Back-End-Of-The-Line (BEOL) stack. Explained by this model, a design guideline is provided to optimize the amount of light collected by the photo diode area for a good quantum efficiency (QE), which is crucial to the sensitivity of the sensor.

  3. Miniature refractive index fiber sensor based on silica micro-tube and Au micro-sphere

    NASA Astrophysics Data System (ADS)

    Lv, Riqing; Li, Jin; Hu, Haifeng; Yao, Chengbao

    2017-10-01

    We demonstrated the refractive index sensing characteristics of a miniature fiber sensor composited by silica-hollow-tube (SHT) and Au-micro-sphere (AmS). The high sensitivity is obtained due to the evanescent field effect existing in the SHT with the inner diameter of ∼2.3 μm and the surface plasmon resonance effect excited on the surface of AmS with the diameter of ∼2 μm. Experimental results indicate that this sensor can continuously measure the glucose concentration in range of 0-60% with a good linearity. The high detection sensitivity up to 8.33 μmol/L (47.33 mW/RIU) enables its ability in determining the glucose concentration in either blood or body fluids. Furthermore, the tiny structure is promise to be integrated into the microchip or other injectable structures, and monitor the glucose concentration in real-time.

  4. Hydrostatic pressure sensor based on micro-cavities developed by the catastrophic fuse effect

    NASA Astrophysics Data System (ADS)

    Domingues, M. F.; Paixão, T.; Mesquita, E.; Alberto, N.; Antunes, P.; Varum, H.; André, P. S.

    2015-09-01

    In this work, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented. These micro structures were generated by the recycling of optical fiber previously damaged by the fiber fuse effect, resulting in a cost effective solution when compared with the traditional methods used to produce similar micro-cavities. The developed sensor was tested for pressures ranging from 20.0 to 190.0 cmH2O and a sensitivity of 53.7 +/- 2.6 pm/cmH2O for hydrostatic pressures below to 100 cmH2O was achieved.

  5. Structure of catalase determined by MicroED.

    PubMed

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-10-10

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination.

  6. Structure of catalase determined by MicroED

    PubMed Central

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172

  7. Design of micro-sensor-array detector for toxic gas

    NASA Astrophysics Data System (ADS)

    Liao, Hai-yang; Tian, Peng

    2010-08-01

    To quickly measure the trace concentration of the single component toxic gas (e.g. sarin), a micro-array toxic gas detector is designed. A 3 x 3 gas sensor array with metalloporphyrins as sensitive materials is introduced. A micro-capsule that can be easy to be loaded and unloaded is designed for the gas reaction. A fiber-array optical path is designed, which is based on the principle that gas sensors will show different colors after reaction with the toxic gas. The tricolor information about the concentration of gas is collected by the color liner CCD. A control handling system with C8051F021 MCU as the core is implemented and embedded into the detector to perform the functions of gas sampling, data collection and analysis calculation. Data acquisition experimental results show that the proposed scheme can effectively collect the color information after gas reaction. Moreover, the system has many important advantages, such as small size, compact structure, high degree of automation, fast detection speed and high performance-cost ratio, etc.

  8. Development of GaN-based micro chemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  9. Polymer-based micro flow sensor for dynamical flow measurements in hydraulic systems

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Festa, M.

    2010-06-01

    In this paper we present a micro flow sensor from a polymer for dynamical flow measurements in hydraulic systems. The flow sensor is based on the thermal anemometric principle and consists of two micro-structured housing shells from polysulfone (PSU) which form a small fluidic channel with a cross-section of 580 µm × 400 µm. In between there is a thin polyimide membrane supporting three gold track structures forming an electrical heater and two resistive thermometers which allows the detection of the flow direction, too. The complete sensor is inserted into the hydraulic system, but only a small bypass flow is directed through the fluidic channel by means of a special splitting system. Due to its small heat capacity, the sensor is suitable to detect flow pulsations up to about 1200 Hz which allows the sensor to be used for the condition monitoring or preventive maintenance of hydraulic systems.

  10. Integrated micro ring resonator displacement sensor for scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla

    2004-03-01

    We describe a novel displacement sensor for scanning probe microscopies using an integrated optical micro ring resonator. This device operates by means of monitoring the changes in the transmission spectrum of a high finesse micro ring resonator. Finite element method simulations were carried out to obtain the optimum sensor design and finite difference time domain simulation was used to obtain the transfer characteristics of micro ring resonators. Operation principles and sensitivity calculations are discussed in detail. To achieve high sensitivity, we have studied different types of ring resonator. The highest sensitivity is obtained in a race-track resonator. This new design should provide sensitivities as high as ~10-4 Å-1.

  11. Structural diagnostics using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Surace, Giuseppe; Chiaradia, Agostino

    1997-11-01

    After establishing the basis for assessing the structural implications of introducing a widespread sensor architecture in laminated composite materials in order to precisely identify and locate damage, the paper addresses the problem of structural diagnostics with a discussion of the development of several optical sensors. The research project will first investigate a passive optical fiber impact sensor to be implemented in the matrix of a composite material used in aeronautic and automotive applications. The senor's operating principle is based on the changes in propagation conditions occurring in a fiber subjected to transverse compression: under these circumstances, structural microdistortions produce local energy losses and hence a reduction in the optical power which propagates in the fiber and can be measured at its opposite end. As optical power losses also take place as a result of micro-bending of the optical fiber's longitudinal axis, a preliminary feasibility study will measure power attenuation versus fiber curve radius as the first step in the development of an optical fiber delamination sensor which locates separations between the layers of a composite material, i.e. debonding of sandwich panel core faces. Finally, an active impact sensor will be developed which uses optical fiber's sensitivity to pressure changes to detect the pressure gradient caused by an approaching vehicle or obstacle. The automotive industry will be able to make strategic use of these sensors, for example by installing them on vehicle sides to active the side airbag in the event of impact or collision.

  12. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  13. Micro packaged MEMS pressure sensor for intracranial pressure measurement

    NASA Astrophysics Data System (ADS)

    Xiong, Liu; Yan, Yao; Jiahao, Ma; Yanhang, Zhang; Qian, Wang; Zhaohua, Zhang; Tianling, Ren

    2015-06-01

    This paper presents a micro packaged MEMS pressure sensor for intracranial pressure measurement which belongs to BioMEMS. It can be used in lumbar puncture surgery to measure intracranial pressure. Miniaturization is key for lumbar puncture surgery because the sensor must be small enough to allow it be placed in the reagent chamber of the lumbar puncture needle. The size of the sensor is decided by the size of the sensor chip and package. Our sensor chip is based on silicon piezoresistive effect and the size is 400 × 400 μm2. It is much smaller than the reported polymer intracranial pressure sensors such as liquid crystal polymer sensors. In terms of package, the traditional dual in-line package obviously could not match the size need, the minimal size of recently reported MEMS-based intracranial pressure sensors after packaging is 10 × 10 mm2. In this work, we are the first to introduce a quad flat no-lead package as the package form of piezoresistive intracranial pressure sensors, the whole size of the sensor is minimized to only 3 × 3 mm2. Considering the liquid measurement environment, the sensor is gummed and waterproof performance is tested; the sensitivity of the sensor is 0.9 × 10-2 mV/kPa. Project supported by the National Natural Science Foundation of China (Nos. 61025021, 61434001), and the ‘Thousands Talents’ Program for Pioneer Researchers and Its Innovation Team, China.

  14. Implementation of a Universal Micro-Sensor Interface Chip

    DTIC Science & Technology

    2002-01-01

    1.1, Overview of a smart sensing system...………………….…………………..3 Figure 2.1, : Fieldbus sensor module structure and usage...……………………………6 Figure 2.2...Microcontroller FieldBus Interface FieldBus Sensor Module Sensor Transducer Microcontroller FieldBus Interface Sensor Module ServerAmplifier . Amplifier...Figure 2.1: Fieldbus sensor module structure and usage[3]. Most of sensors on the market only communicate through basic point-to-point usage

  15. Batch patterning micro circuits and sensors with excimer laser machine

    NASA Astrophysics Data System (ADS)

    Yang, Ren; Pyka, Ralph; Kramer, Dennis; Mata, John; Souter, Matt; Thompson, Steven

    2008-02-01

    This paper will present the direct photo patterning of micro circuits and sensors with a XeCl excimer laser photo ablation system. The working principle and the ablation equipment for photo ablation of conductive thin film on polymer are described. Both large sheets and reel-to-reel webs can be ablated on this excimer laser photo ablation system. The ablation strategies and alignment strategies for the micro circuits and sensors are introduced. The test results show ablation results with high resolution, high throughput, high yield and cost-efficiency. This clearly shows that excimer laser photo ablation of the conductive materials on polymer substrates is a good choice for industrial mass product fabrication of low priced, disposable micro circuit and sensor devices.

  16. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  17. Sensor technology for smart structures

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.; Dehart, D. W.; Doederlein, T.

    1989-01-01

    Advanced aerospace structures are discussed that will very likely be fabricated with integral sensors, actuators, and microprocessors for monitoring and dynamic control of configuration. The concept of 'smart structures' integrates fiber-optic sensor technology with advanced composite materials, whereby the optical fibers are embedded in a composite material and provide internal sensing capability for monitoring parameters which are important for the safety, performance, and reliability of the material and the structure. Along with other research facilities, NASA has initiated a cooperative program to design, fabricate, and test composite trusses, tubes, and flat panels with embedded optical fibers for testing and developing prototype smart structures. It is shown that fiber-optic sensor technology can be combined with advanced material and structure concepts to produce a new class of materials with internal sensors for health monitoring of structures.

  18. Sensor technology for smart structures

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.; Dehart, D. W.; Doederlein, T.

    1989-01-01

    Advanced aerospace structures are discussed that will very likely be fabricated with integral sensors, actuators, and microprocessors for monitoring and dynamic control of configuration. The concept of 'smart structures' integrates fiber-optic sensor technology with advanced composite materials, whereby the optical fibers are embedded in a composite material and provide internal sensing capability for monitoring parameters which are important for the safety, performance, and reliability of the material and the structure. Along with other research facilities, NASA has initiated a cooperative program to design, fabricate, and test composite trusses, tubes, and flat panels with embedded optical fibers for testing and developing prototype smart structures. It is shown that fiber-optic sensor technology can be combined with advanced material and structure concepts to produce a new class of materials with internal sensors for health monitoring of structures.

  19. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.

    PubMed

    Guo, Shaojun; Wang, Erkang

    2011-07-19

    In order to develop new, high technology devices for a variety of applications, researchers would like to better control the structure and function of micro/nanomaterials through an understanding of the role of size, shape, architecture, composition, hybridization, molecular engineering, assembly, and microstructure. However, researchers continue to face great challenges in the construction of well-defined micro/nanomaterials with diverse morphologies. At the same time, the research interface where micro/nanomaterials meet electrochemistry, analytical chemistry, biomedicine, and other fields provides rich opportunities to reveal new chemical, physical, and biological properties of micro/nanomaterials and to uncover many new functions and applications of these materials. In this Account, we describe our recent progress in the construction of novel inorganic and polymer nanostructures formed through different simple strategies. Our synthetic strategies include wet-chemical and electrochemical methods for the controlled production of inorganic and polymer nanomaterials with well-defined morphologies. These methods are both facile and reliable, allowing us to produce high-quality micro/nanostructures, such as nanoplates, micro/nanoflowers, monodisperse micro/nanoparticles, nanowires, nanobelts, and polyhedron and even diverse hybrid structures. We implemented a series of approaches to address the challenges in the preparation of new functional micro/nanomaterials for a variety of important applications This Account also highlights new or enhanced applications of certain micro/nanomaterials in sensing applications. We singled out analytical techniques that take advantage of particular properties of micro/nanomaterials. Then by rationally tailoring experimental parameters, we readily and selectively obtained different types of micro/nanomaterials with novel morphologies with high performance in applications such as electrochemical sensors, electrochemiluminescent sensors

  20. Micro-Miniature Roll Rate Sensor

    DTIC Science & Technology

    1989-11-17

    through a photoelastic sensing element due to forces caused by centripetal acceleration associated with rotation. This work was sponsored by the U.S...averaging outputs from two opposing sensors will allow the non-rotation induced radial force components to cancel . Computer Programs Several computer...Sensor Program" developed an optical centri- petal accelerometer that can be tailored to work over a wide range of accelerations. A rate sensing device was

  1. A Micro Pressure Sensor with SU-8 Polymer

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Yin, Yonghua; Zheng, Xiaohu

    This paper investigated novel wireless RF pressure sensor fabricated with SU-8 polymer. To achieve highly simplified fabrication processes and designs for high-reliable operation, a passive wireless sensors were researched. SU-8 polymer-based micro pressure sensor was fabricated by micro-electro-mechenical system (MEMS) based batch process. The sensor consists of an inductor (L) interconnected with pressure-variable capacitor (C) to form a LC resonant circuit. Fabricated devices measure 4 × 3 mm2 in size and houses 9 turns of Cu electro-plated 100 nH coil. In this system, RF signal was transmitted from external antenna to the fabricated LC resonator. By detecting this abrupt resonant frequency shift of the fabricated device, the pressure change of the device can be measured by wireless method.

  2. Structure factor in chemical sensorics

    SciTech Connect

    Gutman, E.E.; Belysheva, T.V.; Ryabtsev, S.V.; Chibirova, F.H.

    1996-12-31

    Additions of metals and metal oxides to semiconductor metal oxide films improve usually their gas sensitive sensor properties namely for detection of toxic and flammable gases. The aim of this work is the obtaining of new data and the elucidation of the role of the structure and the chemical nature of promoters in semiconductor gas sensorics. As examples, the authors consider the systems CO-SnO{sub 2} and O{sub 3}-In{sub 2}O{sub 3} sensors. The elaboration of mentioned sensors is aimed at the measurement of small gas constituent in Earth`s and Marth`s atmospheres.

  3. A Novel Micro-cantilever Based Angular Speed Sensor Controlled Piezoelectrically and Tuned by Electrostatic Actuators

    NASA Astrophysics Data System (ADS)

    Shah-Mohammadi-Azar, A.; Shabani, R.; Rezazadeh, G.

    2015-11-01

    In this paper a novel sensor is proposed to measure rotational shafts speed. The sensor is composed of a micro-cantilever, with a piezoelectric actuator layer on the upper surface and a sensor layer on the lower surface. The sensor is attached to the shaft while the deflection of the micro-cantilever, due to centrifugal force of the rotating shaft, is actively controlled. Therefore the sensor deflection is suppressed and the controller output or the piezoelectric actuating voltage is employed to measure the angular speed of the shaft (Force balance technique). The micro-cantilever is symmetrically located between two electrodes giving it a wider operating range and also increasing its sensitivity. Imposing different electrostatic bias voltages alters the equivalent stiffness of the structure and consequently affects the micro-beam deflections and the controller outputs. Simulation results reveal that for lower velocities the resolution increases by increasing the bias voltages. It is shown that decreasing the micro-beam length increases the measurable velocity range and conversely decreasing the electrodes gap decreases the maximum measurable speed.

  4. Parametric excitation of a micro Coriolis mass flow sensor

    NASA Astrophysics Data System (ADS)

    Droogendijk, H.; Groenesteijn, J.; Haneveld, J.; Sanders, R. G. P.; Wiegerink, R. J.; Lammerink, T. S. J.; Lötters, J. C.; Krijnen, G. J. M.

    2012-11-01

    We demonstrate that a micro Coriolis mass flow sensor can be excited in its torsional movement by applying parametric excitation. Using AC-bias voltages for periodic electrostatic spring softening, the flow-filled tube exhibits a steady vibration at suitable voltage settings. Measurements show that the sensor for this type of excitation can be used to measure water flow rates within a range of 0 ± 500 μl/h with an accuracy of 1% full scale error.

  5. Micro-displacement fiber sensor using two-frequency interferometry

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.

    1991-01-01

    A He-Ne Zeeman laser has been utilized as a two-frequency light source in a Michelson-type micro-displacement fiber sensor. A polarization maintaining fiber has been installed in the sensing arm, which facilitates flexibility and allows the sensing region to be remotely located. This fiber sensing arm is arranged to replace a quarterwave plate component. The fiber sensor system has a resolution of half a micrometer.

  6. Polymer-based micro-array sensors

    NASA Astrophysics Data System (ADS)

    Sharpe, Ruben B. A.; Rensing, Peter A.; van Heck, Gert T.; Allard, Bart A. M.; Koetse, Marc M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; de Zwart, René M.; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-09-01

    The introduction in the market of ubiquitous sensing applications relies heavily on the availability of affordable sensors. Key in the cost of a sensor is its modus of manufacture. In this paper a sensing scheme is presented, in which the signal transduction is based on an induced change in the optical path between an organic light emitting diode (OLED) and an organic photovoltaic (OPV) array. Using this platform, several aspects of cost efficient manufacturing technology are investigated. These aspects include the intrinsic printability of the active (OLED, responsive coating and OPV) components, which allows control of the local sensor functionality and sensitivity. It offers a large amount of freedom in sensor layout, while using relatively few process steps. Also investigated is the ability to realize the active devices on foil, which enables high throughput processing (e.g. in a reel-to-reel scheme). Moreover, the presented generic sensing scheme is of a modular design. It allows easy switching of the sensor functionality mostly by simply changing the transduction module. Since this does not affect the production parameters of the other components, these may be standardized, thus invoking favorable economies of scale.

  7. Analysis of Mach-Zehnder interferometric micro-opto-electro-mechanical (MOEM) pressure sensor

    NASA Astrophysics Data System (ADS)

    Srinivas, Talabuttala; Pattnaik, Prasant K.; Narayana, T. Badri; Selvarajan, Ananth

    1999-11-01

    Combination of Integrated Optics and micro-machining technologies offer immense potential for sensor applications. Small mechanical deformations can often produce considerable changes in optical properties of devices resulting in drastically improved sensitivities. Here we prose and analyze a novel pressure sensor consisting of integrated optic Mach-Zehnder interferometer whose sensing arm is fabricated on a silicon micro-machined diaphragm. The analysis consists of determining the changes in optical output corresponding to the diaphragm deflections due to impressed pressure. Dynamical equations of motion are solved and resulting displacement fields are related to refractive index and optical path length changes of the Mach-Zehnder interferometer. Results can be used to obtain the change in sensitivity due to change sin path length and refractive index variations. The analysis can easily be applied to other MOEM sensor devices like those consisting of micro-machined vibrating cantilevers and bridges controlling optical waveguides, directional couplers or multi-mode-multi-waveguide structures.

  8. Micro-sensors for in-situ meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.

    1993-01-01

    Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.

  9. Method of Forming Micro-Sensor Thin-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)

    2000-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro- sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  10. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  11. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  12. Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Chang, Chi-Chung; Lo, Yi-Man

    2010-01-01

    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100–300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection. PMID:22163494

  13. Carbon nanotubes on polymer-based pressure micro-sensor for manometric catheters

    NASA Astrophysics Data System (ADS)

    Teng, M. F.; Hariz, A.; Hsu, H. Y.; Omari, T.

    2008-12-01

    In this paper we investigate the fabrication process of a novel polymer based pressure micro-sensor for use in manometric measurements in medical diagnostics. Review and analysis of polymer materials properties and polymer based sensors has been carried out and has been reported by us elsewhere [1]. The interest in developing a novel polymer based flexible pressure micro-sensor was motivated by the numerous problems inherent in the currently available manometric catheters used in the hospitals. The most critical issue regarding existing catheters was the running and maintenance costs [2]. Thus expensive operation costs lead to reuse of the catheters, which increase the risk for disease transmission. The novel flexible polymer based pressure micro-sensor was build using SU-8, which is a special kind of negative photoresist. Single-walled carbon nanotubes (SWCNTs) and aluminum are used as the sensing material and contacting electrodes respectively. The pressure sensor diaphragm was first patterned on top of an oxidized silicon wafer using SU-8, followed by aluminum deposition to define the electrodes. The carbon nanotube is then deposited using dielectrophoresis (DEP) process. Once the carbon nanotubes are aligned in between these electrodes, the remaining of the sensor structure is formed using SU-8. Patterning of SU-8 and release from the substrate make the device ready for further testing of sensing ability. This research not only investigates the use of polymeric materials to build pressure sensors, but also explores the feasibility of full utilization of polymeric materials to replace conventional silicon materials in micro-sensors fabrication for use in medical environments. The completed sensor is expected to form an integral part of a large versatile sensing system. For example, the biocompatible artificial skin, is predicted to be capable of sensing force, pressure, temperature, and humidity, and may be used in such applications as medical and robotic system.

  14. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  15. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  16. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  17. Innovative smart micro sensors for Army weaponry applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene

    2008-03-01

    Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.

  18. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    NASA Astrophysics Data System (ADS)

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  19. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.

    PubMed

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-16

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  20. A novel air flow sensor from printed PEDOT micro-hairs

    NASA Astrophysics Data System (ADS)

    Parcell, J.; Aydemir, N.; Devaraj, H.; Travas-Sejdic, J.; Williams, D. E.; Aw, K. C.

    2013-11-01

    We report the creation of a low flow rate sensor from PEDOT micro-hairs. The hairs are printed as pipette-defined depositions using a nanopositioning system. The printing technique was developed for fabricating structures in 2D and 3D. Here micro-hairs with diameters of 4.4 μm were repeatedly extruded with constant heights. These hairs were then applied to produce a prototype flow rate sensor, which was shown to detect flows of 3.5 l min-1. Structural analysis was performed to demonstrate that the design can be modified to potentially observe flows as low as 0.5 l min-1. The results are extended to propose a practical digital flow rate sensor.

  1. Nichrome micro-heaters as actuators for microfluidic sensors

    NASA Astrophysics Data System (ADS)

    Geca, M.; Lizak, T.; Kociubiński, A.; Borecki, M.; Korwin-Pawlowski, M. L.

    2016-09-01

    MEMS actuators are currently widely used in the industry. Micro-heaters, being a prime example, attracted much attention in recent years due to their good operating parameters and low cost fabrication process. This paper focuses on a design and development of a micro-heater to be used as an actuator in a multiparametric capillary sensor. The micro-heater is an evolution of a previous design and uses a 200nm-thick thin film of 80/20 NiCr alloy as a heating layer. The paper presents results of fabrication and testing of the micro-heater, including temperature distribution and resistance changes during the heating cycle. Additionally, is presented a PWM based control system providing the stability of power and temperature distribution.

  2. CP-OCT sensor guided SMART micro-forceps

    NASA Astrophysics Data System (ADS)

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2014-02-01

    Even the most stable hands have unintended movements on the order of 50-100 microns within 0-15 Hz. Micro-forceps are one of the frequently used microsurgical tools used to grasp thin layers of tissue during microsurgery. Here, a handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps is developed by integrating a fiber-optic common-path optical coherence tomography (CP-OCT) sensor into the micro-forceps. This forceps design could significantly improve performance by canceling unwanted hand tremor during the moment of a grasping. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model.

  3. Micro-Vibration-Based Slip Detection in Tactile Force Sensors

    PubMed Central

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S.; Becedas, Jonathan

    2014-01-01

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor. PMID:24394598

  4. Fiber-tip bubble-structure microcavity sensor

    NASA Astrophysics Data System (ADS)

    Chen, D.; Luo, S.; Ma, X.; Jiang, X.; Feng, G.; Yang, J.

    2014-11-01

    A Fabry-Perot interferometer sensor based on a fiber-tip bubble-structure micro-cavity is proposed, fabricated, and demonstrated for hydrostatic pressure sensing and transverse load sensing. A segment of a well-cleaved multimode fiber with a core diameter of 62.5μm is processed with chemical etching based on a solution of HF 40% and the bubblestructure micro-cavity is fabricated by using arc discharge at the end of the processed multimode fiber. The sensor can be considered as a two-beam Fabry-Perot interferometer with one beam from the silica-air interface on the left side of the bubble and the other from the air-silica interface on the right side of the bubble. The broadband light is injected into the fiber-tip bubble-structure micro-cavity by splicing the multimode fiber with the bubble-structure micro-cavity to a 3- dB optical coupler and the reflective spectrum of the bubble-structure micro-cavity is measured by an optical spectrum analyzer. Both hydrostatic pressure sensing with a sensitivity of ~0.1 nm/MPa and transverse load sensing with sensitivity of 3.64 nm/N are experimentally demonstrated based the proposed fiber-tip bubble-structure micro-cavity sensor. The proposed sensor is demonstrated with a relative low temperature sensitivity of about 2 pm/°C. Properties of the fiber-tip bubble-structure micro-cavitys with different sizes are investigated. The sensor has the advantages of lowcost, ease of fabrication and compact size, which make it a promising candidate for hydrostatic pressure sensing or transverse load sensing in harsh environments.

  5. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    NASA Astrophysics Data System (ADS)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  6. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  7. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor.

    PubMed

    Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde

    2013-01-01

    The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.

  8. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  9. The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow

    PubMed Central

    Große, Sebastian; Schröder, Wolfgang

    2009-01-01

    Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research. In this article, characteristics of the Micro-Pillar Shear-Stress Sensor MPS3, which has been shown to offer the potential to measure the two-directional dynamic wall-shear stress distribution in turbulent flows, will be summarized. After a brief general description of the sensor concept, material characteristics, possible sensor-structure related error sources, various sensitivity and distinct sensor performance aspects will be addressed. Especially, pressure-sensitivity related aspects will be discussed. This discussion will serve as ‘design rules’ for possible new fields of applications of the sensor technology. PMID:22574010

  10. Fiber optic micro sensor for the measurement of tendon forces.

    PubMed

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  11. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  12. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  13. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  14. Design and fabrication of micro silica sphere cavity force sensor based on hybrid Fabry Perot interferometer

    NASA Astrophysics Data System (ADS)

    Ranjbar-Naeini, O. R.; Jafari, F.; Zarafshani, P.; Zibaii, M. I.; Latifi, H.

    2017-06-01

    Measurement of small force in biological applications could be helpful especially in the field of diagnostic and prognostic procedure. For this purpose, a Hybrid Fabry Perot fiber optic Micro Cavity is proposed based on Micro Silica Sphere Cavity integrated on the capillary tube, and is bound to the single mode fiber with PDMS layer. Since PDMS acts as an elastic material, under small loads the cavity length was affected. To study this mechanical behavior, the sensor structure was simulated with Finite element method. The force measurement was studied experimentally with analyzing wavelength shifts of sensor. Consequently, the force sensitivity was equal to -3pm/mN. The force resolution of our sensor was equal to 340 μN in the range of 0 to 950 mN.

  15. A novel micro-magnetic sensor based on GMI effect

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Pan, Zhongming; Zhou, Han; Wang, Enlong

    2017-05-01

    In the field of military applications, long-distance military target detection requires magnetic sensors a higher sensitivity and overall performance. To this end, this paper intends to develop a new high-resolution GMI magnetic sensor. The sensor adopts the constant bias magnetic field feedback control system, and the circuit structure is optimized. It can effectively suppress the noise and reduce the noise density of the output noise, improve the sensitivity and stability of the magnetic sensor, and achieve the purpose of detecting the change of the weak magnetic field.

  16. Analysis of the reflection of a micro drop fiber sensor

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo

    2005-01-01

    Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.

  17. Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser.

    PubMed

    Bravo, Mikel; Fernández-Vallejo, Montserrat; Echapare, Mikel; López-Amo, Manuel; Kobelke, J; Schuster, K

    2013-02-11

    This work experimentally demonstrates a long-range optical fiber sensing network for the multiplexing of fiber sensors based on photonic crystal fibers. Specifically, six photonic crystal fiber sensors which are based on a Sagnac interferometer that includes a suspended-core fiber have been used. These sensors offer a high sensitivity for micro-displacement measurements. The fiber sensor network presents a ladder structure and its operation mode is based on a fiber ring laser which combines Raman and Erbium doped fiber amplification. Thus, we show the first demonstration of photonic crystal fiber sensors for remote measurement applications up to 75 km.

  18. In2O3-based micro gas sensor for detecting NO x gases

    NASA Astrophysics Data System (ADS)

    Kim, Bum-Joon; Song, In-Gyu; Kim, Jung-Sik

    2014-03-01

    In this study, NO x micro gas sensors for monitoring the indoor atmosphere of automobile were fabricated using MEMS (microelectromechanical system) technology and a sol-gel process. The sensing electrode and micro heater were designed to have a co-planar typed structure in a Pt thin film layer. The thermal characteristics of a micro heater array were analyzed using a finite element method (FEM). The chip size of the gas sensor was approximately 2 mm × 2 mm. Indium oxide as a sensing material for NO x gas was synthesized by a sol-gel process with indium isopropoxide as a precursor. Field emission Scanning electron microscopy and x-ray diffraction showed that particle size of the synthesized In2O3 was approximately 17-45 nm. The maximum gas sensitivity as the relative resistance ( R s = R gas / R air ) was observed at 275°C with a value of 8.0 at 1 ppm NO2 gas. The response (80% saturation) and recovery times were within 1 min. The sensing properties of NO2 gas exhibited linear behavior with increasing gas concentration. The sensing mechanism of the gas sensor was explained by the variations in the electron depletion layers and the adsorption of gas molecules on the In2O3 particle surface. These results suggest that in the future, MEMS-based gas sensors can be used as automotive-exhaust-gas sensors.

