Science.gov

Sample records for micro vapor cells

  1. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting.

    PubMed

    de Wijs, Koen; Liu, Chengxun; Dusa, Alexandra; Vercruysse, Dries; Majeed, Bivragh; Tezcan, Deniz Sabuncuoglu; Blaszkiewicz, Kamil; Loo, Josine; Lagae, Liesbet

    2017-03-29

    Safe, high-rate and cost-effective cell sorting is important for clinical cell isolation. However, commercial fluorescence-activated cell sorters (FACS) are expensive and prone to aerosol-induced sample contamination. Here we report a microfluidic cell sorter allowing high rate and fully enclosed cell sorting. The sorter chip consists of an array of micro heating hotspots. Pulsed resistive heating in the hotspots produces numerous micro vapor bubbles with short duration, which gives rise to a rapid jet flow for cell sorting. With this method, we demonstrated high sorting rate comparable to commercial FACS and the significant enrichment of rare cancer cells. This vapor bubble based cell sorting method can be a powerful tool for contamination-free and affordable clinical cell sorting such as circulating tumor cell isolation and cancer cell therapy.

  2. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  3. Cell for electrolysis of water vapor

    NASA Technical Reports Server (NTRS)

    Celino, V. A.; Roebelen, G.

    1972-01-01

    Electrolytic cells regenerate oxygen from the water vapor in the air of closed-loop life-support system and remove water vapor from air circulated through them. Water is converted into oxygen and hydrogen; the oxygen is returned to the air, the hydrogen is vented or used elsewhere.

  4. Microfabrication of integrated atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Conkey, Donald B.; Brenning, Rebecca L.; Hawkins, Aaron R.; Yang, Wenge; Wu, Bin; Schmidt, Holger

    2007-02-01

    The integration of hollow anti-resonant reflecting optical waveguides (ARROWs) with vapor cells on silicon chips provides a compact platform for a number of optical applications, including the study of quantum coherence effects such as electromagnetically induced transparency and single-photon nonlinearities, as well as frequency stabilization standards. The use of hollow waveguides allows for light propagation in low index (vapor) media with compact mode areas. ARROWs make particularly attractive waveguides for this purpose because they can be interfaced with solid core waveguides, microfabricated on a planar substrate, and are effectively single mode. ARROW fabrication utilizes an acidremoved sacrificial core surrounded by alternating plasma deposited dielectric layers, which act as Fabry-Perot reflectors. A demonstration platform consisting of solid and hollow core waveguides integrated with rubidium vapor cells has been constructed. Rubidium was used because it is of particular interest for studying quantum coherence effects. Liquefied rubidium was transferred from a bulk supply into an on-chip vapor cell in an anaerobic atmosphere glovebox. Optical absorption measurements confirmed the presence of rubidium vapor within the hollow waveguide platform. Coherence dephasing in the small dimensions of the ARROW (quantum coherence effect) can be addressed by adding a buffer gas and passivation coatings to the ARROW walls.

  5. Atomic physics with vapor-cell clocks

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart Hunter

    The most widely used atomic frequency standards (or clocks) are based on the microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary frequency standards mainly because of the light and pressure shifts, which alter the resonant frequencies of the alkali-metal atoms. This dissertation presents studies of atomic physics important to vapor-cell clocks and, in particular, their accuracy. First, we report a simple method to suppress the light shift in optical pumping systems. This method uses only frequency modulation of a radio frequency or microwave source, which excites an atomic resonance, to simultaneously lock the source frequency to the atomic resonance and lock the pumping light frequency to suppress the light shift. This technique can be applied to many optical pumping systems that experience light shifts. It is especially useful for atomic clocks because it improves the long-term performance, reduces the influence of a pumping laser, and requires less equipment than previous methods. Next, we present three studies of the pressure shift, starting with an estimation of the hyperfine-shift potential that is responsible for most of the pressure shift. We then show that the microwave resonant frequencies of ground-state Rb and Cs atoms in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure, presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe data show striking discrepancies with the previous theory for nonlinear shifts, most of which is eliminated by accounting for the spin-rotation interaction in addition to the hyperfine-shift interaction in the molecules. To the limit of our experimental accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We then consider the prospects for suppressing the pressure shift with buffer-gas mixtures and feedback. Finally, we report an

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  7. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  8. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  9. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy.

    PubMed

    Hu, Juejun

    2010-10-11

    In this paper, I systematically investigated Micro-Cavity PhotoThermal Spectroscopy (MC-PTS), a novel technique for ultra-sensitive detection of chemical molecular species. I first derive the photothermal enhancement factor and noise characteristics of the technique using a generic theoretical model, followed by numerical analysis of a design example using chalcogenide glass micro-disk cavities. Guidelines for sensor material selection and device design are formulated based on the theoretical insight. The numerical analysis shows that this technique features a record photothermal enhancement factor of 10(4) with respect to conventional cavity-enhanced (multi-pass) infrared absorption spectroscopy, and is capable of detecting non-preconcentrated chemical vapor molecules down to the ppt level with a moderate cavity quality factor of 10(5) and a pump laser power of 0.1 W. Such performance qualifies this technique as one of the most sensitive methods for chemical vapor spectroscopic analysis.

  10. Modeling and simulation of high-current vacuum arc considering the micro process of anode vapor

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Zhang, Xiao; Jia, Shenli

    2017-03-01

    In vacuum arc (VA), when the arc current is very high (usually in the tens of kilo-ampere), the heat flux density injecting into an anode is larger and leads to a higher anode temperature with the increasing of current. The strong anode evaporation drives the evaporated atoms from the anode surface to the arc column. Simultaneously, the anode evaporated atoms impact with the cathode plasma, and then the micro processes as ionization and recombination between anode atoms and plasma will happen. In this paper, the two fluid three-dimensional (3D) magneto-hydro-dynamic (MHD) model of VA considering ionization and recombination processes is built, and the influence of the anode vapor and its micro processes on the arc column is obtained by solving the two fluid MHD equations, which control anode neutral atoms and cathode plasma, respectively. In the model, the ionization of neutral atoms and the recombination of ions are both considered, the mass, momentum and energy exchange caused by the ionization and recombination processes are also considered. Moreover, the influence of ionization and recombination processes on the electromagnetic process of VA is also considered in the model. By numerical simulation, the anode vapor distribution, cathode plasma distribution and VA distribution, such as density, temperature, pressure, etc, are all obtained, and the parameters related to ionization and recombination processes are also obtained. When the anode temperature is high enough, the anode neutral vapor will enter into the arc column, and strong ionization happens at the interface between anode vapor and cathode plasma. Then, the anode vapor will be quickly ionized (usually smaller than a few microseconds) and generate a lot of ions (usually higher than 1021 m‑3 orders of magnitude). The anode neutral vapor has the same temperature with the anode surface, which is much lower than the temperature of the arc column, so the anode neutral vapor obviously has a cooling effect

  11. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    PubMed

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  12. Qualitative Evaluation of a Liquid-Vapor Separator Concept in Micro-Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Elston, Levi J.; Yerkes, Kirk L.; Thomas, Scott K.; McQuillen, John

    2009-03-01

    An innovative liquid-vapor separator design has been incorporated into a spray cooling experiment, which was flown recently on the NASA C-9 reduced gravity aircraft. This design is the latest in a series of designs that have been flown in microgravity and elevated gravity in relation to an experimental investigation into spray cooling performance with regard to possible application to high-performance aircraft undergoing combat maneuvers. Initially, significant problems occurred during flight testing due to the inability of the reservoir to separate the liquid coolant from the vapor under microgravity conditions, which resulted in a loss of coolant to the simulated electronic device that was being spray cooled. Improvements in the design of the liquid-vapor separator are described in this paper, and experimental data showing the performance of several generations of liquid-vapor separators are presented. The final separator design went through more rigorous evaluation to compare performance at multiple fill levels, each with a higher percentage of vapor space within the reservoir. It was found that, using the final reservoir design, stable flow operation was achieved in micro-gravity for mass flowrates of m = 14, 17.5, and 21 [g/s].

  13. Vapor Corrosion Cell and Method of Using Same

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    2001-01-01

    The present invention provides a vapor corrosion cell for a real-time and quantitative measurement of corrosion of conductive materials in atmospheres containing chemically reactive gases and water vapor. Two prototypes are provided. Also provided are various applications of this apparatus in industry.

  14. Characterization of bioeffects on endothelial cells under acoustic droplet vaporization

    PubMed Central

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bul, Joseph L.

    2015-01-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization (ADV), which result in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events leading to cell injury and cell death. An idealized monolayer of endothelial cells was exposed to ADV using a 3.5 MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional), and pulse lengths that varied from 4 to 16 input cycles. The generated bubble cloud was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application. PMID:26403698

  15. A self-regulating hydrogen generator for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Moghaddam, Saeed; Pengwang, Eakkachai; Masel, Richard I.; Shannon, Mark A.

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions.

  16. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  17. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    SciTech Connect

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage of 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.

  18. Study of poly (3-hexylthiophene) conducting polymer thin film micro-sensor for hydrazine vapor detection

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    This dissertation discussed the construction and investigation of a poly (3-hexylthiophene) conducting polymer based thin film micro-sensor for a real-time detection of hydrazine vapor at ambient pressure. A type of low cost, small size, passive poly (3-hexylthiophene) thin film micro-sensor was designed and fabricated. The micro-sensor platform consisted of a rectangular shaped inert substrate and gold interdigited electrode pairs. A layer of poly (3-hexylthiophene) thin film was coated onto the sensor platform using a spin coating method, and nitrosonium hexafluorophosphate (NOPF6) was used to dope the poly (3-hexylthiophene) thin film to increase its electrical conductivity and form the finished sensor. The basic responses of the sensor to hydrazine vapor were experimentally investigated. The primary results showed that the sensor responded to hydrazine vapor in less than a few seconds; attained orders of magnitude change in normalized resistance during hydrazine exposure, and was not easily saturated. The interaction between the hydrazine gas molecules and doped poly (3-hexylthiophene) thin film was studied. The plausible mechanism was determined as: Charge carriers inside the doped poly (3-hexylthiophene) thin film were depleted during the oxidation-reduction chemical reaction between the hydrazine vapor and polymer film, resulting a reduction in the polymer film's electrical conductivity. Experiments were also conducted to find out the effects of hydrazine concentration, poly (3-hexylthiophene) thin film thickness, sensor storage time, environment temperature, and environment humidity on the sensor's performance. The response rate of the sensor under different sensing conditions was calculated and discussed. A diffusion-reaction model was applied to simulate the interaction between hydrazine molecules and doped poly (3-hexylthiophene) thin film. The profiles of hydrazine gas diffusion and positive charge carrier neutralization in the polymer film were

  19. Soft Micro-Channels for Cell Culturing and Migration Studies

    NASA Astrophysics Data System (ADS)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  20. Fabrication and characterization of an electrically contacted vapor cell.

    PubMed

    Daschner, R; Ritter, R; Kübler, H; Frühauf, N; Kurz, E; Löw, R; Pfau, T

    2012-06-15

    We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thin-film-based electric feedthroughs, which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

  1. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  2. Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware

    NASA Astrophysics Data System (ADS)

    Fukuta, Yamato; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2003-06-01

    We have developed a novel technique of sacrificial layer etching for micro electro mechanical systems (MEMS). Our technique uses vapor of hydrofluoric acid (HF) to etch sacrificial silicon oxide and to make freestanding silicon microstructures. The advantages of this technique are: (1) no subsequent water rinse is needed, (2) freestanding silicon microstructures can be successfully released without sticking to the substrate, (3) equipment for our vapor phase HF etching simply consists of Teflon beakers only. Conditions for the technique have been optimized by estimating etching rate with test patterns made of silicon-on-insulator (SOI) wafers and by observing water droplets condensation on the sample surface with thermally oxidized silicon chips. By this technique we have successfully obtained freestanding microstructures of SOI wafers. Microcantilevers of as long as 5000 μm (a 5-μm-wide, 10-μm-thick, and 5000-μm-long cantilever over a 0.6-μm-gap) have been successfully released without adhering to the base substrate or contacting the neighboring cantilevers. We have also fabricated and actuated electrostatic comb-drive actuators of 60 and 200 comb pairs to demonstrate high processing yield of our nonstick releasing technique.

  3. MicroRNA-mediated somatic cell reprogramming.

    PubMed

    Kuo, Chih-Hao; Ying, Shao-Yao

    2013-02-01

    Since the first report of induced pluripotent stem cells (iPSCs) using somatic cell nuclear transfer (SCNT), much focus has been placed on iPSCs due to their great therapeutic potential for diseases such as abnormal development, degenerative disorders, and even cancers. Subsequently, Takahashi and Yamanaka took a novel approach by using four defined transcription factors to generate iPSCs in mice and human fibroblast cells. Scientists have since been trying to refine or develop better approaches to reprogramming, either by using different combinations of transcription factors or delivery methods. However, recent reports showed that the microRNA expression pattern plays a crucial role in somatic cell reprogramming and ectopic introduction of embryonic stem cell-specific microRNAs revert cells back to an ESC-like state, although, the exact mechanism underlying this effect remains unclear. This review describes recent work that has focused on microRNA-mediated approaches to somatic cell reprogramming as well as some of the pros and cons to these approaches and a possible mechanism of action. Based on the pivotal role of microRNAs in embryogenesis and somatic cell reprogramming, studies in this area must continue in order to gain a better understanding of the role of microRNAs in stem cells regulation and activity.

  4. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect

    Klein, M.; Hohensee, M.; Walsworth, R. L.; Phillips, D. F.

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  5. Electromagnetically induced transparency in paraffin-coated vapor cells

    NASA Astrophysics Data System (ADS)

    Klein, M.; Hohensee, M.; Phillips, D. F.; Walsworth, R. L.

    2011-01-01

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend “bright” and “dark” time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  6. Thermal behavior of silicon-copper micro vapor chamber for high power LEDs

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Li, Zhi-xin; Zhou, Chuan-peng; Wang, Xiao-dong; You, Bo

    2016-03-01

    Micro vapor chamber (MVC) for light emitting diodes (LEDs) can be designed and fabricated to enhance the heat dissipation efficiency and improve the reliability. In this paper, we used photoresist SU-8 and electroforming copper (Cu) to fabricate three kinds of wick structures, which are star, radiation and parallel ones, and the substrate is silicon with thickness of 0.5 mm. Electroforming Cu on silicon to make micro wick structure was a critical step, the ampere-hour factor was used, and accordingly the electroforming time was predicted. The composition of electroforming solution and parameters of electroforming were optimized too. After charging and packaging, thermal behavior tests were carried out to study the heat dissipation performance of MVCs. When the input power was 8 W, the parallel wick structure reached the equivalent temperature of 69.0 °C in 226 s, while the others were higher than that. The experimental results prove that the wick structures have significant influence on the heat transfer capability of MVCs.

  7. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  8. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  9. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  10. Micro-/nanofluidics based cell electroporation

    PubMed Central

    Wang, Shengnian; Lee, L. James

    2013-01-01

    Non-viral gene delivery has been extensively explored as the replacement for viral systems. Among various non-viral approaches, electroporation has gained increasing attention because of its easy operation and no restrictions on probe or cell type. Several effective systems are now available on the market with reasonably good gene delivery performance. To facilitate broader biological and medical applications, micro-/nanofluidics based technologies were introduced in cell electroporation during the past two decades and their advances are summarized in this perspective. Compared to the commercially available bulk electroporation systems, they offer several advantages, namely, (1) sufficiently high pulse strength generated by a very low potential difference, (2) conveniently concentrating, trapping, and regulating the position and concentration of cells and probes, (3) real-time monitoring the intracellular trafficking at single cell level, and (4) flexibility on cells to be transfected (from single cell to large scale cell population). Some of the micro-devices focus on cell lysis or fusion as well as the analysis of cellular properties or intracellular contents, while others are designed for gene transfection. The uptake of small molecules (e.g., dyes), DNA plasmids, interfering RNAs, and nanoparticles has been broadly examined on different types of mammalian cells, yeast, and bacteria. A great deal of progress has been made with a variety of new micro-/nanofluidic designs to address challenges such as electrochemical reactions including water electrolysis, gas bubble formation, waste of expensive reagents, poor cell viability, low transfection efficacy, higher throughput, and control of transfection dosage and uniformity. Future research needs required to advance micro-/nanofluidics based cell electroporation for broad life science and medical applications are discussed. PMID:23405056

  11. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  12. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks

    NASA Astrophysics Data System (ADS)

    Straessle, R.; Pellaton, M.; Affolderbach, C.; Pétremand, Y.; Briand, D.; Mileti, G.; de Rooij, N. F.

    2013-02-01

    A low-temperature sealing technique for micro-fabricated alkali vapor cells for chip-scale atomic clock applications is developed and evaluated. A thin-film indium bonding technique was used for sealing the cells at temperatures of ≤140 °C. These sealing temperatures are much lower than those reported for other approaches, and make the technique highly interesting for future micro-fabricated cells, using anti-relaxation wall coatings. Optical and microwave spectroscopy performed on first indium-bonded cells without wall coatings are used to evaluate the cleanliness of the process as well as a potential leak rate of the cells. Both measurements confirm a stable pressure inside the cell and therefore an excellent hermeticity of the indium bonding. The double-resonance measurements performed over several months show an upper limit for the leak rate of 1.5 × 10-13 mbar.l/s. This is in agreement with additional leak-rate measurements using a membrane deflection method on indium-bonded test structures.

  13. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  14. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  15. Enhancing vapor generation at a liquid-solid interface using micro/nanoscale surface structures fabricated by femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Anderson, Troy P.; Wilson, Chris; Zuhlke, Craig A.; Kruse, Corey; Gogos, George; Ndao, Sidy; Alexander, Dennis

    2015-03-01

    Femtosecond Laser Surface Processing (FLSP) is a versatile technique for the fabrication of a wide variety of micro/nanostructured surfaces with tailored physical and chemical properties. Through control over processing conditions such as laser fluence, incident pulse count, polarization, and incident angle, the size and density of both micrometer and nanometer-scale surface features can be tailored. Furthermore, the composition and pressure of the environment both during and after laser processing have a substantial impact on the final surface chemistry of the target material. FLSP is therefore a powerful tool for optimizing interfacial phenomena such as wetting, wicking, and phasetransitions associated with a vapor/liquid/solid interface. In the present study, we utilize a series of multiscale FLSPgenerated surfaces to improve the efficiency of vapor generation on a structured surface. Specifically, we demonstrate that FLSP of stainless steel 316 electrode surfaces in an alkaline electrolysis cell results in increased efficiency of the water-splitting reaction used to generate hydrogen. The electrodes are fabricated to be superhydrophilic (the contact angle of a water droplet on the surface is less than 5 degrees). The overpotential of the hydrogen evolution reaction (HER) is measured using a 3-electrode configuration with a structured electrode as the working electrode. The enhancement is attributed to several factors including increased surface area, increased wettability, and the impact of micro/nanostructures on the bubble formation and release. Special emphasis is placed on identifying and isolating the relative impacts of the various contributions.

  16. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  17. High-performing vapor-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Godone, A.; Levi, F.; Calosso, C. E.; Micalizio, S.

    2015-03-01

    Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1×10-13 at 1s (short term) and in the range of 10-15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.

  18. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  19. Sub-picotesla Scalar Atomic Magnetometer with a Microfabricated Vapor Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Mhaskar, Rahul

    2016-05-01

    We explore the sensitivity limits of scalar atomic magnetometry with a micro-fabricated Cs vapor cell. The millimeter-scale cell is fabricated using silicon Micro-Electro-Mechanical Systems (MEMS) technology. The atomic spin procession is driven by an amplitude-modulated circularly polarized pump laser resonant with the D1 transition in Cs atoms. The precession is detected by an off-resonant linearly polarized probe laser using a balanced polarimeter setup. The probe light is spatially split into two beams to perform a gradiometer measurement. In a magnetic field of magnitude within the range of the earth magnetic field, we measure a sensitivity of less than 150 fT/ √Hz in the gradiometer mode, which shows that the magnetometer by itself can achieve sub-100 fT/ √Hz sensitivitiy. In addition to its high sensitivity, the magnetometer has a bandwidth of nearly 1 kHz due to the broad magnetic resonance inside the small cell. Our experiment suggests the feasibility of a portable, low-power and high-performance magnetometer, which can be operated in the earth's magnetic field. Such a device will greatly expand the range of applications for atomic magnetometers, such as the detection of nuclear magnetic resonance in an unshielded environment.

  20. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  1. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  2. Influence of the Joule-Thomson effect on the flow of a vapor through a micro-porous membrane

    NASA Astrophysics Data System (ADS)

    Loimer, Thomas

    2005-11-01

    The flow of a fluid near saturation through a micro-porous membrane is considered. Upstream of the membrane, the fluid is in a state of saturated vapor. Downstreams, there is unsaturated vapor which is, due to the Joule-Thomson effect, cooler than at the upstream side. The flow is described taking into account the Joule-Thomson effect and the wetting properties between the fluid and the membrane material, i.e., the capillary pressure across a curved meniscus and capillary condensation. Different types of flow occur, depending on the permeability of the membrane, on the wetting properties between the fluid and the membrane and on the pressure difference. The fluid condenses either fully or partially at the front surface of the membrane, or a liquid film forms in front of the membrane. Liquid or a two-phase mixture flows through a part or all of the membrane and evaporates either within the membrane or at the downstream front of the membrane, or the fluid evaporates at the upstream front of the membrane and vapor flows through the entire membrane. The different types of flow are discussed and the conditions under which they occur are presented.

  3. microRNAs: key triggers of neuronal cell fate.

    PubMed

    Meza-Sosa, Karla F; Pedraza-Alva, Gustavo; Pérez-Martínez, Leonor

    2014-01-01

    Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3' untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed.

  4. microRNAs: key triggers of neuronal cell fate

    PubMed Central

    Meza-Sosa, Karla F.; Pedraza-Alva, Gustavo; Pérez-Martínez, Leonor

    2014-01-01

    Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3′ untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed. PMID:25009466

  5. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  6. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  7. Study of Rb-vapor coated cells — Atomic diffusion and cell curing process

    NASA Astrophysics Data System (ADS)

    Atutov, S. N.; Benimetskiy, F. A.; Plekhanov, A. I.; Sorokin, V. A.

    2016-02-01

    We present the results of a study on an optical-resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating using the geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. The anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  8. Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Peng, Xiang; Pustelny, Szymon; Wickenbrock, Arne; Guo, Hong; Budker, Dmitry

    2017-02-01

    Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

  9. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    DTIC Science & Technology

    2014-07-01

    and HNS (20), caffeine (19, 21 both values used in linear regression), naphthalene (22), benzoic acid (23), adipic acid (24), anthraquinone (25...Naphthalene Mettler certified thermometric standard Caffeine Arthur R Thomas Co thermometric standard Acetanilide Arthur R Thomas Co thermometric...materials (energetic and non-energetic). The two data points in red are both for caffeine ; values for vapor pressures measured by two different groups differ

  10. Vapor bubble generation around gold nano-particles and its application to damaging of cells.

    PubMed

    Kitz, M; Preisser, S; Wetterwald, A; Jaeger, M; Thalmann, G N; Frenz, M

    2011-01-11

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage.

  11. microRNAs as mediators and communicators between cancer cells and the tumor micro-environment

    PubMed Central

    Kohlhapp, Frederick J.; Mitra, Anirban K.; Lengyel, Ernst; Peter, Marcus E.

    2015-01-01

    Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor micro-environment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering expression of miRNAs, small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types, or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its micro-environment is necessary if we are to understand tumor progression and devise new treatments. PMID:25867073

  12. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (-5.2 ± 0.6) × 10-11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10-22 m2 s-1 Pa-1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  13. A hybrid sequential deposition fabrication technique for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Stanley, Kevin G.; Czyzewska, Eva K.; Vanderhoek, Tom P. K.; Fan, Lilian L. Y.; Abel, Keith A.; Wu, Q. M. Jonathan; Parameswaran, M. Ash

    2005-10-01

    Micro fuel cell systems have elicited significant interest due to their promise for instantly rechargeable, longer duration and portable power. Most micro fuel cell systems are either built as miniaturized plate-and-frame or silicon-based microelectromechanical systems (MEMS). Plate-and-frame systems are difficult to fabricate smaller than 20 cm3. Existing micro fuel cell designs cannot meet the cost, scale and power requirements of some portable power markets. Traditional MEMS scaling advantages do not apply to fuel cells because the minimum area for the fuel cell is fixed by the catalyst area required for a given power output, and minimum volume set by mass transport limitations. We have developed a new hybrid technique that borrows from both micro and macro machining techniques to create fuel cells in the 1-20 cm3 range, suitable for cell phones, PDAs and smaller devices.

  14. Towards optical cell transfection inside a micro flow cell

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-03-01

    For optical transfection, cells are shortly subjected to intense, focused laser radiation which leads to a temporary opening in the cell membrane. Although the method is very efficient and ensures high cell viability, the targeting of single cells with laser pulses is a tedious and slow approach. We present first measurements aiming at an experimental setup which is suitable for high throughput and automated optical cell transfection. In our setup, cells flow through a micro flow cell where they are spatially confined. The laser radiation is focused into the cell in a way that an elongated focal region is realized. This makes the time consuming aiming of the laser beam at individual cells unnecessary and opens the possibility to develop a completely automated system. The elongated laser focal region is realized by a quasi-Bessel beam which is generated by an axicon lens setup and continuously scanned from side to side of the cell. We present test measurements of the newly employed setup and discuss its suitability to be fully integrated into a flow cell sequencing system.

  15. Shadow masked organometallic vapor phase epitaxy for advanced micro-optical structures

    NASA Astrophysics Data System (ADS)

    Peake, Gregory Merwin

    2000-12-01

    This thesis presents novel techniques and applications of nonplanar chemical vapor deposition (CVD) for optoelectronic materials and devices. Specifically, nonplanar organometallic vapor phase epitaxy (OMVPE) employing a shadow mask has been developed for the fabrication of integrated optoelectronic structures. Shadow masked OMVPE (SM-OMVPE) is currently the only technique known to produce thick, nonplanar layers of single crystal material without macroscopic faceting. By the use of SM-OMVPE, various microlenses, micromirrors and novel devices have been designed fabricated and tested. Shadow masked microlenses with record short focal lengths have been produced. High quality microlens arrays with accurate control of lens diameter, sagitta, focal length, astigmatism and position have been designed, fabricated and tested. The author has shown that precise three-dimensional control during crystal growth can be employed to construct useful optoelectronic structures in a reproducible manner. This work also presents novel techniques for the fabrication of shadow masks. A high aluminum- concentration spacer layer and chemical recipes for the removal of epitaxial shadow masks are reported. In addition, the first reusable shadow mask constructed by reactive ion etching has been utilized for the growth of shadow masked structures. Direct fusion wafer bonding of silicon shadow masks was first developed by the author and has proven to be a robust, clean and reliable technique for mask placement. The application of shadow masked growth to vertical cavity semiconductor lasers (VCSELs) was initiated in this work. Microlenses were designed for top-emitting VCSELs to provide focusing of the output beam and these designs are currently being fabricated at Sandia National Laboratories. Furthermore, by introducing curvature to the distributed Bragg reflector (DBR) mirrors, a high power single mode VCSEL has been designed. The author has grown the first concentrically

  16. Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops.

    PubMed

    Brandt, Ronny; Xie, Yakun; Musielak, Thomas; Graeff, Moritz; Stierhof, York-Dieter; Huang, Hai; Liu, Chun-Ming; Wenkel, Stephan

    2013-01-01

    Stem cells in the shoot apex of plants produce cells required for the formation of new leaves. Adult leaves are composed of multiple tissue layers arranged along the dorso-ventral (adaxial/abaxial) axis. Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play an important role in the set-up of leaf polarity in plants. Loss of HD-ZIPIII function results in strongly misshapen leaves and in severe cases fosters the consumption of the apical stem cells, thus causing a growth arrest in mutant plants. HD-ZIPIII mRNA is under tight control by microRNAs 165/166. In addition to the microRNA-action a second layer of regulation is established by LITTLE ZIPPER (ZPR)-type microProteins, which can interact with HD-ZIPIII proteins, forming attenuated protein complexes. Here we show that REVOLUTA (REV, a member of the HD-ZIPIII family) directly regulates the expression of ARGONAUTE10 (AGO10), ZPR1 and ZPR3. Because AGO10 was shown to dampen microRNA165/6 function, REV establishes a positive feedback loop on its own activity. Since ZPR-type microProteins are known to reduce HD-ZIPIII protein activity, REV concomitantly establishes a negative feedback loop. We propose that the interconnection of these microRNA/microProtein feedback loops regulates polarity set-up and stem cell activity in plants.

  17. CONCISE REVIEW Micro RNA Expression in Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Multipotent mesenchymal stromal cells (MSC) isolated from various adult tissue sources have the capacity to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded non-coding RNAs known as “microRNAs” also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review we describe the importance of microRNAs in stem cells focusing on our current understanding of microRNAs in MSC and their derivatives. PMID:17991914

  18. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

    NASA Astrophysics Data System (ADS)

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-01

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

  19. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.

    PubMed

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-05

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

  20. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

    PubMed Central

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-01

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635

  1. Vapor-deposited platinum as a fuel-cell catalyst

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1974-01-01

    Electrodes are prepared by vacuum deposition of platinum on nickel substrate with conventional vapor-deposition apparatus. Amount of platinum loaded on substrate can be veried by changing exposure time during deposition. These electrodes are significantly more effective than conventional oxygen electrodes.

  2. A Methanol Steam Reforming Micro Reactor for Proton Exchange Membrane Micro Fuel Cell System

    SciTech Connect

    Park, H G; Piggott, W T; Chung, J; Morse, J D; Havstad, M; Grigoropoulos, C P; Greif, R; Benett, W; Sopchak, D; Upadhye, R

    2003-07-28

    The heat, mass and momentum transfer from a fuel reforming packed bed to a surrounding silicon wafer has been simulated. Modeling showed quantitatively reasonable agreement with experimental data for fuel conversion efficiency, hydrogen production rate, outlet methanol mole fraction and outlet steam mole fraction. The variation in fuel conversion efficiency with the micro reformer thermal isolation can be used to optimize fuel-processing conditions for micro PEM fuel cells.

  3. Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.; Karaulanov, Todor; Balabas, Mikhail; Budker, Dmitry

    2013-02-01

    An alkene-based antirelaxation coating for alkali-metal vapor cells exhibiting Zeeman relaxation times up to 77 s was recently identified by Balabas The long relaxation times, two orders of magnitude longer than in paraffin- (alkane-) coated cells, motivate revisiting the question of what the mechanism is underlying wall-collision-induced relaxation and renew interest in applications of alkali-metal vapor cells to secondary frequency standards. We measure the width and frequency shift of the ground-state hyperfine mF=0→mF'=0 transition (clock resonance) in vapor cells with 85Rb and 87Rb atoms, with an alkene antirelaxation coating. We find that the frequency shift is slightly larger than for paraffin-coated cells and that the Zeeman linewidth scales linearly with the hyperfine frequency shift.

  4. Sickle cell microRNAs inhibit the malaria parasite.

    PubMed

    Duraisingh, Manoj T; Lodish, Harvey F

    2012-08-16

    Sickle cell hemoglobin conveys resistance to malaria. In this issue of Cell Host & Microbe, LaMonte et al. (2012) demonstrate a surprising mechanism for this innate immunity. A microRNA enriched in sickle red blood cells is translocated into the parasite, incorporated covalently into P. falciparum mRNAs and inhibits parasite growth.

  5. Progress toward cascade cells made by OM-VPE. [organometallic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Borden, P. G.; Larue, R. A.; Ludowise, M. J.

    1982-01-01

    Organometallic Vapor Phase Epitaxy (COM-VPE) was used to make a sophisticated monolithic cascade cell, with a peak AMO efficiency of 16.6%, not corrected for 14% grid coverage. The cell has 9 epitaxial layers. The top cell is 1.35 microns thick with a 0.1 micron thich emitter. Both cells are heteroface n-p structures. The cascade cell uses metal interconnects. Details of growth and processing are described.

  6. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NASA Astrophysics Data System (ADS)

    Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.

    2014-07-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.

  7. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  8. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    PubMed

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  9. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Zhang, Chunmei; Chen, Qiang

    2014-01-01

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail.

  10. Crystalline silicon solar cells with micro/nano texture

    NASA Astrophysics Data System (ADS)

    Dimitrov, Dimitre Z.; Du, Chen-Hsun

    2013-02-01

    Crystalline silicon solar cells with two-scale texture consisting of random upright pyramids and surface nanotextured layer directly onto the pyramids are prepared and reflectance properties and I-V characteristics measured. Random pyramids texture is produced by etching in an alkaline solution. On top of the pyramids texture, a nanotexture is developed using an electroless oxidation/etching process. Solar cells with two-scale surface texturization are prepared following the standard screen-printing technology sequence. The micro/nano surface is found to lower considerably the light reflectance of silicon. The short wavelengths spectral response (blue response) improvement is observed in micro/nano textured solar cells compared to standard upright pyramids textured cells. An efficiency of 17.5% is measured for the best micro/nano textured c-Si solar cell. The efficiency improvement is found to be due to the gain in both Jsc and Voc.

  11. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2013-12-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC.

  12. MicroRNA reins in embryonic and cancer stem cells.

    PubMed

    Mallick, Bibekanand; Chakrabarti, Jayprokas; Ghosh, Zhumur

    2011-01-01

    MicroRNAs represents a new layer of gene regulation in stem cells by controlling the molecular mechanisms involved in modulating stem cell fate and behavior. Such a role of microRNA is seen in embryonic stem cell as well, maintaining a delicate balance between survival, proliferation, and self-renewal signals. Further, dysregulation of stem cell self-renewal is a likely requirement for the initiation and formation of cancer stem cells that probably pose resistance to current cancer treatments. In fact, the precise mechanism that regulates embryonic as well as cancer stem cell self-renewal and pluripotency remains largely unknown. Understanding the miRNA related stem cell biology and pathways offers great promise for improving stem cell mediated regenerative therapy as well as cancer therapies. Here we summarize some of the emerging evidences demonstrating the role of these molecular switches in embryonic and cancer stem cells.

  13. Integrated micro-power source based on a micro-silicon fuel cell and a micro electromechanical system hydrogen generator

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Lin, K. Y.; Morgan, R. D.; Swaminathan, Vikhram V.; Kim, H. S.; Gurau, B.; Kim, D.; Bae, B.; Masel, R. I.; Shannon, M. A.

    Micro-power sources that are comparable to or smaller than the size of the micro-devices needing power are needed for many applications. This paper introduces an integrated millimeter scale power source based on a micro-silicon fuel cell and a MEMS hydrogen generator, with passive control. The integrated devices are fabricated from silicon wafers using conventional MEMS fabrication processes. In this design, the hydrolysis reaction of calcium hydride and water is used to generate hydrogen, and the hydrogen generation rate is controlled by a microfluidic self-regulating mechanism, which can control the hydrolysis reaction based on the load. Design, fabrication, and testing results of a prototype system are described. One of the devices can produce 90 μW for 6 h with a maximum power of 0.17 mW, and another one can produce 30 μW for 26 h with a total energy density of 100 Wh L -1.

  14. Laser additive manufacturing of stainless steel micro fuel cells

    NASA Astrophysics Data System (ADS)

    Scotti, Gianmario; Matilainen, Ville; Kanninen, Petri; Piili, Heidi; Salminen, Antti; Kallio, Tanja; Franssila, Sami

    2014-12-01

    This paper introduces laser additive manufacturing as a new method for the fabrication of micro fuel cells: The method opens up the capability of ultrafast prototyping, as the whole device can be produced at once, starting from a digital 3D model. In fact, many different devices can be produced at once, which is useful for the comparison of competing designs. The micro fuel cells are made of stainless steel, so they are very robust, thermally and chemically inert and long-lasting. This enables the researcher to perform a large number of experiments on the same cell without physical or chemical degradation. To demonstrate the validity of our method, we have produced three versions of a micro fuel cell with square pillar flowfield. All three have produced high current and power density, with maximum values of 1.2 A cm-2 for the current and 238 mW cm-2 for power.

  15. Spin-polarized lithium diffusion in a glass hot-vapor cell

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2016-08-01

    We report diffusion coefficients of optically pumped lithium atoms in helium buffer gas. The free-induction decay and the spin-echo signals of ground-state atoms were optically detected in an external magnetic field with the addition of field gradient. Lithium hot vapor was produced in a borosilicate-glass cell at a temperature between 290 and 360°C. The simple setup using the glass cells enabled lithium atomic spectroscopy in a similar way to other alkali-metal atoms and study of the collisional properties of lithium atoms in a hot-vapor phase.

  16. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2014-09-01

    AD_________________ Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We identified 14 microRNA candidates that induce neuroblastoma cell differentiation based on a high...content screening of neurite outgrowth — the morphological differentiation marker of neuroblastoma cells. We further validated that the identified

  17. Characterization of antirelaxation-coated vapor cells in high-temperature regime

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Pustelny, Szymon; Wickenbrock, Arne; Budker, Dmitry

    2016-05-01

    Antirelaxation-coated vapor cells are widely used in modern atomic physics experiments due to the coating's ability to maintain spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures of up to 90° C. The longitudinal spin relaxation time (τrel) is measured with a modified version of ``relaxation in the dark'' technique and the vapor density (n) is obtained by fitting atomic absorption spectrum with linear absorption function. The spin-projection-noise-limited (or atomic shot noise limited) sensitivity for atomic magnetometers is δBSNL 1 /√{ nτrel T } , where T is measurement time. Therefore, by showing the product of the longitudinal spin relaxation time and the vapor density increases with temperature, we demonstrate the potential of antirelaxation-coated cells in applications of future high-sensitivity magnetometers. W.L. would like to acknowledge support from the China Scholarship Council (CSC) enabling his research at the University of California at Berkeley.

  18. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  19. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  20. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    SciTech Connect

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  1. Coherent population trapping in small- and chip-scale 87Rb vapor cells with buffer gas

    NASA Astrophysics Data System (ADS)

    Ermak, S. V.; Semenov, V. V.; Petrenko, M. V.; Pyatyshev, E. N.

    2016-03-01

    The characteristics of coherent population trapping (CPT) signal were investigated in small-size glass vapor cells containing 87Rb and Ne buffer gas with narrow line-width laser pumping on D2 line. The parameters of CPT signals were measured using small-size vapor cells with Ne buffer gas pressure in the range of 200-400 Torr, cell temperature in the range of 65-120 ∘C and the values of laser pumping power of 30-400 μW/cm2. Optimal conditions, under which the minimal value of short-term instability of resonance line is achieved, were obtained in experiments. Orientation frequency shifts of CPT resonance using glass 87Rb vapor cells containing buffer gas and anti-relaxation coating were compared. CPT signals using vapor cells based on integrated technologies containing 87Rb in atmosphere of Ne were also investigated. The CPT signals with typical line widths of 2-3 kHz and signal-to-noise ratio of 1500 in 1 Hz bandwidth are observed, which allows one to provide relative frequency instability of 10-11 at 100 s.

  2. Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors

    NASA Astrophysics Data System (ADS)

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Liu, Min; Li, Jungang

    2010-11-01

    This paper reports MWCNT (multi-wall carbon nano-tube)-modified resonant micro-cantilever chemical sensors for detection of trinitrotoluene (TNT) vapor. The MWCNTs are pre-modified and then area-selectively self-assembled at the free-end gold pad of a micro-cantilever, in which a resonance-exciting heater and a signal-readout piezoresistive Wheatstone bridge are integrated. Featuring a high specific surface area, the MWCNTs are further functionalized with TNT-sensitive groups by grafting onto the sidewalls of the MWCNTs. To lower the non-specific absorption of water and other small organic molecules, the SiO2 surface of the micro-cantilever was also pre-treated for hydrophobicity and oleophobicity by self-assembling a monolayer of heptadecafluorodecyltrimethoxysilane. The results of our sensing experiments have shown a capability to rapidly detect ppb-level TNT vapor, and a high specificity of the functionalized groups to TNT molecules. The experiment has also confirmed a good long-term stability in detecting sensitivity.

  3. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  4. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties

    PubMed Central

    2013-01-01

    We report a simple catalyst-free vapor-phase method to fabricate Zn1−xCuxO micro-cross structures. Through a series of controlled experiments by changing the location of the substrate and reaction time, we have realized the continuous evolution of product morphology from nanorods into brush-like structures and micro-cross structures at different positions, together with the epitaxial growth of branched nanorods from the central stem with the time extended. The growth mechanism of the Zn1−xCuxO micro-cross structures has been proposed to involve the synthesis of Cu/Zn square-like core, surface oxidation, and the secondary growth of nanorod arrays. By the detailed structural analysis of the yielded Zn1−xCuxO samples at different locations, we have shown that the CuO phases were gradually formed in Zn1−xCuxO, which is significant to induce the usual ZnO hexagonal structures changing into four-folded symmetrical hierarchical micro-cross structures. Furthermore, the visible luminescence can be greatly enhanced by the introduction of Cu, and the observed inhomogeneous cathode luminescence in an individual micro-cross structure is caused by the different distributions of Cu. PMID:23339397

  5. Refractive index enhancement with vanishing absorption in short, high-density vapor cells

    NASA Astrophysics Data System (ADS)

    Simmons, Z. J.; Proite, N. A.; Miles, J.; Sikes, D. E.; Yavuz, D. D.

    2012-05-01

    It has recently been predicted and experimentally demonstrated that the refractive index of a vapor may be enhanced while maintaining vanishing absorption by using the interference of two Raman transitions, one absorptive and one amplifying in nature. In this paper, we present a detailed experimental study of this technique in a 1-mm-long rubidium (Rb) vapor cell with densities exceeding 1014 cm-3. We study the optimization of the achieved refractive index as various experimental parameters are varied and discuss a number of limitations of the current experiments. We also present a detailed discussion of possible experimental improvements and future prospects of this technique.

  6. Diffusion of Rb atoms in paraffin-coated resonant vapor cells

    NASA Astrophysics Data System (ADS)

    Atutov, Sergey N.; Benimetskiy, Fedor A.; Plekhanov, Alexander I.; Sorokin, Vladimir A.; Yakovlev, Alexander V.

    2017-01-01

    We present the results of a study of the diffusion of Rb atoms in paraffin-coated resonant vapor cells. We have modeled the Rb diffusion both in the cell and in the coating, assuming that the main loss of Rb atoms is due to the physical absorption of the atoms by the glass substrate. It is demonstrated that the equilibrium of atomic density in the cell is a monotonic function of the thickness of the paraffin coating: the density increases with an increase in the thickness of the coating. The diffusion coefficient for rubidium in paraffin thin films has been determined to be equal to 5 × 10-7 cm2/s. The results of the experiment might provide for a better understanding of the processes involved in the interaction of alkali atoms with a paraffin coating and atomic diffusion in resonant vapor cells.

  7. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K. M.; Kapur, V. K.; Bartlett, R. W.; Westphal, S.

    1980-01-01

    A process was developed for the economic production of high purity Si from inexpensive reactants, based on the Na reduction of SiF4 gas. The products of reaction (NaF, Si) are separated by either aqueous leaching or by direct melting of the NaF-Si product mixture. Impurities known to degrade solar cell performance are all present at sufficiently low concentrations so that melt solidification (e.g., Czochralski) will provide a silicon material suitable for solar cells.

  8. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc.

  9. MicroRNAs: modulators of cell identity, and their applications in tissue engineering.

    PubMed

    Ribeiro, Amanda O; Schoof, Claudia R G; Izzotti, Alberto; Pereira, Lygia V; Vasques, Luciana R

    2014-01-01

    MicroRNAs post-transcriptionally regulate the expression of approximately 60% of the mammalian genes, and have an important role in maintaining the differentiated state of somatic cells through the expression of unique tissuespecific microRNA sets. Likewise, the stemness of pluripotent cells is also sustained by embryonic stem cell-enriched microRNAs, which regulate genes involved in cell cycle, cell signaling and epigenetics, among others. Thus, microRNAs work as modulator molecules that ensure the appropriate expression profile of each cell type. Manipulation of microRNA expression might determine the cell fate. Indeed, microRNA-mediated reprogramming can change the differentiated status of somatic cells towards stemness or, conversely, microRNAs can also transform stem- into differentiated-cells both in vitro and in vivo. In this Review, we outline what is currently known in this field, focusing on the applications of microRNA in tissue engineering.

  10. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  11. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma.

    PubMed

    Sandoval, Juan; Díaz-Lagares, Angel; Salgado, Rocío; Servitje, Octavio; Climent, Fina; Ortiz-Romero, Pablo L; Pérez-Ferriols, Amparo; Garcia-Muret, Maria P; Estrach, Teresa; Garcia, Mar; Nonell, Lara; Esteller, Manel; Pujol, Ramon M; Espinet, Blanca; Gallardo, Fernando

    2015-04-01

    MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients.

  12. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  13. Mathematical simulation of heating effects in a static diode-pumped vapor rubidium cell

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, You; Han, Juhong; Cai, He; Xue, Liangping; Wang, Hongyuan

    2015-02-01

    Diode-pumped alkali lasers (DPALs) have attracted a lot of interests in the recent years because of their high Stokes efficiency, good beam quality, compact size, and near-infrared emission wavelengths. Until now, the thermal features have been only analyzed in an open alkali cell. In this report, we established a mathematical model to examine the heating effect of a static sealed rubidium cell by means of a Finite Difference (FD) procedure. After assuming the absorption coefficient of the alkali vapor, the temperature distributions of a real sealed rubidium vapor cell have been acquired for different powers and beam waists of the pump. The analytic conclusions would be helpful in designing a feasible DPAL.

  14. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  15. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.

    PubMed

    Knappe, S; Gerginov, V; Schwindt, P D D; Shah, V; Robinson, H G; Hollberg, L; Kitching, J

    2005-09-15

    A novel technique for microfabricating alkali atom vapor cells is described in which alkali atoms are evaporated into a micromachined cell cavity through a glass nozzle. A cell of interior volume 1 mm3, containing 87Rb and a buffer gas, was made in this way and integrated into an atomic clock based on coherent population trapping. A fractional frequency instability of 6 x 10(-12) at 1000 s of integration was measured. The long-term drift of the F=1, mF=0-->F=2, mF=0 hyperfine frequency of atoms in these cells is below 5 x 10(-11)/day.

  16. A micro direct methanol fuel cell demonstrator

    NASA Astrophysics Data System (ADS)

    Wozniak, Konrad; Johansson, David; Bring, Martin; Sanz-Velasco, Anke; Enoksson, Peter

    2004-09-01

    The demand for compact power sources with high energy density is increasing. A direct methanol fuel cell (DMFC) is a renewable energy source which works at near room temperature, and allows for easier liquid fuel storage, which makes it a potential candidate. We report the design, fabrication and characterization of a self-driven DMFC made by micromachining techniques and macro-assembly. Several designs were created on the basis of state-of-the-art DMFCs. A simplified mathematical model was used mainly to design the flow channels and verify the polarization curves, which reveal the output power of a cell. Silicon was used as a substrate for the fabrication of electrodes, and the membrane electrode assembly was provided by Ion Power, Inc. A 0.25 cm2 cell showed a performance of 0.29 mW cm-2 and an open circuit voltage of 0.7 V. Ten microliters of 6 M methanol solution is sufficient to operate the cell for more than 1 h.

  17. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.

  18. Effects of water concentration in the coating solution on the wall relaxation rate of octadecyltrichlorosilane coated rubidium vapor cells

    SciTech Connect

    Zhang, Guiying; Wei, Lihua; Wang, Meiling; Zhao, Kaifeng

    2015-01-28

    High quality anti-relaxation surface coatings for atomic vapor cells are essential for the preservation of atomic spin coherence and the enhancement of measurement sensitivity. In this paper, we studied the effects of water concentration in octadecyltrichlorosilane (OTS) coating solution on the relaxation rate and its reproducibility of OTS coated Rubidium vapor cells. We found that appropriate water concentration can improve the anti-relaxation performance of OTS coated cells.

  19. Role of microRNAs in maintaining cancer stem cells.

    PubMed

    Garofalo, Michela; Croce, Carlo M

    2015-01-01

    Increasing evidence sustains that the establishment and maintenance of many, if not all, human cancers are due to cancer stem cells (CSCs), tumor cells with stem cell properties, such as the capacity to self-renew or generate progenitor and differentiated cells. CSCs seem to play a major role in tumor metastasis and drug resistance, but albeit the potential clinical importance, their regulation at the molecular level is not clear. Recent studies have highlighted several miRNAs to be differentially expressed in normal and cancer stem cells and established their role in targeting genes and pathways supporting cancer stemness properties. This review focuses on the last advances on the role of microRNAs in the regulation of stem cell properties and cancer stem cells in different tumors.

  20. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  1. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  2. Dicke coherent narrowing in two-photon and Raman spectroscopy of thin vapor cells

    SciTech Connect

    Dutier, Gabriel; Todorov, Petko; Hamdi, Ismahene; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-10-15

    The principle of coherent Dicke narrowing in a thin vapor cell, in which sub-Doppler spectral line shapes are observed under a normal irradiation for a {lambda}/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300-nm-thick Cs cell. Extension to the Raman situation is finally considered.

  3. Double radiooptical resonance in 87Rb atomic vapor in cells with antirelaxation wall coating

    NASA Astrophysics Data System (ADS)

    Litvinov, A. N.; Kazakov, G. A.; Matisov, B. G.; Mazets, I. E.

    2009-02-01

    The object of investigation is double radiooptic resonance in 87Rb atomic vapor contained in a cell covered by an antirelaxation coating. The Dicke narrowing is studied in terms of the quantum-kinetic approach. It is found that optical pumping using a laser with a “wide” radiation spectrum makes it possible to improve the short-term stability of the frequency standard by an order of magnitude compared with a narrow-spectrum laser.

  4. Evaporation and vapor characterization of low-PAH binders for Soederberg cells

    SciTech Connect

    Eie, M.; Oeye, H.A.; Soerlie, M.

    1996-10-01

    The PAH contents in anode pitches as well as in their pitch vapors have been characterized, for both standard anode pitches and the new types of PAH-reduced cut-back pitches. This data has been compared to PAH emissions measured from industrial VS Soederberg cells. A total of 16 PAH compounds in the pitches, from phenanthrene to dibenzopyrenes, have been analyzed in this work.

  5. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    PubMed Central

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. PMID:26664407

  6. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans.

    PubMed

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.

  7. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  8. Micro-organism and cell viability on antimicrobially modified titanium.

    PubMed

    Omori, S; Shibata, Y; Arimoto, T; Igarashi, T; Baba, K; Miyazaki, T

    2009-10-01

    When titanium is anodized by discharge in NaCl solution, both antimicrobial activity and osteoconductivity are conferred. The viability of adherent micro-organisms and cells on antimicrobial titanium remains uncertain. We hypothesized that a thin peroxidation barrier would efficiently destroy adherent bacteria, whereas adherent osteoblastic cells would be viable, since these cells adhere to the surface indirectly though serum proteins. The efficacy of antimicrobial titanium appears to be based on peroxidation, since peroxidation products were detected in parallel with the destruction of bacterial cell-surface structures. The peroxidation effect of antimicrobial titanium was confined to the surface within narrow limits. The viability of osteoblastic cells on the surface was strongly dependent on the presence of serum protein, whereas that of adherent Streptococcus mutans was not affected by the presence of serum proteins. Therefore, differences in the adherent systems used by bacteria and osteoblastic cells are important determinants of their viability on antimicrobial titanium.

  9. Micro-magnet arrays for specific single bacterial cell positioning

    NASA Astrophysics Data System (ADS)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  10. Thin films for micro solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  11. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  12. Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, A. M.; Kanagala, P.; Veedu, V.

    A proprietary in situ chemical vapor deposition (CVD) process was developed for gas diffusion layer (GDL) by growing a micro-porous layer on the macro-porous, non-woven fibrous carbon paper. The characteristics of the GDL samples such as, surface morphology, wetting characteristics, and cross-section were characterized using electron microscopes, goniometer and focused ion beam, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/oxygen as well as hydrogen/air at ambient pressure, at elevated temperature and various RH conditions using Nafion-212 as an electrolyte. The GDLs with in situ growth of micro-porous layers containing carbon nanotubes (CNTs) without any hydrophobic agent showed significant improvement in mechanical robustness as well as fuel cell performance at elevated temperature at lower RH conditions. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology with surface homogeneity through reinforcement by the multi-walled CNTs.

  13. A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Chuang, Yun-Ju; Chieng, Ching-Chang; Pan, Chin; Luo, Shih-Jin; Tseng, Fan-Gang

    2007-05-01

    This paper introduces a passive waste-management device (PWMD) for a micro direct methanol fuel cell to exhale CO2 gas and to gather and transport water and methanol residue during operation. It passively employs condensation, temperature gradient, surface tension gradient and droplet coalescence to accumulate liquid, separate liquid and gas, and transport droplets without the need of external power. CO2 gas can be breathed out through hydrophobic micro holes with the assistance of buoyancy force while water/methanol vapor is condensing into droplets, coalescing with smaller droplets and is transported toward a cooler and more hydrophilic waste tank through wettability gradient. The wettability gradient is prepared by diffusion-controlled silanization with a gradient from 117° to 28° and is radial toward the outer boundary, which can drive droplets down to 1 µl with a speed of up to 20 mm s-1. With the assistance of coalescence along with the wettability gradient, the condensed water droplets can reach a double speed of 40 mm s-1. The maximum water removal rate of the PWMD can approach 6.134 µl s-1 cm-2, which is at least one order of magnitude higher than the demand of a standard µDMFC with power generation ability of 100 mW cm-2.

  14. MICRO- AND NANOSCALE ENGINEERING OF CELL SIGNALING”

    PubMed Central

    Kam, L.C.; Shen, K.; Dustin, M.L.

    2014-01-01

    It is increasing recognized that cell signaling, as a chemical process, must be considered at the local, micrometer scale. Micro- and nano-fabrication techniques provide access to these dimensions, with the potential to capture and manipulate the spatial complexity of intracellular signaling in experimental models. This review focuses on recent advances in adapting surface engineering for use with biomolecular systems that interface with cell signaling, particularly with respect to surfaces that interact with multiple receptor systems on individual cells. The utility of this conceptual and experimental approach is demonstrated in the context of epithelial cells and T lymphocytes, two system for which the convergence and balance of multiple signaling pathways has dramatic impacts on the ability of these cells to provide their physiological function. PMID:23862677

  15. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    SciTech Connect

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Guérandel, Stéphane; Clercq, Emeric de

    2015-05-14

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and a microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.

  16. MicroBioRobots for single cell manipulation

    NASA Astrophysics Data System (ADS)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  17. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells

    NASA Astrophysics Data System (ADS)

    Hauch, Jens A.; Schilinsky, Pavel; Choulis, Stelios A.; Rajoelson, Sambatra; Brabec, Christoph J.

    2008-09-01

    In this paper we perform accelerated lifetime testing on high efficiency flexible poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) solar cells encapsulated with food package quality barrier films with a water vapor transmission rate of 0.2 g/(m2 day) at 65 °C/85% relative humidity. We show that lifetimes exceeding 1250 h, even at high temperature/high humidity conditions, may be reached, proving that organic solar cells are significantly less sensitive against the environmental effects of water and oxygen than previously expected.

  18. Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Levi, Filippo; Vanier, Jacques

    2006-03-15

    In this paper we calculate the effect of spin-exchange collisions in alkali-metal vapors. In the framework of the high-energy approximation, we evaluate the spin-exchange cross sections related to the line broadening and to the frequency shift of the ground state hyperfine transition. We do the calculation for the four isotopes, {sup 23}Na, {sup 39}K, {sup 87}Rb, and {sup 133}Cs. The results are used in particular to evaluate the spin-exchange frequency shift in Rb vapor cell frequency standards used in many applications. It turns out that, due to possible fluctuations in the atomic density, spin exchange may affect significantly the medium and long term frequency stability of the frequency standard.

  19. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  20. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    PubMed

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments.

  1. Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases.

    PubMed

    Zuo, Lijian; Dong, Shiqi; De Marco, Nicholas; Hsieh, Yao-Tsung; Bae, Sang-Hoon; Sun, Pengyu; Yang, Yang

    2016-12-07

    Morphology is critical component to achieve high device performance hybrid perovskite solar cells. Here, we develop a vapor induced intermediate phase (VIP) strategy to manipulate the morphology of perovskite films. By exposing the perovskite precursor films to different saturated solvent vapor atmospheres, e.g., dimethylformamide and dimethylsufoxide, dramatic film morphological evolution occurs, associated with the formation of different intermediate phases. We observe that the crystallization kinetics is significantly altered due to the formation of these intermediate phases, yielding highly crystalline perovskite films with less defect states and high carrier lifetimes. The perovskite solar cells with the reconstructed films exhibits the highest power conversion efficiency (PCE) up to 19.2% under 1 sun AM 1.5G irradiance, which is among the highest planar heterojunction perovskite solar cells. Also, the perovskite solar cells with VIP processing shows less hysteresis behavior and a stabilized power output over 18%. Our work opens up a new direction for morphology control through intermediate phase formation, and paves the way toward further enhancing the device performances of perovskite solar cells.

  2. Osteogenic cell sheets reinforced with photofunctionalized micro-thin titanium.

    PubMed

    Ishijima, Manabu; Hirota, Makoto; Park, Wonhee; Honda, Masaki J; Tsukimura, Naoki; Isokawa, Keitaro; Ishigami, Tomohiko; Ogawa, Takahiro

    2015-05-01

    Cell sheet technology has been used to deliver cells in single-sheet form with an intact extracellular matrix for soft tissue repair and regeneration. Here, we hypothesized that titanium-reinforced cell sheets could be constructed for bone tissue engineering and regeneration. Fifty-µm-thick titanium plates containing apertures were prepared and roughened by acid etching, some of which were photofunctionalized with 12 min of UV light treatment. Cell sheets were prepared by culturing rat calvarial periosteum-derived cells on temperature-responsive culture dishes and attached to titanium plates. Titanium-reinforced osteogenic cell sheet construction was conditional on various technical and material factors: cell sheets needed to be double-sided and sandwich the titanium plate, and the titanium plates needed to be micro thin and contain apertures to allow close apposition of the two cell sheets. Critically, titanium plates needed to be UV-photofunctionalized to ensure adherence and retention of cell sheets. Single-sided cell sheets or double-sided cell sheets on as-made titanium contracted and deformed within 4 days of incubation. Titanium-reinforced cell sheets on photofunctionalized titanium were structurally stable at least up to 14 days, developed the expected osteogenic phenotypes (ALP production and mineralization), and maintained structural integrity without functional degradation. Successful construction of titanium-reinforced osteogenic cell sheets was associated with increased cell attachment, retention, and expression of vinculin, an adhesion protein by photofunctionalization. This study identified the technical and material requirements for constructing titanium-reinforced osteogenic cell sheets. Future in vivo studies are warranted to test these titanium-reinforced cell sheets as stably transplantable, mechanically durable, and shape controllable osteogenic devices.

  3. InGaAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    SciTech Connect

    Jain, Nikhil; Simon, John; Schulte, Kevin L.; Dippo, Patricia; Young, Michelle; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current is limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.

  4. The Role of MicroRNAs in Cardiac Stem Cells

    PubMed Central

    Purvis, Nima; Bahn, Andrew; Katare, Rajesh

    2015-01-01

    Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases. PMID:25802528

  5. Cell confluency analysis on microcarriers by micro-flow imaging.

    PubMed

    Farrell, Christopher J; Cicalese, Stephanie M; Davis, Harrison B; Dogdas, Belma; Shah, Tosha; Culp, Tim; Hoang, Van M

    2016-12-01

    The productivity of cell culture-derived vaccines grown in anchorage-dependent animal cells is limited by bioreactor surface area. One way to increase the available surface area is by growing cells as monolayers on small spheres called microcarriers, which are approximately 100-250 μm in diameter. In order for microcarrier-based cell culture to be a success, it is important to understand the kinetics of cell growth on the microcarriers. Micro-flow imaging (MFI) is a simple and powerful technique that captures images and analyzes samples as they are drawn through a precision flow cell. In addition to providing size distribution and defect frequency data to compare microcarrier lots, MFI was used to generate hundreds of images to determine cell coverage and confluency on microcarriers. Same-day manual classification of these images provided upstream cell culture teams with actionable data that informed in-process decision making (e.g. time of infection). Additionally, an automated cell coverage algorithm was developed to increase the speed and throughput of the analyses.

  6. MicroRNA regulation of natural killer cells

    PubMed Central

    Sullivan, Ryan P.; Leong, Jeffrey W.; Fehniger, Todd A.

    2013-01-01

    Natural killer (NK) cells are innate immune lymphocytes critical for host defense against viral infection and surveillance against malignant transformation. MicroRNAs (miRNAs) are a family of small, non-coding RNAs that regulate a wide variety of cellular processes. Recent advances have highlighted the importance of miRNA-mediated post-transcriptional regulation in NK cell development, maturation, and function. This review focuses on several facets of this regulatory mechanism in NK cells: (1) the expressed NK cell miRNA transcriptome; (2) the impact of total miRNA deficiency on NK cells; (3) the role of specific miRNAs regulating NK cell development, survival, and maturation; (4) the intrinsic role of miRNAs regulating NK cell function, including cytokine production, proliferation, and cytotoxicity; and (5) the role of NK cell miRNAs in disease. Currently our knowledge of how miRNAs regulate NK cell biology is limited, and thus we also explore key open questions in the field, as well as approaches and techniques to ascertain the role of individual miRNAs as important molecular regulators. PMID:23450173

  7. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    DOE PAGES

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; ...

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV largermore » open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.« less

  8. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  9. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  10. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    SciTech Connect

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; Shao, Yuchuan; Huang, Jinsong

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV larger open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.

  11. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  12. Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells.

    PubMed

    Song, Tze-Bin; Yokoyama, Takamichi; Stoumpos, Constantinos C; Logsdon, Jenna; Cao, Duyen H; Wasielewski, Michael R; Aramaki, Shinji; Kanatzidis, Mercouri G

    2017-01-18

    Tin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the tendency of these materials to form leakage pathways from p-type defect states, mainly Sn(4+) and Sn vacancies, causes poor device reproducibility and limits the overall power conversion efficiencies (PCEs). Here, we present an effective process that involves a reducing vapor atmosphere during the preparation of Sn-based halide perovskite solar cells to solve this problem, using MASnI3, CsSnI3, and CsSnBr3 as the representative absorbers. This process enables the fabrication of remarkably improved solar cells with PCEs of 3.89%, 1.83%, and 3.04% for MASnI3, CsSnI3, and CsSnBr3, respectively. The reducing vapor atmosphere process results in more than 20% reduction of Sn(4+)/Sn(2+) ratios, which leads to greatly suppressed carrier recombination, to a level comparable to their lead-based counterparts. These results mark an important step toward a deeper understanding of the intrinsic Sn-based halide perovskite materials, paving the way to the realization of low-cost and lead-free Sn-based halide perovskite solar cells.

  13. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  14. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  15. β-Cell MicroRNAs: Small but Powerful

    PubMed Central

    Filios, Stephen R.

    2015-01-01

    Noncoding RNA and especially microRNAs (miRs) have emerged as important regulators of key processes in cell biology, including development, differentiation, and survival. Currently, over 2,500 mature miRs have been reported in humans, and considering that each miR has multiple targets, the number of genes and pathways potentially affected is huge. Not surprisingly, many miRs have also been implicated in diabetes, and more recently, some have been discovered to play important roles in the pancreatic islet, including β-cell function, proliferation, and survival. The goal of this Perspective is to offer an overview of this rapidly evolving field and the miRs involved, reveal novel networks of β-cell miR signaling, and provide an outlook of the opportunities and challenges ahead. PMID:26494215

  16. Control of cell proliferation by microRNAs in plants.

    PubMed

    Rodriguez, Ramiro E; Schommer, Carla; Palatnik, Javier F

    2016-12-01

    Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.

  17. Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells

    PubMed Central

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R.; Baishya, Gakul; Barua, Nabin C.; Baruah, Pranab K.; Rao, Paruchuri G.; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation. PMID:23091605

  18. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    PubMed

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R; Baishya, Gakul; Barua, Nabin C; Baruah, Pranab K; Rao, Paruchuri G; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473) and Thr(308); through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  19. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (microFACS).

    PubMed

    Cho, Sung Hwan; Chen, Chun H; Tsai, Frank S; Godin, Jessica M; Lo, Yu-Hwa

    2010-06-21

    We demonstrate a high performance microfabricated FACS system with highly integrated microfluidics, optics, acoustics, and electronics. Single cell manipulation at a high speed is made possible by the fast response time (approximately 0.1 ms) of the integrated PZT actuator and the nozzle structure at the sorting junction. A Teflon AF-coated optofluidic waveguide along the microfluidic channel guides the illumination light, enabling multi-spot detection, while a novel space-time coding technology enhances the detection sensitivity of the microFACS system. The real-time control loop system is implemented using a field-programmable-gate-array (FPGA) for automated and accurate sorting. The microFACS achieves a high purification enrichment factor: up to approximately 230 fold for both polystyrene microbeads and suspended human mammalian cells (K562) at a high throughput (>1000 cells s(-1)). The sorting mechanism is independent of cell properties such as size, density, and shape, thus the presented system can be applied to sort out any pure sub-populations. This new lab-on-a-chip FACS system, therefore, holds promise to revolutionize microfluidic cytometers to meet cost, size, and performance goals.

  20. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  1. Efficient Collection of {sup 221}Fr into a Vapor Cell Magneto-optical Trap

    SciTech Connect

    Lu, Z.; Corwin, K.L.; Vogel, K.R.; Wieman, C.E. |; Dinneen, T.P.; Maddi, J.; Gould, H.

    1997-08-01

    We have efficiently loaded a vapor cell magneto-optical trap from an orthotropic source of {sup 221}Fr with a trapping efficiency of 56(10){percent}. A novel detection scheme allowed us to measure 900 trapped atoms with a signal to noise ratio of {approximately}60 in 1sec. We have measured the energies and the hyperfine constants of the 7 {sup 2}P{sub 1/2} and 7 {sup 2}P{sub 3/2} states. {copyright} {ital 1997} {ital The American Physical Society}

  2. A high-performance Raman-Ramsey Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Yun, Peter; Guérandel, Stéphane; de Clercq, Emeric; Boudot, Rodolphe

    2017-03-01

    We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature, and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by 1 / ( 2 T R ) , with TR the free-evolution time, for short values of TR. The clock demonstrates a short-term fractional frequency stability at the level of 2.3 × 10 - 13 τ - 1 / 2 up to 100 s averaging time, mainly limited by the laser amplitude modulation noise. Comparable performances are obtained in the conventional continuous wave regime, with the use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of TR. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.

  3. Micro-optical designs for angular confinement in solar cells

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Feuermann, Daniel; Mashaal, Heylal

    2015-01-01

    We identify and evaluate a variety of efficient and feasible micro-optics for confining the radiative emission of solar cells. The key criteria used for assessing viable designs are (1) high optical efficiency for both the transmission of impinging solar beam radiation and the external recycling of isotropic cell luminescent emission; (2) liberal optical tolerance; (3) compactness and (4) being amenable to fabrication from existing materials and manufacturing processes. Both imaging and nonimaging candidate designs are presented, and their superiority to previous proposals is quantified. The strategy of angular confinement for boosting cell open-circuit voltage-thereby enhancing conversion efficiency-is limited to cells where radiative recombination is the dominant carrier recombination pathway. Optical systems that restrict the angular range for emission of cell luminescence must, by reciprocity, commensurately restrict the angular range for the collection of solar radiation. This, in turn, mandates the introduction of concentrators, but not for the objective of delivering concentrated flux onto the cell. Rather, the optical system must project an acceptably uniform spatial distribution of solar flux onto the cell surface at a nominal averaged irradiance of 1 sun.

  4. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells.

    PubMed

    Anthérieu, Sébastien; Garat, Anne; Beauval, Nicolas; Soyez, Mélissa; Allorge, Delphine; Garçon, Guillaume; Lo-Guidice, Jean-Marc

    2017-01-05

    The use of electronic cigarette (e-cig) can be considered as an alternative to smoking. However, due to a lack of thorough toxicological studies, absolute safety of these products cannot be guaranteed. The aim of this in vitro work was to investigate the potential toxicity of e-vapors generated by a smoking machine in human bronchial epithelial BEAS-2B cells cultured at air-liquid interface, in comparison to cigarette smoke (CS). Although CS decreased strongly cell viability from 48min exposure, e-vapors induced no cytotoxicity up to 288min exposure. Moreover, oxidative stress was evidenced only after exposure to CS, with a decrease secretion of GRO-ɑ from 8min and of IL-8 and MCP-1 after 48min exposure. Only a low increase of IL-6 secretion was measured in cells exposed to e-vapors. Finally, transcriptomic data of exposed cells indicated that a large number of genes were deregulated in response to CS, especially genes involved in important biological functions as oxidative stress and cell death, while e-vapors elicited very discrete modulation. These results strongly suggest a lower toxicity of e-vapors compared to CS in the BEAS-2B cell line and constitute a baseline for further experimental studies with a larger spectrum of e-liquids and e-cig models.

  5. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  6. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension.

    PubMed

    Zhu, Zhaowei; Fang, Zhenfei; Hu, Xinqun; Zhou, Shenghua

    2015-01-01

    Pulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension.

  7. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension

    PubMed Central

    Zhu, Zhaowei; Fang, Zhenfei; Hu, Xinqun; Zhou, Shenghua

    2015-01-01

    Pulmonary hypertension is a devastating and refractory disease and there is no cure for this disease. Recently, microRNAs and mesenchymal stem cells emerged as novel methods to treat pulmonary hypertension. More than 20 kinds of microRNAs may participate in the process of pulmonary hypertension. It seems microRNAs or mesenchymal stem cells can ameliorate some symptoms of pulmonary hypertension in animals and even improve heart and lung function during pulmonary hypertension. Nevertheless, the relationship between mesenchymal stem cells, microRNAs and pulmonary hypertension is not clear. And the mechanisms underlying their function still need to be investigated. In this study we review the recent findings in mesenchymal stem cells - and microRNAs-based pulmonary hypertension treatment, focusing on the potential role of microRNAs regulated mesenchymal stem cells in pulmonary hypertension and the role of exosomes between mesenchymal stem cells and pulmonary hypertension. PMID:26313730

  8. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E; Pertsemlidis, Alexander; Du, Liqin

    2014-05-15

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy.

  9. Tailor cutting of crystalline solar cells by laser micro jet

    NASA Astrophysics Data System (ADS)

    Bruckert, F.; Pilat, E.; Piron, P.; Torres, P.; Carron, B.; Richerzhagen, B.; Pirot, M.; Monna, R.

    2012-03-01

    Coupling a laser into a hair thin water micro jet (Laser Micro Jet, LMJ) for cutting applications offers a wide range of processes that are quite unique. As the laser beam is guided by internal reflections inside of a liquid cylinder, the cuts are naturally straight and do not reflect any divergence as otherwise occurs with an unguided laser beam. Furthermore, having a liquid media at the point of contact ensures a fast removal of heat and eventual debris ensuring clean cuts, which are free of any burrs. Many applications have indeed been developed for a large variety of materials, which are as different as e.g. diamond, silicon, aluminum, ceramic and hard metals. The photovoltaic industry has enjoyed in the last decades tremendous growth rates, which are still projected into the future. We focus here on the segment of Building Integrated PV (BIPV), which requests tailored solutions to actual buildings and not-one-fits-it-all standardized modules. Having the option to tailor cut solar cells opens a new field of BIPV applications. For the first time, finished crystalline solar cells have been LMJ cut into predetermined shapes. First results show that the cut is clean and neat. Preliminary solar performance measurements are positive. This opens a new avenue of tailored made modules instead of having to rely on the one-fits-alloy approach used so far.

  10. High Efficiency c-Silicon Solar Cells Based on Micro-Nanoscale Structure

    DTIC Science & Technology

    2011-06-01

    High Efficiency c- Silicon Solar Cells Based on Micro-nanoscale Structure by Fred Semendy, Priyalal Wijewarnasuriya, and Nibir K. Dhar...20783-1197 ARL-TR-5576 June 2011 High Efficiency c- Silicon Solar Cells Based on Micro-nanoscale Structure Fred Semendy and Priyalal...4. TITLE AND SUBTITLE High Efficiency c- Silicon Solar Cells Based on Micro-nanoscale Structure 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. Strong field radio-frequency measurements using Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Anderson, David; Raithel, Georg

    2016-05-01

    There has been a growing interest in using electromagnetically induced transparency with Rydberg atoms in a room-temperature vapor cell as an all-optical readout method for measuring microwave electric fields. We present results from RF-modulating the 60S1 / 2 and 58D5 / 2 Rydberg states of rubidium with 50 MHz and 100 MHz fields, respectively. Weak RF fields AC Stark-shifts the Rydberg states. As the field strength is increased, sidebands appear at even multiples of the driving frequency. When strong fields are applied, the nearby hydrogenic manifold begins to intersect with the shifted levels. Similar investigations have been performed in cesium. Due to the significant amount of state mixing and level structure, Floquet theory is required to describe the level shifts and mixing. By comparing the calculation with the experimental data, we obtain an absolute determination of the RF electric field reaching a maximum field of 296 V/m to within +/- 0 . 35 % . Additionally, we estimate the shielding of DC fields within the vapor cell.

  12. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs.

    PubMed

    Kawahigashi, Yutaka; Mishima, Takuya; Mizuguchi, Yoshiaki; Arima, Yasuo; Yokomuro, Shigeki; Kanda, Tomohiro; Ishibashi, Osamu; Yoshida, Hiroshi; Tajiri, Takashi; Takizawa, Toshihiro

    2009-08-01

    Intrahepatic cholangiocarcinoma (ICC), which arises in the small bile ducts of the liver, is the second most common liver malignancy. Although modulation of microRNA (miRNA) expression has been shown to be a potent sign of malignant tumors, miRNA profiles of ICC remains unclear. We performed sequencing analysis of the small RNA libraries of 2 ICC cell lines (HuCCT1 and MEC) and one normal intrahepatic biliary epithelial cell line (HIBEpiC) to produce the miRNA profiles of ICC in vitro. Furthermore, by means of the real-time polymerase chain reaction (PCR) we validated the differential expression of miRNAs cloned exclusively or predominantly from each of the cell lines. A total of 35,759 small RNA clones were obtained from the 3 cell lines. We identified 27 miRNAs that were expressed exclusively or predominantly in each cell line. Subsequent validation with the real-time PCR confirmed that the miRNAs hsa-miR-22, -125a, -127, -199a, -199a*, -214, -376a, and -424 were expressed specifically in HIBEpiC but were downregulated in the ICC cell lines. Our study provides important information for facilitating studies of the functional role(s) of miRNAs in carcinogenesis of the hepatobiliary system. The biliary epithelial cell-specific miRNAs identified in this study may serve as potential biomarkers for ICC.

  13. Dewetting based fabrication of fibrous micro-scaffolds as potential injectable cell carriers.

    PubMed

    Song, Hokyung; Yin, Liya; Chilian, William M; Zhang Newby, Bi-Min

    2015-03-01

    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths<100μm) were made by dewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration.

  14. MicroRNAs in embryonic stem cell function and fate

    PubMed Central

    Tiscornia, Gustavo; Izpisúa Belmonte, Juan Carlos

    2010-01-01

    Since their discovery in the early 1990s, microRNAs (miRs) have gone from initially being considered an oddity to being recognized as a level of gene expression regulation that is integral to the normal function of cells and organisms. They are implicated in many if not all biological processes in animals, from apoptosis and cell signaling to organogenesis and development. Our understanding of cell regulatory states, as determined primarily by transcription factor (TF) profiles, is incomplete without consideration of the corresponding miR profile. The miR complement of a cell provides robust and redundant control over the output of hundreds of possible targets for each miR. miRs are common components of regulatory pathways, and in some cases can constitute on–off switches that regulate crucial fate decisions. In this review, we summarize our current knowledge about the biogenesis and regulation of miRs and describe their involvement in the pathways that regulate cell division, pluripotency, and reprogramming to the pluripotent state. PMID:21159814

  15. Cloning and detecting signature microRNAs from mammalian cells.

    PubMed

    Sun, Guihua; Li, Haitang; Rossi, John J

    2007-01-01

    MicroRNAs (miRNAs) are about 19- to 24-nucleotides long noncoding regulatory small RNAs that could silence target gene expression through base pairing to the complementary sequences in the 3' untranslated region (3'UTR) of targeted genes. They are evolutionally conserved and play an important regulatory role in embryogenesis, cell differentiation, and proliferation. They are also involved in pathogenesis and progression of some human diseases. There are about 1000 human miRNAs predicted today, and it is estimated that they could target about 30% of all human transcripts. Profiling the miRNAs that are expressed in the experimental cells became an important issue as different cells express different signature miRNAs or express the same miRNAs at different level. Small RNA cloning is a reliable way to characterize those tissue- or cell-specific signature miRNAs. This chapter describes a relatively nonlaborious polyadenylation-mediated complementary DNA (cDNA) cloning method that will identify most of the small RNAs expressed in the cells of interest. This procedure can also be used to verify bioinformatic predictions of miRNAs/small interfering RNAs (siRNAs) as well as to identify new miRNAs/siRNAs.

  16. MicroRNAs as potential biomarkers for VERO cell tumorigenicity.

    PubMed

    Teferedegne, Belete; Macauley, Juliete; Foseh, Gideon; Dragunsky, Eugenia; Chumakov, Konstantin; Murata, Haruhiko; Peden, Keith; Lewis, Andrew M

    2014-08-20

    MicroRNA expression appears to capture the process of neoplastic development in vitro in the VERO line of African green monkey kidney (AGMK) cells (Teferedegne et al. PLoS One 2010;5(12):e14416). In that study, specific miRNA signatures were correlated with the transition, during serial tissue-culture passage, of low-density passaged 10-87 VERO cells from a non-tumorigenic phenotype at passage (p) 148 to a tumorigenic phenotype at p256. In the present study, six miRNAs (miR-376a, miR-654-3p, miR-543, miR-299-3p, miR-134 and miR-369-3p) were chosen from the identified signature miRNAs for evaluation of their use as potential biomarkers to track the progression of neoplastic development in VERO cells. Cells from the 10-87 VERO cell line at passage levels from p148 to p256 were inoculated into newborn and adult athymic nude mice. No tumors were observed in animals inoculated with cells from p148 to p186. In contrast, tumor incidences of 20% developed only in newborn mice that received 10-87 VERO cells at p194, p234 and p256. By qPCR profiling of the signature miRNAs of 10-87 VERO cells from these cell banks, we identified p194 as the level at which signature miRNAs elevated concurrently with the acquisition of tumorigenic phenotype with similar levels expressed beyond this passage. In wound-healing assays at 10-passage intervals between p150 to p250, the cells displayed a progressive increase in migration from p165 to p186; beginning at p194 and higher passages thereafter, the cells exhibited the highest rates of migration. By qPCR analysis, the same signature miRNAs were overexpressed with concomitant acquisition of the tumorigenic phenotype in another lineage of 10-87 VERO cells passaged independently at high density. Correlation between the passages at which the cells expressed a tumorigenic phenotype and the passages representing peaks in expression levels of signature miRNAs indicates that these miRNAs are potential biomarkers for the expression of the VERO cell

  17. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    PubMed

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3.

  18. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  19. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  20. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  1. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells.

    PubMed

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-04-08

    E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  2. Synthesis and characterization of ZnO nano and micro structures grown by low temperature spray pyrolysis and vapor transport.

    PubMed

    Agouram, S; Bushiri, M J; Montenegro, D N; Reig, C; Martínez-Tomás, M C; Muñoz-Sanjosé, V

    2012-08-01

    In this work we present a systematic study of ZnO micro and nanostructures grown by spray pyrolysis (SP) and by physical vapour transport (PVT) on glass and c-sapphire substrates at low temperatures. Optimised growth conditions have allowed to obtain homogeneous ZnO nanolayers composed of quasi-spherical nanoparticles in the range 2 to 8 nm by spray pyrolysis, while by PVT the selected growth conditions allow to produce a wide variety of morphologies (tripods, grains, arrows and wires) of nano and microsize dimension. Grazing incidence X-ray diffraction, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX) were used as characterization techniques in the investigation of structural, morphological and compositional nature of these nanostructures in relation with the growth method.

  3. Upregulated microRNA-224 promotes ovarian cancer cell proliferation by targeting KLLN.

    PubMed

    Hu, Ke; Liang, Meng

    2017-02-01

    Human epithelial ovarian cancer is a complex disease, with low 5-yr survival rate largely due to the terminal stage at diagnosis in most patients. MicroRNAs play critical roles during epithelial ovarian cancer progression in vivo and have also been shown to regulate characteristic of ovarian cancer cell line in vitro. Alterative microRNA-224 (microRNA-224) expression affects human epithelial ovarian cancer cell survival, apoptosis, and metastasis. However, people know little about the effects of microRNA-224 on epithelial ovarian cancer cell proliferation. In the current study, we found that the microRNA-224 expression level of human syngeneic epithelial ovarian cancer cells HO8910 (low metastatic ability) was lower than that of HO8910PM (high metastatic ability). Furthermore, microRNA-224 was confirmed to target KLLN in HO8910 and HO8910PM. The known KLLN downstream target cyclin A was regulated by microRNA-224 in HO8910 and HO8910PM. In addition, overexpression of microRNA-224 enhanced the proliferation abilities of HO8910 and knockdown of microRNA-224 suppressed the proliferation abilities of HO8910PM by KLLN-cyclin A pathway. Our results provide new data about microRNAs and their targets involved in proliferation of epithelial ovarian cancer cells by modulating the downstream signaling.

  4. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  5. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    PubMed

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-04-04

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.

  6. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  7. Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Du, Guan-Xiang; Treutlein, Philipp

    2015-11-01

    We report on widefield microwave vector field imaging with sub-100 μ {{m}} resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6 × 6 mm2 field of view at a rate of 10 Hz. It provides up to 50 μ {{m}} spatial resolution, and allows imaging of fields as close as 150 μ {{m}} above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represent an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 μ {{T}} {{Hz}}-1/2 per 50× 50× 140 μ {{{m}}}3 voxel, at present limited by the speed of our camera system. Since we image 120 × 120 voxels in parallel, a single scanned sensor would require a sensitivity of at least 12 {nT} {{Hz}}-1/2 to produce images with the same sensitivity. Our technique could prove transformative in the design, characterization, and debugging of microwave devices, as there are currently no satisfactory established microwave imaging techniques. Moreover, it could find applications in medical imaging.

  8. Photo-Activated Low Temperature, Micro Fuel Cell Power Source

    SciTech Connect

    Harry L. Tuller

    2007-03-30

    A Key objective of this program is to identify electrodes that will make it possible to significantly reduce the operating temperature of micro-SOFC and thin film-based SOFCs. Towards this end, efforts are directed towards: (a) identifying the key rate limiting steps which limit presently utilized electrodes from performing at reduced temperatures, as well as, (b) investigating the use of optical, as opposed to thermal energy, as a means for photocatalyzing electrode reactions and enabling reduced operating temperatures. During Phase I, the following objectives were achieved: (a) assembly and testing of our unique Microprobe Thin Film Characterization System; (b) fabrication of the model cathode materials system in thin film form by both PLD and ink jet printing; and (c) the successful configuration and testing of the model materials as cathodes in electrochemical cells. A further key objective (d) to test the potential of illumination in enhancing electrode performance was also achieved.

  9. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  10. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  11. Exosomal MicroRNAs in Tumoral U87 MG Versus Normal Astrocyte Cells.

    PubMed

    Ipas, Hélène; Guttin, Audrey; Issartel, Jean-Paul

    2015-01-01

    Brain glial tumors, and particularly glioblastomas, are tumors with a very poor prognosis. Currently, the parameters that control aggressiveness, migration, or chemoresistance are not well known. In this tumor context, microRNAs are thought to be essential actors of tumorigenesis as they are able to control the expression of numerous genes. microRNAs are not only active in controlling tumor cell pathways, they are also secreted by cells, inside microvesicles called exosomes, and may play specific roles outside the tumor cells in the tumor microenvironment. We analyzed the microRNA content of exosomes produced in vitro by normal glial cells (astrocytes) and tumor glial cells (U87 MG) using Affymetrix microarrays. It appears that the exosome microRNA profiles are qualitatively quite similar. Nevertheless, their quantitative profiles are different and may be potentially taken as an opportunity to carry out assays of diagnostic interest. We submitted the cultured cells to several stresses such as oxygen deprivation or treatments with chemical drugs (GW4869 or 5-Aza-2'- deoxycitidine) to assess the impact of the cellular microRNA profile modifications on the exosome microRNA profiles. We found that modifications of the cellular microRNA content are not strictly mirrored in exosomes. On the basis of these results, we propose that the way microRNAs are released in exosomes is probably the result of a combination of different excretion mechanisms or constraints that concur in a controlled regulation of the exosome microRNA secretion.

  12. Micro space power system using MEMS fuel cell for nano-satellites

    NASA Astrophysics Data System (ADS)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  13. microRNA regulation of human pancreatic cancer stem cells

    PubMed Central

    Xu, Yi-Fan; Hannafon, Bethany N.

    2017-01-01

    microRNAs (miRNAs) are a group of small non-coding RNAs that function primarily in the post transcriptional regulation of gene expression in plants and animals. Deregulation of miRNA expression in cancer cells, including pancreatic cancer cells, is well documented, and the involvement of miRNAs in orchestrating tumor genesis and cancer progression has been recognized. This review focuses on recent reports demonstrating that miRNAs are involved in regulation of pancreatic cancer stem cells (CSCs). A number of miRNA species have been identified to be involved in regulating pancreatic CSCs, including miR-21, miR-34, miR-1246, miR-221, the miR-17-92 cluster, the miR-200 and let-7 families. Furthermore, the Notch-signaling pathway and epithelial-mesenchymal transition (EMT) process are associated with miRNA regulation of pancreatic CSCs. Given the significant contribution of CSCs to chemo-resistance and tumor progression, a better understanding of how miRNAs function in pancreatic CSCs could provide novel strategies for the development of therapeutics and diagnostics for this devastating disease. PMID:28217707

  14. MicroRNAs affect dendritic cell function and phenotype

    PubMed Central

    Smyth, Lesley A; Boardman, Dominic A; Tung, Sim L; Lechler, Robert; Lombardi, Giovanna

    2015-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function. PMID:25244106

  15. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  16. Frequency-tunable microwave field detection in an atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Treutlein, Philipp

    2016-05-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the σ+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high-resolution microwave imaging system [Horsley et al., New J. Phys. 17, 112002 (2015)], this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  17. Ramsey effect of coherent population trapping in anti-relaxation-coated Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Joon; Moon, Han Seb

    2013-08-01

    We examine experimentally and theoretically the Ramsey effects on the coherent population trapping (CPT) resonance in a paraffin-coated Rb vapor cell. The observed CPT spectrum in the Hanle configuration of the 5 S 1/2( F = 2)-5 P 1/2( F' = 1) transition of 87Rb atoms consists of a narrow structure with a spectral width of 0.10 mG due to the wall-induced Ramsey effect and a broad structure with a spectral width of 23 mG due to the transit effect. Considering the velocity distribution of atoms and the number of wall-atom collisions, we numerically calculated the transmittance of the laser beam as a function of the longitudinal magnetic field. The experimental results of the CPT Ramsey interference were in good agreement with the theoretical results, and the dependences of the CPT Ramsey effects on the atom-laser interaction time were investigated in detail.

  18. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer.

    PubMed

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-01

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  19. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  20. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  1. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  2. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    PubMed

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells.

  3. Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs.

    PubMed

    Peric, D; Chvalova, K; Rousselet, G

    2012-04-19

    Micro-RNAs are deregulated in cancer cells, and some are either tumor suppressive or oncogenic. In addition, a link has been established between decreased expression of micro-RNAs and transformation, and several proteins of the RNA interference pathway have been shown to be haploinsufficient tumor suppressors. Oncogenic micro-RNAs (oncomiRs) could represent new therapeutic targets, and their identification is therefore crucial. However, structural and functional redundancy between micro-RNAs hampers approaches relying on individual micro-RNA inhibition. We reasoned that in cancer cells that depend on oncomiRs, impairing the micro-RNA pathway could lead to growth perturbation rather than increased tumorigenesis. Identifying such cells could allow functional analyses of individual micro-RNAs by complementation of the phenotypes observed upon global micro-RNA inhibition. Therefore, we developed episomal vectors coding for small hairpin RNAs targeting either Drosha or DGCR8, the two components of the microprocessor, the nuclear micro-RNA maturation complex. We identified cancer cell lines in which both vectors induced colony growth arrest. We then screened for individual micro-RNAs complementing this growth arrest, and identified miR-19a, miR-19b, miR-20a and miR-27b as major growth-sustaining micro-RNAs. However, the effect of miR-19a and miR-19b was only transient. In addition, embryonic stem cell-derived micro-RNAs with miR-20a seeds were much less efficient than miR-20a in sustaining cancer cell growth, a finding that contrasted with results obtained in stem cells. Finally, we showed that the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10, a shared target of miR-19 and miR-20, was functionally involved in the growth arrest induced by microprocessor inhibition. We conclude that our approach allowed to identify microprocessor-dependent cancer cells, which could be used to screen for growth-sustaining micro-RNAs. This complementation screen

  4. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  5. MicroRNA-149 targets specificity protein 1 to suppress human tongue squamous cell carcinoma cell proliferation and motility

    PubMed Central

    Chen, Jingxin; Chen, Jimin; Li, Weizhong

    2017-01-01

    The expression and function of microRNA-149 have been studied in numerous types of cancer. However, thus far, there are no studies of microRNA-149 in tongue squamous cell carcinoma (TSCC). The present study investigated the expression, biological function and molecular mechanism of microRNA-149 in TSCC in vitro, discussing whether it may be a therapeutic biomarker of TSCC in the future. In the present study, microRNA-149 expression in TSCC tissues, matched normal adjacent tissues, TSCC cell lines and normal gingival epithelial cells were analyzed using quantitative polymerase chain reaction. Following transfection with microRNA-149 mimics, cell proliferation, migration and invasion assays, a luciferase assay and western blotting were performed. The present study found that the expression of microRNA-149 was significantly decreased in TSCC tissues and cell lines compared with matched normal tissue and normal gingival epithelial cells, respectively. In addition, it was also demonstrated that microRNA-149 inhibited cell proliferation, migration and invasion by directly targeting specificity protein 1. Therefore, the results suggested that microRNA-149 may be a novel target for TSCC therapy in the future.

  6. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  7. Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    PubMed Central

    Swerdel, Mavis R.; Moore, Jennifer C.; Cohen, Rick I.; Wu, Hao; Sun, Yi E.; Hart, Ronald P.

    2009-01-01

    Background MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. Methodology/Principal Findings SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. Conclusions/Significance Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation. PMID:19784364

  8. Residual stress of free-standing membranes of yttria-stabilized zirconia for micro solid oxide fuel cell applications.

    PubMed

    Tarancón, Albert; Sabaté, Neus; Cavallaro, Andrea; Gràcia, Isabel; Roqueta, Jaume; Garbayo, Iñigo; Esquivel, Juan P; Garcia, Gemma; Cané, Carles; Santiso, José

    2010-02-01

    The present study is devoted to analyze the compatibility of yttria-stabilized zirconia thin films prepared by pulsed laser deposition and metalorganic chemical vapor deposition techniques, with microfabrication processes based on silicon technologies for micro solid oxide fuel cells applications. Deposition of yttria-stabilized zirconia on Si/SiO2/Si3N4 substrates was optimized for both techniques in order to obtain high density and homogeneity, as well as a good crystallinity for film thicknesses ranging from 60 to 240 nm. In addition, stabilized zirconia free-standing membranes were fabricated from the deposited films with surface areas between 50 x 50 microm2 and 820 x 820 microm2. Particular emphasis was made on the analysis of the effect of the nature of the deposition technique and the different design and fabrication parameters (membrane area, thickness and substrate deposition temperature) on the residual stress of the membranes in order to control their thermomechanical stability for application as electrolyte in micro solid oxide fuel cells.

  9. Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.

    PubMed

    McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz

    2014-05-01

    This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.

  10. Self-Activated Micro Direct-Methanol Fuel Cell (muDMFC) at Near Room Temperature

    DTIC Science & Technology

    2007-11-02

    control of multiphase flows at the microscale is crucial to micro-DMFC development. Through micro channel experiments we showed that wettability ...channel experiments study the effects of wettability (hydrophilic/hydrophobic) as well as the presence of impurities in the fuel on the operating...and gas are flowing into square cross-sectional microchannels. The optimal wettability properties for Micro-Direct Methanol Fuel Cells are hydrophilic

  11. Expression profiles of estrogen-regulated microRNAs in breast cancer cells

    PubMed Central

    Katchy, Anne; Williams, Cecilia

    2016-01-01

    Summary Molecular signaling through both estrogen and microRNAs are critical for breast cancer development and growth. The activity of estrogen is mediated by transcription factors, the estrogen receptors. Here we describe a method for robust characterization of estrogen-regulated microRNA profiles. The method details how to prepare cells for optimal estrogen response, directions for estrogen treatment, RNA extraction, microRNA large-scale profiling and subsequent confirmations. PMID:26585151

  12. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells

    PubMed Central

    Okoye, Isobel S.; Coomes, Stephanie M.; Pelly, Victoria S.; Czieso, Stephanie; Papayannopoulos, Venizelos; Tolmachova, Tanya; Seabra, Miguel C.; Wilson, Mark S.

    2014-01-01

    Summary Foxp3+ T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes. PMID:25035954

  13. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).

  14. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  15. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    SciTech Connect

    Dr. Mohammad S. Alam University of South Alabama ECE Department, EEB 75 Mobile, AL 36688-0002 Phone: 251-460-6117 Fax: 251-460-6028

    2005-04-13

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  16. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.

    PubMed

    Park, Chanjae; Yan, Wei; Ward, Sean M; Hwang, Sung Jin; Wu, Qiuxia; Hatton, William J; Park, Jong Kun; Sanders, Kenton M; Ro, Seungil

    2011-04-14

    Smooth muscle cells (SMCs) express a unique set of microRNAs (miRNAs) which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI) SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM) layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF), and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract.

  17. Patterned Magnetic Structures for Micro-/Nanoparticle and Cell Manipulation

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory Butler

    Remote manipulation of fluid-borne magnetic particles on a surface is useful to probe, assemble, and sort microscale and nanoscale objects. By patterning magnetic structures in shapes designed to exploit local heterogeneities in thin film magnetization, we have demonstrated effective trapping mechanisms for superparamagnetic micro- and nanoparticles. The features necessary for trapping are shown to arise at domain walls or indentations in microscale and smaller magnetic wires, at the periphery of magnetized disks, and at corners of magnetized triangles. Weak (<150 Oe) in- and out-of-plane external magnetic fields modify the energy landscape of the trapped particles, allowing for the objects to be remotely maneuvered along selected routes across the surface. The mechanism is multiplexed, allowing for simultaneous manipulation of many trapped particles, and their motion is directed using a handheld user interface. Particles are able to be transported over hundreds of micrometers with velocities of upwards of 200 µm/s and average forces of up to hundreds of picoNewtons. The magnetic fields, their spatial distribution, and resulting forces are estimated by modeling magnetization of the patterned structures using micromagnetic simulation or by approximating the traps as point sources of fields. The quality of these models and their relevance for describing particle manipulation under the experimental conditions is discussed. The applicability of these techniques is demonstrated for various biological, biomolecular, and nanoscale systems. Binding of magnetic particles to cells allows for guided cell transport. Composite micelle nanostructures, only tens of nm across, are simultaneously trapped and maneuvered magnetically and tracked fluorescently, despite their small size. The implications for use of this technology in lab-on-chip devices are discussed.

  18. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  19. MicroRNA-221 promotes human non-small cell lung cancer cell H460 growth.

    PubMed

    Xu, Yiming; Zhong, Chongjun; Ding, Shengguang; Huang, Haitao; Shen, Zhenya

    2015-01-01

    MicroRNA (miRNA-221) has been reported to be a regulator of cell proliferation. Here we intended to investigate the role of miRNA-221 in regulating the growth of human non-small cell lung cancer cell line H460. H460 cells were transfected with miRNA-221 mimics/inhibitors or their respective negative controls. Real-time quantitative PCRs (qRT-PCRs) were used to confirm the effects of miRNA-221 mimics and inhibitors in H460 cells while Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to access the cell viability and proliferation. P27 and P57, as putative targets of miRNA-221, were determined by qRT-PCRs in H460 cells. We found that overexpression of miRNA-221 led to increased proliferative rate and cell viability in H460 cells while down-regulation of miRNA-221 decreased those effects. P27 but not P57 was identified as a potential target gene of miRNA-221 in H460 as P27 was negatively regulated by miRNA-221 in the protein level. In conclusion, this study suggests that miRNA-221 controls human non-small cell lung cancer cell H460 growth potentially by targeting P57. Inhibition of miRNA-221 represents a novel potential treatment for human non-small cell lung cancer.

  20. Wavelength-agile source based on a potassium atomic vapor cell and application for absorption spectroscopy of iodine

    NASA Astrophysics Data System (ADS)

    Pertzborn, A. J.; Walewski, J. W.; Sanders, S. T.

    2005-10-01

    Output from a mode-locked Ti:Sapphire laser was transmitted through a cell containing atomic potassium vapor. Because the group velocity dispersion near the D1 resonance varies strongly with wavelength, a chirped pulse was emitted from the cell. This chirp was treated as a wavelength-agile source and was applied for a high-resolution measurement of the R(101)A3Π1u-X1Σg+(0,13) iodine absorption feature. The agile measurement was compared to one obtained using an external cavity diode laser. The characteristics of the potassium vapor cell and the associated effects on the transmitted chirp were examined in detail. Extensions of this general approach to practical applications are discussed.

  1. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  2. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  3. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle.

    PubMed

    Koning, Merel; Werker, Paul M N; van der Schaft, Daisy W J; Bank, Ruud A; Harmsen, Martin C

    2012-05-01

    Innovative strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with skeletal muscle damage. However, the efficiency of satellite cell differentiation in vitro is suboptimal. MicroRNAs are involved in the regulation of cell proliferation and differentiation. We hypothesized that transient overexpression of microRNA-1 or microRNA-206 enhances the differentiation potential of human satellite cells by downregulation quiescent satellite cell regulators, thereby increasing myogenic regulator factors. To investigate this, we isolated and cultured human satellite cells from muscle biopsies. First, through immunofluorescent analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we showed that in satellite cell cultures, low Pax7 expression is related to high MyoD expression on differentiation, and, subsequently, more extensive sarcomere formation, that is, muscle differentiation, was detected. Second, using qRT-PCR, we showed that microRNA-1 and microRNA-206 are robustly induced in differentiating satellite cells. Finally, a gain-of-function approach was used to investigate microRNA-1 and microRNA-206 potential in human satellite cells to improve differentiation potential. As a proof of concept, this was also investigated in a three-dimensional bioartificial muscle construct. After transfection with microRNA-1, the number of Pax7 expressing cells decreased compared with the microRNA-scrambled control. In differentiated satellite cell cultures transfected with either microRNA-1 or microRNA-206, the number of MyoD expressing cells increased, and α-sarcomeric actin and myosin expression increased compared with microRNA-scrambled control cultures. In addition, in a three-dimensional bioartificial muscle construct, an increase in MyoD expression occurred. Therefore, we conclude that microRNA-1 and microRNA-206 can improve human satellite cell differentiation. It

  4. microRNAs and EMT in mammary cells and breast cancer.

    PubMed

    Wright, Josephine A; Richer, Jennifer K; Goodall, Gregory J

    2010-06-01

    MicroRNAs are master regulators of gene expression in many biological and pathological processes, including mammary gland development and breast cancer. The differentiation program termed the epithelial to mesenchymal transition (EMT) involves changes in a number of microRNAs. Some of these microRNAs have been shown to control cellular plasticity through the suppression of EMT-inducers or to influence cellular phenotype through the suppression of genes involved in defining the epithelial and mesenchymal cell states. This has led to the suggestion that microRNAs maybe a novel therapeutic target for the treatment of breast cancer. In this review, we will discuss microRNAs that are involved in EMT in mammary cells and breast cancer.

  5. Life on magnets: stem cell networking on micro-magnet arrays.

    PubMed

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  6. Identifying microRNA-mRNA regulatory network in gemcitabine-resistant cells derived from human pancreatic cancer cells.

    PubMed

    Shen, Yehua; Pan, Yan; Xu, Litao; Chen, Lianyu; Liu, Luming; Chen, Hao; Chen, Zhen; Meng, Zhiqiang

    2015-06-01

    Pancreatic cancer is unresectable in over 80 % of patients owing to difficulty in early diagnosis. Chemotherapy is the most frequently adopted therapy for advanced pancreatic cancer. The development of drug resistance to gemcitabine (GEM), which is always used in standard chemotherapy, often results in therapeutic failure. However, the molecular mechanisms underlying the gemcitabine resistance remain unclear. Therefore, we sought to explore the microRNA-mRNA network that is associated with the development of gemcitabine resistance and to identify molecular targets for overcoming the gemcitabine resistance. By exposing SW1990 pancreatic cancer cells to long-term gemcitabine with increasing concentrations, we established a gemcitabine-resistant cell line (SW1990/GEM) with a high IC50 (the concentration needed for 50 % growth inhibition, 847.23 μM). The mRNA and microRNA expression profiles of SW1990 cells and SW1990/GEM cells were determined using RNA-seq analysis. By comparing the results in control SW1990 cells, 507 upregulated genes and 550 downregulated genes in SW1990/GEM cells were identified as differentially expressed genes correlated with gemcitabine sensitivity. Gene ontology (GO) analysis showed that the differentially expressed genes were related to diverse biological processes. The upregulated genes were mainly associated with drug response and apoptosis, and the downregulated genes were correlated with cell cycle progression and RNA splicing. Concurrently, the differentially expressed microRNAs, which are the important player in drug resistance development, were also examined in SW1990/GEM cells, and 56 differential microRNAs were identified. Additionally, the expression profiles of selected genes and microRNAs were confirmed by using Q-PCR assays. Furthermore, combining the differentially expressed microRNAs and mRNAs as well as the predicted targets for these microRNAs, a core microRNA-mRNA regulatory network was constructed, which included hub micro

  7. Prediction of non-small cell lung cancer metastasis-associated microRNAs using bioinformatics

    PubMed Central

    Wang, Rong; Chen, Xiao-Feng; Shu, Yong-Qian

    2015-01-01

    Distant metastasis is one of the most common causes for failure in treatment of advanced NSCLC, and it is a key factor to determine the patients’ prognosis. This study aims to screen the microRNAs associated with non-small cell lung cancer metastasis, so as to provide theoretical basis for investigating their roles in non-small cell lung cancer metastasis. In this study, the fluorescent transfected human non-small cell lung cancer cell lines H460 developed tumors subcutaneously, which were then in situ transplanted into the left lung of nude mice to obtain the tissue specimens of primary tumor and metastatic tumor. The differentially expressed microRNAs associated with non-small cell lung cancer metastasis were identified using the microRNA microarray and real-time quantitative polymerase chain reaction (RT-PCR) analysis, and bioinformatics analysis of the microRNAs was performed. The microarray analysis results revealed that 17 microRNAs with up-regulated expression and 7 with down-regulated expression between the non-small cell lung cancer metastatic primary loci and the non-metastatic primary loci (Group A), while 20 microRNAs with up-regulated expression (ratio > 1.5 times, P < 0.05) and 16 with down-regulated expression (ratio < 0.65 times, P < 0.05) between the non-small cell lung cancer metastatic loci and the metastatic primary loci (Group B). RT-PCR validation and bioinformatics analysis of some microRNAs identified 2 microRNAs with up-regulated expression, miR-10b and miR-144, and 3 microRNAs with down-regulated expression, miR-9, miR-31 and miR-34b in Group A; and 4 microRNAs with down-regulated expression, miR-25, miR-92a, miR-202 and miR-326 in Group B, which may be mediated by transcription factors activator protein 1 (AP-1), p53, STATs and NF-κB, regulate cell development, proliferation and cycle, DNA and RNA metabolism and signal transduction pathway, and promote tumor growth and metastasis through the effects on target genes like RARβ, RASSF1

  8. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells.

    PubMed

    Martinez-Nunez, Rocio T; Bondanese, Victor P; Louafi, Fethi; Francisco-Garcia, Ana S; Rupani, Hitasha; Bedke, Nicole; Holgate, Stephen; Howarth, Peter H; Davies, Donna E; Sanchez-Elsner, Tilman

    2014-01-01

    MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions with other micro

  9. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  10. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  11. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  12. Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation.

    PubMed

    Li, Lin; Wang, Guanyi; Chen, Rong; Zhu, Xun; Wang, Hong; Liao, Qiang; Yu, Youxu

    2014-09-07

    In this work, an optofluidics based micro-photocatalytic fuel cell with a membrane-free and air-breathing mode was proposed to greatly enhance the cell performance. The incorporation of the optofluidic technology into a photocatalytic fuel cell not only enlarges the specific illumination and reaction area but also enhances the photon and mass transfer, which eventually boosts the photocatalytic reaction rate. Our results show that this new photocatalytic fuel cell yields a much higher performance in converting organics into electricity. A maximum power density of 0.58 mW cm(-2) was achieved. The degradation performance of this new optofluidic micro-photocatalytic fuel cell was also evaluated and the maximum degradation efficiency reached 83.9%. In short, the optofluidic micro-photocatalytic fuel cell developed in this work shows promising potential for simultaneously degrading organic pollutants and generating electricity.

  13. On the micro-indentation of plant cells in a tissue context.

    PubMed

    Mosca, Gabriella; Sapala, Aleksandra; Strauss, Soeren; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2017-02-09

    The effect of geometry on cell stiffness measured with micro-indentation techniques has been explored in single cells, however it is unclear if results on single cells can be readily transferred to indentation experiments performed on a tissue in vivo. Here we explored this question by using simulation models of osmotic treatments and micro-indentation experiments on 3D multicellular tissues with the finite element method. We found that the cellular context does affect measured cell stiffness, and that several cells of context in each direction are required for optimal results. We applied the model to micro-indentation data obtained with cellular force microscopy on the sepal of A. thaliana, and found that differences in measured stiffness could be explained by cellular geometry, and do not necessarily indicate differences in cell wall material properties or turgor pressure.

  14. On the micro-indentation of plant cells in a tissue context

    NASA Astrophysics Data System (ADS)

    Mosca, Gabriella; Sapala, Aleksandra; Strauss, Soeren; Routier-Kierzkowska, Anne-Lise; Smith, Richard S.

    2017-02-01

    The effect of geometry on cell stiffness measured with micro-indentation techniques has been explored in single cells, however it is unclear if results on single cells can be readily transferred to indentation experiments performed on a tissue in vivo. Here we explored this question by using simulation models of osmotic treatments and micro-indentation experiments on 3D multicellular tissues with the finite element method. We found that the cellular context does affect measured cell stiffness, and that several cells of context in each direction are required for optimal results. We applied the model to micro-indentation data obtained with cellular force microscopy on the sepal of A. thaliana, and found that differences in measured stiffness could be explained by cellular geometry, and do not necessarily indicate differences in cell wall material properties or turgor pressure.

  15. MicroRNA-9 controls a migratory mechanism in human neural progenitor cells.

    PubMed

    Uchida, Nobuko

    2010-04-02

    MicroRNAs play roles in developmental switching; however, their roles in human neural progenitor cells (hNPCs) is poorly understood. In this issue of Cell Stem Cell, Delaloy et al. (2010) report that proliferation and migration choices in hNPCs are regulated by miR-9.

  16. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.

    PubMed

    Guo, Shaojun; Wang, Erkang

    2011-07-19

    , gene delivery agents, and fuel cell catalysts. We expect that micro/nanomaterials with unique structural characteristics, properties, and functions will attract increasing research interest and will lead to new opportunities in various fields of research.

  17. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    NASA Astrophysics Data System (ADS)

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Zhang, Yulong; Egeland, Eirik B.; Gu, Dan D.; Calabrese, Paolo; Kapiris, Matteo J.; Karlsen, Frank; Minh, Nhut T.; Wang, K.; Jakobsen, Henrik

    2010-11-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify and redistribute the electromagnetic field generated by the micro-coils. The separator can be equipped with a strong magnetic field to isolate the target cells with a considerably low input current. The micro separator was fabricated by micro-processing technology. An electroplating bath was hired to deposit NiCo/NiFe to fabricate the micro-pillar arrays. An experimental system was set up to verify the function of the micro separator by isolating the lymphocytes, in which the human whole blood mixed with Dynabeads® FlowComp Flexi and monoclonal antibody MHCD2704 was used as the sample. The results show that the electromagnetic micro separator with an extremely low input current can recognize and capture the target lymphocytes with a high efficiency, the separation ratio reaching more than 90% at a lower flow rate. For the electromagnetic micro separator, there is no external magnetizing field required, and there is no extra cooling system because there is less Joule heat generated due to the lower current. The magnetic separator is totally reusable, and it can be used to separate cells or proteins with common antigens.

  18. X-Ray Micro- and Nanodiffraction Imaging on Human Mesenchymal Stem Cells and Differentiated Cells

    PubMed Central

    Bernhardt, Marten; Priebe, Marius; Osterhoff, Markus; Wollnik, Carina; Diaz, Ana; Salditt, Tim; Rehfeldt, Florian

    2016-01-01

    Adult human mesenchymal stem cells show structural rearrangements of their cytoskeletal network during mechanically induced differentiation toward various cell types. In particular, the alignment of acto-myosin fibers is cell fate-dependent and can serve as an early morphological marker of differentiation. Quantification of such nanostructures on a mesoscopic scale requires high-resolution imaging techniques. Here, we use small- angle x-ray scattering with a spot size in the micro- and submicrometer range as a high-resolution and label-free imaging technique to reveal structural details of stem cells and differentiated cell types. We include principal component analysis into an automated empirical analysis scheme that allows the local characterization of oriented structures. Results on freeze-dried samples lead to quantitative structural information for all cell lines tested: differentiated cells reveal pronounced structural orientation and a relatively intense overall diffraction signal, whereas naive human mesenchymal stem cells lack these features. Our data support the hypothesis of stem cells establishing ordered structures along their differentiation process. PMID:26840732

  19. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alloing, B.; Vézian, S.; Tottereau, O.; Vennéguès, P.; Beraudo, E.; Zuniga-Pérez, J.

    2011-01-01

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al2O3(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  20. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    SciTech Connect

    Alloing, B.; Vezian, S.; Tottereau, O.; Vennegues, P.; Beraudo, E.; Zuniga-Perez, J.

    2011-01-03

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al{sub 2}O{sub 3}(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  1. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  2. Femtosecond laser micro-machined polyimide films for cell scaffold applications.

    PubMed

    Antanavičiūtė, Ieva; Šimatonis, Linas; Ulčinas, Orestas; Gadeikytė, Aušra; Abakevičienė, Brigita; Tamulevičius, Sigitas; Mikalayeva, Valeryia; Skeberdis, Vytenis Arvydas; Stankevičius, Edgaras; Tamulevičius, Tomas

    2016-12-11

    Engineering of sophisticated synthetic 3D scaffolds that allow controlling behavior and location of the cells requires advanced micro/nano fabrication techniques. Ultrafast laser micro-machining employing a 1030 nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining of commercially available 12.7 and 25.4 µm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e., arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental micro-tensile testing results could be numerically simulated and explained by 2-material model, assuming that 2-6 µm width rings around the holes possessed up to 5 times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of "dog-bone" shaped specimens. That was attributed to material modification around the micro-machined holes in the vicinity of the position of the focused laser beam track during trepanning drilling. We demonstrate that virgin PI films provide a suitable environment for the mobility, proliferation, and intercellular communication of human bone marrow mesenchymal stem cells and discuss how cell behavior varies on the micro-machined PI films with holes of different diameters (3.1, 8.4, and 16.7 µm) and hole spacing (30, 35, 40, and 45 µm). We conclude that the holes of 3.1 µm diameter were sufficient for metabolic and genetic communication through membranous tunneling tubes between cells residing on the opposite sides of PI film but prevented the trans-migration of cells through the holes. This article is protected by copyright. All rights reserved.

  3. Profiling of microRNAs in AML cells following overexpression or silencing of the VEGF gene.

    PubMed

    Li, Li; Zhu, Lixia; Wang, Yungui; Zhou, De; Zhu, Jingjing; Xie, Wanzhuo; Ye, Xiujin

    2017-01-01

    Acute myeloid leukemia (AML) is a disease of the hematopoietic progenitor cells associated with heterogeneous clonal proliferation. Vascular endothelial growth factor (VEGF) and its receptors play important roles in the regulation of angiogenesis during physiological and pathological processes. It is thought that AML cells have an autocrine VEGF pathway that contributes to the development and progression of AML. In addition, growing evidence has suggested that numerous microRNAs are involved in AML. The present study aimed to investigate the relationship between VEGF dysregulation and microRNA profiles in AML cells and patients. VEGF-overexpressing and VEGF-knockdown leukemia cells were constructed and changes in the patterns of microRNA expression were analyzed using a microRNA array. Subsequently, mononuclear cells from the blood of patients with AML showing high or low expression levels of VEGF were obtained and were used to assess the patterns of microRNA expression by reverse transcription-quantitative polymerase chain reaction. The results of the present study suggested that downregulation of VEGF markedly altered the profile of microRNAs in AML cells, while upregulation of VEGF did not. Examination of clinical samples from patients with AML showed that several microRNAs were closely associated with the expression level of VEGF, including miR-20a, miR-93, miR-16-5p, miR-17-5p, miR-124-5p and miR-17-3p. These results suggested that VEGF may be a pivotal protein that can both receive and initiate signals in leukemia cells.

  4. Profiling of microRNAs in AML cells following overexpression or silencing of the VEGF gene

    PubMed Central

    Li, Li; Zhu, Lixia; Wang, Yungui; Zhou, De; Zhu, Jingjing; Xie, Wanzhuo; Ye, Xiujin

    2017-01-01

    Acute myeloid leukemia (AML) is a disease of the hematopoietic progenitor cells associated with heterogeneous clonal proliferation. Vascular endothelial growth factor (VEGF) and its receptors play important roles in the regulation of angiogenesis during physiological and pathological processes. It is thought that AML cells have an autocrine VEGF pathway that contributes to the development and progression of AML. In addition, growing evidence has suggested that numerous microRNAs are involved in AML. The present study aimed to investigate the relationship between VEGF dysregulation and microRNA profiles in AML cells and patients. VEGF-overexpressing and VEGF-knockdown leukemia cells were constructed and changes in the patterns of microRNA expression were analyzed using a microRNA array. Subsequently, mononuclear cells from the blood of patients with AML showing high or low expression levels of VEGF were obtained and were used to assess the patterns of microRNA expression by reverse transcription-quantitative polymerase chain reaction. The results of the present study suggested that downregulation of VEGF markedly altered the profile of microRNAs in AML cells, while upregulation of VEGF did not. Examination of clinical samples from patients with AML showed that several microRNAs were closely associated with the expression level of VEGF, including miR-20a, miR-93, miR-16-5p, miR-17-5p, miR-124-5p and miR-17-3p. These results suggested that VEGF may be a pivotal protein that can both receive and initiate signals in leukemia cells. PMID:28123529

  5. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    SciTech Connect

    Cao, Donglin Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  6. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  7. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    NASA Astrophysics Data System (ADS)

    De Vitis, Stefania; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Perozziello, Gerardo; Dattola, Elisabetta; Candeloro, Patrizio; Di Fabrizio, Enzo

    2016-01-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars.

  8. Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells

    PubMed Central

    Yogev, Ohad; Lagos, Dimitris; Enver, Tariq; Boshoff, Chris

    2014-01-01

    Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency. PMID:25255370

  9. Effects of water vapor introduction during Cu(In1-x Gax )Se2 deposition on thin film properties and solar cell performance

    NASA Astrophysics Data System (ADS)

    Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Shibata, H.; Yonemura, M.; Nakamura, S.; Nakanishi, H.; Kojima, T.; Niki, S.

    2006-09-01

    The effects of water vapor introduction during the growth of Cu(In1-x Gax )Se2, specifically CuInSe2 (CISe), Cu(In,Ga)Se2 (CIGSe), and CuGaSe2 (CGSe) thin films were studied. We have developed thus far a novel technique to improve CIGSe (x 0.5) cell performance by means of water vapor introduction during CIGSe deposition. In this study, we have examined the effectiveness of water vapor introduction for other x -compositions (CISe and CGSe). Variations in the electrical properties observed in CIGSe (x 0.5), that is, increasing hole density and conductivity with water vapor introduction, were also observed in CISe and CGSe. Water vapor introduction affected solar cell performance as well; open circuit voltages, short circuit current densities, and efficiencies were improved. The improvements in cell performance are thought to be related to annihilation of donor defects arising from Se-vacancies by incorporation of oxygen from the water vapor. In addition to this, the sodium content in the CIGSe layers was found to depend on the partial pressure of water vapor during deposition. This result suggests that the improvement mechanism is also related with the so-called Na-effects'.

  10. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells

    PubMed Central

    Wiekhorst, Frank; Steinhoff, Gustav

    2016-01-01

    Aim. CD133+ stem cells bear huge potential for regenerative medicine. However, low retention in the injured tissue and massive cell death reduce beneficial effects. In order to address these issues, we intended to develop a nonviral system for appropriate cell engineering. Materials and Methods. Modification of human CD133+ stem cells with magnetic polyplexes carrying microRNA was studied in terms of efficiency, safety, and targeting potential. Results. High microRNA uptake rates (~80–90%) were achieved without affecting CD133+ stem cell properties. Modified cells can be magnetically guided. Conclusion. We developed a safe and efficient protocol for CD133+ stem cell modification. Our work may become a basis to improve stem cell therapeutical effects as well as their monitoring with magnetic resonance imaging. PMID:27795713

  11. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  12. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei

    2009-01-01

    Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963

  13. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

    PubMed Central

    Mittelbrunn, María; Gutiérrez-Vázquez, Cristina; Villarroya-Beltri, Carolina; González, Susana; Sánchez-Cabo, Fátima; González, Manuel Ángel; Bernad, Antonio; Sánchez-Madrid, Francisco

    2011-01-01

    The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis. PMID:21505438

  14. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    PubMed

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.

  15. Integrated Micro/nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective

    PubMed Central

    Shao, Yue

    2014-01-01

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188

  16. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments.

    PubMed

    Kamperman, Tom; Henke, Sieger; van den Berg, Albert; Shin, Su Ryon; Tamayol, Ali; Khademhosseini, Ali; Karperien, Marcel; Leijten, Jeroen

    2017-02-01

    Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.

  17. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues

    PubMed Central

    Frumkin, Dan; Wasserstrom, Adam; Itzkovitz, Shalev; Harmelin, Alon; Rechavi, Gideon; Shapiro, Ehud

    2008-01-01

    Background Whole genome amplification (WGA) and laser assisted micro-dissection represent two recently developed technologies that can greatly advance biological and medical research. WGA allows the analysis of multiple genomic loci from a single genome and has been performed on single cells from cell suspensions and from enzymatically-digested tissues. Laser micro-dissection makes it possible to isolate specific single cells from heterogeneous tissues. Results Here we applied for the first time WGA on laser micro-dissected single cells from stained tissue sections, and developed a protocol for sequentially performing the two procedures. The combined procedure allows correlating the cell's genome with its natural morphology and precise anatomical position. From each cell we amplified 122 genomic and mitochondrial loci. In cells obtained from fresh tissue sections, 64.5% of alleles successfully amplified to ~700000 copies each, and mitochondrial DNA was amplified successfully in all cells. Multiplex PCR amplification and analysis of cells from pre-stored sections yielded significantly poorer results. Sequencing and capillary electrophoresis of WGA products allowed detection of slippage mutations in microsatellites (MS), and point mutations in P53. Conclusion Comprehensive genomic analysis of single cells from stained tissue sections opens new research opportunities for cell lineage and depth analyses, genome-wide mutation surveys, and other single cell assays. PMID:18284708

  18. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  19. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    DOE PAGES

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less

  20. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Arakawa, Yasuhiko

    2012-05-01

    We fabricate a high-efficiency InAs/GaAs quantum dot (QD) solar cell. It contains five layers of high-density self-assembled InAs QDs grown by metalorganic chemical vapor deposition suppressing open-circuit-voltage (VOC) degradation. We develop a dual-layer anti-reflection coating of optimum thicknesses. The resulting cell exhibits efficiencies of 18.7% under AM1.5 G for 1 sun and 19.4% for 2 suns. Concentrator measurements demonstrate the advantage of QD use under concentrated illumination, owing to the significant increase in VOC. We also find a VOC offset of 0.3 V from the QD ground-state transition energies for QD cells, in contrast to 0.4 V for state-of-the-art bulk semiconductor cells.

  1. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines

    SciTech Connect

    Crawford, M.; Brawner, E.; Batte, K.; Yu, L.; Hunter, M.G.; Otterson, G.A.; Nuovo, G.; Marsh, C.B.; Nana-Sinkam, S.P.

    2008-09-05

    Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.

  2. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity.

    PubMed

    Guerau-de-Arellano, Mireia; Smith, Kristen M; Godlewski, Jakub; Liu, Yue; Winger, Ryan; Lawler, Sean E; Whitacre, Caroline C; Racke, Michael K; Lovett-Racke, Amy E

    2011-12-01

    Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4(+) T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.

  3. Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates.

    PubMed

    Shen, Xinkun; Ma, Pingping; Hu, Yan; Xu, Gaoqiang; Zhou, Jun; Cai, Kaiyong

    2015-03-01

    Surface topography of an orthopedic implant plays an essential role in the regulation of bone formation with surrounding bone tissue. To investigate the effects of surface topography of titanium (Ti) substrates on cellular behavior of mesenchymal stem cells (MSCs), a series of micro/nano hierarchical structures were fabricated onto micro-structured titanium (Micro-Ti) substrates via a sol-gel method with spin-coat technique. Scanning electron microscopy (SEM), surface profiler, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement were employed to certify the successful fabrication of micro/nano hierarchical structures with the presence of various nano-sized TiO2 grains (20 nm, 40 nm and 80 nm, respectively) onto micro-structured surfaces. The formation mechanism of the micro/nano hierarchical structures was proposed. Moreover, the effects of those hierarchical structures on the growth behavior of MSCs were evaluated both on cellular and molecular levels in vitro. The results confirmed that micro/nano hierarchical structures with large grains (80 nm) greatly promoted the proliferation and differentiation of MSCs comparing with other small grains (20 nm and 40 nm). The study provides an alternative for the fabrication of hierarchically structured Ti implants for potential orthopedic application.

  4. Deep Sub-micro mol{\\cdot }mol^{-1} Water-Vapor Measurement by Dual-Ball SAW Sensors for Temperature Compensation

    NASA Astrophysics Data System (ADS)

    Takeda, N.; Oizumi, T.; Tsuji, T.; Akao, S.; Takayanagi, K.; Nakaso, N.; Yamanaka, K.

    2015-12-01

    A collimated surface acoustic wave (SAW) circles around the equator of a sphere hundreds of times. Because of the long distance travel of the collimated SAW, a small change in the SAW propagation caused by the environment of the sphere can be accumulated as a measurable range in amplitude and/or in delay time. So, a spherical SAW device enables highly sensitive water-vapor measurements. In this paper, deep sub \\upmu mol{\\cdot }mol^{-1} water-vapor detection by 1 mm diameter quartz crystal ball SAW sensors is described. To measure such a low water-vapor concentration in real time, it is necessary to compensate the temperature dependence of the ball SAW sensor, which is about 20 ppm{\\cdot }°C^{-1} in delay time change. A dual-frequency burst analog detector was developed for the temperature compensation in real time. By using a harmonic SAW sensor, which was excited by 80 MHz and 240 MHz at the same time, it was confirmed that the delay time drift for a temperature range of 21.0°C ± 1.0°C became less than 0.05 ppm in delay time change. By using dual-ball SAW sensors (which included a 150 MHz sensor with a water-vapor sensitive layer and a 240 MHz sensor as a reference), water-vapor concentrations from 0.1 \\upmu mol{\\cdot }mol^{-1} to 5 \\upmu mol{\\cdot }mol^{-1} were successfully measured. It appears that the delay time change is proportional to the square root of the water-vapor concentration. The detection limit determined by the electrical noise of the system was estimated at 0.01 \\upmu mol{\\cdot }mol^{-1}.

  5. Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.

    PubMed

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2013-10-21

    We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.

  6. Analysis of MicroRNA-mRNA Interactions in Stem-cell Enriched Fraction of Oral Squamous Cell Carcinoma.

    PubMed

    Richard, Vinitha; Raju, Rajesh; Paul, Aswathy Mary; Girijadevi, Reshmi; Santhoshkumar, Thankayyan Retnabai; Pillai, Madhavan Radhakrishna

    2017-03-09

    This study is an integrated analysis of the transcriptome profile, MicroRNA (miRNA) and their experimentally validatedmRNA targets differentially expressed in the tumorigenic stem-like fraction of oral squamous cell carcinoma (OSCC). We had previously reported the co-existence of multiple drug resistant, tumorigenic fractions termed as side population (SP1, SP2 and MP2) and a non-tumorigenic fraction, main population (MP1) in oral cancer. These fractions displayed self-renewal, regeneration potential and expressed known stemness related cell surface markers despite functional differences. Flow cytometrically sorted pure fractions of SP1 and MP1 cells were subjected to differential expression analysis of both mRNAs and microRNAs. A significant upregulation of genes associated with inflammation, cell survival, cell proliferation, drug transporters and antiapoptotic pathways in addition to enhanced transcriptome reprogramming mediated by DNA- histone binding proteins and pattern recognition receptor-mediated signaling was found to play a crucial role in the transformation of non-tumorigenic MP1 fraction to tumorigenic SP1 fraction. We also identified several differentially expressed microRNAs that specifically target genes distinctive of tumorigenic SP1 fraction. MicroRNA mediated downregulation of stemness associated markers CD44, CD147 and upregulation of CD151 may also account for the emergence and persistence of multiple tumorigenic stem cell fractions with varying degrees of malignancy. The phenotypic switch of cancer cells to stem-like OSCC cells mediated by transcriptomal regulation is effectual in addressing biological tumor heterogeneity and subsequent therapeutic resistance leading to minimal residual disease (MRD) condition in oral cancer. Detailed study of the interplay of microRNAs, mRNA and the cellular phases involved in the gradual transition of non-tumorigenic cancer cells to tumorigenic stem-like cells in solid tumors would enable detection and

  7. Specific rare cell capture using micro-patterned silicon nanowire platform.

    PubMed

    Lee, Sang-Kwon; Kim, Dong-Joo; Lee, GeeHee; Kim, Gil-Sung; Kwak, Minsuk; Fan, Rong

    2014-04-15

    We report on the rapid and direct quantification of specific cell captures using a micro-patterned streptavidin (STR)-functionalized silicon nanowire (SiNW) platform, which was prepared by Ag-assisted wet chemical etching and a photo-lithography process. This platform operates by high-affinity cell capture rendered by the combination of antibody-epithelial cell surface-binding, biotin-streptavidin binding, and the topologically enhanced cell-substrate interaction on a 3-dimensional SiNWs array. In this work, we developed a micro-patterned nanowire platform, with which we were able to directly evaluate the performance enhancement due to nanotopography. An excellent capture efficiency of ~96.6±6.7%, which is the highest value achieved thus far for the targeting specific A549 cells on a selective area of patterned SiNWs, is demonstrated. Direct comparison between the nanowire region and the planar region on the same substrate indicates dramatically elevated cell-capture efficiency on nanotopological surface identical surface chemistry (<2% cell-capture efficiency). An excellent linear response was seen for quantifying captured A549 cells with respect to loaded cells. This study suggests that the micro-patterned STR-functionalized SiNWs platform provides additional advantage for detecting rare cells populations in a more quantitative and specific manner.

  8. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-01-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  9. microRNA expression profile of peripheral blood mononuclear cells of Klinefelter syndrome

    PubMed Central

    SUI, WEIGUO; OU, MINGLIN; CHEN, JIEJING; LI, HUAN; LIN, HUA; ZHANG, YUE; LI, WUXIAN; XUE, WEN; TANG, DONGE; GONG, WEIWEI; ZHANG, RUOHAN; LI, FENGYAN; DAI, YONG

    2012-01-01

    microRNAs are a type of small non-coding RNAs which play important roles in post-transcriptional gene regulation, and the characterization of microRNA expression profiling in peripheral blood mononuclear cells (PBMCs) from patients with Klinefelter syndrome requires further investigation. In this study, PBMCs were obtained from patients with Klinefelter syndrome and normal controls. After preparation of small RNA libraries, the two groups of samples were sequenced simultaneously using next generation high-throughput sequencing technology, and novel and known microRNAs were analyzed. A total of 9,772,392 and 9,717,633 small RNA reads were obtained; 8,014,466 (82.01%) and 8,104,423 (83.40%) genome-matched reads, 64 and 49 novel microRNAs were identified in the library of Klinefelter syndrome and the library of healthy controls, respectively. There were 71 known microRNAs with differential expression levels between the two libraries. Clustering of over-represented gene ontology (GO) classes in predicted targets of novel microRNAs in the Klinefelter syndrome library showed that the most significant GO terms were genes involved in the endomembrane system, nucleotide binding and kinase activity. Our data revealed that there are a large number of microRNAs deregulated in PBMCs taken from patients with Klinefelter syndrome, of which certain novel and known microRNAs may be involved in the pathological process of Klinefelter syndrome. Further studies are necessary to determine the roles of microRNAs in the pathological process of Klinefelter syndrome in the future. PMID:23226734

  10. microRNA expression profile of peripheral blood mononuclear cells of Klinefelter syndrome.

    PubMed

    Sui, Weiguo; Ou, Minglin; Chen, Jiejing; Li, Huan; Lin, Hua; Zhang, Yue; Li, Wuxian; Xue, Wen; Tang, Donge; Gong, Weiwei; Zhang, Ruohan; Li, Fengyan; Dai, Yong

    2012-11-01

    microRNAs are a type of small non-coding RNAs which play important roles in post-transcriptional gene regulation, and the characterization of microRNA expression profiling in peripheral blood mononuclear cells (PBMCs) from patients with Klinefelter syndrome requires further investigation. In this study, PBMCs were obtained from patients with Klinefelter syndrome and normal controls. After preparation of small RNA libraries, the two groups of samples were sequenced simultaneously using next generation high-throughput sequencing technology, and novel and known microRNAs were analyzed. A total of 9,772,392 and 9,717,633 small RNA reads were obtained; 8,014,466 (82.01%) and 8,104,423 (83.40%) genome-matched reads, 64 and 49 novel microRNAs were identified in the library of Klinefelter syndrome and the library of healthy controls, respectively. There were 71 known microRNAs with differential expression levels between the two libraries. Clustering of over-represented gene ontology (GO) classes in predicted targets of novel microRNAs in the Klinefelter syndrome library showed that the most significant GO terms were genes involved in the endomembrane system, nucleotide binding and kinase activity. Our data revealed that there are a large number of microRNAs deregulated in PBMCs taken from patients with Klinefelter syndrome, of which certain novel and known microRNAs may be involved in the pathological process of Klinefelter syndrome. Further studies are necessary to determine the roles of microRNAs in the pathological process of Klinefelter syndrome in the future.

  11. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    PubMed

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  12. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    PubMed

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  13. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  14. Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process.

    PubMed

    Liu, Chong; Fan, Jiandong; Zhang, Xing; Shen, Yanjiao; Yang, Lin; Mai, Yaohua

    2015-05-06

    Recently, the organic-inorganic hybrid perovskite solar cells exhibit rapidly rising efficiencies, while anomalous hysteresis in perovskite solar cells remains unsolvable. Herein, a high-quality perovskite thin film is prepared by a modified vapor-assisted solution process, which is a simple but well-controllable method proven to be capable of producing a thin film with full surface coverage and grain size up to micrometers. The as-fabricated perovskite solar cell has efficiency as high as 10.2%. The hysteresis effects of both planar and mesoscopic TiO2-based perovskite solar cells have been comprehensively studied upon illumination. The results demonstrate that mesoporous-based perovskite cells combined with remarkable grain size are subject to alleviating the hysteresis effects in comparison to the planar cells. Likewise, mesoscopic TiO2-based perovskite cells perform independently of illumination and bias conditions prior to the measurements, whereas the planar cells display a reversible behavior of illumination and applied bias-dependent I-V curves. The present study would refer strip road for the stability study of the perovskite solar cells.

  15. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    DOE PAGES

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; ...

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. Asmore » a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.« less

  16. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    SciTech Connect

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. As a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.

  17. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP.

    PubMed

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi; Miyata, Maiko; Huang, Peng; Ishiguro, Naoki; Hamaguchi, Michinari; Iwamoto, Takashi

    2008-08-08

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have not responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.

  18. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity.

    PubMed

    Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola

    2017-02-17

    Upon T cell receptor stimulation, CD4(+) T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4(+) T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4(+) T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4(+) T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.

  19. Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pla, D.; Salleras, M.; Garbayo, I.; Morata, A.; Sabaté, N.; Divins, N. J.; Llorca, J.; Tarancón, A.

    2015-05-01

    A novel design of a fuel-flexible micro-reactor for hydrogen generation from ethanol and methane is proposed in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an array of more than 20000 through-silicon vertically aligned micro-channels per cm2 of 50 μm in diameter. Due to this unique configuration, the micro-reformer presents a total surface per projected area of 16 cm2/cm2 and per volume of 320 cm2/cm3. The active surface of the micro-reformer, i.e. the walls of the micro-channels, is homogenously coated with a thin film of Rh- Pd/CeO2 catalyst. Excellent steam reforming of ethanol and dry reforming of methane are presented with hydrogen production rates above 3 mL/min·cm2 and hydrogen selectivity of ca. 50% on a dry basis at operations conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 700-800ºC and fuel flows of 0.02 mLL/min for ethanol and 36 mLG/min for methane (corresponding to a system able to produce one electrical watt).

  20. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells

    NASA Astrophysics Data System (ADS)

    Khoshfetrat Pakazad, S.; Savov, A.; van de Stolpe, A.; Dekker, R.

    2014-03-01

    Stretchable micro-electrode arrays (SMEAs) are useful tools to study the electrophysiology of living cells seeded on the devices under mechanical stimulation. For such applications, the SMEAs are used as cell culture substrates; therefore, the surface topography and mechanical properties of the devices should be minimally affected by the embedded stretchable electrical interconnects. In this paper, a novel design and micro-fabrication technology for a pneumatically actuated SMEA are presented to achieve stretchability with minimal surface area dedicated to the electrical interconnects and a well-defined surface strain distribution combined with integrated diverse micro-patterns to enable alignment and directional stretching of cells. The special mechanical design also enables the SMEA to have a prolonged electro-mechanical fatigue life time required for long-term cyclic stretching of the cell cultures (stable resistance of electrical interconnects for more than 160 thousand cycles of 20% stretching and relaxing). The proposed fabrication method is based on the state of the art micro-fabrication techniques and materials and circumvents the processing problems associated with using unconventional methods and materials to fabricate stretchable electrode arrays. The electrochemical impedance spectroscopy characterization of the SMEA shows 4.5 MΩ impedance magnitude at 1 kHz for a TiN electrode 12 um in diameter. Cell culture experiments demonstrate the robustness of the SMEAs for long-term culturing experiments and compatibility with inverted fluorescent microscopy.

  1. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation.

    PubMed

    Eikmans, Michael; Rekers, Niels V; Anholts, Jacqueline D H; Heidt, Sebastiaan; Claas, Frans H J

    2013-03-14

    Assessing messenger RNA (mRNA) and microRNA levels in peripheral blood cells may complement conventional parameters in clinical practice. Working with small, precious samples requires optimal RNA yields and minimal RNA degradation. Several procedures for RNA extraction and complementary DNA (cDNA) synthesis were compared for their efficiency. The effect on RNA quality of freeze-thawing peripheral blood cells and storage in preserving reagents was investigated. In terms of RNA yield and convenience, quality quantitative polymerase chain reaction signals per nanogram of total RNA and using NucleoSpin and mirVana columns is preferable. The SuperScript III protocol results in the highest cDNA yields. During conventional procedures of storing peripheral blood cells at -180°C and thawing them thereafter, RNA integrity is maintained. TRIzol preserves RNA in cells stored at -20°C. Detection of mRNA levels significantly decreases in degraded RNA samples, whereas microRNA molecules remain relatively stable. When standardized to reference targets, mRNA transcripts and microRNAs can be reliably quantified in moderately degraded (quality index 4-7) and severely degraded (quality index <4) RNA samples, respectively. We describe a strategy for obtaining high-quality and quantity RNA from fresh and stored cells from blood. The results serve as a guideline for sensitive mRNA and microRNA expression assessment in clinical material.

  2. Micro-Raman spectroscopy study of ALVAC virus infected chicken embryo cells

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Kamemoto, Lori E.; Hu, Ningjie; Dykes, Ava C.; Yu, Qigui; Zinin, Pavel V.; Sharma, Shiv K.

    2011-05-01

    Micro- Raman spectroscopic investigation of ALVAC virus and of normal chicken embryo fibroblast cells and the cells infected with ALVAC virus labeled with green fluorescence protein (GFP) were performed with a 785 nm laser. Good quality Micro-Raman spectra of the Alvac II virus were obtained. These spectra show that the ALVAC II virus contains buried tyrosine residues and the coat protein of the virus has α-helical structure. A comparison of Raman spectra of normal and virus infected chicken embryo fibroblast cells revealed that the virus infected cells show additional bands at 535, 928, and 1091 cm-1, respectively, corresponding to δ(C-O-C) glycosidic ring, protein α-helix, and DNA (O-P-O) modes. In addition, the tyrosine resonance double (833 and 855 cm-1) shows reversal in the intensity of the higher-frequency band as compared to the normal cells that can be used to identify the infected cells. In the C-H stretching region, the infected cells show bands with higher intensity as compared to that of the corresponding bands in the normal cells. We also found that the presence of GFP does not affect the Raman spectra of samples when using a 785 nm micro-Raman system because the green fluorescence wavelength of GFP is well below the Stokes-Raman shifted spectral region.

  3. IB-LBM simulation on blood cell sorting with a micro-fence structure.

    PubMed

    Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong

    2014-01-01

    A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.

  4. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  5. Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth.

    PubMed

    Wallace, Jared; Hu, Ruozhen; Mosbruger, Timothy L; Dahlem, Timothy J; Stephens, W Zac; Rao, Dinesh S; Round, June L; O'Connell, Ryan M

    2016-01-01

    Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.

  6. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.

    PubMed

    Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N

    2012-10-01

    Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).

  7. DNA Translocation and Cell Electroporation in Micro and Nanofluidic Devices

    NASA Astrophysics Data System (ADS)

    Gupta, Cherry

    The cell membrane is made of a thin (˜ 5nm) lipid bilayer which serves as an effective insulator and diffusion barrier for entities external to the cell from entering the cell. However, for research, diagnostic and therapeutic purposes, there is a need to deliver molecules of interest to the interior of live cells. This is usually accomplished by two methods: (a) carrier mediated delivery which consists of encapsulating the gene/molecule of interest either in an empty viral capsid or in chemically formulated lipoplex or polyplex nanoparticles, or (b) physical methods of delivery, which include the use of different kinds of forces to create reversible pores on the cell membrane (sonoporation, electroporation) or directly inject molecules to the cell cytosol (Gene Gun, microinjection). Of the aforementioned techniques, electroporation is the most commonly used due to it simplicity and ease of use. Our group recently demonstrated a nanochannel based electroporation (NEP) technique, in which two microchannels (˜40 m diameter) are connected by a nanochannel (˜ 200-400 mum diameter) in the center. A cell is positioned in one microchannel such that it makes contact with the nanochannel and transfection agents are placed in the other microchannel. An external electric field applied across the device locally porates the cell where it touches the nancohannel and drives the transfection agents into the cell. Besides maintaining high cell viability and achieving dose control, an important feature of NEP is the delivery of large molecules such as plasmids and quantum dots directly into the cell cytosol. In contrast, delivery of large plasmids during bulk electroporation, wherein cells and genes/plasmids are mixed in a buffered medium and an external electric field is applied across the mixture which electroporates the cells, is via formation of cell membrane bound aggregates which get endocytosed post pulsation. Various mechanisms of DNA transport across the membrane have

  8. MicroRNA function in mast cell biology: protocols to characterize and modulate microRNA expression.

    PubMed

    Maltby, Steven; Plank, Maximilian; Ptaschinski, Catherine; Mattes, Joerg; Foster, Paul S

    2015-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that can modulate mRNA levels through RNA-induced silencing complex (RISC)-mediated degradation. Recognition of target mRNAs occurs through imperfect base pairing between an miRNA and its target, meaning that each miRNA can target a number of different mRNAs to modulate gene expression. miRNAs have been proposed as novel therapeutic targets and many studies are aimed at characterizing miRNA expression patterns and functions within a range of cell types. To date, limited research has focused on the function of miRNAs specifically in mast cells; however, this is an emerging field. In this chapter, we will briefly overview miRNA synthesis and function and the current understanding of miRNAs in hematopoietic development and immune function, emphasizing studies related to mast cell biology. The chapter will conclude with fundamental techniques used in miRNA studies, including RNA isolation, real-time PCR and microarray approaches for quantification of miRNA expression levels, and antagomir design to interfere with miRNA function.

  9. Bioluminescence tracking of alginate micro-encapsulated cell transplants.

    PubMed

    Tiernan, Aubrey R; Sambanis, Athanassios

    2017-02-01

    Cell-based therapies to treat loss-of-function hormonal disorders such as diabetes and Parkinson's disease are routinely coupled with encapsulation strategies, but an understanding of when and why grafts fail in vivo is lacking. Consequently, investigators cannot clearly define the key factors that influence graft success. Although bioluminescence is a popular method to track the survival of free cells transplanted in preclinical models, little is known of the ability to use bioluminescence for real-time tracking of microencapsulated cells. Furthermore, the impact that dynamic imaging distances may have, due to freely-floating microcapsules in vivo, on cell survival monitoring is unknown. This work addresses these questions by applying bioluminescence to a pancreatic substitute based on microencapsulated cells. Recombinant insulin-secreting cells were transduced with a luciferase lentivirus and microencapsulated in Ba(2+) crosslinked alginate for in vitro and in vivo studies. In vitro quantitative bioluminescence monitoring was possible and viable microencapsulated cells were followed in real time under both normoxic and anoxic conditions. Although in vivo dispersion of freely-floating microcapsules in the peritoneal cavity limited the analysis to a qualitative bioluminescence evaluation, signals consistently four orders of magnitude above background were clear indicators of temporal cell survival. Strong agreement between in vivo and in vitro cell proliferation over time was discovered by making direct bioluminescence comparisons between explanted microcapsules and parallel in vitro cultures. Broader application of this bioluminescence approach to retrievable transplants, in supplement to currently used end-point physiological tests, could improve understanding and accelerate development of cell-based therapies for critical clinical applications. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria.

    PubMed

    Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori

    2009-01-01

    It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).

  11. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network

    PubMed Central

    Li, Yilong; Wang, Yongwei; Kong, Rui; Xue, Dongbo; Pan, Shangha; Chen, Hua; Sun, Bei

    2016-01-01

    Despite improvements in surgical procedures and chemotherapy, pancreatic cancer remains one of the most aggressive and fatal human malignancies, with a low 5-year survival rate of only 8%. Therefore, novel strategies for prevention and treatment are urgently needed. Here, we investigated the mechanisms underlying the anti-pancreatic cancer effects dihydroartemisinin (DHA). Microarray and systematic analysis showed that DHA suppressed proliferation, inhibited angiogenesis and promoted apoptosis in two different human pancreatic cancer cell lines, and that 5 DHA-regulated microRNAs and 11 of their target mRNAs were involved in these effects via 19 microRNA-mRNA interactions. Four of these microRNAs, 9 of the mRNAs and 17 of the interactions were experimentally verified. Furthermore, we found that the anti-pancreatic caner effects of DHA in vivo involved 4 microRNAs, 9 mRNAs and 17 microRNA-mRNA interactions. These results improve the understanding of the mechanisms by which DHA suppresses proliferation and angiogenesis and promotes apoptosis in pancreatic cancer cells and indicate that DHA, an effective antimalarial drug, might improve pancreatic cancer treatments. PMID:27613829

  12. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future.

  13. Chip-based Three-dimensional Cell Culture in Perfused Micro-bioreactors

    PubMed Central

    Gottwald, Eric; Lahni, Brigitte; Thiele, David; Giselbrecht, Stefan; Welle, Alexander; Weibezahn, Karl-Friedrich

    2008-01-01

    We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermoforming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 μ (h x w x l) or round recesses with diameters of 300 μ and a depth of 300 μ (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed steril circulation loop that, in the simplest configuration, is additionaly comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising. PMID:19066592

  14. Raman-Ramsey multizone spectroscopy in a pure rubidium vapor cell

    SciTech Connect

    Failache, H.; Lenci, L.; Lezama, A.

    2010-02-15

    In view of application to a miniaturized spectroscopy system, we consider an optical setup that splits a laser beam into several parallel narrow light sheets allowing an effective beam expansion and consequently longer atom-light interaction times. We analyze the multizone coherent population trapping (MZCPT) spectroscopy of alkali-metal-vapor atoms, without buffer gas, in the presence of a split light beam. We show that the MZCPT signal is largely insensitive to intensity broadening. Experimentally observed spectra are in qualitative agreement with the predictions of a simplified model that describes each spectrum as an integral over the atomic velocity distribution of Ramsey multizone spectra.

  15. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells

    PubMed Central

    Cismasiu, Valeriu B; Popescu, Laurentiu M

    2015-01-01

    Telocytes (TCs) are cells ubiquitously distributed in the body and characterized by very long and thin prolongations named telopodes (Tps). Cardiac TCs are the best characterized TCs for the moment. Tps release extracellular vesicles (EVs) in vivo and in vitro suggesting that TCs regulate the activity of other cells by vesicular paracrine signals. TCs have been found within the stem cell niche of several organs. Electron microscopy or electron tomography has shown that Tps are located in close vicinity of stem cells (SC). Since stem cell regulation by niche components involves paracrine signalling, we have investigated if TCs could be part of this mechanism. Using fluorescent labelling of cells and EVs with calcein and Cy5-miR-21 oligos, we provide evidence that TCs can modulate SC through EVs loaded with microRNAs. TCs deliver microRNA to cardiac stem cells (CSCs), as well as to other types of SCs (e.g. hematopoietic SC) indicating that this mechanism is not restricted to cardiac tissue. We also found that CSCs deliver microRNA loaded EVs to TCs, suggesting that there is a continuous, post-transcriptional regulatory signal back and forth between TCs and SC. In conclusion, our data reveal the existence of a reciprocal (bidirectional) epigenetic signalling between TCs and SC. PMID:25600068

  16. micro-Hotplate enhanced optical heating by infrared light for single cell treatment.

    PubMed

    Reinhardt, Helke; Dittrich, Petra Stephanie; Manz, Andreas; Franzke, Joachim

    2007-11-01

    In this study we present a simple approach for fast and localised heating that relies on the strong absorbance of infrared light by microsized patterned surfaces ("micro-hotplates"). Two different materials, micro-arrays of carbon and gold, were tested with respect to their absorbance of the 830 nm diode laser light and their applicability. Both materials were found to be suitable for inducing controlled heating to a temperature increase of more than 10 degrees C within less than a second. The effect of optical heating on living cells (colon cancer cell line SW 480) was investigated with a modified fluorescence microscope. The temperature was controlled by varying the intensity and the exposure time of the laser light. Depending on temperature, induced death of cells in direct contact with the absorbent material was observed, or otherwise cells were kept alive. Cells survive the direct exposure of IR light without the use of the micro-hotplates. In contrast to common heating systems, the optical heating does not need direct contact to a temperature control device. Therefore, it is a very flexible method that can easily be implemented within any microchip. We believe that it will be a versatile tool for initiation and modulation of biochemical or cellular reactions, reversible cell membrane opening, and for control of cell growth.

  17. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  18. The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells

    PubMed Central

    Gambardella, Gennaro; Carissimo, Annamaria; Chen, Amy; Cutillo, Luisa; Nowakowski, Tomasz J.; di Bernardo, Diego; Blelloch, Robert

    2017-01-01

    MicroRNAs act posttranscriptionally to suppress multiple target genes within a cell population. To what extent this multi-target suppression occurs in individual cells and how it impacts transcriptional heterogeneity and gene co-expression remains unknown. Here we used single-cell sequencing combined with introduction of individual microRNAs. miR-294 and let-7c were introduced into otherwise microRNA-deficient Dgcr8 knockout mouse embryonic stem cells. Both microRNAs induce suppression and correlated expression of their respective gene targets. The two microRNAs had opposing effects on transcriptional heterogeneity within the cell population, with let-7c increasing and miR-294 decreasing the heterogeneity between cells. Furthermore, let-7c promotes, whereas miR-294 suppresses, the phasing of cell cycle genes. These results show at the individual cell level how a microRNA simultaneously has impacts on its many targets and how that in turn can influence a population of cells. The findings have important implications in the understanding of how microRNAs influence the co-expression of genes and pathways, and thus ultimately cell fate. PMID:28102192

  19. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  20. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis.

    PubMed

    Burgert, Ingo; Keplinger, Tobias

    2013-11-01

    In the last few decades, micro- and nanomechanical methods have become increasingly important analytical techniques to gain deeper insight into the nanostructure and mechanical design of plant cell walls. The objective of this article is to review the most common micro- and nanomechanical approaches that are utilized to study primary and secondary cell walls from a biomechanics perspective. In light of their quite disparate functions, the common and opposing structural features of primary and secondary cell walls are reviewed briefly. A significant part of the article is devoted to an overview of the methodological aspects of the mechanical characterization techniques with a particular focus on new developments and advancements in the field of nanomechanics. This is followed and complemented by a review of numerous studies on the mechanical role of cellulose fibrils and the various matrix components as well as the polymer interactions in the context of primary and secondary cell-wall function.

  1. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  2. A microRNA-initiated DNAzyme motor operating in living cells

    PubMed Central

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-01-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions. PMID:28262725

  3. Fluctuating expression of microRNAs in adenovirus infected cells.

    PubMed

    Zhao, Hongxing; Chen, Maoshan; Tellgren-Roth, Christian; Pettersson, Ulf

    2015-04-01

    The changes in cellular microRNA (miRNA) expression during the course of an adenovirus type 2 infection in human lung fibroblast were studied by deep RNA sequencing. Expressions of 175 miRNAs with over 100 transcripts per million nucleotides were changed more than 1.5-fold. The expression patterns of these miRNAs changed dramatically during the course of the infection, from upregulation of the miRNAs known as tumor suppressors (such as miR-22, miR-320, let-7, miR-181b, and miR-155) and down-regulation of oncogenic miRNAs (such as miR-21 and miR-31) early to downregulation of tumor suppressor miRNAs (such as let-7 family, mir-30 family, 23/27 cluster) and upregulation of oncogenic miRNAs (include miR-125, miR-27, miR-191) late after infection. The switch in miRNA expression pattern occurred when adenovirus DNA replication started. Furthermore, deregulation of cellular miRNA expression was a step-wise and special sets of miRNAs were deregulated in different phases of infection.

  4. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  5. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  6. HIF-1α-induced microRNA-210 reduces hypoxia-induced osteoblast MG-63 cell apoptosis.

    PubMed

    Sun, Guanwen; Peng, Hao

    2015-01-01

    To better understand the ischemic-hypoxia-induced fracture healing impairment, we determined in this study the microRNA-210 expression in broken bone specimens and in osteoblasts under hypoxia and then determined the influence of microRNA-210 overexpression on the osteoblast cell proliferation and apoptosis. Results demonstrated that microRNA-210 expression was upregulated with an association with HIF-1α overexpression in clinical human catagmatic tissues and was upregulated HIF-1α-dependently in response to hypoxia in osteoblast MG-63 cells. CCK-8 assay indicated that microRNA-210 upregulation by microRNA-210 mimics reduced the chemotherapeutic 5-FU-induced osteoblast cell death, and colony formation assay demonstrated that microRNA-210 mimics promoted osteoblast cells growth. Moreover, the microRNA-210 mimics transfection inhibited the hypoxia-induced MG-63 cell apoptosis via inhibiting the activation of caspase 3 and caspase 9. Therefore, our research indicated a protective role of microRNA-210 in response to hypoxia. And microRNA-210 might serve as a protective role in bone fracture healing.

  7. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell

    NASA Astrophysics Data System (ADS)

    Kaercher, Luiz Eduardo; Goldschmidt, Fabiane; Paniz, José Neri Gottfried; de Moraes Flores, Érico Marlon; Dressler, Valderi Luiz

    2005-06-01

    A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg 2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg 2 + concentrations. Parameters such as the type of acid (HCl or HNO 3) and its concentration, reductant (NaBH 4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg 2 + and total Hg determinations were: 1.0 mol l - 1 HCl as carrier solution, carrier flow rate of 3.5 ml min - 1 , 0.1% (m/v) NaBH 4, reductant flow rate of 1.0 ml min - 1 and carrier gas flow rate of 200 ml min - 1 . The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l - 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g - 1 . Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l - 1 HCl solution for analyte extraction. The Hg 2 + and CH 3Hg + concentrations found were in agreement with certified ones.

  8. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  9. Taxane recovery from cells of Taxus in micro- and hypergravity

    NASA Technical Reports Server (NTRS)

    Durzan, D. J.; Ventimiglia, F.; Havel, L.

    1998-01-01

    Cell suspension cultures of Taxus cuspidata produce taxanes that are released from the outer surface of cells into the culture medium as free and bound alkaloids. Paclitaxel (Taxol (TM)), is an anti-cancer drug in short supply. It has a taxane ring derived from baccatin III and a C-13 phenylisoserine side-chain. This drug is produced over a wide range of gravitational forces. Monoclonal and polyclonal antibodies to paclitaxel, baccatin III, and the C-13 phenylisoserine side chain were combined in multiple-labeling studies to localize taxanes and paclitaxel on cell surfaces or on particles released into the culture medium. Bioreactor vessel design altered the composition of taxanes recovered from cells in simulated microgravity. At 10(-2) and 2x10(-4)g, taxane recovery was reduced but biomass growth and percent paclitaxel was significantly increased. At 1 to 24g, growth was reduced with a significant recovery of total taxanes with low percent paclitaxel. Bound paclitaxel was also localized in endonuclease-rich fragmenting nuclei of individual apoptotic cells. A model is presented comprising TCH (touch) genes encoding enzymes that modify taxane-bearing xylan residues in cell walls, the calcium-sensing of gravitational forces by the cytoplasm, and the predisposition of nuclei to apoptosis. This integrates the adaptive physiological and biochemical responses of drug-producing genomes with gravitational forces.

  10. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis.

    PubMed

    Hezaveh, Kebria; Kloetgen, Andreas; Bernhart, Stephan H; Mahapatra, Kunal Das; Lenze, Dido; Richter, Julia; Haake, Andrea; Bergmann, Anke K; Brors, Benedikt; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Eils, Roland; Haas, Siegfried; Hoffmann, Steve; Karsch, Dennis; Klapper, Wolfram; Kleinheinz, Kortine; Korbel, Jan; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Leich, Ellen; Loeffler, Markus; Mantovani-Loeffler, Luisa; López, Cristina; McHardy, Alice C; Möller, Peter; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schlesner, Matthias; Scholz, Ingrid; Stadler, Peter F; Stilgenbauer, Stephan; Sungalee, Stéphanie; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A; Siebert, Reiner; Borkhardt, Arndt; Hummel, Michael; Hoell, Jessica I

    2016-11-01

    MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.

  11. Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells

    PubMed Central

    Hime, Gary R

    2009-01-01

    Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which coordinate stem cell proliferation with maintenance and differentiation. Relatively recently, the small, non-protein coding microRNAs (miRNAs) have been identified to function as important regulators in stem cell development. Individual miRNAs are capable of directing the translational repression of many mRNAs targets, generating widespread changes in gene expression. In addition, dysfunction of miRNA expression is commonly associated with cancer development. Cancer stem cells, which are likely responsible for initiating and maintaining tumorigenesis, share many similarities with stem cells and some mechanisms of miRNA function may be in common between these two cell types. PMID:19829062

  12. Progress in the Efficiency of Wide-Gap Cu(In1-xGax)Se2 Solar Cells Using CIGSe Layers Grown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Sakurai, Keiichiro; Yamada, Akimasa; Shibata, Hajime; Matsubara, Koji; Yonemura, Minoru; Nakamura, Satoshi; Nakanishi, Hisayuki; Kojima, Takeshi; Niki, Shigeru

    2005-05-01

    Progress in the performance of wide-gap Cu(In1-xGax)Se2 (CIGSe) solar cells for x values around 0.5 has been demonstrated using CIGSe layers grown in the presence of water vapor. While CIGSe thin films deposited in the presence of water vapor showed variations in electrical properties such as increases in hole carrier density and a consequent enhancement of p-type conductivity, no significant changes in the morphology and growth orientation were observed. Both the open circuit voltages and current densities of the CIGSe solar cells were improved using CIGSe layers grown in water vapor. An 18.1%-efficient cell with an open circuit voltage of 0.744 V, a current density of 32.4 mA/cm2 and a fill factor of 0.752 was fabricated from a 1.3 eV-CIGSe (x ˜ 0.48) layer.

  13. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.

    PubMed

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2015-06-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.

  14. MicroRNAs in clear cell renal cell carcinoma: biological functions and applications

    PubMed Central

    2015-01-01

    MicroRNAs (miRs) are small noncoding RNAs that govern many biological processes. They frequently acquire a gain or a loss of function in cancer and hence play a causative role in the development and progression of neoplasms. They could be used as biomarkers to improve our knowledge on diagnosis, prognosis and drug resistance, and to attempt therapeutic approaches in several types of cancer including clear cell renal cell carcinoma (ccRCC). ccRCC is the most predominant subtype of RCC that accounts for about 90% of all renal cancers. Since ccRCC is generally asymptomatic until very late, it is difficult to diagnose early. Moreover, in the absence of preventive treatments for metastatic ccRCC after surgical resection of the primary cancer, predictive prognostic biomarkers are needed in order to achieve appropriate therapies. Herein the role of miRs in the biology of ccRCC and the potential applications of these molecules are discussed. Moreover, future applications in the diagnostic and prognostic field, as well as their impact on drug response and therapeutic targets are also explored. Their use in clinical practice as molecular biomarkers alone, or in combination with other biological markers could accelerate progress, help design personalized therapies, limit side effects, and improve quality of life of ccRCC patients.

  15. Micro- and macrovascular function in children with sickle cell anaemia and sickle cell haemoglobin C disease.

    PubMed

    Möckesch, Berenike; Charlot, Keyne; Jumet, Stéphane; Romana, Marc; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressieres, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Connes, Philippe; Antoine-Jonville, Sophie

    2017-02-04

    It is unclear whether vascular function is affected similarly in children with sickle cell anaemia (SS) and children with sickle haemoglobin C (SC) disease. Therefore, we compared micro and macrovascular functions in healthy (AA) children, children with SS and SC disease, and assessed their association with physical activity. Participants (24 SS, 22 SC and 16 AA), were compared in terms of 1) thermal hyperaemic response (finger pad warming to 42°C) measured by Laser Doppler techniques, 2) arterial stiffness determined by pulse wave velocity, 3) daily energy expenditure related to moderate and intense physical activities estimated by questionnaire and 4) fitness level, evaluated by the six-minute walk test. Response to heating differed between SS, SC and controls. Peripheral microvascular reactivity was lower and pulse wave velocity higher in SS compared to AA. SC had blunted microvascular reactivity in response to heating compared to AA but pulse wave velocity was not different within the two groups. Physical activity and fitness levels were markedly lower in sickle cell patients compared to healthy controls but no association was observed with vascular function. Microvasodilatory reserve is decreased in both SS and SC patients but only SS patients were also characterised by impaired macrovascular function.

  16. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia.

    PubMed

    Chen, Xiaomei; Xiong, Wei; Li, Huiyu

    2016-12-01

    Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting

  17. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia

    PubMed Central

    Chen, Xiaomei; Xiong, Wei; Li, Huiyu

    2016-01-01

    Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting

  18. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface

    NASA Astrophysics Data System (ADS)

    Li, Jingan; Li, Guicai; Zhang, Kun; Liao, Yuzhen; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2013-05-01

    Micro-patterning as an effective bio-modification technique is increasingly used in the development of biomaterials with superior mechanical and biological properties. However, as of now, little is known about the simultaneous regulation of endothelial cells (EC) and smooth muscle cells (SMC) by cardiovascular implants. In this study, a co-culture system of EC and SMC was built on titanium surface by the high molecular weight hyaluronic acid (HMW-HA) micro-pattern. Firstly, the micro-pattern sample with a geometry of 25 μm wide HMW-HA ridges, and 25 μm alkali-activated Ti grooves was prepared by microtransfer molding (μTM) for regulating SMC morphology. Secondly, hyaluronidase was used to decompose high molecular weight hyaluronic acid into low molecular weight hyaluronic acid which could promote EC adhesion. Finally, the morphology of the adherent EC was elongated by the SMC micro-pattern. The surface morphology of the patterned Ti was imaged by SEM. The existence of high molecular weight hyaluronic acid on the modified Ti surface was demonstrated by FTIR. The SMC micro-pattern and EC/SMC co-culture system were characterized by immunofluorescence microscopy. The nitric oxide release test and cell retention calculation were used to evaluate EC function on inhibiting hyperplasia and cell shedding, respectively. The results indicate that EC in EC/SMC co-culture system displayed a higher NO release and cell retention compared with EC cultured alone. It can be suggested that the EC/SMC co-culture system possessed superiority to EC cultured alone in inhibiting hyperplasia and cell shedding at least in a short time of 24 h.

  19. MicroRNA deregulation in cancer cells and the tumor microenvironment

    PubMed Central

    Rupaimoole, Rajesha; Calin, George A.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2015-01-01

    MicroRNAs (miRNAs) are a key component of the noncoding RNA family. The underlying mechanisms involved in the interplay between the tumor microenvironment and cancer cells involve highly dynamic factors such as hypoxia and cell types such as cancer-associated fibroblasts and macrophages. Although miRNA levels are known to be altered in cancer cells, recent evidence suggests a critical role for the tumor microenvironment in regulating miRNA biogenesis, methylation, and transcriptional changes. Here, we discuss the complex pro-tumorigenic symbiotic role between tumor cells, the tumor microenvironment, and miRNA deregulation. PMID:26865249

  20. Inverse inkjet printed gold micro electrodes for the structured deposition of epithelial cells and fibrin.

    PubMed

    Zehbe, Rolf; Gross, Ulrich; Schubert, Helmut

    2007-11-01

    The micro structured deposition of vital cells is an important challenge in tissue engineering, biosensor technology, and in all research dealing with cell-cell and cell-substrate contacts. Hence, an inkjet printing technology has been developed to manufacture Au-based micro electrodes by sputter coating inversely printed polyester-foils. These electrodes feature minimal structure sizes of 35 microm and consist of an anode and a cathode part. They were used with fibrinogenic epithelial cell suspensions to deposit human keratinocytes (HaCaT), mouse fibroblasts (L-929) and the protein fibrin by applying DC voltage. Subsequently cells were electrophoretically attracted to the anode, following exactly its shape, while the insoluble fibrin was simultaneously precipitated due to the electrically mediated polymerization of the soluble fibrinogen molecule. Furthermore, it was demonstrated that this technique is suitable to co-deposit both cell types in a layered fashion. The lower voltage boundary for successful deposition was set at approximately 0.8 V needed for the conversion of fibrinogen into fibrin, while the upper voltage boundary was set at approximately 1.85 V, when commencing electrolysis inhibited the deposition of vital cells. Subsequent to the anodic cell-fibrin deposition, cells were cultivated for up to 4 days and then characterized by FDA+EB staining, methyl violet staining, MNF staining and SEM. The conversion from fibrinogen into fibrin was studied using ATR/FTIR.

  1. MicroRNAs, Major Players in B Cells Homeostasis and Function

    PubMed Central

    Danger, Richard; Braza, Faouzi; Giral, Magali; Soulillou, Jean-Paul; Brouard, Sophie

    2014-01-01

    As a main actor in humoral immunity, B cells participate in various antibody-related disorders. However, a deeper understanding of B-cell differentiation and function is needed in order to decipher their immune-modulatory roles, notably with the recent highlighting of regulatory B cells. microRNAs (miRNAs), key factors in various biological and pathological processes, have been shown to be essential for B-cell homeostasis, and therefore understanding their participation in B-cell biology could help identify biomarkers and contribute toward curing B-cell-related immune disorders. This review aims to report studies casting light on the roles played by miRNAs in B-cell lineage and function and B-cell-related immune pathologies. PMID:24653724

  2. Micro and nanofluidic structures for cell sorting and genomic analysis

    NASA Astrophysics Data System (ADS)

    Morton, Keith J.

    Microfluidic systems promise rapid analysis of small samples in a compact and inexpensive format. But direct scaling of lab bench protocols on-chip is challenging because laminar flows in typical microfluidic devices are characterized by non-mixing streamlines. Common microfluidic mixers and sorters work by diffusion, limiting application to objects that diffuse slowly such as cells and DNA. Recently Huang et.al. developed a passive microfluidic element to continuously separate bio-particles deterministically. In Deterministic Lateral Displacement (DLD), objects are sorted by size as they transit an asymmetric array of microfabricated posts. This thesis further develops DLD arrays with applications in three broad new areas. First the arrays are used, not simply to sort particles, but to move streams of cells through functional flows for chemical treatment---such as on-chip immunofluorescent labeling of blood cells with washing, and on-chip E.coli cell lysis with simultaneous chromosome extraction. Secondly, modular tiling of the basic DLD element is used to construct complex particle handling modes that include beam steering for jets of cells and beads. Thirdly, nanostructured DLD arrays are built using Nanoimprint Lithography (NIL) and continuous-flow separation of 100 nm and 200 nm size particles is demonstrated. Finally a number of ancillary nanofabrication techniques were developed in support of these overall goals, including methods to interface nanofluidic structures with standard microfluidic components such as inlet channels and reservoirs, precision etching of ultra-high aspect ratio (>50:1) silicon nanostructures, and fabrication of narrow (˜ 35 nm) channels used to stretch genomic length DNA.

  3. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  4. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate.

    PubMed

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego; Aránega, Amelia Eva

    2015-09-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5(+) satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine.

  5. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.

    PubMed

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-29

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300 °C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm(-2) at 850, 800, and 750 °C, respectively.

  6. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    PubMed Central

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)–YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm−2 at 850, 800, and 750°C, respectively. PMID:25169166

  7. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme.

    PubMed

    Li, Wen-Bo; Ma, Min-Wang; Dong, Li-Jie; Wang, Fei; Chen, Lu-Xia; Li, Xiao-Rong

    2011-09-15

    Aberrant expression of microRNAs (miRNAs) has been implicated in cancer initiation and progression. In this study, we found that microRNA-34a (miR-34a) is significantly downregulated in glioblastoma multiforme (GBM) specimens compared with normal brain tissues. Growth curve and colony formation assays revealed that miR-34a suppresses proliferation of U373MG and SHG44 glioblastoma cells. Overexpression of miR-34a could induce apoptosis of glioblastoma cells. Also, we identified notch1 as a direct target gene of miR-34a. Knockdown of notch1 showed similar cellular functions as overexpression of miR-34a both in vitro and in vivo. Collectively, our findings show that miR-34a is downregulated in GBM cells and inhibits GBM growth by targeting notch1.

  8. Micro segmented-flow in biochemical and cell-based assays.

    PubMed

    Clausell-Tormos, Jenifer; Merten, Christoph A

    2012-01-01

    Micro-segmented flow (e.g. in microfluidic channels, capillaries or a length of tubing) has become a promising technique in modern biology. Compared to conventional formats such as microtiter plates, sample volumes can be reduced about 1000-fold, thus allowing a massive reduction of assay costs and the use of samples available in low quantities, only (e.g. primary cells). Furthermore, assays can be highly parallelized and performed at superb spatio-temporal resolution. Here, we review the state-of-the-art in micro-segmented flow as applied in biochemical, cell- and multicellular organisms-based assays. We discuss likely future applications such as single cell / single organism proteomics and transcriptomics and point out the specific advantages and limitations compared to emulsion-based (droplet-based) approaches.

  9. Ion bombardment induced formation of micro-craters in plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Brown, I. G.

    2006-01-01

    Ion beam bombardment of biological material has been recently applied for gene transfer in both plant and bacterial cells. A consistent physical mechanism for this significant result has not yet been developed. A fundamental question about the mechanism is the possible formation of pathways due to ion bombardment that are responsible for the gene transfer. We have carried out investigations of the effects of low-energy bombardment by both gaseous and metallic ion species of onion skin cells on their surface microstructure. Our experimental results reveal evidence demonstrating that the formation of micro-crater-like structures on the plant cell envelope surface is a general phenomenon consequent to ion bombardment, no matter what ion species, under certain ion beam conditions. The micro-craters are about 0.1-1 μm in size (diameter) and a few tens of nanometers in depth. The micro-crater formation process seems to be unrelated to the chemical composition of and rapid water evaporation from the cell envelope, but is associated with the special microstructure of the cell wall.

  10. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions

    PubMed Central

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-01-01

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types. PMID:27661112

  11. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions.

    PubMed

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-11-08

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.

  12. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  13. Distinct patterns of cell motion inside a micro-channel under different osmotic conditions.

    PubMed

    Tsai, Chia-Hung Dylan; Kaneko, Makoto; Sakuma, Shinya; Arai, Fumihito

    2013-01-01

    The effect of osmotic condition on a living cell inside a micro-channel is firstly studied in this work. By utilizing a high-speed camera, we observed distinct patterns of cell motion under different osmotic conditions, which are established by saline with different concentrations of sodium chloride (NaCl). The cell motions are tracked by a computer, and are presented by the coordinates of location and time (x-t chart). The motions of cells under hypotonic condition (NaCl% < 0.9%) are convex curves on the chart while the ones under isotonic and hypertonic conditions (NaCl% ≥ 0.9%) are concave curves. Since saline is widely used in both medical practices and cell-related researches, our results point out two important facts: 1) Cells are sensitive to the percentage of NaCl. One percent difference in overall concentration makes dramatic changes in cell characteristics, such as cell stiffness. 2) The micro-channel method can clearly tell the difference between hypotonic, isotonic and hypertonic conditions according to the pattern of cell motion. Interpretations of the phenomena from different perspectives are also discussed in this paper.

  14. Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase.

    PubMed

    Qi, Chunxiao; Li, Yaqian; Badger, Patrick; Yu, Hongsheng; You, Zhifeng; Yan, Xiaojun; Liu, Wei; Shi, Yan; Xia, Tie; Dong, Jiahong; Huang, Chenyu; Du, Yanan

    2017-05-01

    Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow satisfactory therapeutic efficacy and minimized side-effects. Here, we rationally designed a pathology-targeted cell delivery strategy leveraging injectable micro-scaffolds as cell-loading capsule and endogenous tissue transglutaminase (TGase) at lesion site as adhesive. Up-regulated TGase post-liver injury catalyzed chemical bonding between the glutamine and lysine residues on liver surface and micro-scaffolds both ex vivo and in vivo, facilitating sufficient adhesion on the pathological liver. Upon intraperitoneal injection, Mesenchymal Stem Cell-loaded capsules, exhibiting cell protection from shear-induced damage and post-transplantation anoikis, adhered to the CCl4-treated liver with a hundred-fold improvement in targeting efficiency (70.72%) compared to free-cell injection, which dramatically improved mice survival (33.3% vs. 0% for free-cell therapy) even with low-dosage treatment. This unique and widely-applicable cell delivery mechanism and strategy hold great promise for transforming cell therapy for refractory diseases.

  15. Development of a micro cell compression stimulator for evaluating real-time cellular responses

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Yang, Y.; Minami, K.

    2012-05-01

    This paper presents a micro cell compression stimulator for evaluating real-time cellular responses to compression stimuli. The device was produced by a micro three-dimensional structure fabrication process using multiple exposures to the photoresist. The device consists of a pressure inlet port, cell inlet ports, a gasket, microchannels, cell culture chambers, and a diaphragm on the culture chamber for applying compressive pressure to cells. Compression stimuli applied to the cells can be controlled by regulating the expansion of the diaphragm via a pressure control. The device permits the observation of cellular responses to compressive pressure in real time because it is made of transparent materials and stimulates the cells without deforming the cell culture surface, when observed by optical microscopy. We demonstrated the validity of the fabrication process, evaluated the performance of the fabricated device, and compared the experimental results with the FEM structural analysis results. We found through operational testing that the diaphragm was deformed quickly by applying negative/positive pressure and that the diaphragm displacement became larger with increasing applied pressure. These results indicate that this device can be used to control the intensity and the cell stimulus profile by regulating the applied pressure. In all cases, the cellular deformation during compression stimulus was successfully observed in real time using an optical microscope. The device is expected to facilitate the control of stem cell differentiation and the clarification of cellular mechanoreceptor mechanisms and signal transduction pathways.

  16. Study of dendritic cell migration using micro-fabrication.

    PubMed

    Vargas, Pablo; Chabaud, Mélanie; Thiam, Hawa-Racine; Lankar, Danielle; Piel, Matthieu; Lennon-Dumenil, Ana-Maria

    2016-05-01

    Cell migration is a hallmark of dendritic cells (DCs) function. It is needed for DCs to scan their environment in search for antigens as well as to reach lymphatic organs in order to trigger T lymphocyte's activation. Such interaction leads to tolerance in the case of DCs migrating under homeostatic conditions or to immunity in the case of DCs migrating upon encounter with pathogen-associated molecular patterns. Cell migration is therefore essential for DCs to transfer information from peripheral tissues to lymphoid organs, thereby linking innate to adaptive immunity. This stresses the need to unravel the molecular mechanisms involved. However, the tremendous complexity of the tissue microenvironment as well as the limited spatio-temporal resolution of in vivo imaging techniques has made this task difficult. To bypass this problem, we have developed microfabrication-based experimental tools that are compatible with high-resolution imaging. Here, we will discuss how such devices can be used to study DC migration under controlled conditions that mimic their physiological environment in a robust quantitative manner.

  17. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  18. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Svensson, Jan Erik; Froitzheim, Jan

    2015-08-01

    Chromium vaporization and oxide scale growth are probably the two most important degradation mechanisms associated with the interconnect in Solid Oxide Fuel Cells (SOFCs) when Cr2O3-forming alloys are used as the interconnect material. This study examines the influence of temperature on both mechanisms. Two commercially available steels; Crofer 22 H and Sanergy HT, were isothermally exposed at 650, 750 and 850 °C in an air-3% H2O atmosphere with a high flow rate. Volatile chromium species were collected using the denuder technique. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction (XRD). The findings of this study show that although Cr evaporation is reduced with lower temperature, its relative importance compared to oxide scale growth is greater.

  19. Assessing in vivo microRNA function in the germline stem cells of the Drosophila ovary.

    PubMed

    Chan, Kin; Ruohola-Baker, Hannele

    2010-01-01

    A more complete understanding of the biology of adult stem cells could yield important insights toward devising effective cell-based regenerative therapies to treat disease. The germline stem cells (GSCs) in the fruit fly Drosophila melanogaster are an excellent in vivo model for the study of adult stem cell biology. There is increasing evidence from a growing field that microRNAs (miRNAs) play important roles in controlling many aspects of stem-cell biology. Using straightforward genetic manipulations combined with well-established cell biological analysis techniques, we and others have found that the miRNA pathway regulates the cell division rate of Drosophila GSCs as well as the maintenance of the GSCs in their niche. In this chapter, we offer a detailed, self-contained description of a general method to assess the in vivo functions of miRNAs in the GSCs of the Drosophila ovary.

  20. Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices.

    PubMed

    Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo

    2012-11-19

    In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.

  1. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart.

  2. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  3. Fabrication of micro-nano composite textured surface for slurry sawn mc-Si wafers cell

    NASA Astrophysics Data System (ADS)

    Niu, Y. C.; liu, Z.; Ren, X. K.; Liu, X. J.; Liu, H. T.; Jiang, Y. S.

    2017-01-01

    In order to enhance the PV efficiency of the cell made from slurry sawn (SS) mc-Si wafers, using a Ag-assisted electroless etching (AgNO3+HF+H2O2) combined with an auxiliary etching (HF+HNO3) the RENA textured SS mc-Si wafers (called as RENA wafers) were further textured (nano pores were formed on the original micro pits) to change into micro-nano composite textured wafers (called as MN-RENA wafers). The solar cells made from the MN-RENA wafers had a better PV efficiency than that of RENA wafers. This is mainly attributed to the higher light-trapping of the micro-nano composite texture. The nano size texture enhanced the light-trap of wafer surface and, at the same time, the micro size texture maintained the light-trap uniformity of different gains of RENA wafer. However, there still exist a potential for optimization, such as, the SiNx passviation coating should be improved to be deposited more uniformly in order to passivate the bottom of pits better and to reduce the reflectance of the obtuse tips of pits.

  4. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  5. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    PubMed

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  6. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells.

    PubMed

    Choi, Yong Jin; Lin, Chao-Po; Risso, Davide; Chen, Sean; Kim, Thomas Aquinas; Tan, Meng How; Li, Jin Billy; Wu, Yalei; Chen, Caifu; Xuan, Zhenyu; Macfarlan, Todd; Peng, Weiqun; Lloyd, K C Kent; Kim, Sang Yong; Speed, Terence P; He, Lin

    2017-02-10

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) efficiently generate all embryonic cell lineages but rarely generate extraembryonic cell types. We found that microRNA miR-34a deficiency expands the developmental potential of mouse pluripotent stem cells, yielding both embryonic and extraembryonic lineages and strongly inducing MuERV-L (MERVL) endogenous retroviruses, similar to what is seen with features of totipotent two-cell blastomeres. miR-34a restricts the acquisition of expanded cell fate potential in pluripotent stem cells, and it represses MERVL expression through transcriptional regulation, at least in part by targeting the transcription factor Gata2. Our studies reveal a complex molecular network that defines and restricts pluripotent developmental potential in cultured ESCs and iPSCs.

  7. A precious-metal free micro fuel cell accumulator

    NASA Astrophysics Data System (ADS)

    Bretthauer, C.; Müller, C.; Reinecke, H.

    2011-05-01

    In recent years, integrated fuel cell (FC) type primary and secondary batteries attracted a great deal of attention as integrated on-chip power sources due to their high theoretical power densities. Unfortunately, the costs of these devices have been rather high. This is partially due to the involved clean-room processes, but also due to the fact that these devices generally rely on expensive precious-metals such as Pd and Pt. Therefore we developed a novel integrated FC type accumulator that is based on non-precious-metals only. The key component of the presented accumulator is its alkaline polymer electrolyte membrane that allows not only the usage of a low-cost AB5 type hydrogen storage electrode, but also the usage of La0.6Ca0.4CoO3 as a precious-metal free bifunctional catalyst for the air-breathing electrode. Additionally the presented design requires only comparatively few cleanroom processes which further reduces the overall production costs. Although abdicating precious-metals, the presented accumulator shows an open circuit voltage of 0.81 V and a maximum power density of 0.66 mW cm-2 which is comparable or even superior to former precious-metal based cells.

  8. MicroRNA93 Regulates Proliferation and Differentiation of Normal and Malignant Breast Stem Cells

    PubMed Central

    Liu, Suling; Patel, Shivani H.; Ginestier, Christophe; Ibarra, Ingrid; Martin-Trevino, Rachel; Bai, Shoumin; McDermott, Sean P.; Shang, Li; Ke, Jia; Ou, Sing J.; Heath, Amber; