Sample records for micro vapor cells

  1. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  2. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  3. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    PubMed

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  4. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  5. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE PAGES

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  7. Electron microscopy investigation of gallium oxide micro/nanowire structures synthesized via vapor phase growth.

    PubMed

    Wang, Y; Xu, J; Wang, R M; Yu, D P

    2004-01-01

    Large-scale micro/nanosized Ga(2)O(3) structures were synthesized via a simple vapor p9hase growth method. The morphology of the as-grown structures varied from aligned arrays of smooth nano/microscale wires to composite and complex microdendrites. We present evidence that the formation of the observed structure depends strongly on its position relative to the source materials (the concentration distribution) and on the growth temperature. A growth model is proposed, based on the vapor-solid (VS) mechanism, which can explain the observed morphologies.

  8. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  9. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  10. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  11. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  12. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  13. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Linjie; Liu, Jiasheng; Jia, Yue; Zhang, Hao; Song, Zhenfei; Jia, Suotang

    2018-03-01

    The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry–Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell. Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi “331 Project” Key Subjects Construction, China.

  14. Vapor Corrosion Cell and Method of Using Same

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    2001-01-01

    The present invention provides a vapor corrosion cell for a real-time and quantitative measurement of corrosion of conductive materials in atmospheres containing chemically reactive gases and water vapor. Two prototypes are provided. Also provided are various applications of this apparatus in industry.

  15. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  16. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  17. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  18. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  19. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, S.; Affolderbach, C.; Gruet, F.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variationsmore » and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.« less

  20. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  1. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  2. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  3. Vapor Grown Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Abdussamad Abbas, Hisham

    Perovskite solar cells has been the fastest growing solar cell material till date with verified efficiencies of over 22%. Most groups in the world focuses their research on solution based devices that has residual solvent in the material bulk. This work focuses extensively on the fabrication and properties of vapor based perovskite devices that is devoid of solvents. The initial part of my work focuses on the detailed fabrication of high efficiency consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. The sequential vapor devices experiences device anomalies like voltage evolution and IV hysteresis owing to charge trapping in TiO2. Hence, sequential PIN devices were fabricated using doped Type-II heterojunctions that had no device anomalies. The sequential PIN devices has processing restriction, as organic Type-II heterojunction materials cannot withstand high processing temperature, hence limiting device efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric control. A comprehensive description of the fabrication, Co-evaporator setup and how to build it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry and doped transport layers are all critical for eliminating device anomalies and in fabricating high efficiency devices. Finally, Formamidinium based perovskite were fabricated using sequential approach. A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, inorganic films such as CdS and Nickel oxide were developed in this work.

  4. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  5. A review of refractory materials for vapor-anode AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  6. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    NASA Astrophysics Data System (ADS)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  7. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    PubMed

    Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane

    2014-08-06

    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

  8. Vapor-fed bio-hybrid fuel cell.

    PubMed

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  9. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  10. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties.

    PubMed

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-12-21

    In this research, the Zn(C₅H₇O₂)₂·xH₂O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N₂/O₂, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  11. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    PubMed Central

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-01-01

    In this research, the Zn(C5H7O2)2·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL. PMID:29267196

  12. Simulation of micro/nano electroporation for cell transfection

    NASA Astrophysics Data System (ADS)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  13. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Micro Solar Cells with Concentration and Light Trapping Optics

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph

    2013-03-01

    Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293

  15. Performance enhancement of hybrid solar cells through chemical vapor annealing.

    PubMed

    Wu, Yue; Zhang, Genqiang

    2010-05-12

    Improvement in power conversion efficiency has been observed in cadmium selenide nanorods/poly(3-hexylthiophene) hybrid solar cells through benzene-1,3-dithiol chemical vapor annealing. Phosphor NMR studies of the nanorods and TEM/AFM characterizations of the morphology of the blended film showed that the ligand exchange reaction and related phase separation happening during the chemical vapor annealing are responsible for the performance enhancement.

  16. Microwave magnetic field detection based on Cs vapor cell in free space

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochi; Jiang, Zhiyuan; Qu, Jifeng; Hou, Dong; Huang, Xianhe; Sun, Fuyu

    2018-06-01

    In this study, we demonstrate the direct measurement of a microwave (MW) magnetic field through the detection of atomic Rabi resonances with Cs vapor cells in a free-space low-Q cavity. The line shape (amplitude and linewidth) of detected Rabi resonances is investigated versus several experimental parameters such as the laser intensity, cell buffer gas pressure, and cell length. The specially designed low-Q cavity creates a suitable MW environment allowing easy testing of different vapor cells with distinct properties. Obtained results are analyzed to optimize the performances of a MW magnetic field sensor based on the present atom-based detection technique.

  17. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  18. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    PubMed

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  19. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  20. Life on magnets: stem cell networking on micro-magnet arrays.

    PubMed

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  1. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    PubMed Central

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. PMID:26664407

  2. Infrared micro-spectroscopic studies of epithelial cells

    PubMed Central

    Romeo, Melissa; Mohlenhoff, Brian; Jennings, Michael; Diem, Max

    2009-01-01

    We report results from a study of human and canine mucosal cells, investigated by infrared micro-spectroscopy, and analyzed by methods of multivariate statistics. We demonstrate that the infrared spectra of individual cells are sensitive to the stage of maturation, and that a distinction between healthy and diseased cells will be possible. Since this report is written for an audience not familiar with infrared micro-spectroscopy, a short introduction into this field is presented along with a summary of principal component analysis. PMID:16797481

  3. Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays

    PubMed Central

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  4. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    PubMed

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  5. Radio-frequency-modulated Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  6. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

    PubMed Central

    Chae, Myung-Sic; Kim, Jinsik; Yoo, Yong Kyoung; Kang, Ji Yoon; Lee, Jeong Hoon; Hwang, Kyo Seon

    2015-01-01

    Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT), which is a well-known by-product of the explosive molecule trinitrotoluene (TNT) and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg) that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC) was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance. PMID:26213944

  7. Dewetting Based Fabrication of Fibrous Micro-Scaffolds as Potential Injectable Cell Carriers

    PubMed Central

    Song, Hokyung; Yin, Liya; Chilian, William M.; Newby, Bi-min Zhang

    2014-01-01

    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of “wounds” that are deep within tissues, e.g., stroke, myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths < 100 μm) were made by dewetting of poly (lactic-coglycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential for forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. PMID:25579969

  8. Dewetting based fabrication of fibrous micro-scaffolds as potential injectable cell carriers.

    PubMed

    Song, Hokyung; Yin, Liya; Chilian, William M; Zhang Newby, Bi-Min

    2015-03-01

    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths<100μm) were made by dewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. microRNAs as mediators and communicators between cancer cells and the tumor micro-environment

    PubMed Central

    Kohlhapp, Frederick J.; Mitra, Anirban K.; Lengyel, Ernst; Peter, Marcus E.

    2015-01-01

    Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor micro-environment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering expression of miRNAs, small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types, or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its micro-environment is necessary if we are to understand tumor progression and devise new treatments. PMID:25867073

  10. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells using Surface Science Techniques

    DTIC Science & Technology

    2011-02-01

    worldwide. Lawrence Berkeley National Laboratory Peer Reviewed Title: Investigation of anti-Relaxation coatings for alkali-metal vapor cells using ...2010 Abstract: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to...preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an

  11. Micro-pulse, differential absorption lidar (dial) network for measuring the spatial and temporal distribution of water vapor in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Hayman, Matt; Nehrir, Amin

    2018-04-01

    The National Center for Atmospheric Research (NCAR) and Montana State Univeristy (MSU) are developing a test network of five micro-pulse differential absorption lidars to continuously measure high-vertical-resolution water vapor in the lower atmosphere. The instruments are accurate, yet low-cost; operate unattended, and eye-safe - all key features to enable the larger network needed to characterize atmospheric moisture variability which influences important processes related to weather and climate.

  12. Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun; Song, Kun-Woo

    2015-07-01

    As one of accident tolerant fuel pellets which should have features of good thermal conductivity and high fission product retention, a micro-cell UO2-Mo pellet has been studied in the aspect of fabrication and thermal property. It was intended to develop the compatible process with conventional UO2 pellet fabrication process. The effects of processing parameters such as the size and density of UO2 granule and the size of Mo powder have been studied to produce sound and dense pellet with completely connected uniform Mo cell-walls. The micro-cell UO2-Mo pellet consists of many Mo micro-cells and UO2 in them. The thermal conductivity of the micro-cell UO2-Mo pellet was measured and compared to those of the UO2 pellet and the UO2-Mo pellet with dispersed form of Mo particles. The thermal conductivity of the micro-cell UO2-Mo pellet was much enhanced and was found to be influenced by the Mo volumetric fraction and pellet integrity. A continuous Mo micro-cell works as a heat conducting channel in the pellet, greatly enhancing the thermal conductivity of the micro cell UO2-Mo pellet.

  13. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  14. Micro-light-emitting diodes with III-nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2018-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10-5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  15. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  16. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  17. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  18. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NASA Astrophysics Data System (ADS)

    Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.

    2014-07-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.

  19. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    PubMed Central

    2011-01-01

    Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Results Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a

  20. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  1. Study on the micro direct ethanol fuel cell (Micro-DEFC) performance

    NASA Astrophysics Data System (ADS)

    Saisirirat, Penyarat; Joommanee, Bordindech

    2018-01-01

    The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.

  2. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    PubMed

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  3. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  4. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  5. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    PubMed

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  6. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  7. MicroBioRobots for single cell manipulation

    NASA Astrophysics Data System (ADS)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  8. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  9. Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance

    NASA Astrophysics Data System (ADS)

    Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip

    2016-08-01

    Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.

  10. From macro- to micro-single chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Buergler, B. E.; Ochsner, M.; Vuillemin, S.; Gauckler, L. J.

    Single chamber solid oxide fuel cells (SC-SOFCs) with interdigitating electrodes were prepared and operated in CH 4/air mixtures. Both electrodes (Ni-Ce 0.8Gd 0.2O 1.9 cermet and Sm 0.5Sr 0.5CoO 3- δ perovskite) were placed on the same side of a Ce 0.8Gd 0.1O 1.95 electrolyte disc. The separating gap between the electrodes was varied from 1.2 to 0.27 mm and finally down to 10 μm. Screen-printing was used for the preparation of the cells with a gap in the millimetre range, whereas micromolding in capillaries (MIMIC) was used for the preparation of the micro-SC-SOFCs. The prepared micro-SC-SOFCs consisted of an array of 19 individual cells that were connected in parallel having 100 μm wide electrodes. An open circuit voltage of 0.65-0.75 V was measured in flowing mixtures of methane and air. The maximum power density of 17 mW cm -2 was limited by the ohmic resistance of the long conduction paths along the thin electrodes to the active sites of the individual cells. The feasibility of the micro-cell was demonstrated by comparing the performance with the performance of the cells having feature sizes in the millimetre range. The cell resistance of micro-SC-SOFCs may be significantly reduced when connecting the cells in series using interconnections between anode and cathodes of adjacent cells.

  11. Fabrication of hierarchical micro-nanotopographies for cell attachment studies.

    PubMed

    López-Bosque, M J; Tejeda-Montes, E; Cazorla, M; Linacero, J; Atienza, Y; Smith, K H; Lladó, A; Colombelli, J; Engel, E; Mata, A

    2013-06-28

    We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.

  12. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Some mechanisms for the formation of octopus-shaped iron micro-particles

    NASA Astrophysics Data System (ADS)

    Bica, Ioan

    2004-08-01

    Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the "dew point" for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out.

  14. Protein and cell micropatterning and its integration with micro/nanoparticles assembly.

    PubMed

    Yap, F L; Zhang, Y

    2007-01-15

    Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.

  15. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  16. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  17. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...

    2016-09-29

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less

  18. On the micro-indentation of plant cells in a tissue context

    NASA Astrophysics Data System (ADS)

    Mosca, Gabriella; Sapala, Aleksandra; Strauss, Soeren; Routier-Kierzkowska, Anne-Lise; Smith, Richard S.

    2017-02-01

    The effect of geometry on cell stiffness measured with micro-indentation techniques has been explored in single cells, however it is unclear if results on single cells can be readily transferred to indentation experiments performed on a tissue in vivo. Here we explored this question by using simulation models of osmotic treatments and micro-indentation experiments on 3D multicellular tissues with the finite element method. We found that the cellular context does affect measured cell stiffness, and that several cells of context in each direction are required for optimal results. We applied the model to micro-indentation data obtained with cellular force microscopy on the sepal of A. thaliana, and found that differences in measured stiffness could be explained by cellular geometry, and do not necessarily indicate differences in cell wall material properties or turgor pressure.

  19. Vapor-Driven Propulsion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  20. Vapor-Driven Propulsion of Catalytic Micromotors

    PubMed Central

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  1. Characterization of the Tissue and Stromal Cell Components of Micro-Superficial Enhanced Fluid Fat Injection (Micro-SEFFI) for Facial Aging Treatment.

    PubMed

    Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro

    2018-06-14

    New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.

  2. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2014-09-01

    Watters, K. M., Das, S., Bryan, K., Bernas, T., Prehn , J. H., and Stallings, R. L. (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma...Cell Biol 2009;29(19):5290-5305. 30. Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL. MicroRNAs 10a and 10b are potent

  3. High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.

    PubMed

    Bartlome, R; Baer, M; Sigrist, M W

    2007-01-01

    In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.

  4. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  5. Chip-based three-dimensional cell culture in perfused micro-bioreactors.

    PubMed

    Gottwald, Eric; Lahni, Brigitte; Thiele, David; Giselbrecht, Stefan; Welle, Alexander; Weibezahn, Karl-Friedrich

    2008-05-21

    We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermo-forming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 micron (h x w x l) or round recesses with diameters of 300 micron and a depth of 300 micron (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed sterile circulation loop that, in the simplest configuration, is additionally comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising.

  6. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  7. Simple Analysis of Lipid Inhibition Activity on an Adipocyte Micro-Cell Pattern Chip.

    PubMed

    Kim, Gi Yong; Yeom, Su-Jin; Jang, Sung-Chan; Lee, Chang-Soo; Roh, Changhyun; Jeong, Heon-Ho

    2018-06-04

    Polydimethyl-siloxane (PDMS) is often applied to fabricate cell chips. In this study, we fabricated an adipocyte microcell pattern chips using PDMS to analyze the inhibition activity of lipid droplets in mouse embryo fibroblast cells (3T3-L1) with anti-obesity agents. To form the PDMS based micropattern, we applied the micro-contact printing technique using PDMS micro-stamps that had been fabricated by conventional soft lithography. This PDMS micro-pattern enabled the selective growth of 3T3-L1 cells onto the specific region by preventing cell adhesion on the PDMS region. It then allowed growth of the 3T3-L1 cells in the chip for 10 days and confirmed that lipid droplets were formed in the 3T3-L1 cells. After treatment of orlistat and quercetin were treated in an adipocyte micro-cell pattern chip with 3T3-L1 cells for six days, we found that orlistat and quercetin exhibited fat inhibition capacities of 19.3% and 24.4% from 0.2 μM of lipid droplets in 3T3-L1 cells. In addition, we conducted a direct quantitative analysis of 3T3-L1 cell differentiation using Oil Red O staining. In conclusion, PDMS-based adipocyte micro-cell pattern chips may contribute to the development of novel bioactive compounds.

  8. MicroRNAs: key regulators of stem cells.

    PubMed

    Gangaraju, Vamsi K; Lin, Haifan

    2009-02-01

    The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.

  9. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    DTIC Science & Technology

    2014-07-01

    temperature is recorded as the extrapolated onset temperature (11–12). • Gas chromatography (GC) headspace analysis requires the establishment of an...J. L.; Shinde, K.; Moran, J. Determination of the Vapor Density of Triacetone Triperoxide (TATP) Using a Gas Chromatography Headspace Technique...Propellants Explos. Pyrotech. 2005, 30 (2), 127–30. 14. Chickos, J. S. Sublimation Vapor Pressures as Evaluated by Correlation- Gas Chromatography . J

  10. Micro-7 BioCell Habitat Fixation Operations

    NASA Image and Video Library

    2014-04-25

    ISS039-E-015593 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.

  11. Micro-7 BioCell Habitat Fixation Operations

    NASA Image and Video Library

    2014-04-25

    ISS039-E-015646 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.

  12. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  14. Generation of subnatural-linewdith biphotons from a hot rubidium atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Zhu, Lingbang; Shu, Chi; Guo, Xianxin; Chen, Peng; Xiao, Yanhong; Jeong, Heejeong; Du, Shengwang

    2017-04-01

    We report the generation of narrowband entangled photon pairs (biphotons) from a hot atomic vapor cell. Making use of backward spontaneous four-wave mixing with electromagnetically induced transparency (EIT), we produced subnatural-linewidth (1.9 MHz < 6 MHz) biphotons from a Doppler-broadened (0.5 GHz) hot (63 C) paraffin-coated rubidium 87 vapor cell. The biphoton coherence time is controable and can be tuned up to 100 ns by EIT. The uncorrelated photons from resonance Raman scattering are suppressed by a spatially separated and tailored optical pumping beam. The spectral brightness is as high as 14,000 s- 1 MHz- 1 . As compared with the cold-atom experiment , the hot atomic vapour cell configuration is much simpler for operation and maintenance, and it is a continuous biphoton source. Our demonstration may lead to miniature narrowband biphoton sources based on atomic vapour cells for practical quantum applications and engineering. The work was supported by Hong Kong Research Grants Council (Project No. 16301214), and in part by the CAS/SAFEA International Partnership Program for Creative Research Teams. L.Z. acknowledges support from the Undergraduate Research Opportunities Program.

  15. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    NASA Astrophysics Data System (ADS)

    Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.

    2013-11-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.

  16. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    NASA Astrophysics Data System (ADS)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  17. DCIS-Specific MicroRNA in Cancer Stem Cell

    DTIC Science & Technology

    2011-09-01

    Gairani, Misako Watabe, Fei Xing, Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe. Roles of lipogenesis and microRNA in cancer...Pai, Wen Liu, Aya Kobayashi, Fei Xing, Koji Fukuda , Shigeru Hirota, Tamotsu Sugai, Go Wakabayashi, Keisuke Koeda, Masahiro Kashiwaba, Kazuyuki...Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe Roles of lipogenesis and microRNA in cancer stem- like cells in ductal carcinoma

  18. MicroRNA-21 in laryngeal squamous cell carcinoma: Diagnostic and prognostic features.

    PubMed

    Erkul, Evren; Yilmaz, Ismail; Gungor, Atila; Kurt, Onuralp; Babayigit, Mustafa A

    2017-02-01

    We aimed to determine the microRNA-21 expression in laryngeal squamous cell carcinoma and assess the association between the disease and clinical characteristics of patients. Retrospective case-control study. A retrospective study was conducted from January 2005 to May 2011, in a tertiary hospital following tumor resection in 72 patients with laryngeal squamous cell carcinoma. We used formalin-fixed paraffin-embedded tissue samples of laryngeal squamous cell carcinomas (study group) and adjacent nontumor tissues (control group) for microRNA-21 expressions, and we successfully extracted microRNAs detectable by real-time polymerase chain reaction. All patients were evaluated separately, and the study and control groups were compared. The study group was assessed in terms of localization, smoking, alcohol consumption, lymph node staging, tumor stage, overall survival, disease-free survival, perineural, and vascular invasion. All patients were male, and the average age of patients was 64.2 ± 10.3 years. MicroRNA-21 was upregulated in laryngeal squamous cell carcinomas compared to adjacent nontumor tissues (P = .005). However, the microRNA-21 did not differ significantly according to any clinicopathological features (P > .05). MicroRNA-21 has been found to be expressed at lower levels in early stage (stages 1 and 2) compared with advanced stage (stages 3 and 4), but this was not statistically significant (P = .455). We conclude that the microRNA-21 level may play an important role in diagnosis and serve as a potential biomarker; such measurement thus has clinical applications. However, any possible prognostic associations with microRNA-21 levels should be re-evaluated in future studies on laryngeal squamous cell carcinoma samples amenable to retrospective analysis. NA Laryngoscope, 2016 127:E62-E66, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  20. Convection's enhancement in thermal micro pipes using extra fluid and shape memory material

    NASA Astrophysics Data System (ADS)

    Mihai, Ioan; Sprinceana, Siviu

    2016-12-01

    Up to now, there have been developed various applications of thermal micro pipes[1-3], such as refrigerating systems, high heat flux electronics cooling, and biological devices etc., based on vacuum vaporization followed by a convective phenomenon that allows vapor transfer from the vaporization area to the condensation one. This article presents studies carried out on the enhancement of the convective phenomenon taking place in flat thermal micro pipes. The proposed method[4] is aimed at the cooling of power electronics components, such as microprocessors. The conducted research focused on the use of shape memory materials that allow, by a semi-active method, to bring extra fluid in the vaporization area of the thermal micro pipe. The conducted investigations analyzed the variation of the liquid layer thickness in the trapezoidal micro channels and the thermal flow change over time. The modification of liquid flow was studied in correlation with the capacity of the polysynthetic material to retain the most extra fluid in its pores. The enhancement of the convective heat transfer phenomenon in flat thermal micro pipes was investigated in correspondence to the increase of liquid quantity in the vaporization zone. The charts obtained by aid of Mathcad[5] allowed to represent the evolution during a period of time (or with the pipe's length) of the liquid film thickness, the flow and the thermal flow, as a function of the liquid supply variation due to the shape memory materials and the modification of the working temperature.

  1. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  2. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  3. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  4. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  5. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  6. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  7. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  8. An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0082 TITLE: An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells ...syndromes (MDS) to identify microRNAs (miRNAs) dysregulated in MDS hematopoietic stem cells (MDS HSCs) as compared with normal HSCs. MiRNAs differentially...the age-related predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells

  9. An Analysis of MicroRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0082 TITLE: An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells ...syndromes (MDS) to identify microRNAs (miRNAs) dysregulated in MDS hematopoietic stem cells (MDS HSCs) as compared with normal HSCs. MiRNAs differentially...the age-related predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells

  10. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  11. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder

    2015-05-14

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and amore » microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.« less

  12. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells.

    PubMed

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-04-08

    E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  13. Micro-sized microbial fuel cell: a mini-review.

    PubMed

    Wang, Hsiang-Yu; Bernarda, Angela; Huang, Chih-Yung; Lee, Duu-Jong; Chang, Jo-Shu

    2011-01-01

    This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    PubMed

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Numerical modeling of physical vapor transport under microgravity conditions: Effect of thermal creep and stress

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1993-01-01

    One of the most promising applications of microgravity (micro-g) environments is the manufacture of exotic and high-quality crystals in closed cylindrical ampoules using physical vapor transport (PVT) processes. The quality enhancements are believed to be due to the absence of buoyant convection in the weightless environment - resulting in diffusion-limited transport of the vapor. In a typical experiment, solid-phase sample material is initially contained at one end of the ampoule. The sample is made to sublime into the vapor phase and deposit onto the opposite end by maintaining the source at an elevated temperature with respect to the deposit. Identification of the physical factors governing both the rates and uniformity of crystal growth, and the optimization of the micro-g technology, will require an accurate modeling of the vapor transport within the ampoule. Previous micro-g modeling efforts have approached the problem from a 'classical' convective/diffusion formulation, in which convection is driven by the action of buoyancy on thermal and solutal density differences. The general conclusion of these works have been that in low gravity environments the effect of buoyancy on vapor transport is negligible, and vapor transport occurs in a diffusion-limited mode. However, it has been recently recognized than in the non-isothermal (and often low total pressure) conditions encountered in ampoules, the commonly-assumed no-slip boundary condition to the differential equations governing fluid motion can be grossly unrepresentative of the actual situation. Specifically, the temperature gradients can give rise to thermal creep flows at the ampoule side walls. In addition, temperature gradients in the vapor itself can, through the action of thermal stress, lead to bulk fluid convection.

  16. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  17. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    PubMed

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  18. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    NASA Astrophysics Data System (ADS)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  19. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Sun, Wei (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Holtorf, Heidi L. (Inventor); Leslie, Julia (Inventor); Culbertson, Christopher (Inventor); Gonda, Steve R. (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  20. Micro-organ device

    NASA Technical Reports Server (NTRS)

    von Gustedt-Gonda, legal representative, Iris (Inventor); Holtorf, Heidi L. (Inventor); Gonda, Steve R. (Inventor); Leslie, Julia (Inventor); Chang, Robert C. (Inventor); Sun, Wei (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  1. miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells.

    PubMed

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A; Voorhoeve, P Mathijs

    2012-05-01

    MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.

  2. miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells

    PubMed Central

    Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A.; Voorhoeve, P. Mathijs

    2012-01-01

    MicroRNA–mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3′ UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3′ UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3′ UTR–mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs. PMID:22417692

  3. Development of Nano/Micro Probes for Femtoliter Volume and Single Cell Measurements

    NASA Astrophysics Data System (ADS)

    Gao, Yang

    Single cell analysis has recently emerged as an important field of biomedical re- search. It is now clear that heterogeneity of cell metabolism functions in complex biological systems is correlated to changes in biological function and disease processes. A variety of nano/micro probes were developed to enable investigation of cells properties such as membrane stiffness, pH value. However, very few designs were focused on single cell metabolic function studies. There is a critical need for technologies that provide analysis of heterogeneity of cell metabolic functions, especially on metabolism. Nevertheless, the few existing approaches suffer from fundamental defects and need to be improved. This work focused on developing nano/micro probes that are suitable for single cell functionality investigation. Both types of probes are designed to measure cell-to-cell/time-to-time heterogeneity in metabolic functions over a long period of time. Lab-made carbon nanoprobes were developed especially for electro-physiological measurement. The unique structure of the carbon nanoprobes makes them suitable for important intracellular applications like trans-membrane potential measurements and various electrochemical measurement for cell function studies. While it is important of have ability to carry out intracellular measure, there are also occasions where the information of a cell as a whole is collected. One of the most important indicator of a cells metabolic functions is cell respiration rate/oxygen consumption rate. A micro-perfusion based multi-functional single cell sensing probe was the developed to carry out measurements on cell as a whole. Formed by a double-barrel theta pipette, the perfusion flow enables the direct measurement of the metabolic flux for example oxygen consumption rate. In conclusion, this work developed nano/micro-probes as novel single cell investigation tools. The data acquired from these tools could provide valuable assistance on applications

  4. Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy; Graves, Rex

    2004-01-01

    Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.

  5. 3D tomography of cells in micro-channels

    NASA Astrophysics Data System (ADS)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  6. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  7. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    PubMed

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  8. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3′ UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3′ UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders. PMID:23435502

  9. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3' UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3' UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders.

  10. Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis

    PubMed Central

    Melo, Sonia A.; Sugimoto, Hikaru; O’Connell, Joyce T.; Kato, Noritoshi; Villanueva, Alberto; Vidal, August; Qiu, Le; Vitkin, Edward; Perelman, Lev T.; Melo, Carlos A.; Lucci, Anthony; Ivan, Cristina; Calin, George A.; Kalluri, Raghu

    2014-01-01

    SUMMARY Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. PMID:25446899

  11. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  12. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  13. Micro-Raman spectroscopy study of ALVAC virus infected chicken embryo cells

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Kamemoto, Lori E.; Hu, Ningjie; Dykes, Ava C.; Yu, Qigui; Zinin, Pavel V.; Sharma, Shiv K.

    2011-05-01

    Micro- Raman spectroscopic investigation of ALVAC virus and of normal chicken embryo fibroblast cells and the cells infected with ALVAC virus labeled with green fluorescence protein (GFP) were performed with a 785 nm laser. Good quality Micro-Raman spectra of the Alvac II virus were obtained. These spectra show that the ALVAC II virus contains buried tyrosine residues and the coat protein of the virus has α-helical structure. A comparison of Raman spectra of normal and virus infected chicken embryo fibroblast cells revealed that the virus infected cells show additional bands at 535, 928, and 1091 cm-1, respectively, corresponding to δ(C-O-C) glycosidic ring, protein α-helix, and DNA (O-P-O) modes. In addition, the tyrosine resonance double (833 and 855 cm-1) shows reversal in the intensity of the higher-frequency band as compared to the normal cells that can be used to identify the infected cells. In the C-H stretching region, the infected cells show bands with higher intensity as compared to that of the corresponding bands in the normal cells. We also found that the presence of GFP does not affect the Raman spectra of samples when using a 785 nm micro-Raman system because the green fluorescence wavelength of GFP is well below the Stokes-Raman shifted spectral region.

  14. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  15. Research Update: A minimal region of squid reflectin for vapor-induced light scattering

    NASA Astrophysics Data System (ADS)

    Dennis, Patrick B.; Singh, Kristi M.; Vasudev, Milana C.; Naik, Rajesh R.; Crookes-Goodson, Wendy J.

    2017-12-01

    Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.

  16. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation.

    PubMed

    Yeo, David C; Wiraja, Christian; Zhou, Yingying; Tay, Hui Min; Xu, Chenjie; Hou, Han Wei

    2015-09-23

    Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.

  17. Ground-based eye-safe networkable micro-pulse differential absorption and high spectral resolution lidar for water vapor and aerosol profiling in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Hayman, M. M.; Bunn, C. E.

    2017-12-01

    Atmospheric water vapor is a greenhouse gas that is known to be a significant driver of weather and climate. Several National Research Council (NRC) reports have highlighted the need for improved water vapor measurements that can capture its spatial and temporal variability as a means to improve weather predictions. Researchers at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) have developed an eye-safe diode laser based micro-pulse differential absorption lidar (MP-DIAL) for water vapor profiling in the lower troposphere. The MP-DIAL is capable of long term unattended operation and is capable of monitoring water vapor in the lower troposphere in most weather conditions. Two MP-DIAL instruments are currently operational and have been deployed at the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Plains elevated Convection at Night (PECAN) experiment, the Perdigão experiment, and the Land Atmosphere Feedback Experiment (LAFE). For each of these field experiments, the MP-DIAL was run unattended and provided near-continuous water vapor profiles, including periods of bright daytime clouds, from 300 m above the ground level to 4 km (or the cloud base) with 150 m vertical resolution and 5 minute temporal resolution. Three additional MP-DIAL instruments are currently under construction and will result in a network of five eye-safe MP-DIAL instruments for ground based weather and climate research experiments. Taking advantage of the broad spectral coverage and modularity or the diode based architecture, a high spectral resolution lidar (HSRL) measurement capabilities was added to the second MP-DIAL instrument. The HSRL capabilities will be operational during the deployment at the LAFE field experiment. The instrument architecture will be presented along with examples of data collected during recent field experiments.

  18. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  19. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  20. Exergy analysis of a solid oxide fuel cell micropowerplant

    NASA Astrophysics Data System (ADS)

    Hotz, Nico; Senn, Stephan M.; Poulikakos, Dimos

    In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.

  1. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have notmore » responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.« less

  2. Toward a High-Stability Coherent Population Trapping Cs Vapor-Cell Atomic Clock Using Autobalanced Ramsey Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe

    2018-06-01

    Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.

  3. Empirical correlations of the performance of vapor-anode PX-series AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Merrill, J.M.; Mayberry, C.

    Power systems based on AMTEC technology will be used for future NASA missions, including a Pluto-Express (PX) or Europa mission planned for approximately year 2004. AMTEC technology may also be used as an alternative to photovoltaic based power systems for future Air Force missions. An extensive development program of Alkali-Metal Thermal-to-Electric Conversion (AMTEC) technology has been underway at the Vehicle Technologies Branch of the Air Force Research Laboratory (AFRL) in Albuquerque, New Mexico since 1992. Under this program, numerical modeling and experimental investigations of the performance of the various multi-BASE tube, vapor-anode AMTEC cells have been and are being performed.more » Vacuum testing of AMTEC cells at AFRL determines the effects of changing the hot and cold end temperatures, T{sub hot} and T{sub cold}, and applied external load, R{sub ext}, on the cell electric power output, current-voltage characteristics, and conversion efficiency. Test results have traditionally been used to provide feedback to cell designers, and to validate numerical models. The current work utilizes the test data to develop empirical correlations for cell output performance under various working conditions. Because the empirical correlations are developed directly from the experimental data, uncertainties arising from material properties that must be used in numerical modeling can be avoided. Empirical correlations of recent vapor-anode PX-series AMTEC cells have been developed. Based on AMTEC theory and the experimental data, the cell output power (as well as voltage and current) was correlated as a function of three parameters (T{sub hot}, T{sub cold}, and R{sub ext}) for a given cell. Correlations were developed for different cells (PX-3C, PX-3A, PX-G3, and PX-5A), and were in good agreement with experimental data for these cells. Use of these correlations can greatly reduce the testing required to determine electrical performance of a given type of AMTEC cell

  4. The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection.

    PubMed

    Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen

    2017-11-17

    MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.

  5. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  6. Micro- and nanoengineering for stem cell biology: the promise with a caution.

    PubMed

    Kshitiz; Kim, Deok-Ho; Beebe, David J; Levchenko, Andre

    2011-08-01

    Current techniques used in stem cell research only crudely mimic the physiological complexity of the stem cell niches. Recent advances in the field of micro- and nanoengineering have brought an array of in vitro cell culture models that have enabled development of novel, highly precise and standardized tools that capture physiological details in a single platform, with greater control, consistency, and throughput. In this review, we describe the micro- and nanotechnology-driven modern toolkit for stem cell biologists to design novel experiments in more physiological microenvironments with increased precision and standardization, and caution them against potential challenges that the modern technologies might present. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M. T. L.; Hetet, G.; Peng, A.

    2006-02-15

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezingmore » is consistent with this theory.« less

  8. Homojunction GaAs solar cells grown by close space vapor transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less

  9. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).

  10. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei

    2009-01-01

    Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963

  11. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  13. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    PubMed

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  15. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.

    PubMed

    Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver

    2015-05-01

    During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Effects of subchronic inhalation of vaporized plastic cement on exploratory behavior and Purkinje cell differentiation in the rat.

    PubMed

    Pascual, R; Salgado, C; Viancos, L; Figueroa, H R

    1996-12-06

    In the present study, the effects of preweaning cement vapor inhalation on exploratory behavior and cerebellar Purkinje cell differentiation were assessed. Sprague-Dawley albino rats were daily exposed to glue vapors between postnatal d 2 and 21. At postnatal d 22, all animals were submitted to the open-field test in order to evaluate their exploratory behavior. Then they were sacrificed, their brains dissected out, and cerebella stained according to the Golgi-Cox-Sholl procedure. Purkinje cells sampled from parasagittal sections of the cerebellar vermis were drawn under camera lucida and their dendritic domain was determined. The collected data indicate that glue solvent inhalation impairs both Purkinje cell differentiation and locomotor exploratory behavior.

  17. IB-LBM simulation on blood cell sorting with a micro-fence structure.

    PubMed

    Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong

    2014-01-01

    A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.

  18. Heat transfer within a flat micro heat pipe with extra liquid

    NASA Astrophysics Data System (ADS)

    Sprinceana, Silviu; Mihai, Ioan

    2016-12-01

    In the real functioning of flat micro heat pipe (FMHP), there can appear cases when the temperature from the vaporization zone can exceed a critical value caused by a sudden increase of the thermal flow. The heat transfer which is completed conductively through the copper wall of a FMHP vaporizer causes the vaporization of the work fluid. On the condenser, the condensation of the fluid vapors and the transfer of the condenser to the vaporizer can no longer be achieved. The solution proposed for enhancing heat transfer in the event of blockage phenomenon FMHP, it is the injection of a certain amount of working fluid in the vaporization zone. By this process the working fluid injected into the evaporator passes suddenly in the vapor, producing a cooling zone. The new product additional mass of vapor will leave the vaporization zone and will condense in condensation zone, thereby supplementing the amount of condensation. Thus resumes normal operating cycle of FMHP. For the experimental measurements made for the transfer of heat through the FMHP working fluid demineralized water, they were made two micro-capillary tubes of sintered copper layer. The first was filled with 1ml of demineralized water was dropped under vacuum until the internal pressure has reached a level of 1•104Pa. The second FMHP was filled with the same amount of working fluid was used and the same capillary inner layer over which was laid a polysynthetic material that will accrue an additional amount of fluid. In this case, the internal pressure was reduced to 1•104Pa.

  19. An electrical model of vapor-anode, multitube AMTEC cells[Alkali Metal Thermal to Electric Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.M.; El-Genk, M.S.

    1998-07-01

    A two-dimensional electrical model of vapor-anode, multi-tube AMTEC cells was developed, which included four options of current collector configurations. Simulation results of several cells tested at AFRL showed that electrical losses in the current collector networks and the connecting leads were negligible. The polarization/concentration losses in the TiN electrodes were significant, amounting to 25%--50% of the cell theoretical power, while the contact and BASE ionic losses amounted to less than 16% of the cell theoretical power.

  20. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  1. Experimental and numerical studies of micro PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Peng, Rong-Gui; Chung, Chen-Chung; Chen, Chiun-Hsun

    2011-10-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500 µm. A theoretical analysis is performed in this study for a novel MEMS-based design of amicro PEMFC. Themodel consists of the conservation equations of mass, momentum, species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code. The polarization curves of simulation are well correlated with experimental data. Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature, current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min). Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4V operating voltage. Model predictions are well within those known for experimental mechanism phenomena.

  2. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide.

    PubMed

    Sun, Yanli; Sun, Yanhua; Zhao, Ronglan

    2017-08-01

    MicroRNAs have great therapeutic potential in cancer and other diseases. However, their instability and low in vivo delivery efficiency limits their application. Recombinant PP7 bacteriophage-based virus-like particles (VLPs) could protect microRNAs against rapid degradation by RNase by packaging specific exogenous pre-microRNAs using the pac site. Insertion of a cell-penetrating peptide (CPP) into the AB-loop of VLPs could significantly improve the delivery efficiency of microRNAs into mammalian cells. Unlike other microRNA delivery methods (viral or non-viral vectors), recombinant PP7 VLPs carrying a CPP and microRNA could be efficiently expressed in Escherichia coli using the one-plasmid double expression system. Here we showed that PP7 VLPs carrying a CPP penetrated hepatoma SK-HEP-1 cells and delivered the pre-microRNA-23b, which was processed into a mature product within 24 h; a concentration of 10 nM was sufficient for the inhibition of hepatoma cell migration via the downregulation of liver-intestine cadherin expression. Furthermore, PP7 VLPs carrying a CPP and a pre-microRNA were not infectious, replicative, or cytotoxic. Therefore, recombinant PP7 VLPs can be used for simultaneous and targeted delivery of both microRNAs and peptides because of their ability to package specific exogenous RNA using the pac site and to display peptides. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Determination of glucose in human stomach cancer cell extracts and single cells by capillary electrophoresis with a micro-biosensor.

    PubMed

    Wang, Xiaolei; Ma, Yanfang; Zhao, Man; Zhou, Minfeng; Xiao, Yan; Sun, Zifei; Tong, Lili

    2016-10-21

    Bioactive species in cells can provide information about signal transduction, cell function, and the effects of disease treatment. In this article, a novel micro-biosensor was fabricated to detect glucose in individual human stomach cancer cells (MGC80-3 cells) with capillary electrophoresis (CE). We fabricated the micro-biosensors by immobilizing a single-walled carbon nanotube-glucose oxidase (GOx)-glutaraldehyde (GA) bio-composite at the palladium nanoparticle (PdNPs) modified Pt electrode. The linear concentration of glucose ranged from 2.0μM to 1.0mM, with a detection limit of 0.5μM. Using this method, the mean amount of glucose in MGC80-3 cell extracts and in single cells was 20.0 fmol and 20±6 fmol (n=10), respectively. The micro-biosensor exhibited high sensitivity, stability, and a long operating life, which are likely due to the biocompatible environment provided by BSA and GA, and the adsorption and faster electron transfer of SWNTs and PdNPs to GOx. Copyright © 2016. Published by Elsevier B.V.

  4. Auxiliary Electrodes for Chromium Vapor Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establishmore » a sodium activity.« less

  5. Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria.

    PubMed

    Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori

    2009-01-01

    It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).

  6. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation.

    PubMed

    Eikmans, Michael; Rekers, Niels V; Anholts, Jacqueline D H; Heidt, Sebastiaan; Claas, Frans H J

    2013-03-14

    Assessing messenger RNA (mRNA) and microRNA levels in peripheral blood cells may complement conventional parameters in clinical practice. Working with small, precious samples requires optimal RNA yields and minimal RNA degradation. Several procedures for RNA extraction and complementary DNA (cDNA) synthesis were compared for their efficiency. The effect on RNA quality of freeze-thawing peripheral blood cells and storage in preserving reagents was investigated. In terms of RNA yield and convenience, quality quantitative polymerase chain reaction signals per nanogram of total RNA and using NucleoSpin and mirVana columns is preferable. The SuperScript III protocol results in the highest cDNA yields. During conventional procedures of storing peripheral blood cells at -180°C and thawing them thereafter, RNA integrity is maintained. TRIzol preserves RNA in cells stored at -20°C. Detection of mRNA levels significantly decreases in degraded RNA samples, whereas microRNA molecules remain relatively stable. When standardized to reference targets, mRNA transcripts and microRNAs can be reliably quantified in moderately degraded (quality index 4-7) and severely degraded (quality index <4) RNA samples, respectively. We describe a strategy for obtaining high-quality and quantity RNA from fresh and stored cells from blood. The results serve as a guideline for sensitive mRNA and microRNA expression assessment in clinical material.

  7. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells.

    PubMed

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus . The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4 , and SPN , on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during

  8. Integrated Micro/nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective

    PubMed Central

    Shao, Yue

    2014-01-01

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188

  9. High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

  10. Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs

    PubMed Central

    Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.

    2010-01-01

    Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144

  11. Simulation and experimental research on micro-channel for detecting cell status in bio-artificial liver.

    PubMed

    Wu, Changzhe; Cao, Yue; Huo, Xiaolin; Li, Ming

    2015-01-01

    Bioartificial liver support system (BALSS) based on culturing hepatocytes is an important research field for the treatment of acute liver failure. It is necessary to monitor the state of liver cell functions during the treatment of BALSS in order to guide clinical treatment. To design a micro-channel chip to achieve flash mixing for timely detection of liver cell status in bioreactors and improving liver cells growth environment to ensure the efficacy of the bio-artificial liver support system. Alanine aminotransferase (ALT) and Urea are chosen as detection indicators to reflect the degree of liver cell injury and the detoxification function. A diamond tandem structure micro-channel is designed and optimized to achieve the efficient mixing of serum and ALT or Urea reagent. The simulation and experimental results show that the diamond tandem structure micro-channel can significantly improve the mixing efficiency and meet the online detecting requirements. The easily controllable diamond tandem structure micro-channel combines the advantages of active and passive mixer and can effectively mix the serum and ALT or Urea reagent. It lays the foundation for online monitoring of liver cells and will help to improve the viability of liver cell in the bioreactor.

  12. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  13. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  14. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells.

    PubMed

    González-Duarte, Ramiro José; Cázares-Ordoñez, Verna; Romero-Córdoba, Sandra; Díaz, Lorenza; Ortíz, Víctor; Freyre-González, Julio Augusto; Hidalgo-Miranda, Alfredo; Larrea, Fernando; Avila, Euclides

    2015-08-01

    MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.

  15. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  16. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  17. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non

  18. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  19. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ming-Wei

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressedmore » genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.« less

  20. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction,more » UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.« less

  1. 2-Dimensional micro-network of boron-doped diamond film: fabrication and electrochemical sensing application.

    PubMed

    Luo, Daibing; Wu, Liangzhuan; Zhi, Jinfang

    2010-09-21

    By means of delicate and conventional methods based on photolithography and hot filament chemical vapor deposition (HFCVD) technology, a novel boron-doped diamond micro-network (BDDMN) film was fabricated, and this micro-structure showed excellent electrochemical sensing properties.

  2. Breakthrough: micro-electronic photovoltaics

    ScienceCinema

    Okandan, Murat; Gupta, Vipin

    2018-01-16

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  3. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    NASA Astrophysics Data System (ADS)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  4. Analysis of Individual Cells and Endospores by Micro-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Esposito, Anthony; Huser, Thomas; Talley, Chad; Hollars, Christopher; Balhorn, Rod; Lane, Stephen

    2003-03-01

    We have collected Raman spectra of individual sperm cells by confocal micro-Raman spectroscopy. The high spatial resolution of this technique allows for compositional analysis of different sections of the sperm cells. The relative intensities of protein and DNA Raman transitions allow one to define a protein-DNA ratio. We have also collected the Raman spectra of individual bacterial endospores from four species in the genus Bacillus. The spectra were generally dominated by scattering from calcium dipicolinate, although scattering assignable to protein bands was also observed. A small fraction of the spores did not exhibit Raman scattering from CaDPA, possibly due to incomplete sporulation. These examples demonstrate the applicability of micro-Raman spectroscopy as a non-invasive method for addressing variability in the composition of cells.* *This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

  5. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    PubMed

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  7. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40

    PubMed Central

    McNees, Adrienne L.; Harrigal, Lindsay J.; Kelly, Aoife; Minard, Charles G.; Wong, Connie

    2018-01-01

    Background Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40–human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. Results SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. Conclusion These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. Significance Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human

  8. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2015-02-15

    microRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel approaches for enhancing osteoblastic bone formation through inhibition of bone marrow fat formation. A number of recent studies have reported several miRNAs that enhance or inhibit adipogenic differentiation of MSCs and with potential use in microRNA-based therapy to regulate adipogenesis in the context of treating bone diseases and metabolic disorders. The current review focuses on miRNAs and their role in regulating adipogenic differentiation of MSCs.

  9. Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan; Peles, Yoav

    2005-11-01

    Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.

  10. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  11. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    PubMed Central

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro. PMID:29614022

  12. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    PubMed

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  13. Methods for Generation and Detection of Nonstationary Vapor Nanobubbles Around Plasmonic Nanoparticles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Lapotko, Dmitri O

    2017-01-01

    Laser pulse-induced vapor nanobubbles are nonstationary nanoevents that offer a broad range of applications, especially in the biomedical field. Plasmonic (usually gold) nanoparticles have the highest energy efficacy of the generation of vapor nanobubbles and such nanobubbles were historically named as plasmonic nanobubbles. Below we review methods (protocols) for generating and detecting plasmonic nanobubbles in liquids. The biomedical applications of plasmonic nanobubbles include in vivo and in vitro detection and imaging, gene transfer, micro-surgery, drug delivery, and other diagnostic, therapeutic, and theranostic applications.

  14. Toward the human cellular microRNAome.

    PubMed

    McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K

    2017-10-01

    MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  16. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle.

    PubMed

    Yang, I-Ping; Tsai, Hsiang-Lin; Hou, Ming-Feng; Chen, Ku-Chung; Tsai, Pei-Chien; Huang, Szu-Wei; Chou, Wen-Wen; Wang, Jaw-Yuan; Juo, Suh-Hang Hank

    2012-08-01

    Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.

  17. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.

    2012-10-01

    Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.

  18. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Zhao, Cancan; Wang, Xiaoya; Gao, Long; Jing, Linguo; Zhou, Quan; Chang, Jiang

    2018-06-01

    The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge

  19. Transport of explosives I: TNT in soil and its equilibrium vapor

    NASA Astrophysics Data System (ADS)

    Baez, Bibiana; Correa, Sandra N.; Hernandez-Rivera, Samuel P.; de Jesus, Maritza; Castro, Miguel E.; Mina, Nairmen; Briano, Julio G.

    2004-09-01

    Landmine detection is an important task for military operations and for humanitarian demining. Conventional methods for landmine detection involve measurements of physical properties. Several of these methods fail on the detection of modern mines with plastic enclosures. Methods based on the detection signature explosives chemicals such as TNT and DNT are specific to landmines and explosive devices. However, such methods involve the measurements of the vapor trace, which can be deceiving of the actual mine location because of the complex transport phenomena that occur in the soil neighboring the buried landmine. We report on the results of the study of the explosives subject to similar environmental conditions as the actual mines. Soil samples containing TNT were used to study the effects of aging, temperature and moisture under controlled conditions. The soil used in the investigation was Ottawa sand. A JEOL GCMate II gas chromatograph +/- mass spectrometer coupled to a Tunable Electron Energy Monochromator (TEEM-GC/MS) was used to develop the method of analysis of explosives under enhanced detection conditions. Simultaneously, a GC with micro cell 63Ni, Electron Capture Detector (μECD) was used for analysis of TNT in sand. Both techniques were coupled with Solid-Phase Micro Extraction (SPME) methodology to collect TNT doped sand samples. The experiments were done in both, headspace and immersion modes of SPME for sampling of explosives. In the headspace experiments it was possible to detect appreciable TNT vapors as early as 1 hour after of preparing the samples, even at room temperature (20 °C). In the immersion experiments, I-SPME technique allowed for the detection of concentrations as low as 0.010 mg of explosive per kilogram of soil.

  20. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    NASA Astrophysics Data System (ADS)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  1. Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Chang, Chi-Chung; Lo, Yi-Man

    2010-01-01

    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100–300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection. PMID:22163494

  2. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. © 2016 John Wiley & Sons Ltd.

  3. Molecular Pathways: microRNAs, Cancer Cells, and Microenvironment

    PubMed Central

    Berindan-Neagoe, Ioana; Calin, George A.

    2015-01-01

    One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short non-coding microRNAs (miRNAs) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the participation of miRNAs produced by microenvironment cells. As hormones, miRNAs are released by a donor cell in various forms of vesicles or as ‘free’ molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as ‘free’ RNAs by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in the context of translational consequences and present miRNAs as predictors of therapeutic response and as targeted therapeutics and therapeutic targets in either malignant cells or microenvironment cells. PMID:25512634

  4. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer.

    PubMed

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-09-26

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  5. The use of microRNA by human viruses: lessons from NK cells and HCMV infection.

    PubMed

    Goldberger, Tal; Mandelboim, Ofer

    2014-11-01

    Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.

  6. Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans.

    PubMed

    Karp, Xantha; Ambros, Victor

    2012-06-01

    In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period of interrupted development. For cells to progress to L3 cell fate, the transcription factor Hunchback-like-1 (HBL-1) must be downregulated. Here, we describe a quiescence-induced shift in the repertoire of microRNAs that regulate HBL-1. During continuous development, HBL-1 downregulation (and consequent cell fate progression) relies chiefly on three let-7 family microRNAs, whereas after quiescence, HBL-1 is downregulated primarily by the lin-4 microRNA in combination with an altered set of let-7 family microRNAs. We propose that this shift in microRNA regulation of HBL-1 expression involves an enhancement of the activity of lin-4 and let-7 microRNAs by miRISC modulatory proteins, including NHL-2 and LIN-46. These results illustrate how the employment of alternative genetic regulatory pathways can provide for the robust progression of progenitor cell fates in the face of temporary developmental quiescence.

  7. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  8. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies.

    PubMed

    Scott, Elizabeth; Loya, Komal; Mountford, Joanne; Milligan, Graeme; Baker, Andrew H

    2013-09-01

    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  10. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

    PubMed Central

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  11. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells.

    PubMed

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai; Hao, Zhi-Hui

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.

  12. Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.

    PubMed

    Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2018-03-01

    Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels

  13. Towards a Lithium Radiative / Vapor-Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Constantin, Marius; Jaworski, Michael; Myers, Rachel; Ono, Masayuki; Schwartz, Jacob; Scotti, Filippo; Qu, Zhaonan

    2014-10-01

    Recent research has indicated that the peak perpendicular heat flux on reactor divertor targets will be hundreds of MW/m2 in the absence of dissipation and/or spatial spreading. Thus we are attracted to both enhanced radiative cooling and continuous vapor shielding. Lithium particle lifetimes <=100 micro-sec enhance radiation efficiency at T < 10 eV, while lithium charge-exchange with neutral hydrogen may enhance radiative efficiency for T > 10 eV and n0/ni > 0.1. We are examining if the latter mechanism plays a role in the narrowing of the heat-flux footprint in lithiated NSTX discharges. In parallel we are investigating the possibility of immersing a reactor divertor leg in a channel of lithium vapor. If we approximate the vapor channel as in local equilibrium with lithium-wetted walls ranging from 300 oC at the entrance point to 950 oC 10m downstream in the parallel direction, we find that the vapor can both balance reactor levels of upstream plasma pressure and stop energetic ions and electrons with energies up to at least 25 keV, as might be produced in ELMs. Each 10 l/sec of lithium evaporated deep in the channel and recondensed in cooler regions spreads 100 MW over a much wider area than the original strike point. This work supported by US DOE Contract DE-AC02-09CH11466.

  14. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  15. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    NASA Astrophysics Data System (ADS)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  16. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity.

    PubMed

    Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola

    2017-02-17

    Upon T cell receptor stimulation, CD4 + T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4 + T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4 + T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4 + T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity*

    PubMed Central

    Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L.; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola

    2017-01-01

    Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. PMID:28077577

  18. [Micro fabricated enzyme battery].

    PubMed

    Sasaki, S; Karube, I

    1996-10-01

    Although various work has been done in the field of implantable micro actuators such as artificial organs and micro surgery robots, a suitable electric power supply for these is yet to be developed. For this purpose a micro fabricated enzyme fuel cell was developed which uses glucose contained in the human body as a fuel. In order to obtain enough voltage each cell was formed as part of a serial array on a silicon wafer. Glucose solution enters the cells by a capillary effect. In this article fuel cells already developed using biocatalysts are described, and the future possibility of a micro fabricated enzyme battery is discussed.

  19. Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.

    PubMed

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2013-10-21

    We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.

  20. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation.

    PubMed

    Ghita, Adrian; Pascut, Flavius C; Sottile, Virginie; Denning, Chris; Notingher, Ioan

    Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.

  1. Global microRNA profiling of peripheral blood mononuclear cells in patients with Behçet's disease.

    PubMed

    Erre, Gian Luca; Piga, Matteo; Carru, Ciriaco; Angius, Andrea; Carcangiu, Laura; Piras, Marco; Sotgia, Salvatore; Zinellu, Angelo; Mathieu, Alessandro; Passiu, Giuseppe; Pescatori, Mario

    2015-01-01

    To explore the post-transcriptional regulation of the peripheral blood mononuclear cells (PBMCs) transcriptome by microRNAs in Behçet's disease (BD). Using TaqMan Low Density Array-based microRNAs expression profiling, the expression of 750 mature human microRNAs in PBMCs from 5 BD patients and 3 healthy controls (HC) was compared. The expression of deregulated microRNAs was then validated by quantitative real time-polymerase chain reaction (qRT-PCR), in 42 BD patients and 8 HC. In the initial screening, 13 microRNAs appeared deregulated in BD vs HC. Among them, the differential expression of miR-720 and miR-139-3p was confirmed by qRT-PCR, (p<0.05 and FDR<5%). Areas under the receiver operating characteristic curve for miR-139-3p, miR-720 and miR-139-3p+miR-720 in the validation cohort were 0.84, 0.87 and 0.92 respectively, indicating good discrimination between BD patients and HC. Post-hoc analysis showed that 9 out of 13 microRNAs from the discovery phase were significantly upregulated in active vs. quiescent BD, suggesting inflammation as a key regulator of microRNAs machinery in BD. In silico analysis revealed that several BD candidate susceptibility genes are predicted target of significantly deregulated microRNAs in active BD. A significant enrichment in microRNAs targeting elements of the Toll-like receptor (TLR) and T-cell receptor signalling pathways was also assumed. miR199-3p and miR720 deserve further confirmation as biomarkers of BD in larger studies. PBMCs from active BD displayed a unique signature of microRNAs which may be implicated in regulation of innate immunity activation and T-cell function.

  2. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate

    PubMed Central

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego

    2015-01-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324

  3. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  4. Paschen-Back effects and Rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ma, L.; Anderson, D. A.; Raithel, G.

    2017-06-01

    We report on rubidium vapor-cell Rydberg electromagnetically induced transparency (EIT) in a 0.7 T magnetic field where all involved levels are in the hyperfine Paschen-Back regime, and the Rydberg state exhibits a strong diamagnetic interaction. Signals from both 85Rb and 87Rb are present in the EIT spectra. Isotope-mixed Rb cells allow us to measure the field strength to within a ±0.12 % relative uncertainty. The measured spectra are in excellent agreement with the results of a Monte Carlo calculation and indicate unexpectedly large Rydberg-level dephasing rates. Line shifts and broadenings due to magnetic-field inhomogeneities are included in the model.

  5. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  6. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  7. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE PAGES

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.; ...

    2018-01-12

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  8. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  9. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  10. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    PubMed

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  11. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    PubMed

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  12. High-resolution laser spectroscopy of hot Cs and Rb vapor confined in a thin optical cell

    NASA Astrophysics Data System (ADS)

    Todorov, P.; Krasteva, A.; Vartanyan, T.; Todorov, G.; Sarkisyan, D.; Cartaleva, S.

    2018-03-01

    We propose a novel use of an optical cell of micrometer thickness filled with Cs vapor in view of studying the collisions between two different alkali atoms of strongly different densities. We demonstrate narrow and good-contrast sub-Doppler resonances at the Rb D2 line for a mean-free-path of the Cs atoms comparable to the optical cell longitudinal dimension; the resonances are completely destroyed when the mean-free-path of the Cs atoms is more than two orders of magnitude shorter than the longitudinal dimension of the thin cell.

  13. Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway Regulated-Circulating microRNA

    DTIC Science & Technology

    2016-05-01

    Award Number: W81XWH-11-1-0715 TITLE: Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway-Regulated Circulating microRNA PRINCIPAL...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway- Regulated Circulating microRNA Sb. GRANT NUMBER...panel of diagnostic miRNAs that are measurable in serum and will be able to identify kidney cancer in its earliest stages. We hypothesized that serum

  14. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  15. Micro- and Nano-scale Technologies for Delivery into Adherent Cells

    PubMed Central

    Kang, Wonmo; McNaughton, Rebecca L.; Espinosa, Horacio D.

    2016-01-01

    Several recent micro- and nano-technologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle, yet effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. Here we review recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, e.g., non-destructive sampling and analysis of intracellular molecules. Need For Techniques To Study Adherent Cells A mechanistic understanding of cell biology is often limited by both the complexity of the processes and limitations of commonly available research tools that lack temporal or spatial resolution. The lack of tools capable of providing cell-specific, non-destructive biomolecular delivery and analysis is a particular barrier for advancing fundamental discoveries of cell heterogeneity, single-cell behavior within a complex environment, and the mechanisms that govern disease states, responses to drugs or other stimuli, and differentiation of stem cells. To gain new mechanistic understanding, advances in methods for precise intracellular delivery and non-destructive biochemical analyses of non-secretory molecules (e.g., mRNA and proteins) are greatly needed so that individual cells can be experimentally controlled and repeatedly analyzed over time and/or within a particular location of the cell. For example, developing neurons must undergo a series of sequential changes in gene expression to achieve a mature phenotype; hence, understanding the

  16. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    PubMed

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less

  18. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  19. Biomarker MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma Identified Based on Gene Expression Data and MicroRNA-mRNA Network Analysis

    PubMed Central

    Zhang, Hui; Li, Tangxin; Zheng, Linqing

    2017-01-01

    Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions. These findings were confirmed by literature verification and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular mechanisms. PMID:29098014

  20. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  1. Application of micro-porous polycarbonate membranes in dye-sensitized solar cells: Cell performance and long-term stability

    NASA Astrophysics Data System (ADS)

    Lue, Shingjiang Jessie; Lo, Pei Wen; Hung, Ling-Yung; Tung, Yung Liang

    This research investigates the cell performance and long-term stability of dye-sensitized solar cells (DSSCs) containing micro-porous polycarbonate (PC) film as the frame work material to stabilize the electrolyte solution. The track-etched PC film has cylindrical pore geometry, which is beneficial for ion transport in the electrolyte trapped inside the PC film. The photovoltaic efficiency of the DSSC with 0.2-μm PC membrane is 5.75 ± 0.73% under irradiation of 100 mW cm -2, which is slightly lower than that (6.34 ± 0.44%) of cells without PC film. The differences in fill factor and open-circuit voltage between the DSSCs with and without PC film are not statistically significant. The long-term cell performance is carried out at continuous illumination of 100 mW cm -2 (1 sun) and in darkness at 60 °C for up to 1000 h. There is no significant efficiency difference between the cells with and without PC film in light soaking (4.33% vs. 4.52%) for 960 h. In darkness, however, the cells with PC film demonstrate much higher efficiency (at 2.37%) than cells without PC (0.85%) after 1000 h. The improved long-term efficiency data and the higher percentage of working cells confirm the superior lifetime and performance using the micro-porous PC film.

  2. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)

    NASA Astrophysics Data System (ADS)

    Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang

    2018-04-01

    Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.

  3. Coordination of Myeloid Differentiation with Reduced Cell Cycle Progression by PU.1 Induction of MicroRNAs Targeting Cell Cycle Regulators and Lipid Anabolism.

    PubMed

    Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P

    2017-05-15

    During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.

  4. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    PubMed Central

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D.; Bentzinger, C. Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van IJcken, Wilfred; Grosveld, Frank; Dekemp, Robert A.; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A.

    2013-01-01

    SUMMARY Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. PMID:23395168

  5. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro

    PubMed Central

    Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E.; Dewi, Chitra U.; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C.; Ho, Joshua W. K.; Harman, David G.

    2018-01-01

    ABSTRACT Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. PMID:29217756

  6. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro.

    PubMed

    Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E; Dewi, Chitra U; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C; Ho, Joshua W K; Harman, David G; O'Connor, Michael D

    2018-01-09

    Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. © 2018. Published by The Company of Biologists Ltd.

  7. Multiscale Modeling of Cell Interaction in Angiogenesis: From the Micro- to Macro-scale

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Maini, Philip; Byrne, Helen

    Solid tumors require a supply of nutrients to grow in size. To this end, tumors induce the growth of new blood vessels from existing vasculature through the process of angiogenesis. In this work, we use a discrete agent-based approach to model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death processes. We use the transition probabilities associated with the discrete models to determine collective cell behavior, in terms of partial differential equations, using a Markov chain and master equation framework. We find that the cell-level dynamics gives rise to a migrating cell front in the form of a traveling wave on the macro-scale. The behavior of this front depends on the cell interactions that are included and the extent to which volume exclusion is taken into account in the discrete micro-scale model. We also find that well-established continuum models of angiogenesis cannot distinguish between certain types of cell behavior on the micro-scale. This may impact drug development strategies based on these models.

  8. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development.

    PubMed

    Sun, Tingting; Li, Weiyun; Li, Tianpeng; Ling, Shucai

    2016-01-01

    Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development.

  9. Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.

    PubMed

    Jia, Haiyang; Heymann, Michael; Bernhard, Frank; Schwille, Petra; Kai, Lei

    2017-10-25

    The construction of a minimal cell that exhibits the essential characteristics of life is a great challenge in the field of synthetic biology. Assembling a minimal cell requires multidisciplinary expertise from physics, chemistry and biology. Scientists from different backgrounds tend to define the essence of 'life' differently and have thus proposed different artificial cell models possessing one or several essential features of living cells. Using the tools and methods of molecular biology, the bottom-up engineering of a minimal cell appears in reach. However, several challenges still remain. In particular, the integration of individual sub-systems that is required to achieve a self-reproducing cell model presents a complex optimization challenge. For example, multiple self-organisation and self-assembly processes have to be carefully tuned. We review advances and developments of new methods and techniques, for cell-free protein synthesis as well as micro-fabrication, for their potential to resolve challenges and to accelerate the development of minimal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure weremore » studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.« less

  11. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  12. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle.

    PubMed

    Del Rosario, Ricardo C H; Damasco, Joseph Ray Clarence G; Aguda, Baltazar D

    2016-09-09

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states.

  13. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  14. Combined effect of microRNA, nutraceuticals and drug on pancreatic cancer cell lines.

    PubMed

    Pandita, Archana; Manvati, Siddharth; Singh, Shashank K; Vaishnavi, Samantha; Bamezai, Rameshwar N K

    2015-05-25

    We proposed to investigate the combination effect of microRNA, nutraceuticals and drug (MND), in two pancreatic cancer cell lines to assess the therapeutic potential. MIA PaCa-2 and PANC-1 cells transfected with miR-101 or miR-24-2 were treated with Betulinic acid or Thymoquinone and gemcitabine independently and in combination and assessed for the extent of synergism in both experimental and control conditions, considering significance at the p value of <0.05. miR-101 or miR-24-2 over-expressing cells when treated with lower than IC50 doses of the dietary compounds and drug showed a reduced (37-50%) viability in two cell lines with differential synergistic effect and the outcome for Pro-caspase3, Poly (ADP-ribose) polymerase (PARP) cleavage and PKM2 expression. Two independent microRNA backgrounds showed promise in therapeutic intervention of gemcitabine sensitive, MIA PaCa-2 and resistant, PANC-1 pancreatic cancer cells, in combination with dietary agents and drug. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  16. Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byeong-Moo; Department of Medicine, Harvard Medical School, Boston, MA 02115; Choi, Michael Y., E-mail: mchoi@partners.org

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generatemore » mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.« less

  17. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  18. Micro-Imagers for Spaceborne Cell-Growth Experiments

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Matthews, Janet; SaintAnge, Beverly; Tanabe, Helen

    2006-01-01

    A document discusses selected aspects of a continuing effort to develop five micro-imagers for both still and video monitoring of cell cultures to be grown aboard the International Space Station. The approach taken in this effort is to modify and augment pre-existing electronic micro-cameras. Each such camera includes an image-detector integrated-circuit chip, signal-conditioning and image-compression circuitry, and connections for receiving power from, and exchanging data with, external electronic equipment. Four white and four multicolor light-emitting diodes are to be added to each camera for illuminating the specimens to be monitored. The lens used in the original version of each camera is to be replaced with a shorter-focal-length, more-compact singlet lens to make it possible to fit the camera into the limited space allocated to it. Initially, the lenses in the five cameras are to have different focal lengths: the focal lengths are to be 1, 1.5, 2, 2.5, and 3 cm. Once one of the focal lengths is determined to be the most nearly optimum, the remaining four cameras are to be fitted with lenses of that focal length.

  19. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p.

    PubMed

    Zhao, Haiyan; Su, Wuyun; Kang, Qingmei; Xing, Ze; Lin, Xue; Wu, Zhongjun

    2018-01-01

    Natural killer (NK) cells have exhibited promising efficacy in inhibiting cancer growth. We aimed to explorer the effect of NK cells on oxaliplatin-resistant colorectal cancer and the underlying molecular mechanism. Oxaliplatin-resistant colorectal cancer cell lines were co-cultured with NK cells to evaluate the effect on viability, proliferation, migration and invasion in vitro . Oxaliplatin-resistant colorectal cancer cells were also co-injected with NK cells into mice to establish xenograft tumor model, to assess the in vivo effect of NK cells on tumorigenesis of the oxaliplatin-resistant colorectal cancer cells. Expression of WBSCR22 gene was assessed in the oxaliplatin-resistant colorectal cancer cells following NK cell treatment to elucidate the mechanism. NK cell treatment significantly reduces growth of oxaliplatin-resistant colorectal cancer cells both in vitro and in vivo , as well as reduced WBSCR22 expression. MicroRNAs potentially targeting WBSCR22 were analyzed, and microRNA-146b-5p was found to be significantly upregulated following NK cell treatment. MicroRNA-146b-5p directly targeted WBSCR22 mRNA 3'-UTR to inhibit its expression, which was required for NK cell-induced inhibition of oxaliplatin-resistant colorectal cancer cell lines. NK cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p, both of which could serve as candidates for targeted therapy against oxaliplatin-resistant colorectal cancer.

  20. Modeling of a diode-pumped thin-disk cesium vapor laser

    NASA Astrophysics Data System (ADS)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  1. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury

    PubMed Central

    2013-01-01

    Background The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets. Results In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery. Conclusions This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs. PMID:23387820

  2. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  3. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. microRNA regulation of T-cell differentiation and function

    PubMed Central

    Jeker, Lukas T.; Bluestone, Jeffrey A.

    2013-01-01

    Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639

  5. Fabrication of a co-culture micro-bioreactor device for efficient hepatic differentiation of human induced pluripotent stem cells (hiPSCs).

    PubMed

    Kehtari, Mousa; Zeynali, Bahman; Soleimani, Masoud; Kabiri, Mahboubeh; Seyedjafari, Ehsan

    2018-04-27

    Primary hepatocytes, as the gold standard cell type for in vitro models, lose their characteristic morphology and functions after few days. There is an urgent need to develop physiologically relevant models that recapitulate liver microenvironment to obtain mature hepatocyte from stem cells. We designed and fabricated a micro-bioreactor device mimicking the physiological shear stress and cell-cell interaction in liver sinusoid microenvironment. Induced pluripotent stem cells (iPSCs) were co-cultured with human umbilical vein endothelial cells (HUVECs) in the micro-bioreactor device with continuous perfusion of hepatic differentiation medium (100 μL/h). Simulation results showed that flow field inside our perfusion device was uniform and shear stress was adjusted to physiological condition (<2 dyne/cm 2 ). IPSCs-derived hepatocytes (iPSCs-Heps) that were cultured in micro-bioreactor device showed a higher level of hepatic markers compared to those in static condition. Flow cytometry and immunocytochemistry analysis revealed iPSCs cultured in the device sequentially acquired characteristics of definitive endodermal cells (SOX17 positive), hepatoblasts (AFP positive) and mature hepatocyte (ALB positive). Moreover, the albumin and urea secretion were significantly higher in micro-bioreactor device than those cultured in culture dishes during experiment. Thus, based on our results, we propose our micro-bioreactor as a beneficial device to generate mature hepatocytes for drug screening and basic research.

  6. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjustmore » the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.« less

  7. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia

    PubMed Central

    Sui, Bing-Dong; Hu, Cheng-Hu; Zheng, Chen-Xi; Shuai, Yi; He, Xiao-Ning; Gao, Ping-Ping; Zhao, Pan; Li, Meng; Zhang, Xin-Yi; He, Tao; Xuan, Kun; Jin, Yan

    2017-01-01

    Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments. PMID:28435461

  8. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  9. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16.

    PubMed

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D; Bentzinger, C Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van Ijcken, Wilfred; Grosveld, Frank; Dekemp, Robert A; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A

    2013-02-05

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Phenotypical changes in a differentiating immortalized bronchial epithelial cell line after exposure to mainstream cigarette smoke and e-cigarette vapor.

    PubMed

    Aufderheide, Michaela; Emura, Makito

    2017-07-05

    3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day, 5days/week, 8 repetitions in total) and e-cigarette vapor (50 puffs a day, 5 days/week, 8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4, 6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control, the aerosol-exposed cultures showed a reduction of ciliated, mucus-producing and club cells. At the end of the exposure phase, we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor, commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion, our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material. Copyright © 2017. Published by Elsevier GmbH.

  11. Evaluation of a moisturising micro-gel spray for prevention of cell dryness in oral mucosal cells: an in vitro study and evaluation in a clinical setting.

    PubMed

    Ota, Y; Morito, A; Fujisawa, K; Nishida, M; Hata, H; Ueno, T; Yurikusa, T; Murata, T

    2012-11-01

    A moisturising micro-gel spray for prevention of dryness was compared with commercial products and artificial saliva in vitro and in a clinical setting in patients with cancer. Survival of cultured human gingival epithelial cells was evaluated after treatment with each product for 15 min. A dry test was performed for products giving a 50% survival rate, in which cell survival was measured after drying of cells treated with each product. The survival rates of cells treated with the micro-gel spray and artificial saliva were significantly higher than those of control cells. The micro-gel spray was then evaluated for 1 week in patients with symptoms of dry mouth caused by cancer treatment. There was significant improvement of these symptoms at night and on awakening and of subjective symptoms of decreased salivary volume (P < 0.05). Mean visual analogue scale scores also significantly decreased (P < 0.01). These data suggest that evaluation of moisturising products for dryness prevention can be performed in cultured cells, since products that performed well in vitro also showed good efficacy for symptoms of dry mouth. The micro-gel spray was particularly effective for relieving symptoms of dry mouth in patients with cancer. © 2012 Blackwell Publishing Ltd.

  12. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  13. Roles of microRNA on cancer cell metabolism

    PubMed Central

    2012-01-01

    Advanced studies of microRNAs (miRNAs) have revealed their manifold biological functions, including control of cell proliferation, cell cycle and cell death. However, it seems that their roles as key regulators of metabolism have drawn more and more attention in the recent years. Cancer cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. MiRNAs regulate cell metabolic processes through complicated mechanisms, including directly targeting key enzymes or transporters of metabolic processes and regulating transcription factors, oncogenes / tumor suppressors as well as multiple oncogenic signaling pathways. MiRNAs like miR-375, miR-143, miR-14 and miR-29b participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators, which will hopefully lead to a new therapeutic strategy for malignant cancer. This review focuses on miRNA regulations of cancer cell metabolism,including glucose uptake, glycolysis, tricarboxylic acid cycle and insulin production, lipid metabolism and amino acid biogenesis, as well as several oncogenic signaling pathways. Furthermore, the challenges of miRNA-based strategies for cancer diagnosis, prognosis and therapeutics have been discussed. PMID:23164426

  14. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  15. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  16. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  17. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  18. 3D imaging of cells in scaffolds: direct labelling for micro CT.

    PubMed

    Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2018-06-12

    The development of in-vitro techniques to characterise the behaviour of cells in biomedical scaffolds is a rapidly developing field. However, until now it has not been possible to visualise, directly in 3D, the extent of cell migration using a desktop X-ray microCT. This paper describes a new technique based on cell labelling with a radio opacifier (barium sulphate), which permits cell tracking without the need for destructive sample preparation. The ability to track cells is highlighted via a comparison of cell migration through demonstrator lyophilised collagen scaffolds with contrasting pore size and interconnectivity. The results demonstrate the ease with which the technique can be used to characterise the effects of scaffold architecture on cell infiltration.

  19. Current Regulator For Sodium-Vapor Lamps

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1989-01-01

    Regulating circuit maintains nearly-constant alternating current in sodium-vapor lamp. Regulator part of dc-to-ac inverter circuit used to supply power to street lamp from battery charged by solar-cell array.

  20. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  1. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  2. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    NASA Astrophysics Data System (ADS)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  3. Stress stiffened silicon nitride micro bridges array as substrate with tunable stiffness for cell culture.

    PubMed

    Chen, Jianfeng; Liu, Guangli; Ma, Chengfu; Zhao, Gang; Du, Wenqiang; Zhu, Wulin; Chu, Jiaru

    2017-06-01

    Recently, interactions between one-dimensional structural stiffness of physical micro environments and cell biological process have been widely studied. However in previous studies, the influence of structural stiffness on biological process was coupled with the influence of micro fiber curvature. Therefore decoupling the influences of fiber curvature and structural stiffness on cell biological process is of prime importance. In this study, we proposed a novel cell culture substrate comprised of silicon nitride bridges whose structure stiffness can be regulated by altering the axial residual stress without changing material and geometry properties. Both theoretical calculations and finite element simulations were performed to study the influence of residual stress on structure stiffness of bridges. Then multi-positions AFM bending tests were implemented to measure local stiffness of a single micro bridge so as to verify our predictions. NIH/3T3 mouse fibroblast cells were cultured on our substrates to examine the feasibility of the substrate application for investigating cellular response to microenvironment with variable stiffness. The results showed that cells on the edge region near bridge ends were more spread, elongated and better aligned along the bridge axial direction than those on the bridge center region. The results suggest that cells can sense and respond to the differences of stiffness and stiffness gradient between the edge and the center region of the bridges, which makes this kind of substrates can be applied in some biomedical fields, such as cell migration and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.

    PubMed

    He, Pengfei; Fu, Jiayin; Wang, Dong-An

    2016-04-15

    By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive

  5. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA).

    PubMed

    Hannafon, Bethany N; Carpenter, Karla J; Berry, William L; Janknecht, Ralf; Dooley, William C; Ding, Wei-Qun

    2015-07-16

    Docosahexaenoic acid (DHA) is a natural compound with anticancer and anti-angiogenesis activity that is currently under investigation as both a preventative agent and an adjuvant to breast cancer therapy. However, the precise mechanisms of DHA's anticancer activities are unclear. It is understood that the intercommunication between cancer cells and their microenvironment is essential to tumor angiogenesis. Exosomes are extracellular vesicles that are important mediators of intercellular communication and play a role in promoting angiogenesis. However, very little is known about the contribution of breast cancer exosomes to tumor angiogenesis or whether exosomes can mediate DHA's anticancer action. Exosomes were collected from MCF7 and MDA-MB-231 breast cancer cells after treatment with DHA. We observed an increase in exosome secretion and exosome microRNA contents from the DHA-treated cells. The expression of 83 microRNAs in the MCF7 exosomes was altered by DHA (>2-fold). The most abundant exosome microRNAs (let-7a, miR-23b, miR-27a/b, miR-21, let-7, and miR-320b) are known to have anti-cancer and/or anti-angiogenic activity. These microRNAs were also increased by DHA treatment in the exosomes from other breast cancer lines (MDA-MB-231, ZR751 and BT20), but not in exosomes from normal breast cells (MCF10A). When DHA-treated MCF7 cells were co-cultured with or their exosomes were directly applied to endothelial cell cultures, we observed an increase in the expression of these microRNAs in the endothelial cells. Furthermore, overexpression of miR-23b and miR-320b in endothelial cells decreased the expression of their pro-angiogenic target genes (PLAU, AMOTL1, NRP1 and ETS2) and significantly inhibited tube formation by endothelial cells, suggesting that the microRNAs transferred by exosomes mediate DHA's anti-angiogenic action. These effects could be reversed by knockdown of the Rab GTPase, Rab27A, which controls exosome release. We conclude that DHA alters breast

  6. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Wenbin

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused onmore » cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.« less

  7. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells

    PubMed Central

    Solomon, Ioana; O’Reilly, Megan; Ionescu, Lavinia; Alphonse, Rajesh S.; Rajabali, Saima; Zhong, Shumei; Vadivel, Arul; Shelley, W. Chris; Yoder, Mervin C.

    2016-01-01

    Alterations in the development of the placental vasculature can lead to pregnancy complications, such as preeclampsia. Currently, the cause of preeclampsia is unknown, and there are no specific prevention or treatment strategies. Further insight into the placental vasculature may aid in identifying causal factors. Endothelial colony-forming cells (ECFCs) are a subset of endothelial progenitor cells capable of self-renewal and de novo vessel formation in vitro. We hypothesized that ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Human placentas were collected from term pregnancies delivered by cesarean section (n = 16). Placental micro- and macrovasculature was collected from the maternal and fetal side of the placenta, respectively, and ECFCs were isolated and characterized. ECFCs were CD31+, CD105+, CD144+, CD146+, CD14−, and CD45−, took up 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein, and bound Ulex europaeus agglutinin 1. In vitro, macrovascular ECFCs had a greater potential to generate high-proliferative colonies and formed more complex capillary-like networks on Matrigel compared with microvascular ECFCs. In contrast, in vivo assessment demonstrated that microvascular ECFCs had a greater potential to form vessels. Macrovascular ECFCs were of fetal origin, whereas microvascular ECFCs were of maternal origin. ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Although macrovascular ECFCs demonstrated greater vessel and colony-forming potency in vitro, this did not translate in vivo, where microvascular ECFCs exhibited a greater vessel-forming ability. These important findings contribute to the current understanding of normal placental vascular development and may aid in identifying factors involved in preeclampsia and other pregnancy complications. Significance This research confirms that resident endothelial colony

  8. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells.

    PubMed

    Feng, Huajun; Jia, Yufeng; Shen, Dongsheng; Zhou, Yuyang; Chen, Ting; Chen, Wei; Ge, Zhipeng; Zheng, Shuting; Wang, Meizhen

    2018-04-13

    Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm -2 and the maximum current density of 14.2Am -2 . This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Lin, Chien-Hen; Lo, Yi-Man

    2011-01-01

    Micro reformers still face obstacles in minimizing their size, decreasing the concentration of CO, conversion efficiency and the feasibility of integrated fabrication with fuel cells. By using a micro temperature sensor fabricated on a stainless steel-based micro reformer, this work attempts to measure the inner temperature and increase the conversion efficiency. Micro temperature sensors on a stainless steel substrate are fabricated using micro-electro-mechanical systems (MEMS) and then placed separately inside the micro reformer. Micro temperature sensors are characterized by their higher accuracy and sensitivity than those of a conventional thermocouple. To the best of our knowledge, micro temperature sensors have not been embedded before in micro reformers and commercial products, therefore, this work presents a novel approach to integrating micro temperature sensors in a stainless steel-based micro reformer in order to evaluate inner local temperature distributions and enhance reformer performance. PMID:22163817

  10. Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.

    The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.

  11. Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant

    DOE PAGES

    McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.

    2018-05-24

    The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.

  12. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  13. Silicon micro-fabricated miniature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kelley, Shawn Christopher

    2000-10-01

    The present thesis relates the design, fabrication, and testing of a unique type of silicon-based, miniature fuel cell. The fuel cell electrodes were constructed using standard silicon micro-fabrication techniques, and were used to construct miniature polymer electrolyte fuel cells (PEFCs) using NafionRTM. During testing, methanol and oxygen were the common reactants, but hydrogen and oxygen could be used as well. A novel form of an electrodeposited Pt:Ru alloy was developed for use as a methanol electrooxidation catalyst in the mini-PEFCs. An optimized mini-PEFC design was developed, tested, and compared with large PEFCs on the basis of performance. Mini-PEFC performance was equivalent to that of large PEFCs when scaled for active-area, but was limited by the function of the oxygen electrode. The rate of methanol crossover in a methanol/oxygen mini-PEFC was predicted using Fick's first law and the electrode chip feed-hole area. It was shown that the present mini-PEFC design could function as a fuel cell material test structure. Additionally, the mini-PEFCs were tested as two-cell stacks and as methanol sensors. The miniature, silicon-based PEFCs developed here successfully incorporate the essential aspects of a large PEFC in a smaller, simpler design.

  14. Biology of childhood germ cell tumours, focussing on the significance of microRNAs.

    PubMed

    Murray, M J; Nicholson, J C; Coleman, N

    2015-01-01

    Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at

  15. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.

    PubMed

    Guo, Shaojun; Wang, Erkang

    2011-07-19

    , gene delivery agents, and fuel cell catalysts. We expect that micro/nanomaterials with unique structural characteristics, properties, and functions will attract increasing research interest and will lead to new opportunities in various fields of research.

  16. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  17. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells.

    PubMed

    Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M

    2017-10-13

    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

  18. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell

    PubMed Central

    Sotiropoulou, Georgia; Pampalakis, Georgios; Lianidou, Evi; Mourelatos, Zissimos

    2009-01-01

    Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches. PMID:19561119

  19. Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant

    2010-01-15

    We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about '300 muG' (2pix420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.

  20. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  1. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  2. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    PubMed

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34 + hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34 + hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  4. Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo.

    PubMed

    Hao, Jingzu; Li, Ying; Li, Baoe; Wang, Xiaolin; Li, Haipeng; Liu, Shimin; Liang, Chunyong; Wang, Hongshui

    2017-09-01

    Hybrid micro-nanostructure implant surface was produced on titanium (Ti) surface by acid etching and anodic oxidation to improve the biological and mechanical properties. The biological properties of the micro-nanostructure were investigated by simulated body fluid (SBF) soaking test and MC3T3-E1 cell co-culture experiment. The cell proliferation, spreading, and bone sialoprotein (BSP) gene expression were examined by MTT, SEM, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. Furthermore, the effect of the micro-nanostructure surface on implant osteointegration was examined by in vivo experiment. The results showed that the formation of bone-like apatite was accelerated on the micro-nanostructured Ti surface after immersion in simulated body fluid, and the proliferation, spreading, and BSP gene expression of the MC3T3-E1 cells were also upregulated on the modified surface. The micro-nanostructured Ti surface displayed decreased friction coefficient, stiffness value, and Young's modulus which were much closer to those of the cortical bone, compared to the polished Ti surface. This suggested much better mechanical match to the surrounding bone tissue of the micro-nanostructured Ti surface. Furthermore, the in vivo animal experiment showed that after implantation in the rat femora, the micro-nanostructure surface displayed higher bonding strength between bone tissues and implant; hematoxylin and eosin (H&E) staining suggested that much compact osteoid tissue was observed at the interface of Micro-nano-Ti-bone than polished Ti-bone interface after implantation. Based on these results mentioned above, it was concluded that the improved biological and mechanical properties of the micro-nanostructure endowed Ti surface with good biocompatibility and better osteointegration, implying the enlarged application of the micro

  5. Research on equipment of micro-pressure measure and control in loading experiment of plant cell mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Lian; Yu, Chengbo; Tao, Hongyan; Chen, Xuejun; Zhai, Feng

    2005-12-01

    The equipment is developed to measure and control micro-pressure in loading experiment of plant cell mechanics. The motivation for the development of this equipment was to maintain a stationary micro-pressure on the agar of culturing cells to keep cytoactive in biology experiments. A singlechip controls the stepping motor of this equipment to drive loading equipment in the system, in order to load between 50mN and 250mN under a constant voltage. The accuracy is estimated to be +/-0.4 mN. The structure and control system of this equipment is introduced and described in detail. The experimental results show that the equipment is capable of maintaining a constant, stationary micropressure in cell culturing application and is worth of extending and applying.

  6. From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.

    PubMed

    Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko

    2017-07-03

    Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm -2 at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Parallel multipoint recording of aligned and cultured neurons on corresponding Micro Channel Array toward on-chip cell analysis.

    PubMed

    Tonomura, W; Moriguchi, H; Jimbo, Y; Konishi, S

    2008-01-01

    This paper describes an advanced Micro Channel Array (MCA) so as to record neuronal network at multiple points simultaneously. Developed MCA is designed for neuronal network analysis which has been studied by co-authors using MEA (Micro Electrode Arrays) system. The MCA employs the principle of the extracellular recording. Presented MCA has the following advantages. First of all, the electrodes integrated around individual micro channels are electrically isolated for parallel multipoint recording. Sucking and clamping of cells through micro channels is expected to improve the cellular selectivity and S/N ratio. In this study, hippocampal neurons were cultured on the developed MCA. As a result, the spontaneous and evoked spike potential could be recorded by sucking and clamping the cells at multiple points. Herein, we describe the successful experimental results together with the design and fabrication of the advanced MCA toward on-chip analysis of neuronal network.

  8. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    NASA Astrophysics Data System (ADS)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  9. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    DOE PAGES

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less

  10. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.

    PubMed

    Li, Jianjun; Wang, Hongxia; Wu, Li; Chen, Cheng; Zhou, Zhiqiang; Liu, Fangfang; Sun, Yun; Han, Junbo; Zhang, Yi

    2016-04-27

    It is a challenge to fabricate high quality Cu2ZnSnSe4 (CZTSe) film with low Cu content (Cu/(Zn + Sn) < 0.8). In this work, the growth mechanisms of CZTSe films under different Se vapor composition are investigated by DC-sputtering and a postselenization approach. The composition of Se vapor has important influence on the compactability of the films and the diffusion of elements in the CZTSe films. By adjusting the composition of Se vapor during the selenization process, an optimized two step selenization process is proposed and highly crystallized CZTSe film with low Cu content (Cu/(Zn + Sn) = 0.75) is obtained. Further study of the effect of Cu content on the morphology and photovoltaic performance of the corresponding CZTSe solar cells has shown that the roughness of the CZTSe absorber film increases when Cu content decreases. As a consequence, the reflection loss of CZTSe solar cells reduces dramatically and the short circuit current density of the cells improve from 34.7 mA/cm(2) for Cu/(Zn + Sn) = 0.88 to 38.5 mA/cm(2) for Cu/(Zn + Sn) = 0.75. In addition, the CZTSe solar cells with low Cu content show longer minority carrier lifetime and higher open circuit voltage than the high Cu content devices. A champion performance CZTSe solar cell with 10.4% efficiency is fabricated with Cu/(Zn + Sn) = 0.75 in the CZTSe film without antireflection coating.

  11. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, R; Miljkovic, N; Alvarado, JL

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-andmore » nanoscale by exploiting advances in surface engineering developed over the last several decades.« less

  12. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma

    PubMed Central

    Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca

    2014-01-01

    Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415

  13. Heat Transfer of HC290-OIL Mixtures in a Horizontal Condensing Micro-Fin Tube

    NASA Astrophysics Data System (ADS)

    Tong, M. W.; Dong, M. L.; Li, Y.

    Heat transfer coefficients was experimentally determined for a horizontal micro-fin tube (2m in length, 11.44mm ID) with HC290-oil mixtures. The oil is Suniso 3GS, which is a widely used oil in refrigerant systems. The micro-fin tube is a internally enhanced tube, which has 60 fins with a height of 0.25mm and 20° spiral angle. The condensation temperatures varied from 40° to 45° and the refrigerant mass flux was varied from 40kg/(m2s) to 220kg/(m2s). The results showed that the mean condensation heat transfer coefficients on the test section (inlet vapor quality 1, outlet vapor quality 0.1~0.25) decreased as the oil concentrations were increased and the condensation temperature had negligible effect on the heat transfer coefficients.

  14. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  15. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  16. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less

  17. Water vapor: An extraordinary terahertz wave source under optical excitation

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.

    2008-09-01

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  18. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  19. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs.

    PubMed

    Floyd, Desiree; Purow, Benjamin

    2014-05-01

    MicroRNAs are small noncoding RNAs encoded in eukaryotic genomes that have been found to play critical roles in most biological processes, including cancer. This is true for glioblastoma, the most common and lethal primary brain tumor, for which microRNAs have been shown to strongly influence cell viability, stem cell characteristics, invasiveness, angiogenesis, metabolism, and immune evasion. Developing microRNAs as prognostic markers or as therapeutic agents is showing increasing promise and has potential to reach the clinic in the next several years. This succinct review summarizes current progress and future directions in this exciting and steadily expanding field.

  20. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  1. MicroRNA-138 inhibits proliferation of cervical cancer cells by targeting c-Met.

    PubMed

    Li, B; Yang, X-X; Wang, D; Ji, H-K

    2016-01-01

    MicroRNAs (miRNAs) function as important post-transcriptional regulators involved in a wide range of biological behaviors. MicroRNA-138 (miR-138) has been shown to play a critical role in tumor pathogenesis, the present study aimed to investigate the role of miR-138 in cervical cancer. CCK-8 assay was performed to measure the viabilities of cancer cells. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the mRNA and protein expression, respectively. Moreover, the miRNA target genes were validated with luciferase activity assay. In the current study, we found that the expression of miR-138 was significantly down-regulated in cervical cancer tissues compared to the adjacent non-cancer tissues. CCK-8 assay showed that over-expression of miR-138 suppressed the proliferation of four cervical cancer cell lines including HeLa, SiHa, C33A and CaSki. By contrast, down-regulation of miR-138 promoted the growth of cervical cancer cells. In addition, increased expression of miR-138 led to a reduction in c-Met expression, whereas inhibition of miR-138 enhanced c-Met levels in cervical cancer cells. The luciferase reporter assay showed that c-Met was a direct target of miR-138 in cervical cancer cells. These findings demonstrated that miR-138 inhibited cervical cancer cells proliferation via c-Met, providing a novel target for the molecular treatment of cervical cancer.

  2. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions

    PubMed Central

    Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji

    2012-01-01

    Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735

  3. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.

    PubMed

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2015-06-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications

    PubMed Central

    Rajangam, Thanavel; An, Seong Soo A

    2013-01-01

    Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine. PMID:24106425

  5. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  6. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  7. An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    DTIC Science & Technology

    2014-08-01

    AWARD NUMBER: W81XWH-13-1-0082 TITLE: An Analysis of microRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells ... Hematopoietic Stem Cells 5b. GRANT NUMBER W81XWH-13-1-0082 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Stephen Chung 5e. TASK...in MDS hematopoietic stem cells (MDS HSCs) as compared with normal HSCs. MiRNAs differentially expressed between MDS HSCs and normal HSCs overlapped

  8. MicroRNA-30 mediates cell invasion and metastasis in breast cancer.

    PubMed

    Bao, Shuangzhen; Wang, Xinying; Wang, Zhichao; Yang, Jinqiang; Liu, Fangzhen; Yin, Changheng

    2018-06-12

    Despite the great progress in recent years, many aspects of the pathogenesis and progression of breast cancer remain unclear. A better understanding on the molecular mechanisms underlying the metastasis and recurrence is crucial to improve the treatment of this lethal disease. MCF-7 cells were xenografted into mice until visible tumor developed and the cells from tumor tissue and adjacent normal tissue were cultured with 3 passages as MT cells and IT cells, respectively. Microarray analysis was performed to detect several viable MicroRNAs in these two types of cells. Further, MiR-30 knockdown was used to investigate its role in tumor aggression. Relative levels of miR-30 were significantly higher in IT cells than MT cells. Knockdown of miR-30 in both MT and IT cells lowered cell proliferation and cell invasion abilities, and thus increased the survival time of mice xenografted with tumor cells. This study suggested that the knockdown of miR-30 decreased proliferation and invasion of carcinoma cells, giving rise to the potential of miR-30 as tumor target or marker candidate for breast cancer therapy.

  9. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  10. Involvement of MicroRNA in T-Cell Differentiation and Malignancy

    PubMed Central

    Saki, Najmaldin; Soleimani, Masoud; Hajizamani, Saeideh; Shahjahani, Mohammad; Kast, Richard E.; Mortazavi, Yousef

    2015-01-01

    ABSTRACT MicroRNAs are 19–22 nucleotide RNAs involved in such important processes as development, proliferation, differentiation and apoptosis. Different miRNAs are uniquely expressed in lymphoid T cells, and play a role indevelopment and differentiation of various subtypes by targeting their target genes. Recent studies have shown that aberrant miRNA expression may be involved in T cell leukemogenesis and lymphogenesis, and may function as tumor suppressor (such as miR-451, miR-31, miR-150, and miR-29a) or oncogene (e.g. miR-222, miR-223, miR-17-92, miR-155). MiRNAs can be used as new biomarkers for prognosis and diagnosis or as an index of disease severity in T-cell leukemia and lymphoma. This article presents a review of studies in recent years on the role of miRNAs in T-cell development and their aberrant expression in pathogenesis of T-cell leukemia and lymphoma. Characterizing miRNAs can help recognize their role as new important molecules with prognostic and therapeutic applications. PMID:25802699

  11. Atomic vapor quantum memory for a photonic polarization qubit.

    PubMed

    Cho, Young-Wook; Kim, Yoon-Ho

    2010-12-06

    We report an experimental realization of an atomic vapor quantum memory for the photonic polarization qubit. The performance of the quantum memory for the polarization qubit, realized with electromagnetically-induced transparency in two spatially separated ensembles of warm Rubidium atoms in a single vapor cell, has been characterized with quantum process tomography. The process fidelity better than 0.91 for up to 16 μs of storage time has been achieved.

  12. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  13. Tailor cutting of crystalline solar cells by laser micro jet

    NASA Astrophysics Data System (ADS)

    Bruckert, F.; Pilat, E.; Piron, P.; Torres, P.; Carron, B.; Richerzhagen, B.; Pirot, M.; Monna, R.

    2012-03-01

    Coupling a laser into a hair thin water micro jet (Laser Micro Jet, LMJ) for cutting applications offers a wide range of processes that are quite unique. As the laser beam is guided by internal reflections inside of a liquid cylinder, the cuts are naturally straight and do not reflect any divergence as otherwise occurs with an unguided laser beam. Furthermore, having a liquid media at the point of contact ensures a fast removal of heat and eventual debris ensuring clean cuts, which are free of any burrs. Many applications have indeed been developed for a large variety of materials, which are as different as e.g. diamond, silicon, aluminum, ceramic and hard metals. The photovoltaic industry has enjoyed in the last decades tremendous growth rates, which are still projected into the future. We focus here on the segment of Building Integrated PV (BIPV), which requests tailored solutions to actual buildings and not-one-fits-it-all standardized modules. Having the option to tailor cut solar cells opens a new field of BIPV applications. For the first time, finished crystalline solar cells have been LMJ cut into predetermined shapes. First results show that the cut is clean and neat. Preliminary solar performance measurements are positive. This opens a new avenue of tailored made modules instead of having to rely on the one-fits-alloy approach used so far.

  14. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2005-01-01

    An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.

  15. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

    PubMed

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-10-11

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

  16. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    PubMed Central

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  17. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells

    PubMed Central

    Wang, Hongjiang; Li, Jing; Chi, Hongjie; Zhang, Fan; Zhu, Xiaoming; Cai, Jun; Yang, Xinchun

    2015-01-01

    Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3′ untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis. PMID:25898913

  18. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.

    PubMed

    Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N

    2012-10-01

    Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).

  19. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells.

    PubMed

    Yin, Perry T; Shah, Birju P; Lee, Ki-Bum

    2014-10-29

    A novel therapy is demonstrated utilizing magnetic nanoparticles for the dual purpose of delivering microRNA and inducing magnetic hyperthermia. In particular, the combination of lethal-7a microRNA (let-7a), which targets a number of the survival pathways that typically limit the effectiveness of hyperthermia, with magnetic hyperthermia greatly enhances apoptosis in brain cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  1. An atlas of upper tropospheric radiances observed in the 6 to 7-micrometer water vapor band using TOVS data from the NOAA weather satellites during 1979-1991

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Sharma, OM

    1992-01-01

    This document is a pictorial atlas of the Earth's radiance emitted in the 6 to 7 micro-m water vapor band. At these wavelengths, the infrared brightness temperature corresponds to the layer-average temperature of the top few millimeters of water vapor in the atmosphere. At low altitudes, bright regions are dry slots in the upper troposphere. The satellite observations were obtained from NOAA's cloud and angle corrected measurements made by a series of polar orbiting TOVS (TIROS Operational Vertical Sounder) instruments flown from 1979 to 1991. TOVS 6.7 micro-m and 7.2 micro-m channels were converted to a single brightness temperature that simulates a high altitude channel near '6.5' micro-m. For climatological studies, the daily '6.5' micro-m overpass data were gridded to a cartesian projection with 5 by 5 degree horizontal resolution between 40 degrees N and 40 degrees S latitude. This atlas presents greyscale images of the '6.5' micro-m brightness fields for every day in every month for 13 years. The mean brightness for each of the 12 months for 13 years is presented to display interannual variability, and the annual cycle of 12 monthly means is summarized on a single page. Statistical summaries are presented from other investigations in progress.

  2. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    PubMed

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH 3 NH 3 PbI 3 perovskite. We observed that the Pb(SCN) 2 film transformed to PbI 2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN) 2 is only 4 % of PbI 2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Immunomodulation: A definitive role of microRNA-142.

    PubMed

    Sharma, Salil

    2017-12-01

    Majority of microRNAs are evolutionarily conserved in vertebrates. This is suggestive of their similar roles in regulation of gene networks. In addition to their conserved mature sequences and regulatory roles, a few microRNAs show very cell or tissue specific expression. These microRNAs are highly enriched in some cell types or organs. One such microRNA is microRNA-142 (miR-142). The classical stem-loop structure of miR142 encodes for two species of mature microRNAs; miR142-5p and miR142-3p. MiR-142 is abundant in cells of hematopoietic origin, and therefore, aptly plays a role in lineage differentiation of hematopoietic cells. Interestingly, over the years, miR-142 has gained considerable attention for its quintessential role in regulating immune response. This mini-review discusses the important functional roles of miR-142 in inflammatory and immune response in different physiological and disease setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.

    PubMed

    McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz

    2014-05-01

    This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.

  5. Rb vapor-cell clock demonstration with a frequency-doubled telecom laser.

    PubMed

    Almat, Nil; Pellaton, Matthieu; Moreno, William; Gruet, Florian; Affolderbach, Christoph; Mileti, Gaetano

    2018-06-01

    We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10 -13 ·τ -1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.

  6. The vapor activity of oregano, perilla, tea tree, lavender, clove, and geranium oils against a Trichophyton mentagrophytes in a closed box.

    PubMed

    Inouye, Shigeharu; Nishiyama, Yayoi; Uchida, Katsuhisa; Hasumi, Yayoi; Yamaguchi, Hideyo; Abe, Shigeru

    2006-12-01

    The vapor activity of six essential oils against a Trichophyton mentagrophytes was examined using a closed box. The antifungal activity was determined from colony size, which was correlated with the inoculum size. As judged from the minimum inhibitory dose and the minimum fungicidal dose determined after vapor exposure for 24 h, the vapor activity of the six essential oils was ranked in the following order: oregano > clove, perilla > geranium, lavender, tea tree. The vapors of oregano, perilla, tea tree, and lavender oils killed the mycelia by short exposure, for 3 h, but the vapors of clove and geranium oils were only active after overnight exposure. The vapor of oregano and other oils induced lysis of the mycelia. Morphological examination by scanning electron microscope (SEM) revealed that the cell membrane and cell wall were damaged in a dose- and time-dependent manner by the action of oregano vapor, causing rupture and peeling of the cell wall, with small bulges coming from the cell membrane. The vapor activity increased after 24 h, but mycelial accumulation of the active oil constituents was maximized around 15 h, and then decreased in parallel with the decrease of vapor concentration. This suggested that the active constituent accumulated on the fungal cells around 15 h caused irreversible damage, which eventually led to cellular death.

  7. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    PubMed Central

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-01-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921

  8. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability.

    PubMed

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  9. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    NASA Astrophysics Data System (ADS)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  10. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  11. Visible micro-Raman spectroscopy of single human mammary epithelial cells exposed to x-ray radiation.

    PubMed

    Delfino, Ines; Perna, Giuseppe; Lasalvia, Maria; Capozzi, Vito; Manti, Lorenzo; Camerlingo, Carlo; Lepore, Maria

    2015-03-01

    A micro-Raman spectroscopy investigation has been performed in vitro on single human mammary epithelial cells after irradiation by graded x-ray doses. The analysis by principal component analysis (PCA) and interval-PCA (i-PCA) methods has allowed us to point out the small differences in the Raman spectra induced by irradiation. This experimental approach has enabled us to delineate radiation-induced changes in protein, nucleic acid, lipid, and carbohydrate content. In particular, the dose dependence of PCA and i-PCA components has been analyzed. Our results have confirmed that micro-Raman spectroscopy coupled to properly chosen data analysis methods is a very sensitive technique to detect early molecular changes at the single-cell level following exposure to ionizing radiation. This would help in developing innovative approaches to monitor radiation cancer radiotherapy outcome so as to reduce the overall radiation dose and minimize damage to the surrounding healthy cells, both aspects being of great importance in the field of radiation therapy.

  12. Micro Calorimeter for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  13. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity pricesmore » and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than

  14. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    PubMed

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  15. Overexpression of Trophoblast Stem Cell-Enriched MicroRNAs Promotes Trophoblast Fate in Embryonic Stem Cells.

    PubMed

    Nosi, Ursula; Lanner, Fredrik; Huang, Tsu; Cox, Brian

    2017-05-09

    The first cell fate choice of the preimplantation embryo generates the extraembryonic trophoblast and embryonic epiblast lineages. Embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) can be utilized to investigate molecular mechanisms of this first cell fate decision. It has been established that ESCs can be induced to acquire trophoblast lineage characteristics upon manipulation of lineage-determining transcription factors. Here, we have interrogated the potential of microRNAs (miRNAs) to drive trans-differentiation of ESCs into the trophoblast lineage. Analysis of gene expression data identified a network of TSC-enriched miRNAs that were predicted to target mRNAs enriched in ESCs. Ectopic expression of these miRNAs in ESCs resulted in a stable trophoblast phenotype, supported by gene expression changes and in vivo contribution potential. This process is highly miRNA-specific and dependent on Hdac2 inhibition. Our experimental evidence suggests that these miRNAs promote a mural trophectoderm (TE)-like cell fate with physiological properties that differentiate them from the polar TE. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Fabrication of silicon nanowires based on-chip micro-supercapacitor

    NASA Astrophysics Data System (ADS)

    Soam, Ankur; Arya, Nitin; Singh, Aniruddh; Dusane, Rajiv

    2017-06-01

    An on-chip micro-supercapacitor (μ-SC) based on Silicon nanowires (SiNWs) has been developed by Hot-wire chemical vapor process. First, finger patterned electrodes of Al were made on a silicon nitride coated Si wafer and SiNWs were then grown selectively on the Al electrodes. μ-SC performance has been tested in an ionic electrolyte and a capacitance of 13 μF/cm2 has been obtained by the μ-SC. The resulted μ-SC can be exploited to store the harvesting energy in micro-electro-mechanical-systems and coupled with battery for peak power leveling. Low temperature growth of SiNWs at 350 °C makes it suitable for prospective flexible electronics applications.

  17. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    PubMed Central

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  18. Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9.

    PubMed

    Li, Shaoheng; Yan, Yuhui; Jiao, Yanan; Gao, Zhong; Xia, Yang; Kong, Liang; Yao, Yingjia; Tao, Zhenyu; Song, Jie; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian

    2016-09-01

    Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). It has been reported that osthole exerts its neuroprotective effect on neuronal synapses, but its exact mechanism is obscure. Recently, microRNAs have been demonstrated to play a crucial role in inducing synaptotoxicity by Aβ, implying that targeting microRNAs could be a therapeutic approach of AD. In the present study, we investigated the neuroprotective effects of osthole on a cell model of AD by transducing APP695 Swedish mutant (APP695swe, APP) into mouse cortical neurons and human SH-SY5Y cells. In this study, the cell counting kit CCK-8, apoptosis assay, immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction, and Western blot assay were used. We found that osthole could enhance cell viability, prevent cell death, and reverse the reduction of synaptic proteins (synapsin-1, synaptophysin, and postsynaptic density-95) in APP-overexpressed cells, which was attributed to increases in microRNA-9 (miR-9) expression and subsequent decreases in CAMKK2 and p-AMPKα expressions. These results demonstrated that osthole plays a neuroprotective activity role in part through upregulating miR-9 in AD.

  19. Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling.

    PubMed

    Niwa, O; Horiuchi, T; Torimitsu, K

    1997-01-01

    A small volume L-glutamate online sensor was developed in order to monitor changes in the local concentration of L-glutamate released from cultured nerve cells. Syringe pump in the suction mode is used to sample extracellular fluid continuously from a glass micro-capillary and the concentration of L-glutamate can be determined by using a glassy carbon (GC) electrode modified with an Os-polyvinylpyridine mediator bottom film containing horseradish peroxidase and a bovine serum albumin top layer containing L-glutamate oxidase. The overall efficiency of L-glutamate detection with a sensor is 71% under optimum conditions due to an efficient enzymatic reaction at the modified electrode in the thin layer radial flow cell. As a result, we achieved a detection limit of 7-15 nM and a linear range of 50 nM to 10 microM. In an in vitro experiment, the extracellular fluid near a particular nerve cell can be sampled with this micro-pipet and continuously introduced into the modified GC electrode in the radial flow cell via suction provided by a syringe pump. The nerve cells are stimulated by the KCl in a glass capillary and the L-glutamate concentration change can be monitored by changing the distance between the sampling pipet and the nerve cells.

  20. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  1. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Shizhong; Zhu, Shengping; Lu, Dengbo

    2018-01-01

    A method was developed for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after preconcentration/separation using dispersive micro-solid phase extraction (DMSPE) and dispersive liquid-liquid micro-extraction (DLLME). In DMSPE, titanium dioxide nanofibers were used for preconcentration and separation of analytes. The upper aqueous phase and elution solution from DMSPE were used for further preconcentration and separation of Sb(III) and Sb(V) by DLLME without any pre-oxidation or pre-reduction operation, respectively. The extracts from DLLME were used for ETV-ICP-MS determination with APDC as a chemical modifier. Under optimal conditions, the detection limits of this method were 0.019 and 0.025 pg mL- 1 with relative standard deviations of 5.7% and 6.9% for Sb(III) and Sb(V) (c = 1.0 ng mL- 1, n = 9), respectively. This method was applied for speciation analysis of Sb and its distribution in the tea leaves and the tea infusion, including total, suspended, soluble, organic and inorganic Sb as well as Sb(III) and Sb(V). The results showed that the contents of Sb are 62.7, 12.9 and 47.3 ng g- 1 in the tea leaves, tea residue and tea soup, respectively; those of soluble, organic, inorganic, Sb(III) and Sb(V) are 0.41, 0.11, 0.29, 0.21 and 0.07 ng mL- 1 in the tea soup, respectively. A certified reference material of tea leaves (GBW 07605) was analyzed by this method with satisfactory results.

  2. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  3. Integrated Micro-scale Power Conversion

    DTIC Science & Technology

    2012-08-01

    Micro Power Converters (μPC) Loads: Sources: μ-Power Converter (μPC) Thin-film battery Solar Cell Micro- fuel Cell Vibration Harvester...passive size • Hybrid integration with MEMS passives, particularly inductors Hybrid integration ARL focus Bubble Size = Volume [mm3] Industry Focus...Power converters survey Compiled by Bedair, Bashirullah Switched inductor (SI) Switched capacitor (SC) Resonant Resonat piezo Hybrid - SI / SC

  4. Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor

    PubMed Central

    Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652

  5. Characterization of basal and lipopolysaccharide-induced microRNA expression in equine peripheral blood mononuclear cells using Next-Generation Sequencing

    PubMed Central

    Buechner-Maxwell, Virginia A.; Witonsky, Sharon G.; Pleasant, R. Scott; Werre, Stephen R.; Ahmed, S. Ansar

    2017-01-01

    The innate immune response to lipopolysaccharide contributes substantially to the morbidity and mortality of gram-negative sepsis. Horses and humans share an exquisite sensitivity to lipopolysaccharide and thus the horse may provide valuable comparative insights into this aspect of the inflammatory response. MicroRNAs, small non-coding RNA molecules acting as post-transcriptional regulators of gene expression, have key roles in toll-like receptor signaling regulation but have not been studied in this context in horses. The central hypothesis of this study was that lipopolysaccharide induces differential microRNA expression in equine peripheral blood mononuclear cells in a manner comparable to humans. Illumina Next Generation Sequencing was used to characterize the basal microRNA transcriptome in isolated peripheral blood mononuclear cells from healthy adult horses, and to evaluate LPS-induced changes in microRNA expression in cells cultured for up to four hours. Selected expression changes were validated using quantitative reverse-transcriptase PCR. Only miR-155 was significantly upregulated by LPS, changing in parallel with supernatant tumor necrosis factor-α concentration. Eight additional microRNAs, including miR-146a and miR-146b, showed significant expression change with time in culture without a clear LPS effect. Target predictions indicated a number of potential immunity-associated targets for miR-155 in the horse, including SOCS1, TAB2 and elements of the PI3K signaling pathway, suggesting that it is likely to influence the acute inflammatory response to LPS. Gene alignment showed extensive conservation of the miR-155 precursor gene and associated promoter regions between horses and humans. The basal and LPS-stimulated microRNA expression pattern characterized here were similar to those described in human leukocytes. As well as providing a resource for further research into the roles of microRNAs in immune responses in horses, this will facilitate inter

  6. Analyses of Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2000-01-01

    A high performance, Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cell design is presented. The cell measures 41.27 mm in diameter, is 125.3 mm high, and has eight BASE tubes connected electrically in series. The hot structure of the cell (hot plate, BASE tubes support plate, hot plenum wall, evaporator standoff, evaporator wick, and side wall facing the BASE tubes) is made of Nb-1Zr. The cold structure of the cell (condenser, interior cylindrical thermal radiation shield, the casing and the wick of the liquid sodium return artery, and side wall above the BASE tubes) is made of the stronger, lower thermal conductivity niobium alloy C-103. This cell, which weighs 163.4 g, could deliver 7.0 We at 17% efficiency and load voltage of 3.3 V, when using TiN BASE electrodes characterized by B=75 A.K1/2/m2.Pa and G=50 and assuming BASE/electrode contact resistance of 0.06 Ω-cm2 and leakage resistance of the BASE braze structure of 3 Ω. For these performance parameters and when the interior cylindrical C-103 thermal radiation shield is covered with low emissivity rhodium, the projected specific mass of the cell is 23.4 g/We. The BASE brazes and the evaporator temperatures were below the recommended limits of 1123 K and 1023 K, respectively. In addition, the temperature margin in the cell was at least + 20 K. When electrodes characterized by B=120 A.K1/2/m2.Pa and G=10 were used, the cell power increased to 8.38 We at 3.5 V and efficiency of 18.8%, for a cell specific mass of 19.7 g/We. Issues related to structure strength of the cell and the performance degradation of the BASE and electrodes are not addressed in this paper. .

  7. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bisphenol A exposure leads to specific microRNA alterations in placental cells.

    PubMed

    Avissar-Whiting, Michele; Veiga, Keila R; Uhl, Kristen M; Maccani, Matthew A; Gagne, Luc A; Moen, Erika L; Marsit, Carmen J

    2010-07-01

    Exposure to bisphenol A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity.

  9. Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells

    PubMed Central

    Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.

    2010-01-01

    Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706

  10. An exposure system for measuring nasal and lung uptake of vapors in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, A.R.; Brookins, L.K.; Gerde, P.

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposuremore » system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.« less

  11. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    PubMed

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  12. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  13. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-04-01

    MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

  14. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-01-01

    Summary MicroRNAs are important players in stem cell biology. Among them, microRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain. Whether miR-9 plays a role in neural stem cell self-renewal and differentiation is unknown. We showed previously that nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector lacking the miR-9 recognition site rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses miR-9 pri-miRNA expression. MiR-9, by forming a negative regulatory loop with TLX, establishes a model for controlling the balance between neural stem cell proliferation and differentiation. PMID:19330006

  15. Arrays of EAP micro-actuators for single-cell stretching applications

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Niklaus, M.; Shea, H.

    2010-04-01

    Mechanical stimuli are critical for the development and maintenance of most tissues such as muscles, cartilage, bones and blood vessels. The commercially available cell culture systems replicating the in vivo environment are typically based on simple membrane cell-stretching equipment, which can only measure the average response of large colonies of cells over areas of greater than one cm2. We present here the conceptual design and the complete fabrication process of an array of 128 Electro-Active Polymer (EAP) micro-actuators which are uni-axially stretched and hence used to impose unidirectional strain on single cells, make it feasible to do experiments on the cytomechanics of individual cells. The Finite Element Method is employed to study the effect of different design parameters on achievable strain, leading to the optimized design. Compliant gold electrodes are deposited by low-energy ion implantation on both sides of a PDMS membrane, as this technique allows making electrodes that support large strain with minimal stiffening of the elastomer. The membrane is bonded to a rigid support, leading to an array of 100×100 μm2 EAP actuators.

  16. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  17. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    PubMed

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  18. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  19. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    PubMed

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle.

  20. Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Schulte, Kevin L.; Simon, John; Mangum, John; ...

    2017-04-30

    We demonstrate the growth of homojunction GaInP solar cells by dynamic hydride vapor phase epitaxy for the first time. Simple unpassivated n-on-p structures grown in an inverted configuration with gold back reflectors were analyzed. Short wavelength performance varied strongly with emitter thickness, since collection in the emitter was limited by the lack of surface passivation. Collection in the base increased strongly with decreasing doping density, in the range 1 x 10 16 - 5 x 10 17 cm -3. Optical modeling indicated that, in our best device, doped ~1 x 10 16 cm -3, almost 94% of photons that passedmore » through the emitter were collected. Modeling also indicated that the majority of collection occurs in the depletion region with this design, suggesting that nonradiative recombination there might limit device performance. In agreement with this observation, the experimental dark J-V curve exhibited an ideality factor near n = 2. Thus, limitation of deep level carrier traps in the material is a path to improved performance. Preliminary experiments indicate that a reduced V/III ratio, which potentially affects the density of these presumed traps, improves cell performance. With reduced V/III ratio, we demonstrate a ~13% efficient GaInP cell measured under the 1-sun AM1.5G spectrum. In conclusion, this cell had an antireflective coating, but no front surface passivation.« less

  1. Exosomal tumor microRNA modulates premetastatic organ cells.

    PubMed

    Rana, Sanyukta; Malinowska, Kamilla; Zöller, Margot

    2013-03-01

    Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery

  2. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion.

    PubMed

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-10-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  3. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    DOE PAGES

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; ...

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. Asmore » a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.« less

  5. Functionalized bioinspired microstructured optical fiber pores for applications in chemical vapor sensing

    NASA Astrophysics Data System (ADS)

    Calkins, Jacob A.

    Chemical vapor sensing for defense, homeland security, environmental, and agricultural application is a challenge, which due combined requirements of ppt sensitivity, high selectivity, and rapid response, cannot be met using conventional analytical chemistry techniques. New sensing approaches and platforms are necessary in order to make progress in this rapidly evolving field. Inspired by the functionalized nanopores on moth sensilla hairs that contribute to the high selectivity and sensitivity of this biological system, a chemical vapor sensor based on the micro to nanoscale pores in microstructured optical fibers (MOFs) was designed. This MOF based chemical vapor sensor design utilizes MOF pores functionalized with organic self-assembled monolayers (SAMs) for selectivity and separations and a gold plasmonic sensor for detection and discrimination. Thin well-controlled gold films in MOF pores are critical components for the fabrication of structured plasmonic chemical vapor sensors. Thermal decomposition of dimethyl Au(II) trifluoroacetylacetonate dissolved in near-critical CO2 was used to deposit gold island films within the MOF pores. Using a 3mercatopropyltrimethoxysilane adhesion layer, continuous gold thin films as thin as 20--30 nm were deposited within MOF pores as small as 500 nm in diameter. The gold island films proved to be SERS active and were used to detect 900 ppt 2,4 DNT vapor in high pressure nitrogen and 6 ppm benzaldehyde. MOF based waveguide Raman (WGR), which can probe the air/silica interface between a waveguiding core and surrounding pores, was developed to detect and characterize SAMs and other thin films deposited in micro to nanoscale MOF pores. MOF based WGR was used to characterize an octadecyltrichlorosilane (OTS) SAM deposited in 1.6 mum diameter pores iv to demonstrate that the SAM was well-formed, uniform along the pore length, and only a single layer. MOF based WGR was used to detect a human serum albumin monolayer deposited on the

  6. MicroRNA-1 overexpression increases chemosensitivity of non-small cell lung cancer cells by inhibiting autophagy related 3-mediated autophagy.

    PubMed

    Hua, Li; Zhu, Guirong; Wei, Jianguo

    2018-05-30

    Non-small cell lung cancer (NSCLC) is a major type of lung cancer. Drug resistance is a enormous obstacle for cancer treatment. Copious microRNAs (miRNAs) have been demonstrated to be implicated in drug resistance in NSCLC. In the present study, RT-qPCR assay revealed that microRNA-1 (miR-1) expression was downregulated in DDP resistant NSCLC tissues and cells. Western blot assay presented a remarkable increase of LC3B-II/LC3B-I ratio and a notable decline of p62 level in DDP resistant NSCLC cells, while these effects were weakened by miR-1. GFP-LC3 puncta experiment showed that ectopic expression of miR-1 induced a noticeable downregulation of GFP-LC3 positive cell percentage in DDP resistant NSCLC cells. Bioinformatical analysis and luciferase assay revealed that autophagy related 3 (ATG3) was a target of miR-1. Also, western blot and RT-qPCR assays manifested that ATG3 was highly expressed in DDP resistant NSCLC tissues and cells. Additionally, miR-1 inhibited ATG3 expression and ATG3 upregulation abolished miR-1-meidated autophagy inhibition in DDP resistant NSCLC cells. Cell Counting Kit-8 (CCK-8) assay showed that the half maximal inhibitory concentration (IC 50 ) of cisplatin (DDP) was reduced in miR-1-enforced DDP resistant NSCLC cells, but was restored following the overexpression of ATG3. Flow cytometry experiments further showed that miR-1 overexpression induced a significant upregulation of apoptotic rate and ATG3 restoration weakened miR-1-induced apoptosis in DDP resistant NSCLC cells. Collectively, our study validated that miR-1 overexpression improved DDP sensitivity of NSCLC cells by inhibiting ATG3-mediated autophagy, providing a potential therapeutic target for easing chemoresistance of anti-tumor drugs. This article is protected by copyright. All rights reserved.

  7. Exposure to Endocrine Disruptor Induces Transgenerational Epigenetic Deregulation of MicroRNAs in Primordial Germ Cells

    PubMed Central

    Brieño-Enríquez, Miguel A.; García-López, Jesús; Cárdenas, David B.; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation. PMID:25897752

  8. MicroRaman Spectroscopy and Raman Imaging of Basal Cell Carcinoma

    NASA Astrophysics Data System (ADS)

    Short, M. A.; Zeng, H.; Lui, H.

    2005-03-01

    We have measured the Raman spectra of normal and cancerous skin tissues using a confocal microRaman spectrograph with a sub-micron spatial resolution. We found that the Raman spectrum of a cell nucleolus is different from the spectra measured outside the nucleolus and considerably different from those measured outside the nucleus. In addition, we found significant spectroscopic differences between normal and cancer-bearing sites in the dermis region. In order to utilize these differences for non-invasive skin cancer diagnosis, we have developed a Raman imaging system that clearly demonstrates the structure, location and distribution of cells in unstained skin biopsy samples. Our method is expected to be useful for the detection and characterization of skin cancer based on the known distinct cellular differences between normal and malignant skin.

  9. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  10. Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1994-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.

  11. [The Relevance of MicroRNAs in Glioblastoma Stem Cells].

    PubMed

    Kleinová, R; Slabý, O; Šána, J

    2015-01-01

    Glioblastoma multiforme is the most common intracranial malignity of astrocyte origin in adults. Despite complex therapy consisting of maximal surgical resection, adjuvant concomitant chemoradiotherapy with temozolomide followed by temozolomide in monotherapy, the median of survival ranges between 12 and 15 months from dia-gnosis. This infaust prognosis is very often caused by both impossibility of achieving of sufficient radical surgical resection and tumor resistance to adjuvant therapy, which relates to the presence of glioblastoma stem cells. Similarly to normal stem cells, glioblastoma stem cells are capable of self -renewal, differentiation, and unlimited slow proliferation. Their resistance to conventional therapy is also due to higher expressions of DNA repair enzymes, antiapoptotic factors and multidrug transporters. Therefore, targeting these unique properties could be a novel promising therapeutic approach leading to more effective therapy and better prognosis of glioblastoma multiforme patients. One of the approaches how to successfully regulate above -mentioned properties is targeted regulation of microRNAs (miRNAs). These small noncoding RNA molecules posttranscriptionally regulate expression of more than 2/ 3 of all human genes that are also involved in stem cell associated signaling pathways. Moreover, deregulated expression of some miRNAs has been observed in many cancers, including glioblastoma multiforme.

  12. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  13. MicroRNAs as Regulators of Endothelial Cell Functions in Cardiometabolic Diseases

    PubMed Central

    Araldi, Elisa; Suárez, Yajaira

    2016-01-01

    Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. PMID:26825686

  14. Micro-Raman Analysis of Irradiated Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies such as Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (1015 - 1017 H+/cm2 doses) irradiated chemical vapor deposited (CVD) diamond reveals that the microstructure is retained even after high radiation exposure.

  15. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response

    PubMed Central

    Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron

    2011-01-01

    MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620

  16. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    PubMed

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong

    2014-02-01

    Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.

  18. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  19. Performance of an annular solid-oxide fuel cell micro-stack array operating in single-chamber conditions

    NASA Astrophysics Data System (ADS)

    Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui

    An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.

  20. CH3NH3I treatment temperature of 70 °C in low-pressure vapor-assisted deposition for mesoscopic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan

    2018-01-01

    Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.

  1. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947

  2. Microfluidics microFACS for Life Detection

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2010-01-01

    A prototype micro-scale Fluorescent Activated Cell Sorter (microFACS) for life detection has been built and is undergoing testing. A functional miniature microfluidics instrument with the ability to remotely distinguish live or dead bacterial cells from abiotic particulates in ice or permafrost of icy bodies of the solar system would be of fundamental value to NASA. The use of molecular probes to obtain the bio-signature of living or dead cells could answer the most fundamental question of Astrobiology: Does life exist beyond Earth? The live-dead fluorescent stains to be used in the microFACS instrument function only with biological cell walls. The detection of the cell membranes of living or dead bacteria (unlike PAH's and many other Biomarkers) would provide convincing evidence of present or past life. This miniature device rapidly examine large numbers of particulates from a polar ice or permafrost sample and distinguish living from dead bacteria cells and biological cells from mineral grains and abiotic particulates and sort the cells and particulates based on a staining system. Any sample found to exhibit fluorescence consistent with living cells could then be used in conjunction with a chiral labeled release experiment or video microscopy system to seek addition evidence for cellular metabolism or motility. Results of preliminary testing and calibration of the microFACS prototype instrument system with pure cultures and enrichment assemblages of microbial extremophiles will be reported.

  3. Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output.

    PubMed

    Ye, Jianglin; Tan, Huabing; Wu, Shuilin; Ni, Kun; Pan, Fei; Liu, Jie; Tao, Zhuchen; Qu, Yan; Ji, Hengxing; Simon, Patrice; Zhu, Yanwu

    2018-05-17

    High-performance yet flexible micro-supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene-based MSCs (MG-MSCs), by direct laser writing (DLW) of stacked graphene films made from industry-scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large-areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer-designed integration. The MG-MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm -3 and power density of 1860 W cm -3 in an ionogel electrolyte. Notably, such MG-MSCs demonstrate an outstanding flexible alternating current line-filtering performance in poly(vinyl alcohol) (PVA)/H 2 SO 4 hydrogel electrolyte, indicated by a phase angle of -76.2° at 120 Hz and a resistance-capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG-polyaniline (MG-PANI) hybrid MSCs fabricated by DLW of MG-PANI hybrid films show an optimized capacitance of 3.8 mF cm -2 in PVA/H 2 SO 4 hydrogel electrolyte; an integrated device comprising MG-MSCs line filtering, MG-PANI MSCs, and pressure/gas sensors is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  5. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na

  6. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate

  7. Micro-array isolation of circulating tumor cells (CTCs): the droplet biopsy chip

    NASA Astrophysics Data System (ADS)

    Panchapakesan, B.

    2017-08-01

    We present a new method for circulating tumor cell capture based on micro-array isolation from droplets. Called droplet biopsy, our technique uses a 76-element array of carbon nanotube devices functionalized with anti-EpCAM and antiHer2 antibodies for immunocapture of spiked breast cancer cells in the blood. This droplet biopsy chip can enable capture of CTCs based on both positive and negative selection strategy. Negative selection is achieved through depletion of contaminating leukocytes through the differential settling of blood into layers. We report 55%-100% cancer cell capture yield in this first droplet biopsy chip study. The droplet biopsy is an enabling idea where one can capture CTCs based on multiple biomarkers in a single blood sample.

  8. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output.

    PubMed

    O'Connell, Ryan M; Chaudhuri, Aadel A; Rao, Dinesh S; Gibson, William S J; Balazs, Alejandro B; Baltimore, David

    2010-08-10

    The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.

  9. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    PubMed

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  10. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  11. Combined micro and macro additive manufacturing of a swirling flow coaxial phacoemulsifier sleeve with internal micro-vanes.

    PubMed

    Choi, Jae-Won; Yamashita, Masaki; Sakakibara, Jun; Kaji, Yuichi; Oshika, Tetsuro; Wicker, Ryan B

    2010-10-01

    Microstereolithography (microSL) technology can fabricate complex, three-dimensional (3D) microstructures, although microSL has difficulty producing macrostructures with micro-scale features. There are potentially many applications where 3D micro-features can benefit the overall function of the macrostructure. One such application involves a medical device called a coaxial phacoemulsifier where the tip of the phacoemulsifier is inserted into the eye through a relatively small incision and used to break the lens apart while removing the lens pieces and associated fluid from the eye through a small tube. In order to maintain the eye at a constant pressure, the phacoemulsifier also includes an irrigation solution that is injected into the eye during the procedure through a coaxial sleeve. It has been reported, however, that the impinging flow from the irrigation solution on the corneal endothelial cells in the inner eye can damage these cells during the procedure. As a result, a method for reducing the impinging flow velocities and the resulting shear stresses on the endothelial cells during this procedure was explored, including the design and development of a complex, 3D micro-vane within the sleeve. The micro-vane introduces swirl into the irrigation solution, producing a flow with rapidly dissipating flow velocities. Fabrication of the sleeve and fitting could not be accomplished using microSL alone, and thus, a two-part design was accomplished where a sleeve with the micro-vane was fabricated with microSL and a threaded fitting used to attach the sleeve to the phacoemulsifier was fabricated using an Objet Eden 333 rapid prototyping machine. The new combined device was tested within a water container using particle image velocimetry, and the results showed successful swirling flow with an ejection of the irrigation fluid through the micro-vane in three different radial directions corresponding to the three micro-vanes. As expected, the sleeve produced a swirling

  12. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration.

    PubMed

    Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J

    2016-11-02

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.

  13. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration

    PubMed Central

    Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.

    2016-01-01

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063

  14. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  15. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  16. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  17. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    PubMed

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    PubMed

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  19. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  20. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  1. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  2. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  3. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE PAGES

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  4. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    PubMed Central

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-01-01

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559

  5. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    PubMed

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  6. Human embryonic stem cells express a unique set of microRNAs.

    PubMed

    Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong

    2004-06-15

    Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.

  7. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells

    PubMed Central

    2013-01-01

    Background A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. Results We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. Conclusions miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs. PMID:23445407

  8. Improving device performance of perovskite solar cells by micro-nanoscale composite mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Ting, Hungkit; Zhang, Danfei; He, Yihao; Wei, Shiyuan; Li, Tieyi; Sun, Weihai; Wu, Cuncun; Chen, Zhijian; Wang, Qi; Zhang, Guoyi; Xiao, Lixin

    2018-02-01

    In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 µm) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 µm/20 nm TiO2 with a ratio of 1:2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2.

  9. Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)

    2002-01-01

    An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.

  10. Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii.

    PubMed

    Simakov, Oleg; Larsson, Tomas A; Arendt, Detlev

    2013-09-01

    Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.

  11. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNAmore » repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.« less

  12. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    DOEpatents

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  13. A micro-sized bio-solar cell for self-sustaining power generation.

    PubMed

    Lee, Hankeun; Choi, Seokheun

    2015-01-21

    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  14. Three-dimensional kinetic and fluid dynamic modeling and three iterative algorithms for side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2017-11-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.

  15. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  16. A 3D analysis of oxygen transfer in a low-cost micro-bioreactor for animal cell suspension culture.

    PubMed

    Yu, P; Lee, T S; Zeng, Y; Low, H T

    2007-01-01

    A 3D numerical model was developed to study the flow field and oxygen transport in a micro-bioreactor with a rotating magnetic bar on the bottom to mix the culture medium. The Reynolds number (Re) was kept in the range of 100-716 to ensure laminar environment for animal cell culture. The volumetric oxygen transfer coefficient (k(L)a) was determined from the oxygen concentration distribution. It was found that the effect of the cell consumption on k(L)a could be negligible. A correlation was proposed to predict the liquid-phase oxygen transfer coefficient (k(Lm)) as a function of Re. The overall oxygen transfer coefficient (k(L)) was obtained by the two-resistance model. Another correlation, within an error of 15%, was proposed to estimate the minimum oxygen concentration to avoid cell hypoxia. By combination of the correlations, the maximum cell density, which the present micro-bioreactor could support, was predicted to be in the order of 10(12) cells m(-3). The results are comparable with typical values reported for animal cell growth in mechanically stirred bioreactors.

  17. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  18. TargetLink, a new method for identifying the endogenous target set of a specific microRNA in intact living cells.

    PubMed

    Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong

    2017-02-01

    MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.

  19. Bacterial chemotaxis along vapor-phase gradients of naphthalene.

    PubMed

    Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y

    2010-12-15

    The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.

  20. Micro-Raman Analysis of Irradiated Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, Robert L.

    2003-01-01

    Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies, even in Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (10(exp 15) - 10(exp 17) H(+)/sq cm doses) irradiated chemical vapor deposited (CVD) films are presented and indicate that their microstructure is retained even after high radiation exposure.

  1. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  2. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Detection of micro RNA hsa-let-7e in peripheral blood mononuclear cells infected with dengue virus serotype-2: preliminary study

    NASA Astrophysics Data System (ADS)

    Masyeni, S.; Hadi, U.; Kuntaman; Yohan, B.; Margyaningsih, N. I.; Sasmono, R. T.

    2018-03-01

    Pathogenesis of dengue infection is still obscure. Recently, the role of microRNA has been associated with the cytokine storm which leads to plasma leakage in endothelial cells. The objective of our study was to determine whether particular microRNA is overexpressed in PBMCs infected with DENV and to assess its correlation to the expression of suppressor of cytokine signaling 3 (SOCS3) proteins to increase the production of pro-inflammatory cytokines. We report the result of a preliminary study on the expression of microRNA hsa-let-7e. The peripheral blood mononuclear cells (PBMCs) from the healthy volunteer were infected with the clinical isolate of DENV-2. RNA was extracted with miRCURYLNATMExiqon. Quantitative Real-Time PCR was used to measure the relative expression of hsa-let-7e micro RNA and the mRNA of SOCS3 proteins. MicroRNA hsa-let-7e expression was increased in PBMCs upon DENV-2 infection. The relative expression of hsa-let-7e is detected at 1.46 folds relative to uninfected PBMCs in 4 hours post-infection and decreased in 19 hours post infection. In contrast, the expression of mRNA of SOCS3 was inversely expressed with hsa-let-7 expression. MicroRNA was overexpressed in PBMCs upon infection with DENV-2. This microRNA may bind the SOCS3 and contribute to the pathogenesis of dengue infection.

  4. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  5. Dysregulated MicroRNA Involvement in Multiple Sclerosis by Induction of T Helper 17 Cell Differentiation

    PubMed Central

    Chen, Chen; Zhou, Yifan; Wang, Jingqi; Yan, Yaping; Peng, Lisheng; Qiu, Wei

    2018-01-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Growing evidence has proven that T helper 17 (Th17) cells are one of the regulators of neuroinflammation mechanisms in MS disease. Researchers have demonstrated that some microRNAs (miRNAs) are associated with disease activity and duration, even with different MS patterns. miRNAs regulate CD4+ T cells to differentiate toward various T cell subtypes including Th17 cells. In this review, we discuss the possible mechanisms of miRNAs in MS pathophysiology by regulating CD4+ T cell differentiation into Th17 cells, and potential miRNA targets for current disease-modifying treatments.

  6. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  7. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation

    PubMed Central

    Wang, Xiaoqin; Omar, Omar; Vazirisani, Forugh; Thomsen, Peter

    2018-01-01

    Human mesenchymal stem cell (hMSC)-derived exosomes have shown regenerative effects, but their role in osteogenesis and the underlying mechanism are yet to be determined. In this study, we examined the time-course secretion of exosomes by hMSCs during the entire process of osteogenic differentiation. Exosomes derived from hMSCs in various stages of osteogenic differentiation committed homotypic cells to differentiate towards osteogenic lineage, but only exosomes from late stages of osteogenic differentiation induced extracellular matrix mineralisation. Exosomes from expansion and early and late stages of osteogenic differentiation were internalised by a subpopulation of hMSCs. MicroRNA profiling revealed a set of differentially expressed exosomal microRNAs from the late stage of osteogenic differentiation, which were osteogenesis related. Target prediction demonstrated that these microRNAs enriched pathways involved in regulation of osteogenic differentiation and general mechanisms how exosomes exert their functions, such as “Wnt signalling pathway” and “endocytosis”. Taken together, the results show that MSCs secrete exosomes with different biological properties depending on differentiation stage of their parent cells. The exosomal cargo transferred from MSCs in the late stage of differentiation induces osteogenic differentiation and mineralisation. Moreover, it is suggested that the regulatory effect on osteogenesis by exosomes is at least partly exerted by exosomal microRNA. PMID:29447276

  8. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  9. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  10. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  11. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-24

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  12. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    PubMed Central

    2014-01-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure. PMID:24565201

  13. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  14. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.

    PubMed

    Ma, Jing; Gong, Wei; Liu, Su; Li, Qian; Guo, Mengzheng; Wang, Jinhan; Wang, Suying; Chen, Naiyao; Wang, Yafei; Liu, Qiang; Zhao, Hui

    2018-01-01

    The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.

  15. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  16. A microPIXE investigation of the interaction of cells of Schizosaccharomyces pombe with the culture medium

    NASA Astrophysics Data System (ADS)

    Rombouts, P. M. M.; Gomez-Morilla, I.; Grime, G. W.; Webb, R. P.; Cuenca, L.; Rodriguez, R.; Browton, M.; Wardell, N.; Underwood, B.; Kirkby, N. F.; Kirkby, K. J.

    2007-07-01

    Schizosaccharomyces pombe ( S. pombe) is a eucaryotic cell type similar to mammalian cells but much more simple. As it also executes its cell cycle rapidly it is very useful for investigating basic processes in cells. In this paper we report a feasibility study of the applicability of microPIXE to investigate the interaction between S. pombe cells and the surrounding culture medium. Cells were cultured in various growth medium prior to preparation for analysis. 1 μl drops of medium and cells were spotted onto polypropylene foils held in contact with a polished copper block previously cooled in liquid nitrogen. The samples were dehydrated by freeze-drying. Micro PIXE analysis was carried out with the IBC microbeam facility using a beam of 2.5 MeV protons focused to 1-2 μm diameter. Initially no elemental contrast was observed between the cells and the medium, but by modifying the dilution of the cell suspension, the cells could be distinguished from the surrounding medium through an increased concentration of P and reduced concentration of Cl. The distribution of Na in the medium around the cells showed evidence of the action of the Na pump. Sporulation appears to be induced in the cells by adding Cu to the growth medium and the uptake of Cu by the cells could be clearly observed. This study shows that it is possible to analyse the mass transport of elements in and out of cells In the future this will enable concentration gradients to be analysed and allow the rate of production or consumption of individual cells to be calculated. By observing these patterns for individual cells (not populations) at various known points in the cell cycle, fundamental data can be derived.

  17. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  18. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  19. Overview of Micro- and Nano-Technology Tools for Stem Cell Applications: Micropatterned and Microelectronic Devices

    PubMed Central

    Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo

    2012-01-01

    In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element. PMID:23202240

  20. Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices.

    PubMed

    Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo

    2012-11-19

    In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.

  1. Isolation of guard cells from fresh epidermis using a piezo-power micro-dissection system with vibration-attenuated needles.

    PubMed

    Terpitz, Ulrich; Zimmermann, Dirk

    2010-01-01

    The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.

  2. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  3. MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells.

    PubMed

    Molnár, Viktor; Érsek, Barbara; Wiener, Zoltán; Tömböl, Zsófia; Szabó, Péter M; Igaz, Péter; Falus, András

    2012-03-01

    MicroRNAs provide an additional layer in the regulation of gene expression acting as repressors with several targets at the posttranscriptional level. This study describes microRNA expression patterns during differentiation and activation of mast cells. The expression levels of 567 different mouse miRNAs were compared by microarray between c-Kit+ committed progenitors, mucosal mast cells, resting and IgE-crosslinked BMMCs in vitro. The strongest upregulation of miR-132 upon IgE-mediated activation was validated in human cord blood-derived mast cells as well. HB-EGF growth factor also upregulated upon activation and was ranked high by more prediction algorithms. Co-transfection of miR-132 mimicking precursor and the 3'UTR of human Hbegf-containing luciferase vector proves that the predicted binding site is functional. In line with this, neutralization of miR-132 by anti-miR inhibitor leads to sustained production of HB-EGF protein in activated mast cells. Our data provide a novel example for negative regulation of a growth factor by an upregulated miRNA. © Springer Basel AG 2011

  4. Uncertainties of the Intensity of the 1130 nm Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.

    2001-01-01

    Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.

  5. Comparative Morphology of Sulfur Mustard Effects in the Hairless Guinea Pig and a Human Skin Equivalent

    DTIC Science & Technology

    1993-01-01

    guinea pig model (HD-HGP). HSE samples were exposed to 10 micro l HD vapor for 8 min and harvested at selected times up to 24 h. Skin sites of HGP were exposed to the same vapor dose or to 2.0 micro l HD for 30 min and collected at 12 and 24 h. In both models, basal cells of the stratum germinativum were selectively affected. The HD-HSE study revealed that basal cell changes began 3 to 6 h following exposure. These early cellular included an acantholysis of some basal cells with widening of intercellular spaces, disruption of desmosomal attachments, nuclear pyknosis,

  6. Novel insights of microRNAs in the development of systemic lupus erythematosus.

    PubMed

    Le, Xiong; Yu, Xiang; Shen, Nan

    2017-09-01

    To provide a brief overview of recent progress in microRNA biogenesis and homeostasis, its function in immune system and systemic lupus erythematosus (SLE), as well as successful microRNA-based therapy in vivo. Stepwise microRNA biogenesis is elaborately regulated at multiple levels, ranging from transcription to ultimate function. Mature microRNAs have inhibitory effects on various biological molecules, which are crucial for stabilizing and normalizing differentiation and function of immune cells. Abnormality in microRNA expression contributes to dysfunction of lupus immune cells and resident cells in local tissues. Manipulation of dysregulated microRNAs in vivo through microRNA delivery or targeting microRNA might be promising for SLE treatment. Recent advances highlight that microRNAs are important in immunity, lupus autoimmunity and as potential therapy target for SLE.

  7. Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance.

    PubMed

    Portugal, Steven J; Maurer, Golo; Cassey, Phillip

    2010-01-01

    Typically, eggshell water vapor conductance is measured on whole eggs, freshly collected at the commencement of a study. At times, however, it may not be possible to obtain whole fresh eggs but rather egg fragments or previously blown eggs. Here we evaluate and describe in detail a technique for modern laboratory analysis of eggshell conductance that uses fragments from fresh and museum eggs to determine eggshell water vapor conductance. We used fresh unincubated eggs of domesticated chickens (Gallus gallus domesticus), ducks (Anas platyrhynchos domesticus), and guinea fowl (Numida meleagris) to investigate the reliability, validity, and repeatability of the technique. To assess the suitability of museum samples, museum and freshly collected black-headed gull eggs (Larus ridibundus) were used. Fragments were cut out of the eggshell from the blunt end (B), equator (E), and pointy end (P). Eggshell fragments were glued to the top of a 0.25-mL micro test tube (Eppendorf) filled with 200 μL of distilled water and placed in a desiccator at 25°C. Eppendorfs were weighed three times at 24-h intervals, and mass loss was assumed to be a result of water evaporation. We report the following results: (1) mass loss between weighing sessions was highly repeatable and consistent in all species; (2) the majority of intraspecific variability in eggshell water vapor conductance between different eggs of the same species was explained through the differences in water vapor conductance between the three eggshell parts of the same egg (B, E, and P); (3) the technique was sensitive enough to detect significant differences between the three domestic species; (4) there was no overall significant difference between water vapor conductance of museum and fresh black-headed gull eggs; (5) there was no significant difference in water vapor conductance for egg fragments taken from the same egg both between different trials and within the same trial. We conclude, therefore, that this technique

  8. LASP-01: Distribution of Mouse Embryonic Stem Cells Expressing MicroRNAs | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program manages the expansion, processing, and distribution of1,501 genetically engineered mouse embryonic stem cell (mESC) linesharboring conditional microRNA transgenes. The Laboratory Animal Sciences Prog

  9. Power Considerations for Micro-Autonomous Systems

    DTIC Science & Technology

    2012-07-30

    PV cell APPROVED FOR PUBLIC RELEASE 15 Micro-Thermo- Photovoltaics POC: Ivan Celanovic low- power MPPT micro channel Silicon MEMs reactor Ill...max power density 150 W/kg (3000 mW, 500 sec) APPROVED FOR PUBLIC RELEASE 29 Micro-Thermo- Photovoltaics low- power MPPT micro channel Silicon MEMs...Secondary used as a Primary *Contour  4g (220Whr/kg, 750W/kg), 15g (400 Whr/kg, 1000W/kg) *Sion Power ??? •Lithium-Sulfur: promising rechargeable

  10. The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2015-08-01

    This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs.

  11. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    NASA Astrophysics Data System (ADS)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (p<0.05) for control, TBHP, and NAC. Encouragingly, partial least squares discriminant analysis applied to our data showed high sensitivity and specificity for identification of control (87.3%, 71.7%), NAC (92.3%, 85.1%) and TBHP (86.9%, 92.9%). These results suggest that confocal Raman micro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  12. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  13. High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor

    NASA Astrophysics Data System (ADS)

    Wang, Siyi; Mayo, Elizabeth I.; Perez, M. Dolores; Griffe, Laurent; Wei, Guodan; Djurovich, Peter I.; Forrest, Stephen R.; Thompson, Mark E.

    2009-06-01

    2,4-bis[4-(N ,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (SQ) is used as a donor material in vapor deposited organic heterojunction photovoltaic cells. Devices with the structure indium tin oxide/SQ (x)/C60 (400Å)/bathocuproine (100Å)/Al (1000Å), where x =65, 110, 150, and 200Å were compared. Devices with x =65Å exhibited a power conversion efficiency of 3.1% under 1sun, AM1.5G simulated solar irradiation, giving an open circuit voltage of 0.76±0.01V, a short circuit current of 7.01±0.05mA/cm2, and a fill factor of 0.56±0.05. Thicker SQ films lead to lower short circuit currents and fill factors, giving conversion efficiencies in the range of 2.6% to 3.2%. The demonstration of sublimable SQ as a donor material opens up a family of compounds for use in small molecule based heterojunction photovoltaics.

  14. Study of magnetic resonance with parametric modulation in a potassium vapor cell

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wang, Zhiguo; Peng, Xiang; Li, Wenhao; Li, Songjian; Guo, Hong; Cream Team

    2017-04-01

    A typical magnetic-resonance scheme employs a static bias magnetic field and an orthogonal driving magnetic field oscillating at the Larmor frequency, at which the atomic polarization precesses around the static magnetic field. We demonstrate in a potassium vapor cell the variations of the resonance condition and the spin precession dynamics resulting from the parametric modulation of the bias field, which are in well agreement with theoretical predictions from the Bloch equation. We show that, the driving magnetic field with the frequency detuned by different harmonics of the parametric modulation frequency can lead to resonance as well. Also, a series of frequency sidebands centered at the driving frequency and spaced by the parametric modulation frequency can be observed in the precession of the atomic polarization. These effects could be used in different atomic magnetometry applications. This work is supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003) and the National Natural Science Foundation of China (Grant Nos. 61531003 and 61571018).

  15. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing.

    PubMed

    Chen, Hau-Yun; Albert, Karunya; Wen, Cheng-Che; Hsieh, Pei-Ying; Chen, Sih-Yu; Huang, Nei-Chung; Lo, Shen-Chuan; Chen, Jen-Kun; Hsu, Hsin-Yun

    2017-04-01

    Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNC m -miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  17. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    PubMed

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  18. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  19. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  20. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  1. A New Micro-holder Device for Local Drug Delivery during In Vivo Whole-cell Recordings.

    PubMed

    Sáez, María; Ketzef, Maya; Alegre-Cortés, Javier; Reig, Ramón; Silberberg, Gilad

    2018-06-15

    Focal administration of pharmacological agents during in vivo recordings is a useful technique to study the functional properties of neural microcircuits. However, the lack of visual control makes this task difficult and inaccurate, especially when targeting small and deep regions where spillover to neighboring regions is likely to occur. An additional problem with recording stability arises when combining focal drug administration with in vivo intracellular recordings, which are highly sensitive to mechanical vibrations. To address these technical issues, we designed a micro-holder that enables accurate local application of pharmacological agents during in vivo whole-cell recordings. The holder couples the recording and drug delivery pipettes with adjustable distance between the respective tips adapted to the experimental needs. To test the efficacy of the micro-holder we first performed whole-cell recordings in mouse primary somatosensory cortex (S1) with simultaneous extracellular recordings in S1 and motor cortex (M1), before and after local application of bicuculline methiodide (BMI 200 µM). The blockade of synaptic inhibition resulted in increased amplitudes and rising slopes of "Up states", and shortening of their duration. We then checked the usability of the micro-holder in a deeper brain structure, the striatum. We applied tetrodotoxin (TTX 10 µM) during whole-cell recordings in the striatum, while simultaneously obtaining extracellular recordings in S1 and M1. The focal application of TTX in the striatum blocked Up states in the recorded striatal neurons, without affecting the cortical activity. We also describe two different approaches for precisely releasing the drugs without unwanted leakage along the pipette approach trajectory. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  3. Selective cytotoxic effect of non-thermal micro-DBD plasma

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk

    2016-10-01

    Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.

  4. A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.

    2016-11-01

    In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.

  5. In situ observation of single cell response to acoustic droplet vaporization: Membrane deformation, permeabilization, and blebbing.

    PubMed

    Qin, Dui; Zhang, Lei; Chang, Nan; Ni, Pengying; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi; Feng, Yi

    2018-02-06

    In this study, the bioeffects of acoustic droplet vaporization (ADV) on adjacent cells were investigated by evaluating the real-time cell response at the single-cell level in situ, using a combined ultrasound-exposure and optical imaging system. Two imaging modalities, high-speed and fluorescence imaging, were used to observe ADV bubble dynamics and to evaluate the impact on cell membrane permeabilization (i.e., sonoporation) using propidium iodide (PI) uptake as an indicator. The results indicated that ADV mainly led to irreversible rather than reversible sonoporation. Further, the rate of irreversible sonoporation significantly increased with increasing nanodroplet concentration, ultrasound amplitude, and pulse duration. The results suggested that sonoporation is correlated to the rapid formation, expansion, and contraction of ADV bubbles near cells, and strongly depends on ADV bubble size and bubble-to-cell distance when subjected to short ultrasound pulses (1 μs). Moreover, the displacement of ADV bubbles was larger when using a long ultrasound pulse (20 μs), resulting in considerable cell membrane deformation and a more irreversible sonoporation rate. During sonoporation, cell membrane blebbing as a recovery manoeuvre was also investigated, indicating the essential role of Ca 2+ influx in the membrane blebbing response. This study has helped us gain further insights into the dynamic behavior of ADV bubbles near cells, ADV bubble-cell interactions, and real-time cell response, which are invaluable in the development of optimal approaches for ADV-associated theranostic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Experiences of marijuana-vaporizer users.

    PubMed

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  8. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  9. Mechanisms of the micro-crack generation in an ultra-thin AlN/GaN superlattice structure grown on Si(110) substrates by metalorganic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X. Q., E-mail: xq-shen@aist.go.jp; Takahashi, T.; Ide, T.

    2015-09-28

    We investigate the generation mechanisms of micro-cracks (MCs) in an ultra-thin AlN/GaN superlattice (SL) structure grown on Si(110) substrates by metalorganic chemical vapor deposition. The SL is intended to be used as an interlayer (IL) for relaxing tensile stress and obtaining high-quality crack-free GaN grown on Si substrates. It is found that the MCs can be generated by two different mechanisms, where large mismatches of the lattice constant (LC) and the coefficient of thermal expansion (CTE) play key roles in the issue. Different MC configurations (low-density and high-density MCs) are observed, which are considered to be formed during the differentmore » growth stages (SL growth and cooling down processes) due to the LC and the CTE effects. In-situ and ex-situ experimental results support the mechanism interpretations of the MCs generation. The mechanism understanding makes it possible to optimize the SL IL structure for growing high-quality crack-free GaN films on Si substrates for optical and electronic device applications.« less

  10. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  11. Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul

    2017-05-01

    MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.

  12. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    PubMed Central

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  13. Stacked vapor fed amtec modules

    DOEpatents

    Sievers, Robert K.

    1989-01-01

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  14. Carbon dioxide and water vapor high temperature electrolysis

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  15. The competition between liquid and vapor transport in transpiring leaves.

    PubMed

    Rockwell, Fulton Ewing; Holbrook, N Michele; Stroock, Abraham Duncan

    2014-04-01

    In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem.

  16. A Novel Technique for Micro-patterning Proteins and Cells on Polyacrylamide Gels

    PubMed Central

    Tang, Xin; Ali, M. Yakut; Saif, M. Taher A.

    2012-01-01

    Spatial patterning of proteins (extracellular matrix, ECM) for living cells on polyacrylamide (PA) hydrogels has been technically challenging due to the compliant nature of the hydrogels and their aqueous environment. Traditional micro-fabrication process is not applicable. Here we report a simple, novel and general method to pattern a variety of commonly used cell adhesion molecules, i.e. Fibronectin (FN), Laminin (LN) and Collagen I (CN), etc. on PA gels. The pattern is first printed on a hydrophilic glass using polydimethylsiloxane (PDMS) stamp and micro-contact printing (μCP). Pre-polymerization solution is applied on the patterned glass and is then sandwiched by a functionalized glass slide, which covalently binds to the gel. The hydrophilic glass slide is then peeled off from the gel when the protein patterns detach from the glass, but remain intact with the gel. The pattern is thus transferred to the gel. The mechanism of pattern transfer is studied in light of interfacial mechanics. It is found that hydrophilic glass offers strong enough adhesion with ECM proteins such that a pattern can be printed, but weak enough adhesion such that they can be completely peeled off by the polymerized gel. This balance is essential for successful pattern transfer. As a demonstration, lines of FN, LN and CN with widths varying from 5–400 μm are patterned on PA gels. Normal fibroblasts (MKF) are cultured on the gel surfaces. The cell attachment and proliferation are confined within these patterns. The method avoids the use of any toxic chemistry often used to pattern different proteins on gel surfaces. PMID:23002394

  17. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  18. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  19. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.

    PubMed

    Phinney, Donald G; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M; Stolz, Donna B; Watkins, Simon C; Di, Y Peter; Leikauf, George D; Kolls, Jay; Riches, David W H; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V; McKenna, David H; Ortiz, Luis A

    2015-10-07

    Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.

  20. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis

    NASA Astrophysics Data System (ADS)

    Scholten, K.; Collin, W. R.; Fan, X.; Zellers, E. T.

    2015-05-01

    A vapor sensor comprising a nanoparticle-coated microfabricated optofluidic ring resonator (μOFRR) is introduced. A multilayer film of polyether functionalized, thiolate-monolayer-protected gold nanoparticles (MPN) was solvent cast on the inner wall of the hollow cylindrical SiOx μOFRR resonator structure, and whispering gallery mode (WGM) resonances were generated with a 1550 nm tunable laser via an optical fiber taper. Reversible shifts in the WGM resonant wavelength upon vapor exposure were detected with a photodetector. The μOFRR chip was connected to a pair of upstream etched-Si chips containing PDMS-coated separation μcolumns and calibration curves were generated from the peak-area responses to five volatile organic compounds (VOCs). Calibration curves were linear, and the sensitivities reflected the influence of analyte volatility and analyte-MPN functional group affinity. Sorption-induced changes in film thickness apparently dominate over changes in the refractive index of the film as the determinant of responses for all VOCs. Peaks from the MPN-coated μOFRR were just 20-50% wider than those from a flame ionization detector for similar μcolumn separation conditions, reflecting the rapid response of the sensor for VOCs. The five VOCs were baseline separated in <1.67 min, with detection limits as low as 38 ng.