  19. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  20. A Micro-Thermal Sensor for Focal Therapy Applications

    PubMed Central

    Natesan, Harishankar; Hodges, Wyatt; Choi, Jeunghwan; Lubner, Sean; Dames, Chris; Bischof, John

    2016-01-01

    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω” technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω” sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω” sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters). PMID:26916460

  1. A Micro-Thermal Sensor for Focal Therapy Applications

    NASA Astrophysics Data System (ADS)

    Natesan, Harishankar; Hodges, Wyatt; Choi, Jeunghwan; Lubner, Sean; Dames, Chris; Bischof, John

    2016-02-01

    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω” technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω” sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω” sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters).

  2. Micro-electromechanical sensors in the analytical field.

    PubMed

    Zougagh, Mohammed; Ríos, Angel

    2009-07-01

    Micro- and nano-electromechanical systems (MEMS and NEMS) for use as sensors represent one of the most exciting new fields in analytical chemistry today. These systems are advantageous over currently available non-miniaturized sensors, such as quartz crystal microbalances, thickness shear mode resonators, and flexural plate wave oscillators, because of their high sensitivity, low cost and easy integration into automated systems. In this article, we present and discuss the evolution in the use of MEMS and NEMS, which are basically cantilever-type sensors, as good analytical tools for a wide variety of applications. We discuss the analytical features and the practical potential of micro(nano)-cantilever sensors, which combine the synergetic advantages of selectivity, provided by their functionalization, and the high sensitivity, which is attributed largely to the extremely small size of the sensing element. An insight is given into the different types of functionalization and detection strategies and a critical discussion is presented on the existing state of the art concerning the applications reported for mechanical microsensors. New developments and the possibilities for routine work in the near future are also covered.

  3. Functionalized Nano and Micro Structured Composite Coatings

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TR-2011-0069 FUNCTIONALIZED NANO AND MICRO STRUCTURED COMPOSITE COATINGS (FINAL REPORT) Igor Luzinov and Konstantin Kornev...Technical Report 21-MAY-2009 -- 31-MAY-2011 Functional Polymeric Materials - from Research Labs to Field Applications: Functionalized Nano and Micro ...work was to conduct research on development of effective nano and micro structured composite coatings capable to collect and decontaminate the

  4. Torque sensor having a spoked sensor element support structure

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor)

    1990-01-01

    Piezoelectric sensor devices are attached across pairs of circularly arranged spokes arrayed on the periphery of an annular ring. The sensor devices each include a preloaded steel ball mounting arrangement for mounting a piezoelectric sensor element. A first circular interface plate on one side of the sensor structure attaches to alternate one of the spokes, and a circular interface plate on the opposite side of the same diameter as the first interface plate attaches to the remaining spokes.

  5. Semi-physical simulation test for micro CMOS star sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun

    2008-03-01

    A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.

  6. Geometry optimization for micro-pressure sensor considering dynamic interference

    SciTech Connect

    Yu, Zhongliang; Zhao, Yulong Li, Lili; Tian, Bian; Li, Cun

    2014-09-15

    Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz{sup 1/4}. The favorable overall performances enable the sensor more suitable for altimetry.

  7. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively. PMID:22294897

  8. Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip.

    PubMed

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively.

  9. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  10. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  11. Study on the micro-heater geometry in In,2O3 micro electro mechanical systems gas sensor platforms and effects on NO2 gas detecting performances.

    PubMed

    Choi, Woo-Seok; Kim, Bum-Joon; Lee, Hoi-Jung; Choi, Jung-Woon; Kim, Si-Dong; Min, Nam-Ki

    2012-02-01

    Micro electro mechanical systems (MEMS) platforms for gas sensing devices with the co-planar type micro-heaters were designed, fabricated and its effects on the In2O3 gas sensors were investigated. Micro-heaters in MEMS gas sensor platforms were designed in the four-type heater patterns with different geometries. Electro-thermal characterizations showed that the designed platforms had highly thermal efficiency because the micro hot-plate structures were formed in the diaphragm and the thermal efficiencies were analyzed for all of 16 models and compared with each other, respectively. The designed micro-platforms were fabricated by MEMS process, and Indium oxide (In2O3) nanoparticles were synthesized by sol-gel process and dropped on the MEMS platforms for detecting the noxious oxide gas (NO2) Fabricated micro-platforms had a very low power consumption in the fabricated 16-type models, especially, the minimum power consumption was 41 mW at the operating temperature of 250 degrees C. After experiments on gas sensing characteristics to NO2 gases, fabricated In2O3 gas sensors had almost the same gas sensitivity (Rs) at the operation temperature of 250 degrees C. It is concluded that the micro-heater geometries, pattern shapes and sizes, can be influential on the power consumption of the devices and its gas sensing characteristics.

  12. Applications of Micro/Nanoparticles in Microfluidic Sensors: A Review

    PubMed Central

    Jiang, Yusheng; Wang, Hui; Li, Shunbo; Wen, Weijia

    2014-01-01

    This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles—electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics. PMID:24755517

  13. Applications of micro/nanoparticles in microfluidic sensors: a review.

    PubMed

    Jiang, Yusheng; Wang, Hui; Li, Shunbo; Wen, Weijia

    2014-04-21

    This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles--electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics.

  14. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  15. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.

    PubMed

    Shen, C H; Gau, C

    2004-07-30

    The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process.

  16. MicroSensors Systems: detection of a dismounted threat

    NASA Astrophysics Data System (ADS)

    Shimazu, Ron N.; Berglund, Victor P.; Falkofske, Dwight M.; Krantz, Brian S.

    2004-11-01

    The MicroSensors Systems (MSS) Program is developing a layered sensor network to detect dismounted threats approaching high value assets. The MSS subsystem elements include sensitive receivers (capable of detecting<<1 Watt emissions in dense signal or degraded signal environments) and low power, miniature, disposable sensors (acoustic, magnetic, and infrared). A novel network protocol has been developed to reduce the network traffic resulting in conservation of system power and lower probability of detection and interception. The MSS program will provide unprecedented levels of real-time battlefield information, greatly enhancing combat situational awareness when integrated with the existing Command, Control, and Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020. The program has established two Centers of Excellence for Sensor Technology each of which is capable of designing and building next generation, networked microsensor systems. The Defense Microelectronics Activity has teamed with the Centers of Excellence and industry to preserve long-term Department of Defense access to key next generation manufacturing technologies.

  17. Development of Magnetically Excited Flexural Plate Wave Devices for Implementation as Physical, Chemical, and Acoustic Sensors, and as Integrated Micro-Pumps for Sensored Systems

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.; Mitchell, M. A.; Graf, D. C.; Shul, R. J.

    2002-05-01

    The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configured to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.

  18. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon

    NASA Astrophysics Data System (ADS)

    Goossens, Sidney; Geernaert, Thomas; De Pauw, Ben; Lamberti, Alfredo; Vanlanduit, Steve; Luyckx, Geert; Chiesura, Gabriele; Thienpont, Hugo; Berghmans, Francis

    2017-04-01

    Composite materials are increasingly used in aerospace applications, owing to their high strength-to-mass ratio. Such materials are nevertheless vulnerable to impact damage. It is therefore important to investigate the effects of impacts on composites. Here we embed specialty microstructured optical fiber Bragg grating based sensors inside a carbon fiber reinforced polymer, providing access to the 3D strain evolution within the composite during impact. We measured a maximum strain of -655 μɛ along the direction of impact, and substantially lower values in the two in-plane directions. Such in-situ characterization can trigger insight in the development of impact damage in composites.

  19. Microstructured optical fiber-based micro-cavity sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Ahn, Jin-Chul; Chung, Phil-Sang; Chung, Youngjoo

    2014-02-01

    The studies on microstructured optical fibers (MOF) have drawn considerable interest and played an important role in many applications. MOFs provide unique optical properties and controllable modal properties because of their flexibilities on manipulation of the transmission spectrum and the waveguide dispersion properties. MOFs are especially useful for optical sensing applications because the micro-structured air channels in MOF can host various types of analytes such as liquids, gases, and chemical molecules. Recently, many studies have focused on the development of MOF-based optical sensors for various gases and chemical molecules. We propose a compact, and highly sensitive optical micro-cavity chemical sensor using microstructured fiber. The sensor probe is composed of a hollow optical fiber and end cleaved microstructured fiber with a solid core. The interference spectrum resulting from the reflected light at the silica and air interfaces changes when the micro-cavity is infiltrated with external chemical molecules. This structure enables the direct detection of chemical molecules such as volatile organic compounds (VOCs) without the introduction of any permeable material.

  20. Laser structured fibre Bragg gratings as enhanced force sensors

    NASA Astrophysics Data System (ADS)

    Marchi, G.; Stephan, V.; Huber, H.; Roths, J.

    2015-09-01

    The production and characterisation of a micro-structured FBG force sensor is described. Employing femtosecond laser micro machinery a circumferential ditch of about 30 μm depth and 40 μm width is engraved in the clad of an optical fibre at the centre of a 3 mm long type I fibre Bragg grating (FBG). The purpose of the structure is the enhancement of the force sensitivity characteristics for the measurement of sub-mN forces. Phase-shift spectra occur when axial stress is applied to the fibre. Exploiting this phenomenon experimental tests show a 10% improvement in the sensitivity performance when compared to an unstructured FBG.

  1. An asynchronous multi-sensor micro control unit for wireless body sensor networks (WBSNs).

    PubMed

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2011-01-01

    In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.

  2. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs)

    PubMed Central

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2011-01-01

    In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs. PMID:22164000

  3. Sensor Fusion of Position- and Micro-Sensors (MEMS) integrated in a Wireless Sensor Network for movement detection in landslide areas

    NASA Astrophysics Data System (ADS)

    Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig

    2010-05-01

    Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement

  4. Micro-machined millimeter wave sensor array for FM radar application

    NASA Astrophysics Data System (ADS)

    Trontelj, Janez; Sešek, Aleksander

    2012-10-01

    The objective of this work was to create a low cost sensor array that operates at room temperature for millimeter wave applications and could be used for FM radars and various heterodyne receivers. The selected technology was silicon wafer micromachining allowing the creation of microstructures on silicon membranes using different metal layers. The technology used allowed submicron dimensions for a photolithography pattern and thin membranes down to a few micrometers. One of the most critical requirements for the sensor was to achieve a high signal-to-noise ratio and a high bandwidth for a mixed frequency. The sensor is a titanium-based micro-bolometer connected to the micro-antenna which is integrated with the bolometer. The results are very promising. The measured NEP is below 5pW/√Hz and the sensitivity is close to 1000 V/W. In the paper the antenna - bolometer sensor microstructure is analyzed. Theoretical analysis and design guidelines for the bolometer itself are discussed. Simulation results of the bolometer and antenna show very close matching to the measured results. Characterization measurements were performed, and thermal behavior of microbolometer structure was simulated and measured. The measurement results are presented for THz FM radar different targets, and a technology demonstrator is also described.

  5. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  6. Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors

    PubMed Central

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20ms, indicating a very high efficiency of pulse driving. PMID:22163756

  7. Batch fabrication of metal oxide sensors on micro-hotplates

    NASA Astrophysics Data System (ADS)

    Barborini, E.; Vinati, S.; Leccardi, M.; Repetto, P.; Bertolini, G.; Rorato, O.; Lorenzelli, L.; Decarli, M.; Guarnieri, V.; Ducati, C.; Milani, P.

    2008-05-01

    We report the parallel fabrication of miniaturized chemical sensors by the direct integration of nanostructured transition metal oxide films onto micro-hotplate platforms based on micromachined suspended membranes. This has been achieved by local deposition on a 10 × 10 membrane wafer of a supersonic cluster beam through a microfabricated auto-aligning silicon shadow mask. The sensing properties of the obtained devices were tested with respect to various gaseous species. For reducing and oxidizing species such as ethanol and NO2, very good performance in terms of linearity and sensitivity was observed. These results demonstrate the feasibility of the coupling of a bottom-up nanofabrication technique such as supersonic cluster beam deposition to a top-down microfabricated platform for a direct and parallel integration methodology of nanomaterials in MEMS.

  8. Autonomous micro and nano sensors for upstream oil and gas

    NASA Astrophysics Data System (ADS)

    Chapman, David; Trybula, Walt

    2015-06-01

    This paper describes the development of autonomous electronic micro and nanoscale sensor systems for very harsh downhole oilfield conditions and provides an overview of the operational requirements necessary to survive and make direct measurements of subsurface conditions. One of several significant developmental challenges is selecting appropriate technologies that are simultaneously miniaturize-able, integrate-able, harsh environment capable, and economically viable. The Advanced Energy Consortium (AEC) is employing a platform approach to developing and testing multi-chip, millimeter and micron-scale systems in a package at elevated temperature and pressure in API brine and oil analogs, with the future goal of miniaturized systems that enable the collection of previously unattainable data. The ultimate goal is to develop subsurface nanosensor systems that can be injected into oil and gas well bores, to gather and record data, providing an unparalleled level of direct reservoir characterization. This paper provides a status update on the research efforts and developmental successes at the AEC.

  9. Further Structural Intelligence for Sensors Cluster Technology in Manufacturing

    PubMed Central

    Mekid, Samir

    2006-01-01

    With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.

  10. Traceable Micro-Force Sensor for Instrumented Indentation Calibration

    SciTech Connect

    Smith, D T; Shaw, G A; Seugling, R M; Xiang, D; Pratt, J R

    2007-04-02

    Instrumented indentation testing (IIT), commonly referred to as nanoindentation when small forces are used, is a popular technique for determining the mechanical properties of small volumes of material. Sample preparation is relatively easy, usually requiring only that a smooth surface of the material to be tested be accessible to a contact probe, and instruments that combine sophisticated automation with straightforward user interfaces are available commercially from several manufacturers. In addition, documentary standards are now becoming available from both the International Standards Organization (ISO 14577) and ASTM International (E28 WK382) that define test methods and standard practices for IIT, and will allow the technique to be used to produce material property data that can be used in product specifications. These standards also define the required level of accuracy of the force data produced by IIT instruments, as well as methods to verify that accuracy. For forces below 10 mN, these requirements can be difficult to meet, particularly for instrument owners who need to verify the performance of their instrument as it is installed at their site. In this paper, we describe the development, performance and application of an SI-traceable force sensor system for potential use in the field calibration of commercial IIT instruments. The force sensor itself, based on an elastically deforming capacitance gauge, is small enough to mount in a commercial instrument as if it were a test specimen, and is used in conjunction with an ultra-high accuracy capacitance bridge. The sensor system is calibrated with NIST-traceable masses over the range 5.0 {micro}N through 5.0 mN. We will present data on its accuracy and precision, as well its potential application to the verification of force in commercial instrumented indentation instruments.

  11. Low-power-Consumption metal oxide NO2 gas sensor based on micro-heater and screen printing technology.

    PubMed

    Moon, S E; Lee, H K; Choi, N J; Lee, J; Yang, W S; Kim, J; Jong, J J; Yoo, D J

    2012-07-01

    An NO2 micro gas sensor was fabricated based on a micro-heater using tin oxide nano-powders for effective gas detection and monitoring system with low power consumption and high sensitivity. The processes of the fabrication were acceptable to the conventional CMOS processes for mass-production. Semiconducting SnO2 nano-powders were synthesized via the co-precipitation method; and to increase the sensitivity of the NO2 gas rare metal dopants were added. In the structure of the micro-heater, the resistances of two semi-circular Pt heaters were connected to the spreader for thermal uniformity. The resistance of each heater becomes an electrically equal Wheatstone-bridge, which was divided in half by the heat spreading structure. Based on the aforementioned design, a low-power-consumption micro-heater was fabricated using the CMOS-compatible MEMS processes. A bridge-type micro-heater based on the Si substrate was fabricated via surface micro-machining. The NO2 sensing properties of a screen-printed tin oxide thick film device were measured The micro gas sensors showed substantial sensitivity down to 0.5 ppm NO2 at a low power consumption (34.2 mW).

  12. Refractometric micro-sensor using a mirrored capillary resonator.

    PubMed

    Morrish, William; West, Peter; Orlando, Nathan; Klantsataya, Elizaveta; Gardner, Kirsty; Lane, Stephen; Decorby, Raymond; François, Alexandre; Meldrum, Alkiviathes

    2016-10-31

    We report on a flow-through optical sensor consisting of a microcapillary with mirrored channels. Illuminating the structure from the side results in a complicated spectral interference pattern due to the different cavities formed between the inner and outer capillary walls. Using a Fourier transform technique to isolate the desired channel modes and measure their resonance shift, we obtain a refractometric detection limit of (6.3 ± 1.1) x 10-6 RIU near a center wavelength of 600 nm. This simple device demonstrates experimental refractometric sensitivities up to (5.6 ± 0.2) x 102 nm/RIU in the visible spectrum, and it is calculated to reach 1540 nm/RIU with a detection limit of 2.3 x 10-6 RIU at a wavelength of 1.55 µm. These values are comparable to or exceed some of the best Fabry-Perot sensors reported to date. Furthermore, the device can function as a gas or liquid sensor or even as a pressure sensor owing to its high refractometric sensitivity and simple operation.

  13. The investigation of liquid analysis method based on fiber micro-drop sensor

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Li, Xiaomei; Zeng, Youmin

    2007-01-01

    A portable and practical fiber micro-drop sensor, with which can determine the refractive index and the concentration of the liquid, has be designed and realized. The advantages of this sensors combines simplicity of structure, facility of operation, wide range of measurement and low price. Liquid drops formed at the tip of a liquid sensing head are measured by a fiber sensor. The fiber sensor works as follows: infrared light source is injected into the drop through an optical fiber and the total internal reflections and absorptions are detected by a photo detector. A drop speed independent one-dimensional waveform, fiber fingerprint drop trace (FFDT), is generated. Liquid surface tension, refractive index and dielectric constant can be estimated from the fingerprint. For the effective use of the sensor, a new on-line method of liquid drop analysis is proposed, which is used for liquid discrimination with the orderliness of the fiber fingerprint drop trace. To compare two fingerprints effectively, signal analysis is required. Comparing fiber fingerprint drop trace, which might cause peaks and valleys in the trace at almost the same wavelet, digital signals process is more intuitionist. Analyzing every part of the fingerprint drop trace with impactful signal analysis method, as Fast Fourier Transform algorithm and correlative analysis, some orderliness can be revealed. Colligating the orderliness, we can discriminate all kinds of liquids or their characteristic parameters, such as liquid concentration, refractive index and so on.

  14. Design and characterization of a silicon piezoresistive three-axial force sensor for micro-flapping wing MAV applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Truong, Van T.; Lua, Kim B.; Kumar, A. S.; Lim, Tee Tai; Yeo, Khoon Seng; Zhou, Guangya

    2015-03-01

    This paper describes the design and electro-mechanical characterizations of a three-axial micro piezoresistive force sensor fabricated by microelectromechanical systems (MEMS) technologies. This is the first three-axial MEMS micro force sensor applied to the study of Micro Aerial Vehicle (MAV) aerodynamics. A standard dry etching fabrication process using Silicon On Insulator (SOI) wafer is employed to fabricate the multi-axis sensors. Conventional cross-beam structure is employed. There are eight piezoresistors on the beams, and each of the silicon strain gauge size is 15 μm in width, and between 400 and 500 μm in length. The Finite Element Method (FEM) analysis for confirming the piezoresistors attachment locations is performed. The miniaturized force sensor (11×11 mm2) is attached at the wing base of a micro flapping wing system (MAV, 70×30 mm2 ) by a short pillar. The sensor is designed to detect the dynamic drag force and lift force generated by a single wing under a moderate flapping frequency (5~10Hz) simultaneously. The characterizations are experimentally investigated. The sensor should be stiff enough to withstand the high inertial force (200 millinewton) and also has high resolution to detect the minimal force correctly. Measurements show that the resolution is on the order of a millinewton. High linearity and low hysteresis under normal forces and tangential forces are demonstrated by applying forces from 0 to 0.1 N. The micro flapping wing mechanism and the assembly of wing and sensor are also discussed in this paper.

  15. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  16. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    PubMed Central

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-01-01

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction. PMID:27983639

  17. 3D printing of nano- and micro-structures

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  18. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-09-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  19. Vacuum isostatic micro molding of reflective micro-optical structures into polytetrafluoroethylene materials

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2008-04-01

    Polytetrafluoroethylene (PTFE) is an ideal material for use in industrial, automotive and consumer electronics. Specifically, PTFE has outstanding physical properties; such as chemical inertness and resistance to chemical corrosion, even when exposed to a strong acid, alkali and oxidants. Its properties provide for superior electrical insulation and thermal stability, which is not affected by wide ranges in temperature and frequency. Its non-absorption of moisture makes it a perfect material for consideration in micro optical, retro-reflector or diffuser type devices used in optical sensor applications in harsh environments as well as in automotive, aerospace, industrial and home lighting. This paper presents an overview of a unique fabrication method that incorporates a variety of technologies to establish a processing technique that can form micro scale diffractive and retro-reflective structures into fused and semi-fused PTFE materials. Example structures and a single design will that was function tested will be presented with comparison metrology of the micro-structure geometry formed on the sample as compared to the original design mandrel geometry.

  20. Development of micro motion sensors based on piezoresistive and thermo-resistive effects in silicon

    NASA Astrophysics Data System (ADS)

    Dao, Dzung V.; Dau, Van T.; Shiozawa, Tatsuo; Kumagai, Hideo; Sugiyama, Susumu

    2006-01-01

    This paper presents our latest results on the designs, fabrication and calibration of two micro accelerometers and a convective based gyroscope, as well as their combination to create a motion sensor for inertial navigation applications. Among the two accelerometers, the first one is a 3-DOF micro accelerometer utilizing piezoresistive effect in single crystal silicon. The sensing structure consists of four sensing-beams surrounding a seismic-mass. Therefore, the sensor is smaller than the cross-beam type accelerometer. The second accelerometer is a dual axis thermal accelerometer, working based on the thermo-resistive effect of silicon thermistors in free convective regime. Since no seismic mass is used, the shock-resistance becomes very high (up to 9.0×10 6g). The novel structure of the thermistors eliminated up to 93% of stress induced by temperature. The dual-axis gas gyroscope proposed here is working based on the thermo-resistive effect of light-doped silicon thermistor and the force convective heat transfer. The sensor configuration consists of a gas pump and a micro thermistor sensing element, packaged in an aluminum case with overall diameter and length of 14mm and 25mm, respectively. Unlike vibrating gyroscopes reported recently in MEMS-field, our gyroscope has "no" seismic mass; therefore it can eliminate the inherent problems such as fragility, low shock-resistance, squeezed-film air-damping, etc. Moreover, since the driving power for the moving mass is not necessary, the power consumption is also reduced. Finally, an algorithm to process the signal from a system consists of a 3-DOF accelerometer and 3-DOF gyroscope is presented. In this algorithm, quaternion based calculation was applied instead of Euler angles, therefore the problems of singularity or complicated trigonometric calculations can be avoided. The algorithm can be applied for inertial navigation systems (INS).

  1. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  2. Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Brodersen, Olaf

    2012-02-01

    Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop

  3. Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Brodersen, Olaf

    2011-09-01

    Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop

  4. Global Environmental Micro Sensors Test Operations in the Natural Environment

    NASA Technical Reports Server (NTRS)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  5. Structural Alignment Sensor Feasibility Demonstration

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Huang, C. C.; Hodor, J. R.

    1978-01-01

    A structural alignment sensor (SAS) was developed for use with large deployable antenna systems for contour measurement and/or active control. The SAS is a laser ranging system using frequency modulation and accurate phase measurement to determine distance. Work was done with a CO2 and HeNe laser. The capability of the SAS to measure antenna rib contours was studied over ranges of 50 meters to a resolution of 100 microns. Initial resolution data was taken with the CO2 system. This data shows that it will indeed meet the SAS requirements. The development of the HeNe system was initiated because it offers substantial improvement in size, weight, and power over the CO2 system. The final demonstration was made with the HeNe system and it too showed that the SAS requirements could be met with this alternate approach. The projection of these results to a conceptual design for a flight system and its application are described.

  6. A highly sensitive Pb(Zr,Ti)O3 thin film ultrasonic micro-sensor with a grooved diaphragm.

    PubMed

    Matsushima, Tomoaki; Xiong, Sibei; Kawada, Hiroshi; Yamanaka, Hiroshi; Muralt, Paul

    2007-12-01

    A highly sensitive piezoelectric ultrasonic micro-sensor with a grooved multilayer membrane was developed by a Si-based MEMS technique. The groove was located at one-quarter of the distance away from the edge of the membrane and opened into piezoelectric layer. The piezoelectric layer Pb(Zr,Ti)O(3) (PZT) was 2.2 microm thick and was prepared by a sol-gel method. The prepared PZT film was pure perovskite and showed a highly (100) textured structure. The sensitivity of the fabricated piezoelectric ultrasonic sensor without the groove structure was 100 microV/Pa. In comparison, the sensitivity of the ultrasonic sensor with the groove structure was about 500 microV/Pa, which is 5 times that without the groove structure. The diaphragm having grooves showed a corrugate-like structure that was formed by residual stress. The high sensitivity of the membrane with the grooved diaphragm is considered to relate to the corrugate-like structure.

  7. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  8. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  9. Sensitivity enhancement of a micro-scale biomimetic tactile sensor with epidermal ridges

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua

    2010-08-01

    A microscale biomimetic tactile sensor with epidermal ridges is proposed to enhance the sensitivity of force detection. Guided by the principles of the human tactile perception mechanism, specifically the epidermal ridges, artificial epidermal ridges made of polydimethylsiloxane (PDMS) were designed and placed on micro-fabricated metal strain gauge arrays. A polyimide layer was fabricated to facilitate attachment between the metal and PDMS, so that patterned copper could be deposited on the polyimide to function as the strain gauges. The aspect ratio of the artificial epidermal ridges was optimized using material stability calculations and finite element method (FEM) simulations, and the optimal structure obtained was 400 µm in width and 110 µm in height. Experiments verified the effectiveness of enhancing the sensitivity of such a tactile sensor with the artificial epidermal ridges, in that the outputs of the strain gauges were 1.8 times more sensitive than those of a tactile sensor without ridges. The proposed artificial epidermal ridges are readily applicable to any developed tactile sensors for performance enhancement.

  10. Ferroelectric thin-film active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  11. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  12. Micro-LiDAR velocity, temperature, density, concentration sensor

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M. (Inventor); Dorrington, Adrian A. (Inventor)

    2010-01-01

    A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.

  13. Design and analysis of photonic crystal micro-cavity based optical sensor platform

    SciTech Connect

    Goyal, Amit Kumar Dutta, Hemant Sankar Pal, Suchandan

    2016-04-13

    In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index of analyte.

  14. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  15. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Kutzner, C.; Kropp, M.; Brokmann, G.; Lang, W.; Steinke, A.; Kienle, A.; Hauptmann, P.

    2010-10-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected.

  16. Optical coherent sensor for monitoring and measurement of engineering structures

    NASA Astrophysics Data System (ADS)

    Łukaszewski, Dariusz; Sałbut, Leszek; Dziuban, Jan A.

    2010-05-01

    Among many coherent optical methods one should distinguished Grating Interferometry (GI) which allows accurate in-plane displacement measurements and Digital Speckle Pattern Interferometry (DSPI) used for in-plane and out-of-plane measurements. Development of sensors based on both methods mentioned above as complementary ones will provide user universal group of sensors from which depending on measurement requirements such as measuring range, object surface profile and measurement conditions the most appropriate can be chosen. In-plane displacement measurements are of interested of different branches of industry - from micro (i.e.: characterization of MEMS or MOEMS) to civil engineering (i.e.: Structural Health Monitoring systems). In the paper the new optical coherent sensor for in-plane displacement and strain measurements is presented. The sensor combines GI and DSPI methods in one device which can be used for testing of objects with different types of surfaces. GI requires the specimen grating attached at the surface but provides very good measurement accuracy however DSPI can be applied for testing of objects with rough surfaces but due to higher noise gives lower accuracy. The sensor can work in three modes: as GI only, DSPI only and both GI and DSPI simultaneously. The third mode can by useful when the specimen grating is attached on the part of object under test only. In the paper the theoretical background of the sensor is presented. For confirmation of GI/DSPI sensor possibilities the specially designed demonstrator is described and the exemplary results obtained during its laboratory tests are shown. Successful application of proposed sensor is possible due to its miniaturization, simplicity of operation by user (compact structure and automation of measurement procedure) and low cost. The last mentioned condition will be possible due to low cost replication techniques with usage of silicon technology.

  17. Micro structured glass optics - basics and benefits

    NASA Astrophysics Data System (ADS)

    Geyer, Ulf; Paßlick, Christian; Heßling, Thomas; Hellwig, Ansgar; Hübner, Marc C.

    2016-09-01

    Today's trends in illumination engineering clearly turn towards high power LED applications with a precisely controlled light output. The first requires glass optics which will withstand the increasing temperature load and lumen output of LEDs. The second requires tight control of production tolerances and defined surface structuring. Especially the surface structure - which can be realized for example as micro lens arrays - is of increasing importance. Using two different fabrication techniques we investigated the implementation of micro surface textures on glass optics. The first method uses directly molded glass from the liquid phase while the second is an imprint process. For both methods we determined the minimum replicable feature size and found current limits of only 50 μm for the imprint process.

  18. Applications of optical micro-ring and micro-disk resonators as physical, chemical, and biological sensors

    NASA Astrophysics Data System (ADS)

    Bhola, Bipin

    This dissertation presents the applications of optical micro-ring and micro-disk resonators as various sensors in physical, chemical, and biological applications. This work describes the functioning of 5 different sensors and suggests ways for optimizing the performance of each of them. All of these sensors work on the principle of shift in the resonance wavelength of the micro-ring or the micro-disk in response to an external physical, chemical or biological perturbation. The first portion describes the functioning of a ring resonator device and details the various parameters which are important in sensing applications. Then a strain sensor, an accelerometer, and a humidity sensor based on polymer micro-ring resonator are described. The strain sensor has a sensitivity of 0.32pm/muε and a dynamic range of 17000muε, the accelerometer has a sensitivity of 31pm/g and a dynamic range of +/-7g, whereas, the humidity sensor has a sensitivity of 16pm/%RH and a dynamic range of 72%. The dependency of each of their sensitivities and dynamic ranges on various geometrical parameters are also discussed. The response time of the humidity sensor was reduced to less than 200ms which enables us to utilize this device as a human breathing monitor in hospitals. The second portion of the thesis, discusses the possible incorporation of ultra-high-Q silica micro-disk resonators, developed at the Jet Propulsion Laboratory by Mr. Thanh M. Le, into various sensing devices. This device is first proposed as a biosensor for detecting trace amounts of specific biomolecules. The first experiments are performed for developing the silica micro-disk as a biosensor. In this experiment, the sensitivity of the micro-disk as a function of change in refractive index of the surrounding medium is demonstrated. The observed sensitivity is 11.82nm/RIU (Refractive Index Units). Then, the possibility of using this device as a specific biosensor is explored. The method for surface functionalization of the

  19. Model-based Processing of Micro-cantilever Sensor Arrays

    SciTech Connect

    Tringe, J W; Clague, D S; Candy, J V; Lee, C L; Rudd, R E; Burnham, A K

    2004-11-17

    We develop a model-based processor (MBP) for a micro-cantilever array sensor to detect target species in solution. After discussing the generalized framework for this problem, we develop the specific model used in this study. We perform a proof-of-concept experiment, fit the model parameters to the measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of interest: (1) averaged deflection data, and (2) multi-channel data. In both cases the evaluation proceeds by first performing a model-based parameter estimation to extract the model parameters, next performing a Gauss-Markov simulation, designing the optimal MBP and finally applying it to measured experimental data. The simulation is used to evaluate the performance of the MBP in the multi-channel case and compare it to a ''smoother'' (''averager'') typically used in this application. It was shown that the MBP not only provides a significant gain ({approx} 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate its capability for chemical detection. The MBP performs quite well, though it includes a correctable systematic bias error. The project's primary accomplishment was the successful application of model-based processing to signals from micro-cantilever arrays: 40-60 dB improvement vs. the smoother algorithm was demonstrated. This result was achieved through the development of appropriate mathematical descriptions for the chemical and mechanical phenomena, and incorporation of these descriptions directly into the model-based signal processor. A significant challenge was the development of the framework which would maximize the usefulness of the signal processing algorithms while ensuring the accuracy of the mathematical description of the chemical-mechanical signal. Experimentally, the difficulty was to identify and characterize the non

  20. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  1. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  2. A thermal-driven silicon micro xy-stage integrated with piezoresistive sensors for nano-positioning

    NASA Astrophysics Data System (ADS)

    Choi, Young-Soo; Zhang, Yan; Lee, Dong-Weon

    2012-05-01

    This paper describes a novel micro xy-stage, driven by double-hot arm horizontal thermal micro-actuators integrated with a piezoresistive sensor (PS) for low-voltage operation and precise control. This micro xy-stage structure is linked with chevron beams and optimized to amplify the displacement generated by the micro-actuators that provide a pull force to the movable platform. The PS employed for in situ displacement detection and feedback control is fabricated at the base of a cold arm, which minimizes the influence of temperature change induced by electro-thermal heating. The micro xy-stage structure is defined through the use of a simple micromachining process, released by backside wet etching with a special tool. For an input power of approximately 44 mW, each chevron actuator provides about 16 µm and the total displacement of the platform is close to 32 µm. The sensitivity of the PS is better than 1 mV µm-1, obtained from the amplified voltage output of the Wheatstone bridge circuit. The potential applications of the proposed micro xy-stage lie in micro- or nano-manipulation, as well as the positioning of ultra-small objects in nanotechnology.

  3. Micro-machinable polymer-derived ceramic sensors for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Xu, Chengying; An, Linan

    2010-04-01

    Micro-sensors are highly desired for on-line temperature/pressure monitoring in turbine engines to improve their efficiency and reduce pollution. The biggest challenge for developing this type of sensors is that the sensors have to sustain at extreme environments in turbine engine environments, such as high-temperatures (>800 °C), fluctuated pressure and oxidation/corrosion surroundings. In this paper, we describe a class of sensors made of polymer-derived ceramics (PDCs) for such applications. PDCs have the following advantages over conventional ceramics, making them particularly suitable for these applications: (i) micromachining capability, (ii) tunable electric properties, and (iii) hightemperature capability. Here, we will discuss the materials and their properties in terms of their applications for hightemperature micro-sensors, and microfabrication technologies. In addition, we will also discuss the design of a heat-flux sensor based on polymer-derived ceramics.

  4. Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures

    NASA Technical Reports Server (NTRS)

    Lassiter, John; Engberg, Robert

    2005-01-01

    This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

  5. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  6. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  7. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    PubMed Central

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  8. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-09-06

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  9. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    PubMed Central

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-01-01

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring. PMID:28335436

  10. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils.

    PubMed

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-03-14

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  11. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  12. Structure and yarn sensor for fabric

    SciTech Connect

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  13. Structural control sensors for the CASES GTF

    NASA Technical Reports Server (NTRS)

    Davis, Hugh W.; Bukley, Angelia P.

    1993-01-01

    CASES (Controls, Astrophysics and Structures Experiment in Space) is a proposed space experiment to collect x-ray images of the galactic center and solar disk with unprecedented resolution. This requires precision pointing and suppression of vibrations in the long flexible structure that comprises the 32-m x-ray telescope optical bench. Two separate electro-optical sensor systems are provided for the ground test facility (GTF). The Boom Motion Tracker (BMT) measures eigenvector data for post-mission use in system identification. The Tip Displacement Sensor (TDS) measures boom tip position and is used as feedback for the closed-loop control system that stabilizes the boom. Both the BMT and the TDS have met acceptance specifications and were delivered to MSFC in February 1992. This paper describes the sensor concept, the sensor configuration as implemented in the GTF, and the results of characterization and performance testing.

  14. Porous Silicon Structures as Optical Gas Sensors

    PubMed Central

    Levitsky, Igor A.

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  15. Porous Silicon Structures as Optical Gas Sensors.

    PubMed

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  16. Micro-ring sensor used in the diagnosis of gastric cancer

    NASA Astrophysics Data System (ADS)

    Shi, Sichao; Cheng, Qing; Lin, Rong; Su, Da; Huang, Ying

    2016-01-01

    To find a detecting method that can be applied to the clinical screening and diagnosis, the cascaded micro-ring sensor with Vernier effect was used to distinguish gastric cancerous and normal cells. The simulation by FDTD of the cascaded microring sensor with different refractive indexes of the analyte (normal cells and gastric cancer cells) will be presented. In the simulation, with the refractive index's change Δn=0.02 for the two different analyte, the shift of sensor's resonant wavelength is 6.71nm. And the cascaded micro-ring sensor's sensitivity S is 335.5nm/RIU, and it is much larger compared to 19nm/RIU for a single ring sensor.

  17. Integrated micro-electro-mechanical sensor development for inertial applications

    SciTech Connect

    Allen, J.J.; Kinney, R.D.; Sarsfield, J.

    1998-04-01

    Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.

  18. Magnetic bead counter using a micro-Hall sensor for biological applications

    SciTech Connect

    Lee, W.; Kim, K.; Joo, S.; Kim, S.U.; Rhie, K.; Hong, J.; Shin, K-H.; and Kim, K.H.

    2009-04-13

    Micro-Hall sensors have been fabricated, and various numbers of micron-size magnetic beads have been placed within the sensor area. The Hall resistances measured at room temperature are found to be proportional to the number of the beads, and are in good agreement with the numerically simulated results presented in this study. Our sensors are designed to measure the number of beads between zero and full-scale signals for a given number range of interest. The effects of miniaturizing the beads and sensors to nanoscale are also discussed.

  19. A Challenge for Micro and Mini UAV: The Sensor Problem

    DTIC Science & Technology

    2005-05-01

    pressure airspeed sensors on one single circuit board (Figure 8). Figure 8: Autopilot. The Quadcopter The fourth and final MAV is a quad-copter with...UNCLASSIFIED/UNLIMITED Figure 9: Quadcopter MAV. Figure 10: Loopshaping Diagram. The IMU contains 3 MEMS gyros. These form the rotational sensors Gx

  20. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  1. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  2. Magnetic Sensor for Building Structural Vibrations

    PubMed Central

    García, Alfonso; Morón, Carlos; Tremps, Enrique

    2014-01-01

    This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building. PMID:24504104

  3. Magnetic sensor for building structural vibrations.

    PubMed

    García, Alfonso; Morón, Carlos; Tremps, Enrique

    2014-02-05

    This paper shows a new displacement-to-frequency transducer based on the variation of a coil inductance when a magnetic core is partially or completely inserted inside. This transducer is based on a Colpitts oscillator due its low manufacturing price, behavior and immunity to noise. A tank circuit with a configuration in parallel was used because it can be employed at lower frequencies and it enables it to make a direct analysis. The sensor has a dynamic range equal to the length of the coil. The cores can exchange sensors (coils with its ferromagnetic core) using the same electronic measuring system. In this way, with only an electronic circuit, the core sensor determines the measurement range. The obtained resolution is higher than 1/100,000, and the sensor also allows the measurement and knowing in real time the effect of vibration, thermal expansion, referred overload movements, etc.., that can occur in the structural elements of a building.

  4. Analysis of a Micro-Optomechatronic Force Sensor

    NASA Astrophysics Data System (ADS)

    Fakhrabadi, M. M. S.; Ghanbari, A.; Rostami, A.; Janabi Sharifi, F.

    2010-11-01

    The purpose of this article is to study the dynamic behavior and modal analysis of a micro-optomechatronic device with primary applications to force sensing and optical attenuation/coupling. The system consists of two initially aligned micro-cantilevers with a narrow gap between them. The light beam enters to the first waveguide and, after propagation along it, couples to second waveguide through the mentioned narrow gap. The externally static or dynamic applied force on the first micro-cantilever deflects it and results in reduced optical coupling between the two waveguides. Changes in this factor are measured to give the properties of the applied force.

  5. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    NASA Astrophysics Data System (ADS)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  6. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    PubMed

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  7. Fully front-side bulk-micromachined single-chip micro flow sensors for bare-chip SMT (surface mounting technology) packaging

    NASA Astrophysics Data System (ADS)

    Liu, Jiedan; Wang, Jiachou; Li, Xinxin

    2012-03-01

    This paper reports novel single-wafer-based piezoresistive micro flow sensors, which are bulk micromachined only from the front side of the silicon wafer to facilitate the sensor-bare chips directly packaged into micro-fluidic systems with low-cost surface mounting technology (SMT). With neither double-sided micromachining nor multiwafer bonding needed, two structural types of the piezoresistive flow sensors are designed and fabricated in (1 1 1) wafers, where ‘type A’ sensor has a smaller channel cross section area compared to ‘type B’ sensor. After the bare sensor chip directly attached on a printed circuit board (PCB), wire bonded between the pads and the PCB for electric interconnection and the inlet/outlet front side connected, deionized water is flowed into the both types of flow sensors to characterize piezoresistive output of the differential pressure sensing elements in terms of the flow rate. For ‘type A’ and ‘type B’ sensors that are both power supplied with DC 5 V, the sensitivities are sequentially measured as 766.80 mV (µL s-1)-1 and 19.12 mV (µL s-1)-1, with the nonlinearities as 0.4% FS and 0.9% FS, respectively. Compared with traditionally fabricated micro flow sensors, the single-chip fabricated differential-pressure flow sensors can be low-cost volume manufactured. Moreover, the bare sensor chips can be simply SMT packaged for low-cost micro-system applications.

  8. Sensor devices comprising field-structured composites

    DOEpatents

    Martin, James E.; Hughes, Robert C.; Anderson, Robert A.

    2001-02-27

    A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.

  9. Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection.

    PubMed

    Liu, Jing; Sun, Yuze; Howard, Daniel J; Frye-Mason, Greg; Thompson, Aaron K; Ja, Shiou-Jyh; Wang, Siao-Kwan; Bai, Mengjun; Taub, Haskell; Almasri, Mahmoud; Fan, Xudong

    2010-06-01

    We developed and characterized a Fabry-Pérot (FP) sensor module based micro gas chromatography (microGC) detector for multipoint on-column detection. The FP sensor was fabricated by depositing a thin layer of metal and a layer of gas-sensitive polymer consecutively on the endface of an optical fiber, which formed the FP cavity. Light partially reflected from the metal layer and the polymer-air interface generated an interference spectrum, which shifted as the polymer layer absorbed the gas analyte. The FP sensor module was then assembled by inserting the FP sensor into a hole drilled in the wall of a fused-silica capillary, which can be easily connected to the conventional gas chromatography (GC) column through a universal quick seal column connector, thus enabling on-column real-time detection. We characterized the FP sensor module based microGC detector. Sensitive detection of various gas analytes was achieved with subnanogram detection limits. The rapid separation capability of the FP sensor module assembled with both single- and tandem-column systems was demonstrated, in which gas analytes having a wide range of polarities and volatilities were well-resolved. The tandem-column system obtained increased sensitivity and selectivity by employing two FP sensor modules coated with different polymers, showing great system versatility.

  10. Smart Sensors Assess Structural Health

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  11. Sensors, Volume 8, Micro- and Nanosensor Technology - Trends in Sensor Markets

    NASA Astrophysics Data System (ADS)

    Jones, Robert; Meixner, Hans

    1996-12-01

    Sensors is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This final volume of the series uncovers trends in sensor technology and gives a comprehensive overview of the sensor market. The use of sensors in microsystems and in vacuum microelectronic as well as in acoustic wave devices is discussed. Present and emerging applications of sensors in aerospace, environmental, automotive, and medical industries, among others, are described. This volume is an indispensable reference work for both specialists and newcomers, researchers and developers

  12. A micro resonant charge sensor with enhanced sensitivity based on differential sensing scheme and leverage mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Dongyang; Zhao, Jiuxuan; Xu, Zhonggui; Xie, Jin

    2016-10-01

    This letter reports a micro-electro-mechanical systems (MEMS) resonant charge sensor with enhanced sensitivity based on differential sensing scheme and leverage mechanisms. The sensor comprises two symmetrically-distributed double-ended tuning fork (DETF) resonators, each of which connects with dual micro-leverage mechanisms. The micro-leverages amplify electrostatic force in opposite directions and cause differential frequency shift of the two resonators. Both the resonators show a similar trend in behaviors of electrical and mechanical nonlinearity. Effect of environment disturbance is suppressed by the differential sensing scheme. The measured sensitivity of the two resonators are 3.31×10-4 Hz/fC2 and 1.85×10-4 Hz/fC2 respectively, and an overall sensitivity for the resonant charge sensor is 5.16×10-4 Hz/fC2.

  13. Micro hot plate-based sensor array system for the detection of environmentally relevant gases.

    PubMed

    Graf, M; Frey, U; Taschini, S; Hierlemann, A

    2006-10-01

    A monolithic stand-alone gas sensor system is presented, which includes on a single chip an array of three metal oxide-coated micro hot plates with integrated MOS-transistor heaters, as well as a specifically designed digital system architecture. An octagonal-shaped micro hot plate design with MOS-transistor heaters has been adopted for the three gas sensors. The integrated circuitry includes a programmable digital temperature regulation, digital sensor readout units, and a standard serial interface. The programmable digital temperature controllers enable individual regulation of the micro hot plate temperatures in constant or dynamic mode. Nanocrystalline tin oxide thick films with different Pd dopings (undoped, 0.2 and 3 wt %) were used. Gas test measurements for environmentally relevant gases were carried out and evidenced detection limits of less than 1 ppm for carbon monoxide, or 100 ppm for methane, both at 40% relative humidity. Temperature modulation techniques were successfully applied for improved analyte discrimination.

  14. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  15. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  16. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  17. Development of micro engine oil condition sensor using multi-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Na, Dae Seok; Jung-Ho Pak, James; Kyeong Kim, Jai

    2007-03-01

    A new interdigit-type micro oil condition sensor was designed and fabricated for monitoring the deterioration of lubricating and insulating oils. The designed sensor operates based on the change of the dielectric constant and electrical conductivity. In order to improve sensor performance, an oil condition sensor was fabricated using MEMS technology and multi-wall carbon nanotube film. The experiment was performed with automobile engine oils with the same brand and quality so as to ensure measurement reliability. Capacitance changes were measured according to increasing mileage and the sensors' performance was improved. These results show that the proposed sensor could measure the degree of oil deterioration with a high sensitivity and it is applicable to other lubricating systems as well as insulating systems.

  18. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs.

    PubMed

    Devaraj, Harish; Travas-Sejdic, Jadranka; Sharma, Rajnish; Aydemir, Nihan; Williams, David; Haemmerle, Enrico; Aw, Kean C

    2015-02-04

    This paper reports on the creation of a low-cost, disposable sensor for low flow velocities, constructed from extruded micro-sized 'hair' of conducting polymer PEDOT. These microstructures are inspired by hair strands found in many arthropods and chordates, which play a prime role in sensing air flows. The paper describes the fabrication techniques and the initial prototype testing results toward employing this sensing mechanism in applications requiring sensing of low flow rates such as a flow sensor in neonatal resuscitators. The fabricated 1000 μm long, 6 μm diameter micro-hairs mimic the bending movement of tactile hair strands to sense the velocity of air flow. The prototype sensor developed is a four-level direct digital-output sensor and is capable of detecting flow velocities of up to 0.97 m s(-1).

  19. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    PubMed

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.

  20. Wavelength-independent integrated focus sensor using a reflection twin micro-Fresnel lens.

    PubMed

    Shiono, T; Setsune, K

    1989-12-01

    A compact focus sensor constructed with thin film components such as a reflection twin micro-Fresnel lens and a photodetector is proposed. This sensor has a folded optical path and is insensitive to wavelength shift. Theoretical analysis indicates that the optical performance of reflection Fresnel lenses can be improved in comparison with a conventional transmission micro-Fresnel lens. The reflection twin Fresnel lens was fabricated using electron-beam lithography and exhibited diffraction-limited focusing performance with high (71%) efficiency. It was demonstrated that the focus sensor had excellent spot displacement characteristics in agreement with theoretical results, and a focus error signal was detected. This focus sensor could be useful for the optical head of an optical disk system.

  1. Reliability Evaluation of Micro Heater and its Application for Automotive Sensors

    NASA Astrophysics Data System (ADS)

    Kojima, Takio; Tsujimura, Yoshinori; Mizuno, Takuya; Koyama, Yuichi; Kida, Masahito; Yamada, Tessho

    A heat resistant micro heater consisting of a Pt thin film and a diaphragm was developed for automotive sensors and its reliability was evaluated from the mechanical and thermal points of view. The dominant failure modes for instant overheating and longtime heating were found to be de-lamination of the Pt film and electromigration of Pt, respectively. The life time was estimated to be over 10 years when the average heater temperature was 400°C (the peak temperature was over 600°C). As automotive sensors utilized this micro heater, the developed air flow meter and air quality sensor are described with features and evaluation methods unique to these sensors.

  2. Silicon cantilever sensor for micro-/nanoscale dimension and force metrology

    NASA Astrophysics Data System (ADS)

    Peiner, Erwin; Doering, Lutz; Balke, Michael; Christ, Andreas

    2007-05-01

    A piezoresistive silicon cantilever-type tactile sensor was described as well as its application for dimensional metrology with micro components and as a transferable force standard in the micro-to-nano Newton range. As an example for tactile probing metrology the novel cantilever sensor was used for surface scanning with calibrated groove and roughness artifacts. Force metrology was addressed based on calibration procedures which were developed for commercial stylus instruments as well as for glass pipettes designed for the characterization of the vital forces of isolated cells.

  3. The detection of specific biomolecular interactions with micro-Hall magnetic sensors.

    PubMed

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C Steven; Field, Mark; Sullivan, Gerard J; Strouse, Geoffrey F; Chase, P Bryant; von Molnár, Stephan; Xiong, Peng

    2009-09-02

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  4. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-01-01

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200–1200 mm/s2, which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0–22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements. PMID:27092507

  5. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application.

    PubMed

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-04-15

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200-1200 mm/s², which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0-22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements.

  6. Concept Studies of Micro-Pump for Chemical Concentration in Handheld Micro Sensors

    DTIC Science & Technology

    2007-11-02

    This report summarizes the preliminary results of a short-term innovative research project on the concept study of micro pumps for chemical...main objective of the work is to study the feasibility of certain micro pumping concepts and their potential integration with the sensing material and... micro pumps is demonstrated, although the quantitative assessment of the pumping system is still elusive, partly because of lack of specifications. The

  7. Development of a micro-potentiometric sensor for the microchip analysis of alkali ions.

    PubMed

    Smirnova, Adelina; Mawatari, Kazuma; Takahashi, Hiroko; Tanaka, Yo; Nakanishi, Hiroaki; Kitamori, Takehiko

    2009-12-01

    This paper reports on the development of a micro-potentiometric sensor based on external microelectrodes introduced into a microchip. We miniaturized reference and ion-selective electrodes (ISEs) and embedded them into a plastic (PDMS) microchip; the miniaturization of ISE was attained by using a monolithic capillary-based membrane. This sensor was applied to the detection of alkali ions (Na+, K+ and NH4+) in a microflow on the microg/L level.

  8. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  9. Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Ganji, D. D.; Taeibi-Rahni, M.; Vakilipour, Shidvash

    2017-07-01

    In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.

  10. Design of acoustic wave biochemical sensors using micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Valentine, Jane E.; Przybycien, Todd M.; Hauan, Steinar

    2007-03-01

    Acoustic wave biochemical sensors work by detecting the frequency shifts resulting from the binding of target molecules to a functionalized resonator. Resonator types currently in use or under development include macroscopic quartz crystal microbalances (QCMs) as well as a number of different integrated Micro-electro-mechanical Systems (MEMS) structures. Due to an increased resonator surface area to mass ratio, we believe that membrane-based MEMS systems are particularly promising with regard to sensitivity. Prototypes have been developed [S. Hauan et al., U.S. Patent Application (filed 6 Nov. 2003)] and preliminary calculations [M. J. Bartkovsky et al., paper 385e presented at the AIChE Annual Meeting, Nov. 2003; J. E. Valentine et al., paper 197h presented at the AICHE Annual Meeting, Nov. 2003] indicate significant improvements over other methods, both macroscopic and MEMS based. In this article we describe our work on a MEMS-based acoustic wave biochemical sensor using a membrane resonator. We demonstrate the effects of spatial distributions of mass on the membrane on sensitivity and show how to use this spatial sensitivity to detect multiple targets simultaneously. To do so we derive a function approximating the membrane response surface to spatial mass loadings under the applicable range of conditions. We verify the agreement using finite element methods, and present our initial sensitivity calculations demonstrating the advantages of variable mass loadings.

  11. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.

    PubMed

    Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D

    2010-01-01

    Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.

  12. Development of a new contact-type piezoresistive micro-shear-stress sensor

    NASA Astrophysics Data System (ADS)

    Hsieh, M. C.; Fang, Yean-Kuen; Ju, M. S.; Ho, Jyh-Jier; Ting, S. F.

    2002-04-01

    A prototype contact type micro piezoresistive shear-stress sensor that can be utilized to measure the shear stress between skin of stump and socket of Above-Knee (AK) prosthesis was designed, fabricated and tested. Micro-electro-mechanical system (MEMS) technology has been chosen for the design because of the low cost, small size and adaptability to this application. In this paper, the Finite Element Method (FEM) package ANSYS has been employed for the stress analysis of the micro shear-stress sensors. The sensors contain two X-ducers that will transform the stresses into an output voltage. In the developed sensor, a 3000X3000X3000 micrometers (superscript 3/ square membrane is formed by bulk micromachining of an n-type <100> monolithic silicon. The piezoresistive strain gauges were implanted with boron ions with a dose of 10(superscript 15/ atoms/cm(superscript 2/. Static characteristics of the shear sensor were determined through a series of calibration tests. The fabricated sensor exhibits a sensitivity of 0.13mV/mA-Mpa for a 1.4N full scales shear force range and the overall mean hysteresis error is than 3.5%. In addition, the results simulated by FEM are validated by comparison with experimental investigations.

  13. Microelectromechanical sensors for measuring gas pressure

    NASA Astrophysics Data System (ADS)

    Völklein, F.; Schild, M.; Meier, A.; Wiesbaden, Fh

    2008-03-01

    New prototypes and concepts of micro sensors for measuring gas pressure have been developed by using the fabrication technologies for Micro Electro Mechanical Systems (MEMS). The realization of such micro-structured sensors requires sofisticated fabrication processes such as thin film deposition, photolithography and etching techniques. This approach of MEMS sensors for gas pressure is demonstrated by few examples, such as micro-Pirani gauges, resonant vacuum micro gauges and micro spinning rotor gauges.

  14. Selective binding and detection of magnetic labels using PHR sensor via photoresist micro-wells.

    PubMed

    Oh, Sunjong; Baek, Nam Seob; Jung, Sang-Don; Chung, Myung-Ae; Hung, Tran Quang; Anandakumar, S; Rani, V Sudha; Jeong, Jong-Ryul; Kim, CheolGi

    2011-05-01

    We have developed a novel platform for selective binding of magnetic labels on planar Hall resistance sensor (PHR) for biosensing applications. The photoresist (PR) micro wells were prepared on the PHR sensor junctions to trap the magnetic bead at specified locations on the sensor surface and thin layer of Au was sputtered in the PR wells immobilize bimolecular. The Au surface is functionalized with single-stranded oligonucleotide and further biotin was used to immobilize streptavidin coated magnetic labels (Dynabeads Myone 1.0 microm, Invitrogen Co.). After removal of the PR wells on the sensor surface the non specific binding magnetic labels were successfully removed and only the chemically bounded magnetic labels were remained on the Au surface for detection of biomolecules using PHR sensor. We controlled the number of magnetic labels on the PHR sensor surface by using different sizes of the PR well on the junctions. The specifically bounded magnetic labels were successfully detected by characterizing the individual PHR sensor junctions. This technique enables the complete control over the magnetic labels for selective binding of biomolecules on the sensor surface for increasing the sensitivity of the PHR sensor as well as removal of the non specific bindings on the sensor surface.

  15. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  16. GRIN-optics-based hyperspectral imaging micro-sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Leger, James

    2007-09-01

    By utilizing diffractive, refractive and graded-index optics technology, a miniature (1 mm x 1 mm x 2 mm) Computer-Tomography Imaging Spectrometer (CTIS) sensor has been designed with 16 independent optical channels working in a snap-shot mode for hyper-spectral imaging. The designed prototype covers a 400~700 nm wavelength range. One optical channel has been fabricated and characterized. By azimuthally rotating this optical channel along the optical axis and collecting different dispersed images to simulate the full sensor read-out, the full hyperspectral detection scheme has been demonstrated.

  17. Strain evaluation of strengthened concrete structures using FBG sensors

    SciTech Connect

    Lau Kintak; Zhou Limin; Ye Lin

    1999-12-02

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wave (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.

  18. Strain evaluation of strengthened concrete structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lau, Kin-tak; Zhou, Li-min; Ye, Lin

    1999-12-01

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wave (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.

  19. Combined simulation of a micro permanent magnetic linear contactless displacement sensor.

    PubMed

    Gao, Jing; Müller, Wolfgang F O; Greiner, Felix; Eicher, Dirk; Weiland, Thomas; Schlaak, Helmut F

    2010-01-01

    The permanent magnetic linear contactless displacement (PLCD) sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS) measurements is designed and simulated with the CST EM STUDIO(®) software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  20. A micro flow sensor from a polymer for gases and liquids

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Schlote-Holubek, K.

    2009-07-01

    In this paper, we present a micro flow sensor from a polymer based on the thermal anemometric principle. A sensor with outer dimensions of 5.5 × 6 × 1.2 mm3 and a small fluidic channel with a cross-section of 240 µm × 400 µm may be operated with both gases (up to 200 ml min-1) and liquids (for water up to 200 µl min-1). Due to its small heat capacity, the sensor is also suitable for dynamical measurements of liquid flows, e.g. flow pulsations up to several 100 Hz even within high-pressure hydraulic systems.

  1. Fabrication of micro accelerometer and magnetoresistive sensor directly on a ceramic substrate

    NASA Astrophysics Data System (ADS)

    Aoyagi, Seiji

    2012-06-01

    Micro-electro-mechanical systems (MEMS) sensors have movable parts: thus, it is difficult to handle them at fabrication because of the possibility of fracture. If a MEMS sensor could be fabricated not only on a silicon substrate but also on a ceramic substrate, which can be used for a package of the end product, the above-mentioned problem about handling would be solved, and its fabrication cost would be reduced. In this presentation, as demonstrations of the sensors directly fabricated on a ceramic package, an accelerometer and a magnetoresistive (MR) sensor are focused on. A micro accelerometer is proposed, which consists of a proof mass and ferroelectric substrate under it. A screen-printed barium titanate (BTO) film on an alumina substrate was employed as ferroelectrics. The sensitivity of the fabricated accelerometer was 0.1 pF g-1. A triaxis MR sensor is proposed, which detects not only x- and y-axes' magnetic field intensities but also that of the z-axis. Namely, not only azimuth but also angle of elevation of the sensor can be detected from triaxis components of the geomagnetic field. A permalloy (FeNi) plate is stood aside from the MR element. The plate distorts magnetic field and generates the x- (or y-) component from the originally z-directional field. A triaxis geomagnetic field was successfully detected by the fabricated sensor.

  2. Capacitance variation measurement method with a continuously variable measuring range for a micro-capacitance sensor

    NASA Astrophysics Data System (ADS)

    Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie

    2017-10-01

    Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0–700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0–2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.

  3. Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2000-01-01

    Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.

  4. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  5. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  6. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  7. A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen.

    PubMed

    Park, Se-Chul; Yoon, Seung-Il; Lee, Chung-il; Kim, Yong-Jun; Song, Soonho

    2009-02-01

    This paper demonstrates the fabrication and performance of a micro-thermoelectric gas sensor for an effective and inexpensive gas analysis system. The proposed micro-thermoelectric gas sensor was fabricated by using a surface micromachining technique. The sensing mechanism, consisting of thermoelectric material and a novel metal catalyst, was fabricated on the highly thermally resistive layer for reduced heat transfer to the substrate allowing for a simple fabrication process. The micro-thermoelectric gas sensor detects target gas species by measuring the reaction heat of the catalytic reaction between the target gas and a novel metal catalyst using Cu-Bi thermopiles. The catalytic reaction occurs only on the hot junction of the sensing thermopile where the metal catalyst is deposited. In order to reduce the external thermal noise, a difference between the output voltage of the sensing and the reference thermopiles was measured by using a differential amplifier. The response of the fabricated sensor was linear to temperature difference. The fabricated sensor can be used to detect various concentrations of hydrogen and atomic oxygen, where the output voltage linearly increased with the gas concentration.

  8. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  9. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  10. Structural basis for microRNA targeting

    SciTech Connect

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2014-10-31

    MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. In this paper, we determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. Finally, these results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.

  11. Structural basis for microRNA targeting

    DOE PAGES

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2014-10-31

    MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. In this paper, we determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions withmore » the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. Finally, these results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.« less

  12. Numerical Study on the Particle Trajectory Tracking in a Micro-UV Bio-Fluorescence Sensor.

    PubMed

    Byeon, Sun-Seok; Cho, Moon-Young; Lee, Jong-Chul; Kim, Youn-Jea

    2015-03-01

    A micro-UV bio-fluorescence sensor was developed to detect primary biological aerosols including bacteria, bacterial spores, fungal spores, pollens, viruses, algae, etc. In order to effectively detect the bio-particles in a micro-UV bio-fluorescence sensor, numerical calculations were performed to adjust for appropriate flow conditions of the sensor by regulating the sample aerosols and sheath flow. In particular, a CFD-based model of hydrodynamic processes was developed by computing the trajectory of particles using commercially available ANSYS CFX-14 software and the Lagrangian tracking model. The established model was evaluated with regard to the variation of sheath flow rate and particle size. Results showed that the sheath flow was changed rapidly at the end of nozzle tip, but the sample particles moved near the center of aerosol jet for aerodynamic focusing with little deviation from the axis.

  13. Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Tilt Sensor

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Kong, Seong Ho

    2009-06-01

    A miniaturized tilt sensor using air medium, which is measurable on a two-axis inclination angle, is fabricated and its output characteristics are evaluated. The proposed tilt sensor consists of a central microheater surrounded by four temperature sensors. Without an inclination, the microheater creates a symmetric temperature profile in an encapsulated microchamber filled with air medium. When the device is tilted, the temperature sensors formed around the central heater measure the asymmetric temperature profile, caused by the effect of convection. The proposed tilt sensor covers a measurement range of ±90° on two axes with excellent linearity and symmetric sensitivity. Furthermore, the structure and fabrication sequence of the proposed sensor are quite simple; that is, the microheater and temperature sensors can be simultaneously formed because they are made of the same material. Several issues, confronting the previously reported electrolytic tilt sensor, such as metal electrode corrosion, electrolyte deterioration, surface tension of the electrolyte, and difficulty in packaging, were avoided.

  14. Embedded sensors and actuators for lightweight structures

    NASA Astrophysics Data System (ADS)

    Schoenwald, Jeffrey S.

    A system for sensing strain in flexible structures, consisting of a piezoelectric ceramic bonded to the surface of a thin, flat, flexible beam fabricated from graphite/epoxy composite is presented. Results for the piezo-ceramic sensor show that substantial signals can be acquired for vibrations above 1 Hz. These signals are proportional to strain and can be utilized with a simple controller developed to actively damp the beam vibration.

  15. Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Pan, Liang; Gao, Bo; Chiu, Yi; Xu, Kun; Lee, Yi-Kuen

    2017-08-01

    We systematically study the effect of two packaging configurations for the CMOS thermoresistive micro calorimetric flow (TMCF) sensors: S-type with the sensor chip protrusion-mounted on the flow channel wall and E-type with the sensor chip flush-mounted on the flow channel wall. Although the experimental results indicated that the sensitivity of the S-type was increased by more than 30%; the corresponding flow range as compared to the E-type was dramatically reduced by 60% from 0-11 m s-1 to 0-4.5 m s-1. Comprehensive 2D CFD simulation and in-house developed 3D numerical simulations based on the gas-kinetic scheme were applied to study the flow separation of these two packaging designs with the major parameters. Indeed, the S-type design with the large protrusion would change the local convective heat transfer of the TMCF sensor and dramatically decrease the sensors’ performance. In addition, parametric CFD simulations of the packaging designs provide inspiration to propose a novel general flow regime map (FRM), i.e. normalized protrusion d * versus reduced chip Reynolds number Re*, where the critical boundary curve for the flow separation of TMCF sensors was determined at different channel aspect ratios. The proposed FRM can be a useful guideline for the packaging design and manufacturing of different micro thermal flow sensors.

  16. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  17. Optimization of PZT ceramic IDT sensors for health monitoring of structures.

    PubMed

    Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed

    2017-08-01

    Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design and experiment of spectrometer based on scanning micro-grating integrating with angle sensor

    NASA Astrophysics Data System (ADS)

    Biao, Luo; Wen, Zhi-yu

    2014-01-01

    A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.

  19. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  20. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  1. Study of poly (3-hexylthiophene) conducting polymer thin film micro-sensor for hydrazine vapor detection

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    This dissertation discussed the construction and investigation of a poly (3-hexylthiophene) conducting polymer based thin film micro-sensor for a real-time detection of hydrazine vapor at ambient pressure. A type of low cost, small size, passive poly (3-hexylthiophene) thin film micro-sensor was designed and fabricated. The micro-sensor platform consisted of a rectangular shaped inert substrate and gold interdigited electrode pairs. A layer of poly (3-hexylthiophene) thin film was coated onto the sensor platform using a spin coating method, and nitrosonium hexafluorophosphate (NOPF6) was used to dope the poly (3-hexylthiophene) thin film to increase its electrical conductivity and form the finished sensor. The basic responses of the sensor to hydrazine vapor were experimentally investigated. The primary results showed that the sensor responded to hydrazine vapor in less than a few seconds; attained orders of magnitude change in normalized resistance during hydrazine exposure, and was not easily saturated. The interaction between the hydrazine gas molecules and doped poly (3-hexylthiophene) thin film was studied. The plausible mechanism was determined as: Charge carriers inside the doped poly (3-hexylthiophene) thin film were depleted during the oxidation-reduction chemical reaction between the hydrazine vapor and polymer film, resulting a reduction in the polymer film's electrical conductivity. Experiments were also conducted to find out the effects of hydrazine concentration, poly (3-hexylthiophene) thin film thickness, sensor storage time, environment temperature, and environment humidity on the sensor's performance. The response rate of the sensor under different sensing conditions was calculated and discussed. A diffusion-reaction model was applied to simulate the interaction between hydrazine molecules and doped poly (3-hexylthiophene) thin film. The profiles of hydrazine gas diffusion and positive charge carrier neutralization in the polymer film were

  2. Identification of Cross-Country Skiing Movement Patterns Using Micro-Sensors

    PubMed Central

    Marsland, Finn; Lyons, Keith; Anson, Judith; Waddington, Gordon; Macintosh, Colin; Chapman, Dale

    2012-01-01

    This study investigated the potential of micro-sensors for use in the identification of the main movement patterns used in cross-country skiing. Data were collected from four elite international and four Australian athletes in Europe and in Australia using a MinimaxX™ unit containing accelerometer, gyroscope and GPS sensors. Athletes performed four skating techniques and three classical techniques on snow at moderate velocity. Data from a single micro-sensor unit positioned in the centre of the upper back was sufficient to visually identify cyclical movement patterns for each technique. The general patterns for each technique were identified clearly across all athletes while at the same time distinctive characteristics for individual athletes were observed. Differences in speed, snow condition and gradient of terrain were not controlled in this study and these factors could have an effect on the data patterns. Development of algorithms to process the micro-sensor data into kinematic measurements would provide coaches and scientists with a valuable performance analysis tool. Further research is needed to develop such algorithms and to determine whether the patterns are consistent across a range of different speeds, snow conditions and terrain, and for skiers of differing ability. PMID:22666075

  3. Polymer-based blood vessel models with micro-temperature sensors in EVE

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  4. Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials

    PubMed Central

    Hazelton, Sandra G.; Zheng, Xingwang; Zhao, Julia Xiaojun; Pierce, David T.

    2008-01-01

    A variety of recent developments and applications of electrogenerated chemiluminescence (ECL) for sensors are described. While tris(2,2′-bipyridyl)-ruthenium(II) and luminol have dominated and continue to pervade the field of ECL-based sensors, recent work has focused on use of these lumophores with micro- and nanomaterials. It has also extended to inherently luminescent nanomaterials, such as quantum dots. Sensor configurations including microelectrode arrays and microfluidics are reviewed and, with the recent trend toward increased use of nanomaterials, special attention has been given to sensors which include thin films, nanoparticles and nanotubes. Applications of ECL labels and examples of label-free sensing that incorporate nanomaterials are also discussed. PMID:27873850

  5. Fabrication of micro-rotating structure by micro reciprocated wire-EDM

    NASA Astrophysics Data System (ADS)

    Wang, Yukui; Chen, Xiang; Wang, Zhenlong; Li, Huichao; Liu, Hongzheng

    2016-11-01

    Micro rotating-structure manufacture has been largely carried out using a variety of processing methods. However, it is difficult to achieve the high-precise machining of the micro rotating structure due to the material constraints and the geometrical limitation of the free-form profile. This paper discusses the fabrication of micro-rotating structure using micro reciprocated wire electrical discharge machining (wire-EDM). To ensure machining accuracy, a gravity takeup for maintaining constant wire tension and a unit for suppressing the wire vibration are designed and fabricated, respectively. Besides, the effects of processing parameters on rotating groove width are investigated by conducting preliminary experiments, showing that high open voltage, discharge capacitance and revolving speed, and low discharge resistance and wire tension cause larger rotating groove width. Nevertheless, the rotating groove width firstly decreases with the reference voltage and feed rate increase in the initial stage and then increases when applying higher values. Based on the preliminary experiments, the proper processing parameters are determined and are used for machining micro bellows core-mould. Ultimately, the micro bellows core-mould is successfully machined by micro reciprocated wire-EDM, exhibiting high machining accuracy, excellent geometric shape and uniformity. Specifically, the machining errors along the axial direction and the radial direction of the micro bellows core-mould are less than 1.4 µm and 2.3 µm, respectively.

  6. Application of an evolutionary algorithm in the optimal design of micro-sensor.

    PubMed

    Lu, Qibing; Wang, Pan; Guo, Sihai; Sheng, Buyun; Liu, Xingxing; Fan, Zhun

    2015-01-01

    This paper introduces an automatic bond graph design method based on genetic programming for the evolutionary design of micro-resonator. First, the system-level behavioral model is discussed, which based on genetic programming and bond graph. Then, the geometry parameters of components are automatically optimized, by using the genetic algorithm with constraints. To illustrate this approach, a typical device micro-resonator is designed as an example in biomedicine. This paper provides a new idea for the automatic optimization design of biomedical sensors by evolutionary calculation.

  7. Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure

    NASA Astrophysics Data System (ADS)

    Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde

    2017-07-01

    A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.

  8. Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media

    PubMed Central

    Theuer, Lorenz; Lehmann, Micha; Junne, Stefan; Neubauer, Peter; Birkholz, Mario

    2017-01-01

    An affinity-viscometry-based micro-sensor probe for continuous glucose monitoring was investigated with respect to its suitability for bioprocesses. The sensor operates with glucose and dextran competing as binding partner for concanavalin A, while the viscosity of the assay scales with glucose concentration. Changes in viscosity are determined with a micro-electromechanical system (MEMS) in the measurement cavity of the sensor probe. The study aimed to elucidate the interactions between the assay and a typical phosphate buffered bacterial cultivation medium. It turned out that contact with the medium resulted in a significant long-lasting drift of the assay’s viscosity at zero glucose concentration. Adding glucose to the medium lowers the drift by a factor of eight. The cglc values measured off-line with the glucose sensor for monitoring of a bacterial cultivation were similar to the measurements with an enzymatic assay with a difference of less than ±0.15 g·L−1. We propose that lectin agglomeration, the electro-viscous effect, and constitutional changes of concanavalin A due to exchanges of the incorporated metal ions may account for the observed viscosity increase. The study has demonstrated the potential of the MEMS sensor to determine sensitive viscosity changes within very small sample volumes, which could be of interest for various biotechnological applications. PMID:28594350

  9. Atomic resolution structures from fragmented protein crystals by the cryoEM method MicroED

    PubMed Central

    de la Cruz, M. Jason; Hattne, Johan; Shi, Dan; Seidler, Paul; Rodriguez, Jose; Reyes, Francis E.; Sawaya, Michael R.; Cascio, Duilio; Weiss, Simon C.; Kim, Sun Kyung; Hinck, Cynthia S.; Hinck, Andrew P.; Calero, Guillermo; Eisenberg, David; Gonen, Tamir

    2017-01-01

    Crystallographic analysis of macromolecules depends on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals can provide a simple path for high-resolution structure determination by serial femtosecond crystallography or the cryoEM method MicroED. PMID:28192420

  10. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    SciTech Connect

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K.; Yoon, Seog-Joon; Ambade, Swapnil B.; Lokhande, B.J.; Mane, Rajaram S.; Han, Sung-Hwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  11. Optical strain sensor based on FPI micro-cavities produced by the fiber fuse effect

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Antunes, Paulo; Alberto, Nélia; Frias, Rita; Ferreira, Rute A. S.; André, Paulo

    2014-05-01

    In this work we present a cost effective strain sensor based on micro-cavities produced through the re-use of optical fibers destroyed by the catastrophic fuse effect. The strain sensor estimated sensitivity is 2.22 +/-0.08 pm/μƐ. After the fuse effect, the damaged fiber becomes useless and, consequently, it is an economical solution for sensing proposes, when compared with the cavities produced using other complex methods. Also, the low thermal sensitivity is of great interest in several practical applications, allowing eluding cross-sensitivity with less instrumentation, and consequently less cost.

  12. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor

    NASA Astrophysics Data System (ADS)

    Haneveld, J.; Lammerink, T. S. J.; de Boer, M. J.; Sanders, R. G. P.; Mehendale, A.; Lötters, J. C.; Dijkstra, M.; Wiegerink, R. J.

    2010-12-01

    This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0-1.2 g h-1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h-1.

  13. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  14. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  15. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  16. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    NASA Astrophysics Data System (ADS)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  17. A novel silicon nanotips antireflection surface for the micro Sun sensor.

    PubMed

    Lee, Choonsup; Bae, Sam Y; Mobasser, Sohrab; Manohara, Harish

    2005-12-01

    We have developed a new technique to fabricate an antireflection surface using silicon nanotips for use on a micro Sun sensor for Mars rovers. We have achieved randomly distributed nanotips of radii spanning from 20 to 100 nm and aspect ratio of approximately 200 using a two-step dry etching process. The 30 degrees specular reflectance at the target wavelength of 1 microm is only about 0.09%, nearly 3 orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is approximately 8%. When the density and aspect ratio of these nanotips are changed, a change in reflectance is demonstrated. When surfaces are covered with these nanotips, the critical problem of ghost images that are caused by multiple internal reflections in a micro Sun sensor was solved.

  18. Design, fabrication, and testing of micro-optical sensors containing multiple aspheres

    NASA Astrophysics Data System (ADS)

    Rajic, Slobodan; Egert, Charles M.; Evans, Boyd M., III; Cunningham, Joseph P.; Marlar, Troy A.

    1995-09-01

    The micro-sensor field is presently proliferating with designs and approaches. We have developed a micro-spectrometer for sensing applications containing five precision surfaces, including two off-axis aspheres. The entire monolith is less than six cubic centimeters in volume. This particular design contains a bandwidth of about 2 micrometers which is centered at 980 nm. Once an appropriate starting substrate was produced, the entire system was diamond turned to maintain the required surface figure, inter-surface spacing, and surface tilts. Only three diamond turned fixtures were needed to produce the monolith. The results proved to be more than adequate for many sensing applications. Slightly altered designs could easily be produced containing different bandwidths and resolutions as needed by the customer. Due to the spectrum of interest and the fabrication method, PMMA was the material chosen for this sensor. Other designs configurations incorporating BK7 and sapphire are presently being studied.

  19. Laser surface micro-/nano-structuring by a simple transportable micro-sphere lens array

    NASA Astrophysics Data System (ADS)

    Sedao, Xxx; Derrien, Thibault J.-Y.; Romer, Gert-willem R. B. E.; Pathiraj, Belavendram; Huis in `t Veld, Albertus J.

    2012-11-01

    A micro-sphere array optic was employed for laser surface micro-structuring. This array optic consists of a hexagonally close-packed monolayer of silica micro-spheres. It was organized through a self-assembly process and held together on a glass support, without using any adhesives. The array assembly was then reversed, placed in direct contact with the substrate and exposed to 515 nm, 6.7 ps laser pulses. During the exposure, the silica spheres act as micro-lenses, which enhance the near-field light intensity underneath them. As the spheres are confined in the space between the substrate and glass support, they are not ejected during laser machining. Using this type of direct write laser machining, a large number of identical features (nano-holes) can be produced in parallel simultaneously. The holes drilled are a few hundred nanometres in diameter and the depth depends on the number of laser pulses applied. The impact of laser machining on the micro-spheres was also studied. The micro-spheres were contaminated or partially damaged after micro-structuring. Combination of a moderate laser pulse energy and multiple shots was found to ensure a good surface structuring quality and minimum damage to the spherical particles.

  20. Miniature photoacoustic chemical sensor using microelectromechanical structures

    NASA Astrophysics Data System (ADS)

    Pellegrino, Paul M.; Polcawich, Ronald G.; Firebaugh, Samara L.

    2004-08-01

    Photoacoustic spectroscopy is a useful monitoring technique that is well suited for trace gas detection. The technique also possesses favorable detection characteristics when the system dimensions are scaled to a micro-system design. The objective of present work is to incorporate two strengths of the Army Research Laboratory (ARL), piezoelectric microelectromechanical systems (MEMS) and chemical and biological sensing into a monolithic MEMS photoacoustic trace gas sensor. A miniaturized macro-cell design was studied as a means to examine performance and design issues as the photoacoustics is scaled to a dimension approaching the MEMS level. Performance of the macro-cell was tested using standard organo-phosphate nerve gas simulants, Dimethyl methyl phosphonate (DMMP) and Diisoprpyl methyl phosphonate (DIMP). Current MEMS work centered on fabrication of a multi-layer cell subsystem to be incorporated in the full photoacoustic device. Preliminary results were very positive for the macro-cell sensitivity (ppb levels) and specificity indicating that the scaled cell maintains sensitivity. Several bonding schemes for a three-dimension MEMS photoacoustic cavity were investigated with initial results of a low temperature AuSn bond proving most feasible.

  1. Photoacoustic probe using a micro-ring resonator ultrasonic sensor for endoscopic applications

    PubMed Central

    Dong, Biqin; Chen, Siyu; Zhang, Zhen; Sun, Cheng; Zhang, Hao F.

    2015-01-01

    We designed an all-optical photoacoustic probe for endoscopic applications by employing an optically-transparent, coverslip-type, polymeric micro-ring resonator ultrasonic sensor. We experimentally quantified the axial, tangential, and radial resolutions and angular sensitive stability of this probe. Using this probe, we achieved volumetric imaging of several phantoms. Our all-optical probe design offers clear benefit in integrating photoacoustic endoscope with other optical endoscopic imaging modalities to facilitate the transformation from bench to bedside. PMID:25078180

  2. A micro oxygen sensor based on a nano sol-gel TiO2 thin film.

    PubMed

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-09-03

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  3. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    PubMed Central

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-01-01

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312

  4. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  5. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    DTIC Science & Technology

    2016-02-02

    grid due to error in node placement. SLAMBOT: Structural Health Monitoring Robot using Lamb Waves We developed the combination of a mobile robot and...a computational sensor network approach to perform structural health monitoring of structures. The robot is equipped with piezoelectric sensor...The Bayesian Computational Sensor Network methodology is applied to small-scale structural health monitoring. A mobile robot , equipped with vision and

  6. A beam-membrane structure micromachined differential pressure flow sensor

    SciTech Connect

    Chen, P.; Zhao, Y. L.; Tian, B. Li, C.; Li, Y. Y.

    2015-04-15

    A beam-membrane structure micromachined flow sensor is designed, depending on the principle of differential pressure caused by the mass flow, which is directly proportional to the square flow rate. The FSI (fluid structure interaction) characteristics of the differential pressure flow sensor are investigated via numerical analysis and analog simulation. The working mechanism of the flow sensor is analyzed depending on the FSI results. Then, the flow sensor is fabricated and calibrated. The calibration results show that the beam-membrane structure differential pressure flow sensor achieves ideal static characteristics and works well in the practical applications.

  7. Directional emission micro-cavity lasers with different device structures

    NASA Astrophysics Data System (ADS)

    Yan, Chang-ling; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Li, Hui; Zhang, Jian-jia; Li, Peng; Wang, Jia-bin

    2016-10-01

    The micro-cavity lasers support the ultra-low threshold and ultrahigh Q-factor, but several disadvantages impede further development, such as isotropic far-field profile pattern and low optical power output. To overcome the intrinsic problems, several deformed structures were proposed and investigated. In this paper we present directional emission micro-cavity lasers with limason-shaped, triangle-shaped, and ellipse shaped cavity structures. In experiment, mid-infrared InGaAs/InAlAs quantum cascade material was employed to fabricate these micro-cavity lasers, due to its advantages of lack of surface recombination, and inherently in-plane with transverse magnetic (TM) mode emission. The micro-cavity lasers with different device structures were operated and compared at room temperature, and a higher output power was also achieved by increasing the device structure size.

  8. A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay.

    PubMed

    Yin, Tsung-I; Zhao, Yunpeng; Horak, Josef; Bakirci, Huseyin; Liao, Hsin-Hao; Tsai, Hann-Huei; Juang, Ying-Zong; Urban, Gerald

    2013-03-07

    Cantilever sensors have been extensively explored as a promising technique for real-time and label-free analyses in biological systems. A major sensing principle utilized by state-of-the-art cantilever sensors is based on analyte-induced surface stress changes, which result in static bending of a cantilever. The sensor performance, however, suffers from the intrinsically small change in surface stress induced by analytes, especially for molecular recognition such as antigen-antibody binding. Through the contact angle change on a tailored solid surface, it is possible to convert a tiny surface stress into a capillary force-a much larger physical quantity needed for a practical sensor application. In this work, a micro-cantilever sensor based on contact angle analysis (CAMCS) was proposed to effectively enhance the sensitivity of a sensor in proportion to the square of the length to thickness ratio of the cantilever structure. CAMCS chips were fabricated using a standard complementary-metal-oxide-semiconductor (CMOS) process to demonstrate a 1250-fold enhancement in the sensitivity of surface stress to bioanalyte adsorption using a piezoresistive sensing method. A real-time and label-free troponin I (cTnI) immunoassay, which is now widely used in clinics and considered a gold standard for the early diagnosis and prognosis of cardiovascular disease, was performed to demonstrate cTnI detection levels as low as 1 pg mL(-1). The short detection time of this assay was within several minutes, which matches the detection time of commercially available instruments that are based on fluorescence-labeling techniques.

  9. Recent Trends in Monitoring of European Water Framework Directive Priority Substances Using Micro-Sensors: A 2007–2009 Review

    PubMed Central

    Namour, Philippe; Lepot, Mathieu; Jaffrezic-Renault, Nicole

    2010-01-01

    This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests. PMID:22163635

  10. Micro-patterning of Mammalian Cells on Suspended MEMS Resonant Sensors for Long-Term Growth Measurements

    PubMed Central

    Corbin, Elise A.; Dorvel, Brian R.; Millet, Larry J.; King, William P.; Bashir, Rashid

    2014-01-01

    MEMS resonant mass sensors can measure the mass of individual cells, though long-term growth measurements are limited by the movement of cells off the sensor area. Micro-patterning techniques are a powerful approach to control the placement of individual cells in an arrayed format. In this work we present a method for micro-patterning cells on fully suspended resonant sensors through select functionalization and passivation of the chip surface. This method combines high-resolution photolithography with a blanket transfer technique for applying photoresist to avoid damaging the sensors. Cells are constrained to the patterned collagen area on the sensor by pluronic acting as a cell adhesion blocker. This micro-patterning method enables long-term growth measurements, which is demonstrated by a measurement of the change in mass of a human breast cancer cell over 18 h. PMID:24535001

  11. Multi-sensor fusion techniques for state estimation of micro air vehicles

    NASA Astrophysics Data System (ADS)

    Donavanik, Daniel; Hardt-Stremayr, Alexander; Gremillion, Gregory; Weiss, Stephan; Nothwang, William

    2016-05-01

    Aggressive flight of micro air vehicles (MAVs) in unstructured, GPS-denied environments poses unique challenges for estimation of vehicle pose and velocity due to the noise, delay, and drift in individual sensor measurements. Maneuvering flight at speeds in excess of 5 m/s poses additional challenges even for active range sensors; in the case of LIDAR, an assembled scan of the vehicles environment will in most cases be obsolete by the time it is processed. Multi-sensor fusion techniques which combine inertial measurements with passive vision techniques and/or LIDAR have achieved breakthroughs in the ability to maintain accurate state estimates without the use of external positioning sensors. In this paper, we survey algorithmic approaches to exploiting sensors with a wide range of nonlinear dynamics using filter and bundle-adjustment based approaches for state estimation and optimal control. From this foundation, we propose a biologically-inspired framework for incorporating the human operator in the loop as a privileged sensor in a combined human/autonomy paradigm.

  12. Sensor technology workshop: Structure and goals

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A.

    1991-01-01

    The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  13. Hydrazine leak detection using poly (3-hexylthiophene) thin film micro-sensor

    NASA Astrophysics Data System (ADS)

    Yang, H.; Wan, J.; Shu, H.; Liu, X.; Lakshmanan, R. S.; Guntupalli, R.; Hu, J.; Howard, W.; Chin, B. A.

    2006-05-01

    Hydrazine is mostly used as a propellant in the control/propulsion system of missiles, spacecraft and satellites. However with its highly toxic and strong reducing nature, hydrazine is very dangerous to humans and the environment. In this research, a low cost, passive, and highly sensitive micro-sensor has been developed as an alarm device for real-time monitoring for the accidental release of hydrazine, and to insure the safety of personnel and the readiness of the system before lift-off. The micro-sensor is fabricated using standard microelectronic manufacturing techniques and is composed of interdigitated electrodes and a hydrazine-sensitive poly (3-hexylthiophene) (P3HT) thin film. When exposed to 1ppm of hydrazine gas, the compensation interaction between the reducing hydrazine gas and p-type doped P3HT leads to a five order magnitude increase in the resistance of the device. The sensor is capable of detecting hydrazine leaks from tens of ppb to tens of ppm concentration. The sensitivity of sensor increases with the increasing of hydrazine concentration and the decreasing of the polymer film thickness. A numerical simulation result based on the possible theoretical model is compared with the experimental data, which shows a good agreement.

  14. SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol

    2017-02-01

    Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.

  15. Dynamic Structural Health Monitoring of slender structures using optical sensors.

    PubMed

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações--Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior.

  16. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  17. Photonic crystal structures with tunable structure color as colorimetric sensors.

    PubMed

    Wang, Hui; Zhang, Ke-Qin

    2013-03-28

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  18. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    PubMed Central

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  19. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  20. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  1. Wireless sensor systems and methods, and methods of monitoring structures

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  2. Development of multichannel soft tactile sensors having fingerprint structure.

    PubMed

    Tsutsui, H; Murashima, Y; Honma, N; Kobayashi, K

    2014-01-01

    It is possible to accurately recognize the shape of an object or to grip it by setting soft tactile sensors on a robot's hands. We studied a multichannel soft tactile sensor as an artificial hand and evaluated the pressure's response performance from several directions and the slipping and sliding responses. The tactile sensor consisted of multiple pneumatic sensors and a soft cap with a fingerprint structure that was made of silicone gum and was separated from multiple spaces. Evaluation tests showed that the multiple soft tactile sensors estimate both an object's contact force and its contact location. Our tactile sensor also measured the object's roughness by the slide on surface texture.

  3. A radar unattended ground sensor with micro-Doppler capabilities for false alarm reduction

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave; Silvious, Jerry; Burke, Ed

    2010-10-01

    Unattended ground sensors (UGS) provide the capability to inexpensively secure remote borders and other areas of interest. However, the presence of normal animal activity can often trigger a false alarm. Accurately detecting humans and distinguishing them from natural fauna is an important issue in security applications to reduce false alarm rates and improve the probability of detection. In particular, it is important to detect and classify people who are moving in remote locations and transmit back detections and analysis over extended periods at a low cost and with minimal maintenance. We developed and demonstrate a compact radar technology that is scalable to a variety of ultra-lightweight and low-power platforms for wide area persistent surveillance as an unattended, unmanned, and man-portable ground sensor. The radar uses micro-Doppler processing to characterize the tracks of moving targets and to then eliminate unimportant detections due to animals as well as characterize the activity of human detections. False alarms from sensors are a major liability that hinders widespread use. Incorporating rudimentary intelligence into sensors can reduce false alarms but can also result in a reduced probability of detection. Allowing an initial classification that can be updated with new observations and tracked over time provides a more robust framework for false alarm reduction at the cost of additional sensor observations. This paper explores these tradeoffs with a small radar sensor for border security. Multiple measurements were done to try to characterize the micro-Doppler of human versus animal and vehicular motion across a range of activities. Measurements were taken at the multiple sites with realistic but low levels of clutter. Animals move with a quadrupedal motion, which can be distinguished from the bipedal human motion. The micro-Doppler of a vehicle with rotating parts is also shown, along with ground truth images. Comparisons show large variations for

  4. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances

    NASA Astrophysics Data System (ADS)

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-08-01

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the

  5. Optical fiber sensors for materials and structures characterization

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Claus, R. O.

    1991-01-01

    The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.

  6. Micro-electro-mechanical system (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control

    NASA Astrophysics Data System (ADS)

    Zhang, Sean Z.; Xu, Guoda; Qiu, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-08-01

    A MicroElectroMechanical Systems (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control have been developed. Fabrication involves overwriting two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS fiber optic sensor and sensor network has been derived, and simulation results concerning load, angle, strain, and temperature have been obtained. The fabricated MEMS diaphragm and the overlaid FBGs have been packaged together on the basis of simulation results and mounted on a specially designed cantilever system. The combined multifunctional MEMS fiber optic sensor and sensor network is cost-effective, fast, rugged enough to operate in harsh environmental conditions, compact, and highly sensitive.

  7. Double Hall sensor structure reducing voltage offset

    NASA Astrophysics Data System (ADS)

    Oszwaldowski, M.; El-Ahmar, S.

    2017-07-01

    In this paper, we report on the double Hall sensor structure (DHSS) in which the voltage offset can be effectively reduced. The DHSS is composed of two standard Hall sensors that are activated with two currents from electrically independent current sources. The operation principle of the DHSS is explained in detail, and the concluded properties of the DHSS are confirmed in the experimental part of the paper. The measurements are performed on DHSSs based on InSb thin films. The offset is reduced by about three orders of magnitude. The minimum value of the reduced offset obtained is 10 μV. It appears that the minimum reduced offset is limited by the electric noise. The advantage of DHSS is that it can be manufactured with the standard thin film technology enabling effective miniaturization of the system. The DHSS can effectively be used for the measurements of the Hall effect in ultra-thin layers containing the two dimensional electron gas, such as the epitaxial graphene.

  8. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  9. Shape deposition manufacturing of smart metallic structures with embedded sensors

    NASA Astrophysics Data System (ADS)

    Li, Xiaochun; Golnas, Anastasios; Prinz, Fritz B.

    2000-06-01

    The need to obtain information on the performance and lifetime of a tool in service is of prime importance to many industries. It calls for on-line acquisition of information such as temperature and strain values from tools and structures. With embedded sensors, structures are capable of monitoring parameters at critical locations not accessible to ordinary sensors. To embed sensors in the functional structures, especially structures, Shape Deposition Manufacturing (SDM) is a methodology capable of integrating sensors during the production of tooling or structural components. Thin film sensors and fiber optic sensors have been identified as two promising candidates to be integrated in metallic structures. Embedded thin film strain gages have been characterized in a four-point bending test and the results, showing linearity and no hysteresis, match with those from the theoretical model and commercially available strain gages. Fiber optic sensors have been successfully embedded in nickel and stainless steel structures. The embedded fiber optic sensors have been used to measure temperatures and strains. They provide higher sensitivity, good accuracy, and high temperature capacity. Based on fiber optic sensor embedding techniques, a remote temperature/strain sensing system suitable rotating objects, such as turbine blades, has been developed. The developed techniques can be harnessed for rapid prototyping of smart metallic structures.

  10. Motion compensation for structured light sensors

    NASA Astrophysics Data System (ADS)

    Biswas, Debjani; Mertz, Christoph

    2015-05-01

    In order for structured light methods to work outside, the strong background from the sun needs to be suppressed. This can be done with bandpass filters, fast shutters, and background subtraction. In general this last method necessitates the sensor system to be stationary during data taking. The contribution of this paper is a method to compensate for the motion if the system is moving. The key idea is to use video stabilization techniques that work even if the illuminator is switched on and off from one frame to another. We used OpenCV functions and modules to implement a robust and efficient method. We evaluated it under various conditions and tested it on a moving robot outdoors. We will demonstrate that one can not only do 3D reconstruction under strong ambient light, but that it is also possible to observe optical properties of the objects in the environment.

  11. Vacuum isostatic micro molding of microfluidic structures into polytetrafluoroethylene (PTFE) materials

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-04-01

    Polytetrafluoroethylene (PTFE) is an ideal material for use in microfluidic applications, such as industrial inkjet and biomedical analysis devices. PTFE has outstanding physical properties; such as chemical inertness and resistance to chemical corrosion, even when exposed to a strong acid, alkali and oxidants. Its properties provide for superior electrical insulation and thermal stability, which is not affected by wide ranges in temperature and frequency. Its non-absorption of moisture makes it a perfect material for consideration in micro-fluidic devices used in chemical analysis, fluidic photonic sensors and biomedical diagnostics. This paper presents an overview of a unique fabrication method that incorporates a variety of elements to establish a processing technique that can form micro channels, complex filter arrays and reflective micro mirror structures into PTFE materials for such applications. Using a modified isostatic compression molding process, this new technique incorporates the addition of a vacuum to assist in the reliable molding of micron structures and further densification of the fused or semi-fused PTFE. Various micro-structured electroformed and micro-machined shims are demonstrated to form small microstructures into the surface of the PTFE material. The combination of the vacuum and the electroformed shim within the molding process noticeably increases the precision, reproducibility and resolution of microstructures that can be realized. The paper will describe the molding hardware involved, process parameters and the resulting microfluidic channels and complex filter and capillary structures formed. Function testing and metrology of the micro-structure geometry formed on each sample will be compared to the original design mandrel geometry.

  12. Fabrication of structured micro and nanofibers by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Díaz, J. E.; Fernández-Nieves, A.; Barrero, A.; Márquez, M.; Loscertales, I. G.

    2008-08-01

    Among the different ways of synthesizing fiber and tubular micro and nanostructures, some top-down methods resort to electro-hydrodynamic forces to smoothly stretch liquids interfaces down to such small size scales. The well-known electrospinning technique, commonly used to fabricate micro and nanofibers of a broad variety of materials, is now expanded to fabricate coaxial fibers upon the generation of electrified coaxial jets instead of single jets. We briefly report different types of micro and nano structures that may be fabricated with this new technique termed co-electrospinning.

  13. Fabrication of micro/nano-structures by electrohydrodynamic jet technique

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Zhao, Xiaojun; Lin, Yigao; Ren, Tongqun; Liang, Junsheng; Liu, Chong; Wang, Liding

    2017-08-01

    Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.

  14. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  15. A planar lightwave circuit based micro interrogator and its applications to the interrogation of multiplexed optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xiao, Gaozhi; Mrad, Nezih; Guo, Honglei; Zhang, Zhiyi; Yao, Jianping

    2008-12-01

    Optical fiber Bragg grating sensors have found potential applications in many fields, but the lack of a simple, field deployable and low cost interrogation system is hindering their deployment. To tackle this, we have developed a micro optical sensor interrogator using a monolithically integrated planar lightwave circuit based echelle diffractive grating demultiplexer and a detector array. The design and development of this device are presented in this paper. It has been found that the measurement range of this micro interrogator is more than 25 nm with better than 1 pm resolution. This paper also reports the applications of the micro interrogator developed to the monitoring of commercial optical fiber Bragg grating (FBG) temperature sensors and mechanical sensors. The results obtained are very satisfactory and in some cases, they are better than those obtained using commercial bench top lab equipment.

  16. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  17. Nano- and micro-structured silicon for hybrid near-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Äńerek, V.; Głowacki, E. D.; Bednorz, M.; Demchyshyn, S.; Sariciftci, N. S.; Ivanda, M.

    2016-05-01

    Structuring surface and bulk of crystalline silicon on different length scales can significantly alter its properties and possibly improve the performance of opto-electronic devices and sensors based on silicon. Different dominant feature scales are responsible for modification of some of electronic and optical properties of silicon. Several easily reproducible chemical methods for facile structuring of silicon on nano and micro-scales, based on both electroless and anodic etching of silicon in hydrofluoric acid based etchants, and chemical anisotropic etching of silicon in basic environments, are presented. We show how successive micro and nano structuring creates hierarchical silicon surfaces, which can be used to simultaneously exploit the advantages of both structuring feature length scales. Finally, we demonstrate a large increase in photocurrent obtained from a hybrid structured silicon/organic near-infrared photodetector. Improved silicon/6,6'-dibromoindigo hybrid photodiodes were prepared by nano- and micro-structuring the silicon part of the heterojunction by wet chemical etching methods. Photocurrent and spectral responsivity were improved in comparison to planar diodes by up to two orders of magnitude by optimization of the silicon structuring process. We show that the improvement in photocurrent is not due to the increase in surface area or light trapping.

  18. Topography measurement of micro structure by modulation-based method

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Liu, Junbo; Deng, Qinyuan; Cheng, Yiguang; Hu, Song

    2016-10-01

    Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. Different from the traditional white-light interferometry approach, the modulation-based method is expected to measure topography of micro structure by the obtained modulation of each interferometry image. Through seeking the maximum modulation of every pixel respectively in Z direction, the method could obtain the corresponding height of individual pixel and finally get topography of the structure. Owing to the characteristic of modulation, the proposed method which is not influenced by the change of background light intensity caused by instable light source and different reflection index of the structure could be widely applied with high stability. The paper both illustrates the principle of this novel method and conducts the experiment to verify the feasibility.

  19. Vacuum isostatic micro molding of diffractive structures into PTFE materials

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2007-09-01

    Polytetrafluoroethylene (PTFE) is an ideal material for use in industrial, automotive and consumer electronics. Specifically, PTFE has outstanding physical properties; such as chemical inertness and resistance to chemical corrosion, even when exposed to a strong acid, alkali and oxidants. Its properties provide for superior electrical insulation and thermal stability, which is not affected by wide ranges in temperature and frequency. Its non-absorption of moisture makes it a perfect material for consideration in micro optical, retro-reflector or diffuser type devices used in handheld displays, flat panel displays as well as automotive, industrial and home lighting. This paper presents an overview of a unique fabrication method that incorporates a variety of elements to establish a processing technique that can form micro diffractive, holographic and reflective structures into PTFE materials. By means of modifying an existing known molding process, this new technique incorporates the addition of a vacuum to assist in the reliable molding and densification of the PTFE as well the use of a micro-structured electroformed shim to form small microstructures into the surface of the PTFE material. The combination of the vacuum and the electroformed shim within the molding process noticeably increases the precision, reproducibility and resolution of micro-structures that can be realized. The paper will describe the molding hardware involved, process parameters and the resulting structures formed. Optical function testing and metrology of the micro-structure geometry formed on each sample will be compared to the original design mandrel geometry [1].

  20. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  1. Test Structures Applied to the Rapid Prototyping of Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Chang, L-J.; Martin, D.

    1997-01-01

    Recently, test structures were used to aid in the rapid development of a gas sensor and pressure sensor. These sensors were fabricated using co-fired ceramic technology and a multiproject approach. This talk will describe results obtained from a ceramic substrate which contained 36 chips with six variants including the sensors, process control monitors, and an interconnect chip. As far as the authors know, this is the first implementation of multi-projects in co-fired ceramic substrate. The gas sensor is being developed for the Space Shuttle and the pressure gage is being developed as a Martian barometer.

  2. Efficient sensor placement for state estimation in structural dynamics

    NASA Astrophysics Data System (ADS)

    Hernandez, Eric M.

    2017-02-01

    This paper derives a computationally efficient algorithm to determine optimal sequential sensor placement for state estimation in linear structural systems subjected to unmeasured excitations and noise contaminated measurements. The proposed algorithm is developed within the context of the Kalman filter and it minimizes the variance of the state estimate among all possible sequential sensor locations. The paper investigates the effects of measurement type, covariance matrix partition selection, spatial correlation of excitation and model selection on optimal sensor placement. The paper shows that the sequential approach reaches the optimal sensor placement as the number of sensor increases.

  3. Test Structures Applied to the Rapid Prototyping of Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Chang, L-J.; Martin, D.

    1997-01-01

    Recently, test structures were used to aid in the rapid development of a gas sensor and pressure sensor. These sensors were fabricated using co-fired ceramic technology and a multiproject approach. This talk will describe results obtained from a ceramic substrate which contained 36 chips with six variants including the sensors, process control monitors, and an interconnect chip. As far as the authors know, this is the first implementation of multi-projects in co-fired ceramic substrate. The gas sensor is being developed for the Space Shuttle and the pressure gage is being developed as a Martian barometer.

  4. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  5. Energy harvesting from arterial blood pressure for powering embedded micro sensors in human brain

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2017-03-01

    This manuscript investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the human brain. One of the major hurdles in recording and measuring electrical data in the human nervous system is the lack of implantable and long term interfaces that record neural activity for extended periods of time. Recently, some authors have proposed micro sensors implanted deep in the brain that measure local electrical and physiological data which are then communicated to an external interrogator. This paper proposes a way of powering such interfaces. The geometry of the proposed harvester consists of a piezoelectric, circular, curved bimorph that fits into the blood vessel (specifically, the Carotid artery) and undergoes bending motion because of blood pressure variation. In addition, the harvester thickness is constrained such that it does not modify arterial wall dynamics. This transforms the problem into a known strain problem and the integral form of Gauss's law is used to obtain an equation relating arterial wall motion to the induced voltage. The theoretical model is validated by means of a Multiphysics 3D-FEA simulation comparing the harvested power at different load resistances. The peak harvested power achieved for the Carotid artery (proximal to Brain), with PZT-5H, was 11.7 μW. The peak power for the Aorta was 203.4 μW. Further, the variation of harvested power with variation in the harvester width and thickness, arterial contractility, and pulse rate is investigated. Moreover, potential application of the harvester as a chronic, implantable and real-time Blood pressure sensor is considered. Energy harvested via this mechanism will also have applications in long-term, implantable Brain Micro-stimulation.

  6. Vibrating Makes for Better Seeing: From the Fly's Micro-Eye Movements to Hyperacute Visual Sensors.

    PubMed

    Viollet, Stéphane

    2014-01-01

    Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders') miniature eye movements have been modeled, simulated, and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity). The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

  7. An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation

    NASA Astrophysics Data System (ADS)

    Chen, Dongyang; Zhao, Jiuxuan; Wang, Yinshen; Xie, Jin

    2017-06-01

    A resonant electrostatic charge sensor with high sensitivity based on micro electromechanical systems (MEMS) technology is proposed to measure electric charge. Input charge produces lateral electrostatic force to change effective stiffness of double-ended tuning forks resonator, and leads to a resonant frequency shift. The sensitivity of the charge sensor is 4.4  ×  10-4 Hz fC-2. The proposed sensing scheme of effective stiffness perturbation has higher sensitivity than the traditional axial strain sensing methods. Experimental results show that the frequency modulation has better resolution and stability than the amplitude modulation. The proposed sensing scheme also creates additional energy transmission paths inside the device to improve quality factor and stabilize frequency fluctuation. The instability of resonant frequency induced by mechanical nonlinearity are investigated.

  8. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione.

    PubMed

    Supharoek, Sam-ang; Youngvises, Napaporn; Jakmunee, Jaroon

    2012-01-01

    A simple and inexpensive method for fabricating a microfluidic platform was developed. A printed circuit board (PCB) was used to make a master mold for replicating a polydimethylsiloxane (PDMS) microchannel. The master mold was fabricated by a simple photolithographic method, employing a photoresist dry film. The process did not use hazardous chemicals, a clean room or any expensive instrument. The PDMS microchannel was clamped with polymethylmethacrylate (PMMA) plates, where a light emitting diode (LED) as a light source and a light dependent resistor (LDR) as a light sensor were attached to form a simple optical sensor. The system was successfully employed as a micro flow injection analysis for the determination of glutathione in dietary supplement samples. A linear calibration graph in the range of 5.0 - 60.0 mg L(-1) glutathione was obtained with a detection limit of 0.01 mg L(-1). The system provided a sample throughput of 48 h(-1), with microliter consumption of the reagent.

  9. Femtosecond laser fabricated in-line micro multicavity fiber FP interferometers sensor

    NASA Astrophysics Data System (ADS)

    Tian, Ming; Lu, Ping; Chen, Li; Liu, Deming; Yang, Minghong; Zhang, Jiangshan

    2014-04-01

    A compact micro multicavity Fabry-Perot (FP) optical fiber tip sensor is presented. In the end of the single-mode fiber (SMF), we drill a short air hole with femtosecond laser, which forms a multicavity together with the fiber flat face tip. The sensor has been experimentally tested for refractive index (RI) and temperature sensing by monitoring its wavelength shift. Simultaneous measurement of both changes in the ambient temperature and the RI can be realized using the sensitivity matrix. Measurement results show that the in-line FP exhibits the gas RI sensitivity of 867.76 nm/RIU and the temperature sensitivity of 7.8 pm/°C within the range of 24-104 °C, and the device is highly stable over time.

  10. A 16-{micro}A interface circuit for a capacitive flow sensor

    SciTech Connect

    Rodgers, B.; Yunus, M.; Goenawan, S.; Kaneko, Yoshikazu; Yoshiike, Junichi

    1998-12-01

    A micropower interface circuit is described for fluidic flow measurement in commercial gas meters. The application-specific integrated circuit converts dynamic capacitive-flow sensor readings from 1 to 150 Hz into digital pulses suitable for reading by the host microcontroller. The signal path is first-order {Delta}{Sigma} modulation followed by a three-pole, one-zero infinite impulse response bandpass filter. Analog signal processing is fully differential switched capacitor, with amplifiers and dc current consuming blocks operating in weak inversion. Chip bias and oscillator frequency, and capacitive sensor offset and gain, are trimmed with on-chip EEPROM. Operating ranges are 2.5--3.6 V and from {minus}10 to 65 C, with active I{sub dd} of 16 {micro}A.

  11. Fiber optic sensor reliability issues in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Zhihong; Bassam, Asadollah; Jia, Hongqiang; Tennant, Adam; Ansari, Farhad

    2005-05-01

    Reliability is an important aspect of any sensor, and especially in terms of long term monitoring of structures. Some issues pertaining to the reliability of optical fiber sensors in civil structures are discussed in this article. The strength and fatigue properties of optical fibers influence their performance, and life span. Lessons learnt from the reliability of optical fibers in the telecommunication industry are useful for assessment of reliability in optical fiber sensors. However, optical fiber sensors go through additional manufacturing steps, handling processes, and in general operate under environmental conditions and stress levels different from the telecommunication lines. In general, optical fiber sensors in structures are subjected to fatigue loading under high stresses. Other reliability concerns pertain to the effects of the packaging, installation issues at the construction site. These issues along with some of the results acquired from fatigue tests on fiber optic Bragg gratings and long gauge interferometric sensors are discussed in this article.

  12. Development of a thick film PZT foil sensor for use in structural health monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2013-02-01

    Acoustic emission (AE) monitoring is a technique of growing interest in the field of nondestructive testing (NDT). The use of AE devices to monitor the health of structural components is currently limited by the cost of AE equipment, which prohibits the permanent placement of AE devices on structures for the purposes of continuous monitoring and the monitoring of areas with limited access. Micro electromechanical systems (MEMS) can provide solutions to these problems. We present the manufacture of a 4.4-μm-thick lead zirconate titanate (PZT) film on a 110-μm-thick titanium foil substrate for use as an AE sensor. The thick-film sensor is benchmarked against commercially available AE sensors in static and dynamic monitoring applications. The thick-film AE device is found to perform well in the detection of AE in static applications. A low signal-to-noise ratio is found to prohibit the detection of AE in a dynamic application.

  13. A 16-bit sigma-delta ADC applied in micro-machined inertial sensor

    NASA Astrophysics Data System (ADS)

    Qiang, Li; Xiaowei, Liu

    2015-04-01

    This paper presents a low-distortion sigma-delta (Σ-Δ) ADC for micro-machined inertial sensors. The design adopts a single-loop, fourth-order low-pass single-bit modulator with feedforward paths which can ensure the signal transfer lossless and reduce the nonlinearity and power consumption. The chip is manufactured in standard 0.5µm CMOS process, and the area is 2.2mm2. The ADC achieves 108dB signal to noise ratio (SNR) and 110dB dynamic range (DR). Total power consumption is less than 15mW with 5V supply.

  14. Micro-resonator-based electric field sensors with long durations of sensitivity

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.

    2017-05-01

    In this paper, we present a new fabrication method for the whispering gallery mode (WGM) micro-sphere based electric field sensor that which allows for longer time periods of sensitivity. Recently, a WGM-based photonic electric field sensor was proposed using a coupled dielectric microsphere-beam. The external electric field imposes an electrtrostriction force on the dielectric beam, deflecting it. The beam, in turn compresses the sphere causing a shift in its WGM. As part of the fabrication process, the PDMS micro-beams and the spheres are curied at high-temperature (100oC) and subsequently poled by exposing to strong external electric field ( 8 MV/m) for two hours. The poling process allows for the deposition of surface charges thereby increasing the electrostriction effect. This methodology is called curing-then-poling (CTP). Although the sensors do become sufficiently sensitive to electric field, they start de-poling after a short period (within 10 minutes) after poling, hence losing sensitivity. In an attempt to mitigate this problem and to lock the polarization for a longer period, we use an alternate methodology whereby the beam is poled and cured simultaneously (curing-while-poling or CWP). The new fabrication method allows for the retention of polarization (and hence, sensitivity to electric field) longer ( 1500 minutes). An analysis is carried out along with preliminary experiments. Results show that electric fields as small as 100 V/m can be detected with a 300 μm diameter sphere sensor a day after poling.

  15. An intrinsic fiber-optic single loop micro-displacement sensor.

    PubMed

    Martinez-Rios, Alejandro; Monzon-Hernandez, David; Torres-Gomez, Ismael; Salceda-Delgado, Guillermo

    2012-01-01

    A micro-displacement sensor consisting of a fiber-loop made with a tapered fiber is reported. The sensor operation is based on the interaction between the fundamental cladding mode propagating through the taper waist and higher order cladding modes excited when the taper is deformed to form a loop. As a result, a transmission spectrum with several notches is observed, where the notch wavelength resonances shift as a function of the loop diameter. The loop diameter is varied by the spatial displacement of one end of the fiber-loop attached to a linear translation stage. In a displacement range of 3.125 mm the maximum wavelength shift is 360.93 nm, with 0.116 nm/μm sensitivity. By using a 1,280 nm broadband low-power LED source and a single Ge-photodetector in a power transmission sensor setup, a sensitivity in the order of 2.7 nW/μm is obtained in ≈ 1 mm range. The proposed sensor is easy to implement and has a plenty of room to improve its performance.

  16. A study on refractive index sensors based on optical micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Tsigaridas, Georgios N.

    2017-09-01

    In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimum design parameters of the system, maximizing the sensitivity of the sensor, are determined. It is found that, when optimally designed, the sensor can detect relative refractive index changes of the order of Δ n/ n≈3×10-4, assuming that the experimental setup can detect relative wavelength shifts of the order of Δ λ/λ≈3×10-5. The behavior of the system as bio-sensor has also been examined. It is found that, when optimally designed, the system can detect refractive index changes of the order of Δ n≈10-3 for a layer thickness of t=10 nm, and changes in the layer thickness of the order of λ t≈0.24 nm, for a refractive index change of Δ n=0.05.

  17. Formation of micro/nano structures out of soap bubbles

    NASA Astrophysics Data System (ADS)

    Bai, Xiao-Dan; Liu, Jing

    2007-07-01

    We proposed to synthesize, etch and construct micro/nano structures through manipulating the large-scale bubbles composed of specific chemical compounds. The core of the method lies in the chemical reaction occurred at the interfaces between two or more soap bubbles. A unique virtue of the bubble is that it can have a rather large diameter however an extremely small membrane thickness, whose smallest size could reach nano scale. Therefore, the chemical reaction and synthesis occurred in the common interface of such contacting bubbles would lead to products with very small size. Several typical micro structures were fabricated to demonstrate the feasibility of the new method. Being flexible, easily controllable and environment friendly, the present concept may open a straightforward low-cost way for making micro/nano structures.

  18. A structural genomics analysis of histidine kinase sensor domains

    NASA Astrophysics Data System (ADS)

    Cheung, Jonah

    2005-11-01

    Histidine kinase sensors are a part of a two-component system of protein signaling in prokaryotes and lower eukaryotes that relay an external environmental signal to an adaptive internal cellular response. Signal transduction occurs via phosphotransfer between a sensor protein and a response regulator which interact in tandem. The sensor is usually a transmembrane protein that contains a conserved cytoplasmic histidine kinase transmitter domain and a modular periplasmic sensor domain. The response regulator is cytoplasmic protein that contains a receiver domain that interacts with the histidine kinase, and an output domain that interacts with regulators of transcription or chemotaxis. My work focuses on the X-ray structure determination of a variety of bacterial sensor domains, based on a structural genomics analysis of the entire sensor domain family. Structures of the NarX, DcuS, LisK, and DctB sensor domains have been solved to atomic resolution, some in both ligand-bound and ligand-free states. Two distinct structural folds have been revealed---all-alpha helical and mixed alpha-beta. An analysis of the structures reveals a possible mechanism of transmembrane signaling in histidine kinase sensors as a sliding-piston motion between transmembrane helices. Although there is great diversity in ligand binding, there appears to be a small number of distinct sensor domain folds for which structural representatives of two have been solved. A final synthesis of the structural information with a comprehensive bio-informatics analysis of all histidine kinase sensor domain sequences allows fold prediction for over 400 sensor domains, in a step towards mapping the entire structural landscape of this protein family.

  19. Micro Humidity Sensor with High Sensitivity and Quick Response/Recovery Based on ZnO/TiO2 Composite Nanofibers

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Rui; Xiao, Qi; Zhang, Dan; Liu, Yong

    2011-07-01

    ZnO/TiO2 composite nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. A micro humidity sensor is fabricated by spinning the precursors of these nanofibers on a ceramic substrate with Ag-Pd interdigitated electrodes. Humidity sensing investigation reveals that this micro sensor offers high sensitivity and quick response/recovery at an operating frequency of 100Hz. The corresponding impedance changes more than four orders of magnitude within the whole humidity range from 10% to 90% relative humidity (RH), and the response and recovery times are about 4 and 12 s, respectively. The maximum hysteresis is around 2% RH. The humidity sensing mechanism is also discussed based on the nanofiber structure and morphology.

  20. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances.

    PubMed

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-09-14

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.

  1. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  2. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  3. Experimental study of PDMS mechanical properties for the optimization of polymer based flexible pressure micro-sensors

    NASA Astrophysics Data System (ADS)

    Dinh, T. H. N.; Martincic, E.; Dufour-Gergam, E.; Joubert, P.-Y.

    2016-10-01

    This paper reports on the optimization of flexible PDMS-based normal pressure capacitive micro-sensors dedicated to wearable applications. The deformation under a normal force of PDMS thin films of thicknesses ranging from 40 μm to 10 mm is firstly experimentally studied. This study points out that for capacitive micro-sensors using bulky PDMS thin films as deformable dielectric material, the sensitivity to an applied normal load can be optimized thanks to an adequate choice of the so-called form ratio of the involved PDMS thin film. Indeed, for capacitive micro-sensors exhibiting 9 mm2 electrodes, the capacitance change under a 6 N load can be adjusted from a few percent up to over 35% according to the choice of the load-free thickness of the used PDMS film. These results have been validated thanks to electromechanical characterizations carried out on two flexible PDMS based capacitive normal pressure micro-sensor samples fabricated with two different thicknesses. The obtained results open the way to the enhanced design of PDMS based pressure sensors dedicated to wearable and medical applications. Further works will extend this study to a wider range of sensor dimensions, and using numerical modelling.

  4. Magnetic Micro/Nano Structures for Biological Manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hsieh, Teng-Fu; Chang, Wei-Chieh; Yeh, Kun-Chieh; Hsu, Ming-Shinn; Chang, Ching-Ray; Chen, Jiann-Yeu; Wei, Zung-Hang

    2016-05-01

    Biomanipulation based on micro/nano structures is an attractive approach for biotechnology. To manipulate biological systems by magnetic forces, the magnetic labeling technology utilized magnetic nanoparticles (MNPs) as a common rule. Ferrofluid, well-dispersed MNPs, can be used for magnetic modification of the surface or as molds to form organized microstructures. For magnetic-based micro/nano structures, different methods to modulate magnetic field at the microscale have been developed. Specifically, this review focused on a new strategy which uses the concept of micromagnetism of patterned magnetic thin film with specific domain walls configurations to generate stable magnetic poles for cell patterning.

  5. Ferroelectric domain engineering and micro-structuring of lithium niobate

    NASA Astrophysics Data System (ADS)

    Mailis, Sakellaris

    2010-11-01

    This paper discusses a number of recently developed all optical and optically assisted methods for ferroelectric domain engineering in lithium niobate and their impact on the micro-structuring of this optical ferroelectric crystal. Optical radiation is used to change the response of lithium niobate crystals to externally applied electric field encouraging or inhibiting ferroelectric domain inversion in a simultaneous or latent manner. Optically assisted poling processes have the advantage of producing ferroelectric domains with arbitrary shapes free from crystal symmetry restrictions which is very important for fabricating surface micro/nano-structures in this material.

  6. Local structure of ZnO micro flowers and nanoparticles obtained by micro segmented flow synthesis

    SciTech Connect

    Li, Shuning; Roy, Amitava; Lichtenberg, Henning; Merchan, Gregory; Kumar, Challa S.S.R.; Köhler, J. Michael

    2012-03-07

    The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into consideration while evaluating the size-dependent visible emission of ZnO nanoparticles.

  7. Distributed adaptive diagnosis of sensor faults using structural response data

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  8. Software structure for broadband wireless sensor network system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  9. Micro-machined thin film hydrogen gas sensor, and method of making and using the same

    NASA Technical Reports Server (NTRS)

    DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)

    2001-01-01

    A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  10. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    NASA Astrophysics Data System (ADS)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  11. Porous Si structure as moisture sensor

    SciTech Connect

    Peterson, D.W.; Nguyen, L.T.

    1996-12-31

    Development and characterization of a capacitive moisture sensor made from porous Si is presented. The sensor development was in support of the DoD funded Plastic Package Availability program and was intended for the detection of pinholes and defects in moisture barrier coatings applied to ICs during fabrication or during the plastic encapsulation assembly process.

  12. Embedded passive wireless sensors for detecting conductivity within RC structures

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Pasupathy, Praveenkumar; Chou, Chih-Chieh; Wood, Sharon L.; Neikirk, Dean P.

    2011-04-01

    A passive, wireless and inexpensive sensor has been developed to monitor the conductivity of concrete and thereby provide information on the progress of chloride-induced corrosion of the embedded reinforcement in concrete structures. Sensors are designed to be attached to the reinforcement cages before placement of the concrete in new construction or in portions of rehabilitated structures. Sensors will then be interrogated intermittently over the service life during routine inspections. The results of two experimental investigations are discussed in this paper. In the first, conductivity sensors were submerged in liquids of increasing conductivity. In the second, conductivity sensors were embedded in concrete cylinders and interrogated over a 25-week period during initial set and curing of the concrete. Analysis of the measured data shows that the passive conductivity sensors were successful in detecting a variety of conductivity levels in the concrete.

  13. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    NASA Astrophysics Data System (ADS)

    Azmer, Mohamad Izzat; Ahmad, Zubair; Sulaiman, Khaulah; Touati, Farid; Bawazeer, Tahani M.; Alsoufi, Mohammad S.

    2017-03-01

    In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  14. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  15. Metrology and characterization of impurity transport during cleaning of micro and nano structures

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    A major challenge in the manufacturing of micro and nano devices is the cleaning, rinsing, and drying of very small structures. Without a technology for in situ and real-time monitoring and controlling, the rinse processes that account for a significant fraction of the total processing steps use a large amount of water and energy perhaps unnecessarily. This "blind" processing approach leads to waste that can have significant economic and environmental impacts. An electrochemical residue sensor (ECRS) has been developed and is aimed at in situ and real-time measurement of residual contamination inside the micro and nano structures. Using this technology, the mechanisms and bottlenecks of cleaning, rinsing, and drying can be investigated and the processes can be monitored and controlled. An equivalent circuit model was developed to assist the design of the sensor; its validity was proved by the first prototype. The simulation results and the experimental data predicted a good sensitivity in a wide range of operational frequency. To use the sensor in a practical rinse tank setup, the sensor-on-wafer prototype was designed and fabricated. Both the fab-scale and the lab-scale tests were performed and results illustrated many successes. The sensor is the first and the only available technology that provides the in situ and real-time cleanness information in the microstructures during the rinse processes. The sensor results distinguished four different types of rinse processes and showed high sensitivity to the ionic concentration change in the microstructures. The impacts of cleaning and rinsing parameters such as flow rate, temperature, cleaning solution concentrations, and process time on the sulfuric acid rinsing efficiency were investigated by using the sensor. The investigation discovered that sulfuric acid rinsing is a two-stage process: a flow-control stage and a desorption-control stage. A comprehensive rinse model was developed to correlate the transport process

  16. Novel Sensor Structure and Its Evaluation for Integrated Complementary Metal Oxide Semiconductor Microelectromechanical Systems Accelerometer

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Motohashi, Ghou; Kagaya, Ken; Ito, Hiroyuki; Ishihara, Noboru; Toshiyoshi, Hiroshi; Machida, Katsuyuki; Masu, Kazuya

    2013-06-01

    This paper reports a novel sensor structure and its evaluation results for an integrated complementary metal oxide semiconductor (CMOS) microelectromechanical systems (MEMS) accelerometer with a wide detection range on a chip. The proposed sensor structure has the following features: i) a layer separation technique between the proof mass and the mechanical suspensions, ii) mechanical stoppers for the proof mass to avoid destruction, and iii) a SiO2 film underneath the proof mass to prevent stiction and electrical short. Gold was used as the MEMS structure material to reduce the proof mass size and to lower the Brownian noise to below 100 µg/√Hz. Furthermore, the micro fabrication was carried out below 310 °C for the CMOS devices to remain intact. The evaluation results indicate that the Brownian noise was 90.6 µg/√Hz. Thus, we have confirmed that the proposed MEMS structure has the potential for use in future integrated CMOS-MEMS accelerometers.

  17. Structure Sensor for mobile markerless augmented reality

    NASA Astrophysics Data System (ADS)

    Kilgus, T.; Bux, R.; Franz, A. M.; Johnen, W.; Heim, E.; Fangerau, M.; Müller, M.; Yen, K.; Maier-Hein, L.

    2016-03-01

    3D Visualization of anatomical data is an integral part of diagnostics and treatment in many medical disciplines, such as radiology, surgery and forensic medicine. To enable intuitive interaction with the data, we recently proposed a new concept for on-patient visualization of medical data which involves rendering of subsurface structures on a mobile display that can be moved along the human body. The data fusion is achieved with a range imaging device attached to the display. The range data is used to register static 3D medical imaging data with the patient body based on a surface matching algorithm. However, our previous prototype was based on the Microsoft Kinect camera and thus required a cable connection to acquire color and depth data. The contribution of this paper is two-fold. Firstly, we replace the Kinect with the Structure Sensor - a novel cable-free range imaging device - to improve handling and user experience and show that the resulting accuracy (target registration error: 4.8+/-1.5 mm) is comparable to that achieved with the Kinect. Secondly, a new approach to visualizing complex 3D anatomy based on this device, as well as 3D printed models of anatomical surfaces, is presented. We demonstrate that our concept can be applied to in vivo data and to a 3D printed skull of a forensic case. Our new device is the next step towards clinical integration and shows that the concept cannot only be applied during autopsy but also for presentation of forensic data to laypeople in court or medical education.

  18. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    PubMed

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  19. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  20. Fiber optic sensor network for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Reutlinger, Arnd; Graue, Roland; Ecke, Wolfgang

    2000-06-01

    Closed meshed instrumentation or sensor networks with conventional sensors for temperature and strain measurements may result in excessive penalties in terms of weight constraints, sensitivity to environmental conditions and complex interfaces. The FOS is a multiplexed sensor system for up to 50 single strain and temperature measurement points comprising of a fiber network and an optoelectronic unit. The FOS sensor was designed and developed by Kayser-Threde, Munich, for demanding space environment, but can also be emphasized as a promising sensor technology with high potential for non-space applications. A Fiber Optic Sensor (FOS) measures strain and temperature by means of wavelength shifts due to tensile stress on a Bragg grating. Slightly shifts in the reflected wavelength are proportional to temperature or strain acting on the fiber at the corresponding grating location. Dependent on the fixation of the fiber to the structure, either floating or attached to the surface, local thermal or mechanical loads can be determined. The fibers can be mounted at the monitored structure or embedded (e.g. into composite materials). The FOS sensor is very suitable for structural health monitoring of large structures, i.e. to determine thermal and mechanical load profiles during operation, assessment of residual strength of structural elements or to detect irregular conditions. In comparison to conventional sensors like thermocouples and strain gauges, a FOS network significantly reduces the amount of required Front End Electronics (FEE) and harness.

  1. Development of a kind of multi-variable wireless sensor for structural health monitoring in civil engineering

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Ou, Jinping

    2005-05-01

    In recent years, structural health monitoring (SHM) has been an important research area for designing and evaluating reliability of civil engineering structures. With the development of the technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensing technique has been caused much more attentions and used gradually in the SHM. The wireless sensors and network has low capital and installation costs as well as ensures more reliability in the communication of sensor measurements, but there exists a key problem of the finite energy and this is a primary design constraint. Therefore, some measures must be adopted to make wireless sensor work more effectively. In this paper, a kind of wireless sensor with 3 variables, temperature- acceleration- strain, is proposed. Such several modules as sensing unit, micro-processing unit, power unit and wireless transceiver are constructed using commercially available parts, and integrated into a complete wireless sensor. The fusion arithmetic of the temperature-acceleration is embedded in the wireless sensor so that the measured acceleration values are more accurate. Measures are also adopted to reduce the energy consumption. Experimental results show that, the wireless sensor can monitor the temperature-acceleration-strain of the structures at real time and precisely, and pre-process and pack the measured data to reduce the data volume to be transmitted and save energy.

  2. An Efficient Micro Control Unit with a Reconfigurable Filter Design for Wireless Body Sensor Networks (WBSNs)

    PubMed Central

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2012-01-01

    In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs. PMID:23443375

  3. An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs).

    PubMed

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2012-11-22

    In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.

  4. On the modeling of a piezoellectrically actuated micro-sensor for measurement of microscale fluid physical properties

    NASA Astrophysics Data System (ADS)

    Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader

    2015-11-01

    This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.

  5. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    PubMed Central

    Xuan, Xing; Hossain, Md. Faruk; Park, Jae Yeong

    2016-01-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L−1 to 120.0 μg L−1 for both of the metal ions, and detection limits of 0.4 μg L−1 and 1.0 μg L−1 were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions. PMID:27616629

  6. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Xuan, Xing; Hossain, Md. Faruk; Park, Jae Yeong

    2016-09-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L‑1 to 120.0 μg L‑1 for both of the metal ions, and detection limits of 0.4 μg L‑1 and 1.0 μg L‑1 were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions.

  7. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide.

    PubMed

    Xuan, Xing; Hossain, Md Faruk; Park, Jae Yeong

    2016-09-12

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named "TRGO" was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L(-1) to 120.0 μg L(-1) for both of the metal ions, and detection limits of 0.4 μg L(-1) and 1.0 μg L(-1) were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions.

  8. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging NanoSensors Technology

    PubMed Central

    Shah, Pratik; Cho, Seok Keun; Thulstrup, Peter Waaben; Bjerrum, Morten Jannik; Lee, Phil Hyu; Kang, Ju-Hee; Bhang, Yong-Joo; Yang, Seong Wook

    2017-01-01

    MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs), has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases. PMID:28122423

  9. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  10. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  11. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  12. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology.

    PubMed

    Shah, Pratik; Cho, Seok Keun; Thulstrup, Peter Waaben; Bjerrum, Morten Jannik; Lee, Phil Hyu; Kang, Ju-Hee; Bhang, Yong-Joo; Yang, Seong Wook

    2017-01-01

    MicroRNAs (miRNAs) are essential small RNA molecules (20-24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs), has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases.

  13. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  14. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  15. A suite of optical fibre sensors for structural condition monitoring

    NASA Astrophysics Data System (ADS)

    Sun, T.; Grattan, K. T. V.; Carlton, J.

    2015-05-01

    This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.

  16. Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips

    PubMed Central

    Xu, Lei; Dai, Zhengfei; Duan, Guotao; Guo, Lianfeng; Wang, Yi; Zhou, Hong; Liu, Yanxiang; Cai, Weiping; Wang, Yuelin; Li, Tie

    2015-01-01

    Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to ~20 ppb), fast response time (down to ~1 s), and low power consumption (down to ~30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications. PMID:26001035

  17. Micro/Nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips.

    PubMed

    Xu, Lei; Dai, Zhengfei; Duan, Guotao; Guo, Lianfeng; Wang, Yi; Zhou, Hong; Liu, Yanxiang; Cai, Weiping; Wang, Yuelin; Li, Tie

    2015-05-22

    Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to ~20 ppb), fast response time (down to ~1 s), and low power consumption (down to ~30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications.

  18. Erbium-doped fiber amplifier elements for structural analysis sensors

    NASA Technical Reports Server (NTRS)

    Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.

    1992-01-01

    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.

  19. Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS) bridge structure.

    PubMed

    Meng, Lingju; Fan, Shicheng; Mahpeykar, Seyed Milad; Wang, Xihua

    2017-01-19

    Functional electronic devices integrated on flexible substrates are of great interest in both academia and industry for their potential applications in wearable technologies. Recently, there have been an increasing number of investigations on developing new materials for flexible strain sensors and pressure sensors, with the aim of achieving better sensitivity and detection ranges. However, the analog signal outputs of these sensors are accompanied with challenges regarding device reproducibility and reliability. Here we designed and fabricated a new class of sensors-digital microelectromechanical (MEM) sensors for wearable technologies. Our digital MEM sensors were implemented with the polydimethysiloxane (PDMS) bridge on flexible substrates, and provided digital signal outputs based on electrical insulating-to-conducting transitions. By engineering the PDMS bridge structure, we could tune the sensitivity of the digital MEM sensor for various applications. These digital MEM sensors were used in bending tests: they were integrated on glove fingers and used to detect gestures. These sensors were also used as force sensors: they were used on human wrists to monitor heart rates. The device was experimentally found to maintain its performance level even after 10 000 cycles of bending or pressing. The digital output of our devices allows a higher tolerance for device fabrication to be set. Furthermore, our devices can be engineered for desired specifications in various potential applications.

  20. Fiber Optic Sensors for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chang, C. C.; Boyer, T.; Sirkis, J. S.

    1996-01-01

    In this paper we describe recently developed fiber sensors which are capable of monitoring the health of smart-structures. The unobstrusive geometry of these sensors make them an excellent choice for embedding the sensor in composite materials to measure internal states of strain in structures and materials. Some of these sensors have gage lengths that can be tailored from tens of microns to many meters. We will describe various demodulation schemes (Pseudo-Heterodyne, Synthetic-Heterodyne, Homodyne, Differential-Cross Multiplier, and Single Channel Phase-Tracker) to obtain high bandwidth measurements, enabling measurement of static to high frequency impact generated strains with a dynamic response exceeding tens of thousands of microstrains. In addition, we will show that we can tailor the fiber sensor to either measure only strain and reject temperature response or measure only the temperature, or measure both temperature and strain simultaneously. We will also demonstrate the ability to measure multiple strain components inside a host simultaneously using a single fiber sensor embedded in the host using a certain sensor type and transverse strain immunity using another sensor type. Additionally we will show the ability to measure temperature up to 100 C using fiber optic sensors.

  1. Fiber Optic Sensors for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chang, C. C.; Boyer, T.; Sirkis, J. S.

    1996-01-01

    In this paper we describe recently developed fiber sensors which are capable of monitoring the health of smart-structures. The unobstrusive geometry of these sensors make them an excellent choice for embedding the sensor in composite materials to measure internal states of strain in structures and materials. Some of these sensors have gage lengths that can be tailored from tens of microns to many meters. We will describe various demodulation schemes (Pseudo-Heterodyne, Synthetic-Heterodyne, Homodyne, Differential-Cross Multiplier, and Single Channel Phase-Tracker) to obtain high bandwidth measurements, enabling measurement of static to high frequency impact generated strains with a dynamic response exceeding tens of thousands of microstrains. In addition, we will show that we can tailor the fiber sensor to either measure only strain and reject temperature response or measure only the temperature, or measure both temperature and strain simultaneously. We will also demonstrate the ability to measure multiple strain components inside a host simultaneously using a single fiber sensor embedded in the host using a certain sensor type and transverse strain immunity using another sensor type. Additionally we will show the ability to measure temperature up to 100 C using fiber optic sensors.

  2. Optical fiber sensors and signal processing for intelligent structure monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Claus, R. O.; Lindner, D. K.; Thomas, Daniel; Cox, Dave

    1988-01-01

    The analytic and experimental performance of optical fiber sensors for the control of vibration of large aerospace and other structures are investigated. In particular, model domain optical fiber sensor systems, are being studied due to their apparent potential as distributed, low mass sensors of vibration over appropriate ranges of both low frequency and low amplitude displacements. Progress during the past three months is outlined. Progress since September is divided into work in the areas of experimental hardware development, analytical analysis, control design and sensor development. During the next six months, tests of a prototype closed-loop control system for a beam are planned which will demonstrate the solution of several optical fiber instrumentation device problems, the performance of the control system theory which incorporates the model of the modal domain sensor, and the potential for distributed control which this sensor approach offers.

  3. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  4. Structural health monitoring system for bridges based on skin-like sensor

    NASA Astrophysics Data System (ADS)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  5. Army requirements for micro and nanotechnology-based sensors in weapons health and battlefield environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Hutcheson, Guilford

    2006-03-01

    The Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) and the Army Research Laboratory (ARL) have initiated a joint advanced technology demonstration program entitled "Prognostics/Diagnostics for the Future Force (PDFF)" with a key objective of developing low or no power embedded sensor suites for harsh environmental monitoring. The most critical challenge of the program is to specify requirements for the embedded sensor suites which will perform on-board diagnostics, maintain a history of sensor data, and forecast weapon health. The authors are currently collaborating with the PDFF program managers and potential customers to quantify the requirements for remotely operated, micro/nano-technology-based sensors for a host of candidate weapon systems. After requirements are finalized, current micro/nanotechnology-based temperature, humidity, g-shock, vibration and chemical sensors for monitoring the out-gassing of weapons propellant, as well as hazardous gaseous species on the battlefield and in urban environments will be improved to meet the full requirements of the PDFF program. In this paper, performance requirements such as power consumption, reliability, maintainability, survivability, size, and cost, along with the associated technical challenges for micro/nanotechnology-based sensor systems operating in military environments, are discussed. In addition, laboratory results from the design and testing of a wireless sensor array, which was developed using a thin film of functionalized carbon nanotube materials, are presented. Conclusions from the research indicate that the detection of bio-hazardous materials is possible using passive and active wireless sensors based on monitoring the reflected phase from the sensor.

  6. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  7. Fragility estimates of smart structures with sensor faults

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Bai, Jong-Wha; Albano, Leonard D.

    2013-12-01

    In this paper, the impact of sensor faults within smart structures is investigated using seismic fragility analysis techniques. Seismic fragility analysis is one of the methods used to evaluate the vulnerability of structural systems under a broad range of earthquake events. It would play an important role in estimating seismic losses and in the decision making process based on vibration control performance of the smart structures during seismic events. In this study, a three-story building employing a highly nonlinear hysteretic magnetorheological (MR) damper is analyzed to estimate the seismic fragility of the smart control system. Different levels of sensor damage scenarios for smart structures are considered to provide a better understanding of the expected fragility estimates due to the impact of sensor failures. Probabilistic demand models are constructed with a Bayesian updating approach while the seismic capacity of smart structures is estimated based on the approximate structural performance of semi-actively controlled structures. Peak ground acceleration (PGA) of ground motion is used as a measure of earthquake intensity. Then the fragility curves for the smart structures are developed and compared with those for the semi-active control systems with different levels of sensor damage scenarios. The responses of an uncontrolled structure are used as a baseline. It is shown from the simulations that the proposed methodology is effective in quantifying the impact of sensor faults within smart structures.

  8. Sensitive elastic modulus mapping of micro-structured biomaterials

    NASA Astrophysics Data System (ADS)

    Sun, J. Y.; Liu, X.; Tong, J.; Yue, Z. Y.

    2010-08-01

    In nature, insects and plants have evolved ways of living and reproducing themselves using the least amount of resource. This involves both efficiency in metabolism and optimal mechanisms and materials for life functions. Human beings have long tried to learn from and mimic nature. The study of biological materials has received increasing interest in recent years due to the often extraordinary mechanical properties and unusual structures exhibited by these materials. Micro-structure biomaterials exhibit important local variations of elasticity due to the complex and anisotropic composition. In this paper, a specially developed multi-function tribological probe microscope (TPM) has been used to map the mechanical properties of some special micro-structured biomaterials. Results of the mapped surface topography and elastic modulus on specimens of elytra cuticle of dung beetle, nacre of shell and bovine horn have shown some significant lateral variations of elasticity across the surface area.

  9. Effect of annealing on proton irradiated AlGaN/GaN based micro-Hall sensors

    SciTech Connect

    Abderrahmane, A.; Takahashi, H.; Tashiro, T.; Ko, P. J.; Okada, H.; Sandhu, A.; Sato, S.; Ohshima, T.

    2014-02-20

    The effect of annealing at 673 K on irradiated micro-Hall sensors irradiated with protons at 380keV and fluences of 10{sup 14}, 10{sup 15} and 10{sup 16} protons/cm{sup 2} is reported. Cathodoluminescence measurements were carried out at room temperature before and after annealing and showed improvement in the band edge band emission of the GaN layer. After annealing a sensor irradiated by 10{sup 15} protons/cm{sup 2} the device became operational with improvements in its magnetic sensitivity. All irradiated sensors showed improvement in their electrical characteristics after annealing.

  10. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA.

    PubMed

    Wu, Danhong; Zhang, Qing; Chu, Xia; Wang, Haibo; Shen, Guoli; Yu, Ruqin

    2010-01-15

    A novel electrochemical sensor has been developed for sensitive and selective detection of mercury (II) based on target-induced structure-switching DNA. A 33-mer oligonucleotide 1 with five self-complementary base pairs separated by seven thymine-thymine mismatches was first immobilized on the electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged oligonucleotide 2, leading to a high redox current. In the presence of Hg(2+), mercury-mediated base pairs (T-Hg(2+)-T) induced the folding of the oligonucleotide 1 into a hairpin structure, resulting in the release of the ferrocene-tagged oligonucleotide 2 from the electrode surface with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effect of the reaction temperature on the response of the sensor was also studied in detail. The results revealed that the sensor showed sensitive response to Hg(2+) in a concentration range from 0.1 nM to 5 microM with a detection limit of 0.06 nM. In addition, this strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions, which was superior to that of previous anodic stripping voltammetry (ASV)-based techniques. The excellent sensitivity and selectivity signified the potential of the sensor for Hg(2+) detection in real environmental samples.

  11. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  12. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    PubMed Central

    Kafka, Jan; Skaarup, Steen; Geschke, Oliver; Larsen, Niels B.

    2013-01-01

    We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer. Arrays of Ø 100 μm tubular electrodes each having a height of 0.37 ± 0.06 μm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM. PMID:23673674

  13. Micro-drilling of polymer tubular ultramicroelectrode arrays for electrochemical sensors.

    PubMed

    Kafka, Jan; Skaarup, Steen; Geschke, Oliver; Larsen, Niels B

    2013-05-14

    We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  14. Nanofibers and thin films as a selective membrane for sensors and microTAS

    NASA Astrophysics Data System (ADS)

    da Silva, A. N. R.; da Silva, M. L. P.; Fachini, E. R.

    2013-03-01

    A composite material of PAN (polyacrylonitrile), starch granules and dimethylformamide as solvent was used as a selective membrane for volatile organic compounds (VOCs) in gaseous phase. This composite was produced as a thin film obtained by spin-casting and as a fiber mat produced by electrospinning. The fiber mat was tested for adsorption of VOCs and water. Characterization used microscopy (electron scanning and optical) in order to evaluate the fiber morphology and the starch incorporation in the PAN matrix. Infrared spectroscopy was intended to determine the starch presence. Relative viscosity of the starch/PAN suspensions was measured in order to provide a model of composite fiber formation. Quartz crystal microbalance experiments determined VOCs and water adsorption. Fibers incorporated the starch granules, making the composite sensible to water; but VOCs were not detected. Therefore, the composite was found to be a good choice as selective barrier on sensors or microTAS protection purposes.

  15. MicroRNA Sensor Based on Magnetic Beads and Enzymatic Probes

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    MicroRNAs are associated with multiple cellular processes and diseases. Here, we designed a highly sensitive, magnetically retrievable biosensor using magnetic beads (MBs) as a model RNA sensor. The assay utilized two biotinylated probes, which were hybridized to the complementary target miRNA in a sandwich assay format. One of the biotinylated ends of the hybridization complex was immobilized onto the surface of a NeutrAvidin (NAV) coated MB and the other biotinylated end was conjugated to HRP via NAV-biotin interaction. The results were presented by colorimetric absorbance of the resorufin product from amplex red oxidation. We show that by combining the use of MBs as well as bio-specific immobilization, the sensitivity of miRNA detection is down to 100 pM. This model HRP-MBs system can be used for simple, rapid colorimetric quantification of low level DNA/RNA or other small molecules.

  16. Sensitivity and noise of micro-Hall magnetic sensors based on InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chenaud, B.; Segovia-Mera, A.; Delgard, A.; Feltin, N.; Hoffmann, A.; Pascal, F.; Zawadzki, W.; Mailly, D.; Chaubet, C.

    2016-01-01

    We study the room-temperature performance of micro-Hall magnetic sensors based on pseudomorphic InGaAs quantum wells. Active areas of our sensors range from 1 to 80 μm. We focus on the smallest detectable magnetic fields in small sensors and perform a systematic study of noise at room temperature in the frequency range between 1 Hz and 100 kHz. Our data are interpreted by the mobility fluctuation model. The Hooge parameter is determined for the applied technology. We show that, independently of the experimental frequency, the ratio of sensitivity to noise is proportional to characteristic length of the sensor. The resolution of 1 mG/√{Hz } is achievable in a 3 μm sensor at room temperature.

  17. Using micro-sensor data to quantify macro kinematics of classical cross-country skiing during on-snow training.

    PubMed

    Marsland, Finn; Mackintosh, Colin; Anson, Judith; Lyons, Keith; Waddington, Gordon; Chapman, Dale W

    2015-01-01

    Micro-sensors were used to quantify macro kinematics of classical cross-country skiing techniques and measure cycle rates and cycle lengths during on-snow training. Data were collected from seven national level participants skiing at two submaximal intensities while wearing a micro-sensor unit (MinimaxX™). Algorithms were developed identifying double poling (DP), diagonal striding (DS), kick-double poling (KDP), tucking (Tuck), and turning (Turn). Technique duration (T-time), cycle rates, and cycle counts were compared to video-derived data to assess system accuracy. There was good reliability between micro-sensor and video calculated cycle rates for DP, DS, and KDP, with small mean differences (Mdiff% = -0.2 ± 3.2, -1.5 ± 2.2 and -1.4 ± 6.2) and trivial to small effect sizes (ES = 0.20, 0.30 and 0.13). Very strong correlations were observed for DP, DS, and KDP for T-time (r = 0.87-0.99) and cycle count (r = 0.87-0.99), while mean values were under-reported by the micro-sensor. Incorrect Turn detection was a major factor in technique cycle misclassification. Data presented highlight the potential of automated ski technique classification in cross-country skiing research. With further refinement, this approach will allow many applied questions associated with pacing, fatigue, technique selection and power output during training and competition to be answered.

  18. Final Design and Integration of Micro-Chip Inductive Edge Sensors for the Seven Segment Demonstrator. Testing of Integrated Edge Sensors in Test Packages

    NASA Technical Reports Server (NTRS)

    Karpinsky, John

    1997-01-01

    The contractor attended the critical design review and evaluated the presentations of other team members and presented data on the inductive edge sensor. The prototype micro-chip inductive edge sensor was evaluated, and devices were found to have a number of characteristics which made them unsuitable for installation on the seven segment demonstrator. The amplifier bandwidth was too low, the output drive current was too small, and there is an interaction between the digital circuitry and the amplifier that causes the amplifier to stop functioning. Therefore, the inductive edge sensors were not installed on the seven segment demonstrator. The contractor has participated in instruction, problem analysis, and provided technical assistance to NASA and its contractors for the development of 8 hexagonal mirror faceplates with electronics and edge sensors.

  19. Micro-displacement sensor based on a hollow-core photonic crystal fiber.

    PubMed

    Rodrigues Pinto, Ana Margarida; Baptista, José Manuel; Santos, José Luís; Lopez-Amo, Manuel; Frazão, Orlando

    2012-12-17

    A sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured.

  20. Micro-Displacement Sensor Based on a Hollow-Core Photonic Crystal Fiber

    PubMed Central

    Pinto, Ana Margarida Rodrigues; Baptista, José Manuel; Santos, José Luís; Lopez-Amo, Manuel; Frazão, Orlando

    2012-01-01

    A sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured. PMID:23247414

  1. Integrated fiber optic structural health sensors for inflatable space habitats

    NASA Astrophysics Data System (ADS)

    Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.

    2017-04-01

    Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.

  2. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  3. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  4. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  5. Waveguide sensor with metamaterial structure for determination of dielectric properties

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Savin, A.; Isteníková, K.; Faktorová, D.; Fabo, P.

    2017-08-01

    Microwave sensor (MWS) compared with classical sensor, offers many advantage such as rapid and nondestructive measurement. At microwave (MW) frequencies, dielectric properties of materials depend on frequency, moisture content, bulk density and temperature. MW waveguide sensors can measure properties of materials based on MW interaction with matter, and provide information about dielectric properties of investigated dielectric material, characterized with complex permittivity. The paper presents a new approach for determination of the dielectric properties of dielectric material by embedding a metamaterial (MM) structure over the aperture of waveguide sensor in order to increase the sensing properties of classical waveguide sensor. The optimal design of MM structure for waveguide sensor tuning in MW X-band is obtained. In this new approach the MM function in two ways: like a tool for increasing the sensibility of classical waveguide sensor and the tool sensitive to the dielectric properties of investigated material through the adjusted resonance frequency of designed MM units. The numerical simulation of 2D MM structure properties and experimental results for dielectric properties of dielectric materials are carried out.

  6. A wireless magnetic resonance energy transfer system for micro implantable medical sensors.

    PubMed

    Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming

    2012-01-01

    Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).

  7. A Wireless Magnetic Resonance Energy Transfer System for Micro Implantable Medical Sensors

    PubMed Central

    Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming

    2012-01-01

    Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm3. PMID:23112600

  8. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  9. Investigations into the impact of locally modified sensor architectures on the detection efficiency of silicon micro-strip sensors

    NASA Astrophysics Data System (ADS)

    Poley, L.; Lohwasser, K.; Blue, A.; Benoit, M.; Bloch, I.; Díez, S.; Fadeyev, V.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Keller, J.; Lacasta, C.; Maneuski, D.; Meng, L.; Milovanovic, M.; Pape, I.; Phillips, P. W.; Rehnisch, L.; Sawhney, K.; Sawyer, C.; Sperlich, D.; Stegler, M.; Unno, Y.; Warren, M.; Yildirim, E.

    2017-07-01

    The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.

  10. Mechatronic Scanning System with Integrated Micro Electro Mechanical System Position Sensors

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Chakarov, Dimitar; Shulev, Assen; Tsveov, Mihail

    2016-06-01

    In this paper, a study of a mechatronic scanning system for application in the microbiology, microelectronics research, chemistry, etc. is presented. Integrated silicon micro electro mechanical system (MEMS) position sensor is used for monitoring the displacement of the scanning system. The utilized silicon MEMS sensors with sidewall embedded piezoresistors possess a number of key advantages such as high sensitivity, low noise and extremely low temperature dependence. Design of 2D scanning system with a travel range of 22 × 22 μm2 has been presented in present work. This system includes a Compliant Transmission Mechanism, (CTM) designed as a complex elastic mechanism, comprising four parallelograms. Computer aided desigh (CAD) model and finite element analysis (FEA) of the Compliant Transmission Mechanism mechanisms have been carried out. A prototype of the scanning system is fabricated, based on CAD model. An experimental set-up of an optical system and a correlation technique for digital image processing have been used for testing the scanning system prototype. Results of the experimental investigations of the prototyped scanning system are also presented.

  11. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; hide

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  12. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  13. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-02-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  14. A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities

    PubMed Central

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-01-01

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces. PMID:24887041

  15. A novel micro- and nano-scale positioning sensor based on radio frequency resonant cavities.

    PubMed

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-05-30

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.

  16. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  17. Microwave Sensor for Blade Tip Clearance and Structural Health Measurements

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Bencic, Timothy J.

    2008-01-01

    The use of microwave based sensors for the health monitoring of rotating machinery is being explored at the NASA Glenn Research Center. The microwave sensor works on the principle of sending a continuous signal towards a rotating component and measuring the reflected signal. The phase shift of the reflected signal is proportional to the distance between the sensor and the component that is being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in the rotating machinery. It is intended to use these probes in the hot sections of turbine engines for closed loop turbine clearance control and structural health measurements. Background on the sensors, an overview of their calibration and preliminary results from using them to make blade tip clearance and health measurements on a large axial vane fan will be presented.

  18. Smart composite structure based on integrated passive wireless strain sensors

    NASA Astrophysics Data System (ADS)

    Wong, Zi Jing; Kim, Chun-Gon

    2008-03-01

    This paper reports the development of low-cost inductively coupled passive wireless strain sensors which could be easily embedded within composite prepreg layers for structural health monitoring application. The sensors of 5 different patterns were fabricated and were experimentally tested. Theoretical modeling utilizing two different approaches and electromagnetic simulation were performed to estimate both the strain-free resonant frequency and the shift of resonant frequency of the sensor due to strain. Both the modeling and simulation results showed satisfactory agreement with the experimental data. The Terman model was found to give a better approximation of the strain-free resonant frequency, but the CAD model managed to predict the resonant frequency shift caused by strain more closer to the simulation result. Experimentally, all the sensors showed great strain sensing potential, as good linearity between resonant frequency and strain and relatively low hysteresis characteristics were observed. Finally, the feasibility of constructing sensor array was verified.

  19. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  20. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  1. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    PubMed

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.

  2. Detection of the superconducting transition and magnetic flux trapping in a niobium micro-ring by using micro-Hall sensors

    NASA Astrophysics Data System (ADS)

    Kahng, Yung Ho; Kim, Yun Won; Kim, Mun Seog; Song, Woon; Choi, Jae-Hyuk; Joo, Sungjung; Hong, Jinki; Rhie, Kungwon; Lee, Soon-Gul

    2016-11-01

    An InAs heterostructure-based micro-Hall sensor was used to study the magnetic properties of a superconducting Nb micro-ring, enabling observation of magnetic phenomena such as diamagnetism onset and magnetic flux trapping in the 20- μm-diameter sample. The superconducting diamagnetism of the micro-ring was observed to develop slowly from T = 7.5 K down to 5 K and showed a notably sharp and substantial drop at 7.0 K, the zero-resistivity temperature obtained from transport measurements on a strip-patterned sample. The observed superconducting transition is discussed in terms of a percolation scenario. In magnetic-field-cooling measurements, the Hall signal from the magnetic flux trapped in the Nb ring at 4.5 K was detected at a sufficiently high level for quantitative comparison with the estimate.

  3. Fiber Bragg grating sensors for structural and railway applications

    NASA Astrophysics Data System (ADS)

    Tam, H. Y.; Liu, S. Y.; Guan, B. O.; Chung, W. H.; Chan, T. H.; Cheng, L. K.

    2005-02-01

    Historically, due to the high cost of optical devices, fiber-optics sensor systems were only employed in niche areas where conventional electrical sensors are not suitable. This scenario changed dramatically in the last few years following the explosion of the Internet which caused the rapid expansion of the optical fiber telecommunication industry and substantially driven down the cost of optical components. In recent years, fiber-optic sensors and particularly fiber Bragg grating (FBG) sensors have attracted a lot of interests and are being used in numerous applications. We have conducted several field trials of FBG sensors for railway applications and structural monitoring. About 30 FBG sensors were installed on the rail tracks of Kowloon-Canton Railway Corp. for train identification and speed measurements and the results obtained show that FBG sensors exhibit very good performance and could play a major role in the realization of "Smart Railway". FBG sensors were also installed on Hong Kong's landmark TsingMa Bridge, which is the world longest suspension bridge (2.2 km) that carries both trains and regular road traffic. The trials were carried out with a high-speed (up to 20 kHz) interrogation system based on CCD and also with a interrogation unit that based on scanning optical filter (up to 70 Hz). Forty FBGs sensors were divided into 3 arrays and installed on different parts of the bridge (suspension cable, rocker bearing and truss girders). The objectives of the field trial on the TsingMa Bridge are to monitor the strain of different parts of the bridge under railway load and highway load, and to compare the FBG sensors' performance with conventional resistive strain gauges already installed on the bridge. The measured results show that excellent agreement was obtained between the 2 types of sensors.

  4. Uncooled IR photon detection using MEMS micro-structures

    SciTech Connect

    Datskos, P.G.; Rajic, S.

    1998-08-01

    Generation of free carriers in a semiconductor gives rise to mechanical stress. Photo-induced stress phenomena in MEMS micro-structures can be used in the room temperature detection of infrared photons. Choice of the appropriate semiconductor material for the MEMS micro-structures determines the cutoff wavelength of the uncooled infrared photon detector. The authors have measured the deflection of silicon and indium antimonide micro-structures resulting from a photo-induced stress. The excess charge carriers responsible for the photo-induced stress were produced via photon irradiation from both a diode laser and a black body source. In the case of Si, the photo-induced stress is of opposite direction and about four times larger than the thermal stress. For indium antimonide the direction of stress is the same as due to thermal effects. The photo-induced stress can be distinguished from the thermal stress based on the cut-off wavelength, response speed, and perhaps the direction of the microstructure deflection.

  5. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  6. A self-sensing structure with printed sensors

    NASA Astrophysics Data System (ADS)

    Thompson, Bradley; Yoon, Hwan-Sik

    2011-04-01

    Recently, printed electronics have received growing attention as a new method to produce low-cost large-area electronics on flexible substrates. Much of the current research relies mainly on an inkjet printing technique to deposit electrically functional material solutions onto plastic substrates in order to fabricate various electronic components such as resistors, capacitors and transistors. In this paper, we propose to apply the printed electronics technology to the development of strain sensors for the purpose of measuring structural vibration. To accomplish this, we have developed an aerosol printing system that exhibits better performance in printing on various types of substrates. The system consists of a moving platform, an ultrasonic atomizer, and a shutter to control the flow of the aerosol. Using the system, we demonstrate that a functional strain sensor can be printed directly on the surface of a nonmetallic structure. To form a strain sensor, a water-based conductive polymer, PEDOT-PSS, was deposited on a plastic substrate using the aerosol printer. Then, the piezoresistive response of the printed strain sensor was measured for three different low frequency dynamic strain loadings. The results showed that this type of printed strain sensor can be used to measure the vibration of the host structure. The result of this research will serve as a critical step toward the fabrication of self-sensing structures with printed sensors and accompanying electronics.

  7. A Vision-Based Sensor for Noncontact Structural Displacement Measurement.

    PubMed

    Feng, Dongming; Feng, Maria Q; Ozer, Ekin; Fukuda, Yoshio

    2015-07-09

    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement.

  8. A Vision-Based Sensor for Noncontact Structural Displacement Measurement

    PubMed Central

    Feng, Dongming; Feng, Maria Q.; Ozer, Ekin; Fukuda, Yoshio

    2015-01-01

    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement. PMID:26184197

  9. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  10. Spiral Passive Electromagnetic Sensor (SPES) for composite structural changes in aircraft structures

    NASA Astrophysics Data System (ADS)

    Iervolino, Onorio; Meo, Michele

    2016-04-01

    A major goal of structural health monitoring (SHM) is to provide accurate and responsive detection and monitoring of flaws. This research work reports an investigation of SPES sensors for damage detection, investigating different sensor sizes and how they affect the sensor's signal. A sensor able to monitor structural change that can be remotely interrogated and does not need a power supply is presented in this work. The SPES-sensor presents the great advantage of monitoring conductive and non-conductive structures such as fiberglass-reinforced composites (FRC) and carbon fiber-reinforced polymers (CFRP). Any phenomena that affect the magnetic field of the SPES can be detected and monitored. A study was conducted to investigate the capability of sensor to give information on structural changes, simulated by the presence of an external mass placed in the proximity of sensor. Effect of different positions of the SPES within the sample, and how to extend the area of inspection using multiple sensors was investigated. The sensor was tested embedded in the samples, simulating the structural change on both sides of the sample. In both configurations the sensor described herein demonstrated a great potential to monitor structural changes.

  11. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  12. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  13. Integrating optical glucose sensing into a planar waveguide sensor structure

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  14. Diagnosis and sensor validation through knowledge of structure and function

    NASA Technical Reports Server (NTRS)

    Scarl, Ethan A.; Jamieson, John R.; Delaune, Carl I.

    1987-01-01

    The liquid oxygen expert system 'LES' is proposed as the first capable of diagnostic reasoning from sensor data, using model-based knowledge of structure and function to find the expected state of all system objects, including sensors. The approach is generally algorithmic rather than heuristic, and represents uncertainties as sets of possibilities. Functional relationships are inverted to determine hypothetical values for potentially faulty objects, and may include conditional functions not normally considered to have inverses.

  15. Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures.

    PubMed

    Kim, Hyungmo; Lee, Chan; Kim, Moo Hwan; Kim, Joonwon

    2012-07-31

    We report the drop impact characteristics on four hydrophobic surfaces with different well-scale structures (smooth, nano, micro, and hierarchical micro/nano) and the effects of those structures on the behavior of water drops during impact. The specimens were fabricated using silicon wet etching, black silicon formation, or the combination of these methods. On the surfaces, the microstructures form obstacles to drop spreading and retracting, the nanostructures give extreme water-repellency, and the hierarchical micro/nanostructures facilitate drop fragmentation. The maximum spreading factor (D*(max)) differed among the structures. On the basis of published models of D*(max), we interpret the results of our experiment and suggest reasonable explanations for these differences. Especially, the micro/nanostructures caused instability of the interface between liquid and air at Weber number We > ~80 and impacting drops fragmented at We > ~150.

  16. Degradation mechanism of a high-performance real micro gas sensor, as determined by spatially resolved XAFS.

    PubMed

    Wada, Takahiro; Murata, Naoyoshi; Uehara, Hiromitsu; Suzuki, Takuya; Nitani, Hiroaki; Niwa, Yasuhiro; Uo, Motohiro; Asakura, Kiyotaka

    2016-03-14

    Of late, battery-driven high-performance gas sensors have gained acceptability in practical usage, whose atomic-scale structure has been revealed by μ-fluorescence X-ray absorption fine structure analysis. We studied the chemical distribution of Pd species in the Pd/Al2O3 catalyst overlayer in the real gas sensor at various degrees of deterioration. In a freshly prepared sensor, all Pd species were in the PdO form; in a heavily deteriorated sensor, Pd/Al2O3 in the external region changed to metallic Pd particles, while the PdO structure in the inner region near the heater remained unchanged. The Pd species distribution was in agreement with the simulated thermal distribution. Temperature control was crucial to maintain the high performance of the gas sensor. The improved sensor allows homogeneous heating and has a lifetime of more than 5 years.

  17. Investigation of the Frequency Shift of a SAD Circuit Loop and the Internal Micro-Cantilever in a Gas Sensor

    PubMed Central

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588

  18. Investigation of the frequency shift of a SAD circuit loop and the internal micro-cantilever in a gas sensor.

    PubMed

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed.

  19. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    PubMed Central

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  20. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  1. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  2. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  3. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  4. Research on micro-sized acoustic bandgap structures.

    SciTech Connect

    Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.

    2010-01-01

    Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.

  5. Improved structures for evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Rehouma, F.; Elflein, W.; Persegol, D.; Kevorkian, A.; Clauss, G.; Benech, P.; Rimet, R.

    1995-03-01

    Integrated optics evanescent wave sensors suffer from attenuation losses and reduced contrast ratio when the sensing layer index is too close to the waveguide index. This is attributed to an increase in mode mismatch at inner interfaces of the devices. By properly balancing the losses on each arm of an integrated Mach-Zehnder the contrast ratio is increased to nearly 100% on the entire index range, furthermore, a new technique used to make a smooth transition between sensing and nonsensing waveguides reduced the losses by 5 dB.

  6. Optimal Sensor Locations for Structural Identification

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J.

    1985-01-01

    The optimum sensor location problem, OSLP, may be thought of in terms of the set of systems, S, the class of input time functions, I, and the identification algorithm (estimator) used, E. Thus, for a given time history of input, the technique of determining the OSL requires, in general, the solution of the optimization and the identification problems simultaneously. A technique which uncouples the two problems is introduced. This is done by means of the concept of an efficient estimator for which the covariance of the parameter estimates is inversely proportional to the Fisher Information Matrix.

  7. Self-assembled domain structures: From micro- to nanoscale

    NASA Astrophysics Data System (ADS)

    Shur, Vladimir; Akhmatkhanov, Andrey; Lobov, Alexey; Turygin, Anton

    2015-06-01

    The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain-domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  8. Micro-swimming without flagella: Propulsion by internal structures

    NASA Astrophysics Data System (ADS)

    Ehlers, Kurt M.; Koiller, Jair

    2011-12-01

    Since a first proof-of-concept for an autonomous micro-swimming device appeared in 2005 a strong interest on the subject ensued. The most common configuration consists of a cell driven by an external propeller, bio-inspired by bacteria such as E.coli. It is natural to investigate whether micro-robots powered by internal mechanisms could be competitive. We compute the translational and rotational velocity of a spheroid that produces a helical wave on its surface, as has been suggested for the rod-shaped cyanobacterium Synechococcus. This organisms swims up to ten body lengths per second without external flagella. For the mathematical analysis we employ the tangent plane approximation method, which is adequate for amplitudes, frequencies and wave lengths considered here. We also present a qualitative discussion about the efficiency of a device driven by an internal rotating structure.

  9. High Performance Micro CO Sensors Based on ZnO-SnO2 Composite Nanofibers with Anti-Humidity Characteristics

    NASA Astrophysics Data System (ADS)

    Yue, Xue-Jun; Hong, Tian-Sheng; Xiang, Wei; Cai, Kun; Xu, Xing

    2012-12-01

    ZnO-SnO2 composite nanofibers are synthesized via an electrospinning method and characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Micro sensors are fabricated by spinning the nanofibers on Si substrates with Pt signal and heater electrodes. The sensors with small areas (600 μm × 200 μm) can detect CO down to 1ppm at 360 °C. The corresponding sensitivity, response time, and recovery time are 3.2, 6s, and 11s, respectively. Importantly, the sensors can operate at high humidity conditions. The sensitivity only decreases to 2.3 when the sensors are exposed to 1 ppm CO at 95% relative humidity. These excellent sensing properties are due to combining the benefits of one-dimensional nanomaterials and the ZnO-SnO2 grain boundary in the nanofibers.

  10. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    PubMed Central

    Chang, Chih-Yuan

    2017-01-01

    Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration. PMID:28481300

  11. Creating micro and nano structures in polymers by moulding.

    PubMed

    Hoyle, R

    2007-09-01

    Moulding micro and nano surface features and discrete micro components in polymers reproducibly and in large volumes is now possible. The factors involved in successful micro injection moulding operations, including component size, aspect ratio and surface area, are examined.

  12. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  13. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  14. Diagnosis of space structures using embedded sensors and elastic waves

    NASA Astrophysics Data System (ADS)

    Murray, Andrew; Zagrai, Andrei; Conrad, David

    2011-04-01

    Pre-launch testing of space vehicles is a complex process taking weeks if not months to accomplish. An onboard structural health monitoring system is considered for reduction of testing time and component validation. The active elements of the system, embedded sensors, are used to transmit and receive elastic waves carrying information on component characteristics and structural integrity. Parameters of the elastic wave recorded with embedded sensors are investigated using several measurement methods coupled with temporal analysis of elastic wave signatures. In particular, attention is given to temporal distribution of signal phase and nonlinear effects. Specimens of simple and complex geometry incorporating defects typical to space structures are considered in experimental studies. Local measurements with a single sensor as well as global assessment of structural components with a sensor network were explored for damage detection, characterization, and location. Proposed diagnostic approaches were validated on a realistic satellite panel with isogrid reinforcement. Conclusions are presented on sensing capabilities of active sensors and effectiveness of the associated signal analysis.

  15. Three Dimensional Visualization of Vibration of Civil Structure with Multisite Wireless Sensor Nodes

    NASA Astrophysics Data System (ADS)

    Takamoto, Tatsunao; Yamaguchi, Masayoshi; Nakahata, Kazuyuki; Ohga, Mitao

    The acceleration sensors which adopt the MEMS (Micro Electro Mechanical System) technology, offer high reliability and sensitivity in a small size. Using the MEMS sensor, we develop a visualization system of vibration of a civil structure at a low cost. In our system, time series of acceleration data measured at multiple points are transmitted to a computer at base-station with the wireless LAN and then converted to displacement data by the linear acceleration method. Here we make a digital filter to avoid a drift of the baseline of displacement data and to eliminate the white noise. First, our measurement setup and data conversion from acceleration to displacement using digital filters are described. Next we show an animation of vibration of a connecting bridge between two buildings by means of triaxial displacement data.

  16. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  17. Bio-inspired sensor skins for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.

    2009-10-01

    This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.

  18. Al-doped ZnO thin-film transistor embedded micro-cantilever as a piezoresistive sensor

    NASA Astrophysics Data System (ADS)

    Ray, Prasenjit; Ramgopal Rao, V.

    2013-02-01

    In this work, an aluminium-doped zinc oxide (AZO) thin film transistor, embedded in a polymer micro-cantilever, is demonstrated for nano-mechanical sensing applications. This device senses the surface stress due to a change in the carrier mobility of the semi-conducting layer. Due to the low Young's modulus and high strain sensitivity of the AZO layer, this micro-cantilever shows a deflection sensitivity of 116 ppm per nanometer of deflection. Also, mechanical characterization of these devices shows that the resonance frequency is in the range of a few tens of kilohertz which is suitable for sensor applications.

  19. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the

  20. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  1. Low dead volume integrated separation columns and Fabry-Pérot sensors for micro-gas chromatography

    NASA Astrophysics Data System (ADS)

    Reddy, Karthik; Liu, Jing; Khaing Oo, Maung Kyaw; Fan, Xudong

    2013-03-01

    We developed a monolithic subsystem that integrates a micro-gas chromatography (μGC) separation column and on-column, non-destructive Fabry-Pérot (FP) vapor sensors on a single silicon chip. The device was fabricated using deep reactive ion etching of silicon to create fluidic channels and polymers were deposited on the same silicon chip to act as a stationary phase or an FP sensor, thus avoiding dead volumes caused by the interconnects between the column and sensor traditionally used in μGC. Two integration designs were studied. In the first design, the μGC column was coated with a layer of polymer that served as both the stationary phase and the FP sensor, which has the greatest level of integration. In the second design, a FP sensor array spray-coated with different vapor sensing polymers was integrated with the μGC column, which significantly improves the system flexibility and detection sensitivity. With this design, we show that the FP sensors have a detection limit on the order of tens of picograms with a sub-second response time. Furthermore, FP sensor array are shown to respond to a mixture of analytes separated by the integrated separation channel, allowing for the construction of response patterns, which, along with retention time, can be used as a basis of analyte identification.

  2. Highly sensitive bending sensor based on multimode-multimode-coreoffset fiber structure

    NASA Astrophysics Data System (ADS)

    Qi, Yanhui; Ma, Lin; Sun, Jiang; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng

    2015-12-01

    In this paper, we present a simple fiber optic bending sensor based on the multimode-multimode structure combining with the core-offset fiber structure. The multimode-multimode structure is composed of no core fiber (NCF) with hundreds of micrometers in length as a micro-lens for mode conversion, and single mode fiber (SMF) which can be seen as a section of special multimode fiber (MMF) when considered the cladding modes. The transmission spectrum in the experiment agrees well with the numerical model. The sensitivity of the structure can be achieved as high as 11.104 nm/m-1 in the measuring range. Meanwhile, the sensitivity of the neighboring resonance wavelength around 1546 nm exhibits approximately the same sensitivity which is 10.579 nm/m-1. Besides, the strain sensitivity is about -0.927 pm/με within the measuring strain range.

  3. Printed strain sensor array for application to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  4. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  5. Laser induced formation of micro-rough structures

    NASA Astrophysics Data System (ADS)

    Singh, Rajiv K.; Fitz-Gerald, James M.

    1997-01-01

    Laser induced micro-rough structures (LIMS) are a by-product of laser ablation process and are created during multiple pulse irradiation on the surface of the material. Although LIMS have been found to be deleterious for the thin film deposition process, these surfaces have wide variety of applications in synthesis of adherent coatings in thermal expansion mismatched systems. Earlier models, based on interference effects of the laser beam, to explain the evolution of LIMS, are not consistent with the experimental results. Experiments were conducted on a wide variety of materials (e.g. SiC, alumina, YBaCuO superconductor, etc.) to understand the mechanisms for generation of the micro-rough structures. A novel model was developed to explain the characteristics of LIMS such as (i) feature orientation (ii) evolution of surface structures as a function of pulses, (iii) formation of LIMS within a energy window near ablation threshold and (iv) periodicity which is independent of the laser wavelength and incident angle.

  6. Multiscale FE method for analysis of bone micro-structures.

    PubMed

    Podshivalov, L; Fischer, A; Bar-Yoseph, P Z

    2011-08-01

    Bones are composed of hierarchical bio-composite materials characterized by complex multiscale structural geometry and behavior. The architecture and the mechanical properties of bone tissue differ at each level of hierarchy. Thus, a multiscale approach for mechanical analysis of bone is imperative. This paper proposes a new approach for 3D multiscale finite element analysis of trabecular bone that can offer physicians a "digital magnifying glass" to facilitate continuous transition between macro- and micro-scales. The approach imitates the human ability to perceive details. That is, zooming-out from an object causes fewer details to be visible. As a result, the material appears to be smoother and more homogeneous. Zooming-in, in contrast, reveals additional details and material heterogeneity. Realization of the proposed approach requires synergy between a hierarchical geometric model for representing intermediate scales and a mechanical model for local material properties of bone tissue for each scale. The geometric model facilitates seamless and continuous bi-directional transition between macro- and micro-scales, while the mechanical model preserves the effective material properties. A 2D model of a simplified trabecular structure was implemented and analyzed in order to assess the feasibility of the proposed multiscale approach. The successful results of this model led to extending the method into 3D and analyzing real trabecular structures.

  7. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    PubMed

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R(2)=0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Micro sensors: linking real-time oscillatory shear stress with vascular inflammatory responses.

    PubMed

    Hsiai, Tzung K; Cho, Sung K; Wong, Pak K; Ing, Michael H; Salazar, Adler; Hama, Susan; Navab, Mohamad; Demer, Linda L; Ho, Chih-Ming

    2004-02-01

    The important interplay between blood circulation and vascular cell behavior warrants the development of highly sensitive but small sensing systems. The emerging micro electro mechanical systems (MEMS) technology, thus, provides the high spatiotemporal resolution to link biomechanical forces on the microscale with large-scale physiology. We fabricated MEMS sensors, comparable to the endothelial cells (ECs) in size, to link real-time shear stress with monocyte/EC interactions in an oscillatory flow environment, simulating the moving and unsteady separation point at arterial bifurcations. In response to oscillatory shear stress (tau) at +/- 2.6 dyn/cm2, time-averaged shear stress (tauave) = 0 at 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories, undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Incorporating with cell-tracking velocimetry, we visualized that these real-time events occurred over a dynamic range of oscillating shear stress between +/- 2.6 dyn/cm2 and Reynolds number between 0 and 22.2 in the presence of activated adhesion molecule and chemokine mRNA expression.

  9. Are microRNAs true sensors of ageing and cellular senescence?

    PubMed

    Williams, Justin; Smith, Flint; Kumar, Subodh; Vijayan, Murali; Reddy, P Hemachandra

    2017-05-01

    All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1991-01-01

    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described.

  11. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    PubMed

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  12. Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.

    DOEpatents

    DiMeo, Jr., Frank; Baum, Thomas H.

    2003-07-22

    The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  13. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  14. Integration of periodic structure and highly narrowband MEMS sensor to enhance crack detection ability in steel structures

    NASA Astrophysics Data System (ADS)

    Kabir, Minoo; Ozevin, Didem

    2016-09-01

    Acoustic emission method is a nondestructive evaluation method based on the propagation of elastic waves due to the sudden change in strain field caused by newly formed fracture surfaces. While the method has been successfully applied to many structures, the influence of friction emissions limits the diverse use of the method in large-scale structures. This research integrates the metamaterial geometry to block low frequency friction signals while allowing high frequency signals due to the crack growth. The phononic structure is composed of periodic arrangement of holes in a steel plate that prohibits propagation of elastic waves near the band gap of 60 kHz. The dispersion curve of the periodic structure is calculated using finite element modeling of a unit cell in COMSOL Multiphysics. As the band gap of the periodic structure is highly narrowband, the acoustic sensing is achieved by highly narrowband capacitive type Micro-Electro- Mechanical Systems (MEMS) sensors tuned to the desired stop band frequency. The integration of periodic plate design and MEMS sensors provides wave-field focusing to reduce wave attenuation, and prevent interference of secondary waves sources, such as friction, with the primary waveforms. The waveguiding feature of the designed structure is experimentally investigated and discussed in this paper.

  15. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  16. Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kullaa, Jyrki

    2011-11-01

    Discrimination between three different sources of variability in a vibration-based structural health monitoring system is investigated: environmental or operational effects, sensor faults, and structural damage. Separating the environmental or operational effects from the other two is based on the assumption that measurements under different environmental or operational conditions are included in the training data. Distinguishing between sensor fault and structural damage utilizes the fact that the sensor faults are local, while structural damage is global. By localizing the change to a sensor which is then removed from the network, the two different influences can be separated. The sensor network is modelled as a Gaussian process and the generalized likelihood ratio test (GLRT) is then used to detect and localize a change in the system. A numerical and an experimental study are performed to validate the proposed method.

  17. Multilayer structure for a spectral imaging sensor.

    PubMed

    Parrein, Pascale; Moussy, Norbert; Poupinet, Ludovic; Gidon, Pierre

    2009-01-20

    We investigate the possibility of recovering spectral information using a multilayer structure realized through microelectronics technologies and compatible with a matrix arrangement. The structure is made of photoabsorbing layers, acting as local photodetectors, alternating with transparent layers. The whole structure lies on a reflective surface. A stationary wave containing the spectral information of the source is generated within the structure. We determine the intensity of the stationary wave at any position, taking into account absorption and multireflections at each transition as well as the signal detected by the photoabsorbing layers. The model forecasting the detected signal is then validated using p-i-n diodes of different thicknesses made of hydrogenated amorphous silicon (a-Si:H) encompassed between indium tin oxide (ITO) electrodes. The detected signal depends on the wavelength of the incident light, the thickness of the detecting layer, and the latter's position within the structure. A specific spectral response can then be associated to each photoabsorbing layer. We show how spectral information can be retrieved from this kind of structure in the visible spectrum range.

  18. Wireless sensor information fusion for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Li, Hongwei

    2003-04-01

    The process of implementing a damage detection strategy for engineering systems is often referred to as structural health monitoring (SHM). And Structural Health Monitoring is very important for large structures like suspension- and cable-stayed bridges, towers, offshore platforms and so on. Some advance technologies for infrastructure health monitoring have been caused much more attentions, in which the wireless sensor network (WSN) is recently received special interests. The WSN would have lower capital and installation costs as well as ensure more reliability in the communication of sensor measurements. However, in the context of untethered nodes, the finite energy budget is a primary design constraint. Therefore, one wants to process data as much as possible inside the network to reduce the number of bits transmitted, particularly over longer distances. In this paper, a WSN is proposed for health monitoring of the offshore platform, and a laboratory prototype was designed and developed to demonstrate the feasibility and validity of the proposed WSN. In the laboratory prototype, wireless sensor nodes were deployed on a model of offshore platform, a Wireless Sensor Local Area Network (WSLAN) transfers the simulated data among personal computer and microsensor nodes peripherals without cables. To minimize the energy consumption, algorithms for fusing the acceleration, temp and magnetic sensors on a single node are being developed. And based on fusing the data from local nodes, the current state of structure health was determined. In our deployment, we using UC Berkeley motes as the wireless sensor nodes to examine many of the issues relating to their usage and our information fusion algorithm.

  19. Embeddable structural sensors for SHM of solid rocket grains

    NASA Astrophysics Data System (ADS)

    Chelner, Herb; Buswell, Jim

    2006-05-01

    Structural Health Monitoring is essential in that any event that may compromise the solid rocket motor must be detected. The magnitude, position and time of any imposed event that may damage the propellant grain, bonding system or integrity of the case must be detected and identified for safe operation of the motor. The current embedded sensor technology has been developed to monitor the effect of these events on the propellant grain. Normal bond stress and temperature can be measured using DBST sensors and the output interpreted to confirm integrity. It has been shown that the presences of de-bond and cracks can be determined. Current work is in progress to establish if these embedded sensors can be used to determine position and size of such defects. The stress distribution in a typical propellant grain also has a shear component particularly near the ends and around any flaps, slots or stress relieving devices. This can be the critical stress under certain loads and in complex geometries. Therefore, a recent addition to the range is a sensor to measure shear stress in the same body as the DBST. Motors can be stored for long periods before being used so the sensor system must also be reliable and stable for at least twenty years of operation. Similar sensors stored for ten years have shown little change and tests are being undertaken to establish the confidence that the sensor system will last the life of the motor. This paper will review the recent development and testing of these embeddable sensors, and results to date will be discussed.

  20. Enhancing the sensitivity of a micro-diaphragm resonating sensor by effectively positioning the mass on the membrane

    PubMed Central

    Kim, Jinsik; Kim, Hye Jin; Cho, EunAe; Shin, Hyun-Joon; Park, Jung Ho; Hwang, Kyo Seon

    2015-01-01

    The detection of biomarkers in the liquid phase using mechanical sensors is difficult because of noise caused by the liquid. To reduce and verify the side effects of liquid loading, we performed calculations and experiments to determine the shift in resonant frequency according to the loading conditions. A 2-μm-thick piezoelectric rectangular micro-diaphragm with a 500 × 500 μm membrane was used. These dimensions were determined such that there would be an analogous resonant frequency shift ratio in both (1, 1) and (2, 2) modes. By calculating and measuring the resonant frequency, we verified that the resonant frequency of the sensor would change only through contact with the liquid, even the resonant frequency change by only liquid much higher than the changes caused by the nanoparticles. The real signal constituted only 0.017% of the initial resonant frequency. To enhance the sensitivity by reducing the unexpected surface stress in the liquid, the liquid was dropped onto the surface of the micro-diaphragm. This resulted in an improvement of more than 10 times the sensitivity in both modes. In addition, by controlling the position in the micro-diaphragm resonating sensor, more sensitive positions with large displacements were determined according to each mode. PMID:26594022

  1. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  2. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  3. Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system.

    PubMed

    Ohira, Shin-Ichi; Toda, Kei

    2006-01-01

    Accurate liquid flow control is important in most chemical analyses. In this work, the measurement of liquid flow in microliters per minute was performed, and feedback control of the flow rate was examined. The flow sensor was arranged on a channel made in a polydimethylsiloxane (PDMS) block. The center of the channel was cooled by a miniature Peltier device, and the change in temperature balance along the channel formed by the flow was measured by two temperature sensors. Using this flow sensor, feedback flow control was examined with two pumping methods. One was the electroosmotic flow method, made by applying a high voltage (HV) between the reagent and waste reservoirs; the other was the piezo valve method, in which a micro-valve-seat was fabricated in a PDMS cavity with a silicone diaphragm. The latter was adopted for a micro gas analysis system (microGAS) for measuring atmospheric H2S and SO2. The obtained baselines were stable, and better limits of detection were obtained.

  4. Micro structure processing on plastics by accelerated hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  5. Optimal sensor placement in structural health monitoring using discrete optimization

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Büyüköztürk, Oral

    2015-12-01

    The objective of optimal sensor placement (OSP) is to obtain a sensor layout that gives as much information of the dynamic system as possible in structural health monitoring (SHM). The process of OSP can be formulated as a discrete minimization (or maximization) problem with the sensor locations as the design variables, conditional on the constraint of a given sensor number. In this paper, we propose a discrete optimization scheme based on the artificial bee colony algorithm to solve the OSP problem after first transforming it into an integer optimization problem. A modal assurance criterion-oriented objective function is investigated to measure the utility of a sensor configuration in the optimization process based on the modal characteristics of a reduced order model. The reduced order model is obtained using an iterated improved reduced system technique. The constraint is handled by a penalty term added to the objective function. Three examples, including a 27 bar truss bridge, a 21-storey building at the MIT campus and the 610 m high Canton Tower, are investigated to test the applicability of the proposed algorithm to OSP. In addition, the proposed OSP algorithm is experimentally validated on a physical laboratory structure which is a three-story two-bay steel frame instrumented with triaxial accelerometers. Results indicate that the proposed method is efficient and can be potentially used in OSP in practical SHM.

  6. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  7. High performance silica micro-tube optical temperature sensor based on β-NaLuF4:Yb3+/Tm3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Yundong; Shao, Lin; Wu, Yongfeng; Htwe, ZinMaung; Yuan, Ping

    2017-07-01

    Rare earth co-doped nanocrystals of β-NaLuF4: Yb3+/Tm3+ with a uniform morphology and hexagonal structure were synthesized by a solvothermal route. The structure of the synthesized material was investigated with X-ray diffraction, scanning electron microscope and transmission electron microscope techniques. The micro-tube structure including rare earth nanocrystals was achieved by drawing the SiO2 capillary under the flame. The fluorescence intensity ratio of non-thermal coupling levels of 1D2→3F4 and 1G4→3H6 were studied as a function of temperature around the range of 300-550 K. The maximum sensitivity was estimated to be 0.0047 K-1 at 525 K. These results indicated that the device may have great potential applications in optical temperature sensor.

  8. Fiber Optic Sensors in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Giordano, Maurizio; Nasser, Jehad Sharawi; Zarrelli, Mauro; Cusano, Andrea; Cutolo, Antonello

    A great demand exists nowadays to special systems that permit the monitoring and controlling in real time, and under diverse range of operating conditions, the performance of structural and mechanical elements or structures with minimum cost and effort. The objective of this chapter is to build a base of knowledge containing a brief demonstration of a candidate system and highlighting the most important fields of its applications. The practical experience of famous authors, researchers, companies and great industries, rather in presenting or/and in utilizing this technology is going to be discussed through the following lines.

  9. A system for assessing motion artifacts in the signal of a micro-optic in-ear vital signs sensor.

    PubMed

    Vogel, Stefan; Hülsbusch, Markus; Starke, Dietmar; Leonhardt, Steffen

    2008-01-01

    Cardiovascular diseases are among the most common causes of death in developed industrial nations. It is of great interest of both physician and patient to determine the cardiovascular risk factors early in order to take preventive measures. To assist these investigations we develop a wearable in-ear measuring system (IN-MONIT) for 24/7 monitoring of heart rate and oxygen saturation (SpO2). The central component is a micro-optic remission/reflection sensor (MORES) located inside the auditory canal. From the measured photoplethysmographic curves the aforementioned vital signs can be derived. In the following we present a recording system for assessing motion artifact influence in the in-ear sensor data. Two accelerometer sensors record posture and motion while at the same time SpO2, heart rate and PPG are measured using both a commercial sensor and the in-ear sensor. The data is transmitted wirelessly to a control PC for storage and further investigation. Using this system we assessed the influence of motion artifacts produced by daily life activities on infrared and red in-ear PPG data and on readings of the reference sensor.

  10. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  11. Micro/nanoscale continuous printing: direct-writing of wavy micro/nano structures via electrospinning

    NASA Astrophysics Data System (ADS)

    Fang, Feiyu; Du, Zefeng; Zeng, Jun; Zhu, Ziming; Chen, Xin; Chen, Xindu; Lv, Yuanjun; Wang, Han

    2015-07-01

    Micro/nanofibers that are created by direct-writing using an electrospinning (ES) technique have aroused much recent attention, owing to their intriguing physical properties and great potential as building blocks for micro/nanoscale devices. In this work, a wavy direct-writing (WDW) process was developed to directly write wavy micro/nanostructures suitable for the fabrication of micro/nanoscale devices. The low voltage WDW technique is anticipated to be useful for a broad range of applications including flexible/stretchable electronics, micro optoelectronics, nano-antennas, microelectromechanical systems (MEMS), and biomedical engineering.

  12. Analysis of the intermittent nature of the turbulence from micro-structure profiles

    NASA Astrophysics Data System (ADS)

    Sanchez, X.; Planella, J.; Roget, E.

    2012-04-01

    We present a statistical analysis of the intermittent nature of turbulence. One usually characterizes the nature of the intermittency with the scaling properties of the structure functions of the velocity or a scalar field, like the temperature. Oceanic measurements with a micro-structure profiler allow the determination of the transverse velocity structure functions. And following the refined Kolmogorov similarity hypothesis (K62), this scaling is directly related to the scaling of the rate of dissipation of turbulent kinetic energy. In aquatic ecosystems, turbulent oscillations of various scales influence aggregation, incubation and foraging processes of small-scale planktonic organisms. Internal intermittency can affect phyto and zooplankton species less than several millimeters in size, specifically, floating microscopic algae that are responsible for photosynthesis in coastal oceans. Zooplankton larger than 1 cm usually do not react to small-scale intermittency of turbulence. This is the first time, to our knowledge, that the structure functions come from space series. Previous results in air and in water were obtained from a static sensor in the atmosphere, ocean or in a laboratory setup. Furthermore, previous works were mainly focused on the longitudinal structure functions, while the results we present here relate to the transverse structure functions. Acknowledgments: This research was developed under the Spanish Government Project FIS2008-03608 and concluded within the framework of the CLIMSEAS project FP7-IRSES-2009 (ref. 247512).

  13. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo

    2015-04-01

    The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as

  14. Structural configuration study for an acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Biaobiao

    A continuous structure has several response characteristics that make it a candidate for a sensor used to locate an acoustic source. Primary goals in developing such a sensor structure are to ensure that the response is rich enough to provide information about the impinging acoustic wave and to detect the direction of travel without being too sensitive to background noise. As such, there are several factors that must be examined with regard to sensor configuration and measurement requirements. This dissertation describes a set of studies that examine various configuration requirements for such a sensor. Some of the parameters of interest include the size, or aperture of the structure, boundary conditions, material properties, and thickness. The response of the structure to transient sinusoidal wave excitations will be examined analytically. The time-domain response of an Euler-Bernoulli beam excited by a traveling sinusoidal excitation is obtained based on modal superposition and verified by using a finite element method. Then, an approach using simple basis functions will be applied to achieve the goal of more efficient response and force identification. The moving force is identified in the time domain by extending previous inverse approaches. The Tikhonov regularization technique provides bounds to the ill-conditioned results in the identification problem. Both simulated displacement and velocity are considered for use in the inverse. To evaluate the method and examine various configurations, simulations with different numbers of sinusoidal half-cycles exciting the sensor structure are studied. Various levels of random noise are also added to the simulated displacements and velocities responses in order to study the effect of noise in moving wave load identification. Such a new approach in acoustic sensing has applications in the areas of security and disaster recovery.

  15. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  16. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  17. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    PubMed Central

    Bonk, Sebastian M.; Stubbe, Marco; Buehler, Sebastian M.; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-01-01

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions. PMID:26263849

  18. AOI [3] High-Temperature Nano-Derived Micro-H2 and - H2S Sensors

    SciTech Connect

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO2) and hydrogen sulfide (H2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring of H2, H2S and SO22 levels during coal gasification is strongly desired. The selective detection of SO2/H2S in the presence of H2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H2 and -H2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H2, SO2, and H2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). Nex

  19. Plastic optical fibre sensor for damage detection in offshore structures

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.; Koh, C. G.

    2010-03-01

    It is important to ensure the safe and reliable use of massive engineering structures such as offshore platforms, including all aspects of safety and design code compliance. Although routine inspection is an integral part of the safety protocol in operating and maintaining these structures, regular assessment of the effectiveness and efficiency of existing safety evaluation methods is clearly desired in view of emerging technologies for structural health monitoring of engineering structures. The recent advancement in plastic optical fibre (POF) materials and processing render POF sensors an attractive alternative to glass-based optical fibre sensors as they offer much greater being flexibility, high resistance to fracture and hence the ease in their handling and installation. In this paper, some preliminary results demonstrating the use of plastic optical fibre sensors for damage detection and structural health monitoring for offshore and marine-related applications will be summarized. In this study, POF will be used for crack detection in tubular steel specimens in conjunction with a high-resolution photon-counting optical time-domain reflectrometry (v-OTDR). Although the use of OTDR technique is an established method in the telecommunication industry, this study is new in that it is now possible, with the availability of v-OTDR and graded-index perfluorinated POF, to detect and locate the crack position in the host structure to within 10 cm accuracy or better. It will also be shown that this technique could readily be configured to monitor crack growth in steel tubular members.

  20. Plastic optical fibre sensor for damage detection in offshore structures

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.; Koh, C. G.

    2009-12-01

    It is important to ensure the safe and reliable use of massive engineering structures such as offshore platforms, including all aspects of safety and design code compliance. Although routine inspection is an integral part of the safety protocol in operating and maintaining these structures, regular assessment of the effectiveness and efficiency of existing safety evaluation methods is clearly desired in view of emerging technologies for structural health monitoring of engineering structures. The recent advancement in plastic optical fibre (POF) materials and processing render POF sensors an attractive alternative to glass-based optical fibre sensors as they offer much greater being flexibility, high resistance to fracture and hence the ease in their handling and installation. In this paper, some preliminary results demonstrating the use of plastic optical fibre sensors for damage detection and structural health monitoring for offshore and marine-related applications will be summarized. In this study, POF will be used for crack detection in tubular steel specimens in conjunction with a high-resolution photon-counting optical time-domain reflectrometry (v-OTDR). Although the use of OTDR technique is an established method in the telecommunication industry, this study is new in that it is now possible, with the availability of v-OTDR and graded-index perfluorinated POF, to detect and locate the crack position in the host structure to within 10 cm accuracy or better. It will also be shown that this technique could readily be configured to monitor crack growth in steel tubular members.

  1. Printing of microstructure strain sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  2. Thin-film thermomechanical sensors embedded in metallic structures

    NASA Astrophysics Data System (ADS)

    Golnas, Anastasios M.

    2000-10-01

    The ability to monitor in real time the thermo-mechanical responses of tools, equipment, and structural components has been very appealing to the aerospace, automotive, drilling, and manufacturing industries. So far, the challenge has been to instrument the tools, equipment, or structural components with a number of sensors in an economical way and also protect the sensors from the environment which the tools, etc. are exposed to. In this work, a sequence of manufacturing processes that can be used to build thin-film temperature and strain sensors on internal surfaces of metallic structures is proposed and demonstrated. The use of thin-film techniques allows the parallel fabrication of sensor arrays, whereas a layered manufacturing scheme permits the creation of sensors on the internal surfaces of metallic parts and their subsequent embedding. Thin-film sensors are deposited on an aluminum oxide film, which is grown on a stainless steel substrate. The oxide is deposited by reactive sputtering. The sensors are sputter-deposited from alloy targets, shaped via micromachining and partially covered with a passivation layer of aluminum oxide. The thin-film structure is then covered by two protective electroplated layers of copper and nickel for protection during the deposition of the embedding layers. Embedding is accomplished by using a high-power infrared laser to melt an invar powder bed on top of the protective layers. Among the issues that emerged during the definition of the fabrication sequence were: the long-term stability of reactive deposition, the presence of pinholes in the dielectric layers, the optimal combination of materials and thickness of the protective layers, the bonding at the various interfaces, and the heat input and residual stresses resulting from the high-temperature embedding process. Finally, a finite element model was constructed in order to simulate the high-temperature embedding process. The heat transfer analysis performed on the model

  3. Bio-mimetic optical sensor for structural deflection measurement

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. A.; Barrett, Steven F.

    2014-03-01

    Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement.

  4. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    NASA Astrophysics Data System (ADS)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  5. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  6. Attitude error response of structures to actuator/sensor noise

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.

  7. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  8. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  9. Structural dynamics control the MicroRNA maturation pathway

    PubMed Central

    Dallaire, Paul; Tan, Huiping; Szulwach, Keith; Ma, Christopher; Jin, Peng; Major, François

    2016-01-01

    MicroRNAs (miRNAs) are crucial gene expression regulators and first-order suspects in the development and progression of many diseases. Comparative analysis of cancer cell expression data highlights many deregulated miRNAs. Low expression of miR-125a was related to poor breast cancer prognosis. Interestingly, a single nucleotide polymorphism (SNP) in miR-125a was located within a minor allele expressed by breast cancer patients. The SNP is not predicted to affect the ground state structure of the primary transcript or precursor, but neither the precursor nor mature product is detected by RT-qPCR. How this SNP modulates the maturation of miR-125a is poorly understood. Here, building upon a model of RNA dynamics derived from nuclear magnetic resonance studies, we developed a quantitative model enabling the visualization and comparison of networks of transient structures. We observed a high correlation between the distances between networks of variants with that of their respective wild types and their relative degrees of maturation to the latter, suggesting an important role of transient structures in miRNA homeostasis. We classified the human miRNAs according to pairwise distances between their networks of transient structures. PMID:27651454

  10. Analysis of Piezoelectric Structural Sensors with Emergent Computing Techniques

    NASA Technical Reports Server (NTRS)

    Ramers, Douglas L.

    2005-01-01

    The purpose of this project was to try to interpret the results of some tests that were performed earlier this year and to demonstrate a possible use of emergence in computing to solve IVHM problems. The test data used was collected with piezoelectric sensors to detect mechanical changes in structures. This project team was included of Dr. Doug Ramers and Dr. Abdul Jallob of the Summer Faculty Fellowship Program, Arnaldo Colon-Lopez - a student intern from the University of Puerto Rico of Turabo, and John Lassister and Bob Engberg of the Structural and Dynamics Test Group. The tests were performed by Bob Engberg to compare the performance two types of piezoelectric (piezo) sensors, Pb(Zr(sub 1-1)Ti(sub x))O3, which we will label PZT, and Pb(Zn(sub 1/3)Nb(sub 2/3))O3-PbTiO, which we will label SCP. The tests were conducted under varying temperature and pressure conditions. One set of tests was done by varying water pressure inside an aluminum liner covered with carbon-fiber composite layers (a cylindrical "bottle" with domed ends) and the other by varying temperatures down to cryogenic levels on some specially prepared composite panels. This report discusses the data from the pressure study. The study of the temperature results was not completed in time for this report. The particular sensing done with these piezo sensors is accomplished by the sensor generating an controlled vibration that is transmitted into the structure to which the sensor is attached, and the same sensor then responding to the induced vibration of the structure. There is a relationship between the mechanical impedance of the structure and the resulting electrical impedance produced in the in the piezo sensor. The impedance is also a function of the excitation frequency. Changes in the real part of impendance signature relative to an original reference signature indicate a change in the coupled structure that could be the results of damage or strain. The water pressure tests were conducted by

  11. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  12. MicroRNA precursors are not structurally robust but plastic.

    PubMed

    Rodrigo, Guillermo; Elena, Santiago F

    2013-01-01

    Robustness is considered a ubiquitous property of living systems at all levels of organization, and small noncoding RNA (sncRNA) is a genuine model for its study at the molecular level. In this communication, we question whether microRNA precursors (pre-miRNAs) are actually structurally robust, as previously suggested. We found that natural pre-miRNAs are not more robust than expected under an appropriate null model. On the contrary, we found that eukaryotic pre-miRNAs show a significant enrichment in conformational flexibility at the thermal equilibrium of the molecule, that is, in their plasticity. Our results further support the selection for functional diversification and evolvability in sncRNAs.

  13. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  14. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology

    NASA Astrophysics Data System (ADS)

    Ou, Yi; Qu, Furong; Wang, Guanya; Nie, Mengyan; Li, Zhigang; Ou, Wen; Xie, Changqing

    2016-07-01

    By combining substrate-free structures with anodic bonding technology, we present a simple and efficient micro-electro-mechanical system (MEMS) thermal shear stress sensor. Significantly, the resulting depth of the vacuum cavity of the sensor is determined by the thickness of the silicon substrate at which Si is removed by the anisotropic wet etching process. Compared with the sensor based on a sacrificial layer technique, the proposed MEMS thermal shear-stress sensor exhibits dramatically improved sensitivity due to the much larger vacuum cavity depth. The fabricated MEMS thermal shear-stress sensor with a vacuum cavity depth as large as 525 μm and a vacuum of 5 × 10-2 Pa exhibits a sensitivity of 184.5 mV/Pa and a response time of 180 μs. We also experimentally demonstrate that the sensor power is indeed proportional to the 1/3-power of the applied shear stress. The substrate-free structures offer the ability to precisely measure the shear stress fluctuations in low speed turbulent boundary layer wind tunnels.

  15. Sensor-based diagnosis using knowledge of structure and function

    NASA Technical Reports Server (NTRS)

    Scarl, Ethan A.; Jamieson, John R.; Delaune, Carl I.

    1987-01-01

    A system for fault detection and isolation called LES, developed at the Kennedy Space Center for the Space Shuttle's Launch Processing System, is a well-developed diagnostic system that is simultaneously model-based and sensor-based. This experiment has led to a surprising result: the failure of a sensor can not only be handled in precisely the same way as the failure of any other object, but may present an especially easy case. Classical rule-based diagnostic systems need to find out whether or not their sensors are telling them the truth before they can safely draw inferences from them. By contrast, while LES does treat sensors as a special case, it does so only because there may exist a short cut that allows them to be handled more simply than other objects. LES uses both structural and functional knowledge, and has found cases in which the structural knowledge can be economically replaced by the judicious use of functional relationships; LES' functional relationships are stored in exactly one place, so they must be inverted to determine hypothetical values for possibly faulty objects. The inversion process has been extended to include conditional functions not normally considered to have inverses.

  16. Optical micro resonance based sensor schemes for detection and identification of nano particles and biological agents in situ

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas

    2010-05-01

    A novel emerging technique for the label-free analysis of nano particles including biomolecules using optical micro cavity resonance is being developed. Various schemes based on a mechanically fixed microspheres as well as microspheres melted by laser on the tip of a standard single mode fiber have been investigated to make further development for microbial application. Water solutions of ethanol, HCl, glucose, vitamin C and biotin have been used to test refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Particular efforts were made for effective fixing of the micro spheres in the water flow, an optimal geometry for micro resonance observation and material of microsphere the most appropriate for microbial application. Optical resonance in free micro spheres from PMMA fixed in micro channels produced by photolithography has been observed under the laser power of less then 1 microwatt. Resonance shifts of C reactive protein water solutions as well as albumin solutions in pure water and with HCl modelling blood have been investigated. Introducing controlled amount of glass gel nano particles into sensor microsphere surrounding were accompanied by both correlative resonance shift (400 nm in diameter) and total reconstruct of resonance spectra (57 nm in diameter). Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

  17. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    NASA Astrophysics Data System (ADS)

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Fischer, Joachim; Nann, Thomas; Wegener, Martin

    2015-03-01

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  18. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    SciTech Connect

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Nann, Thomas; Fischer, Joachim; Wegener, Martin

    2015-03-30

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  19. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    PubMed Central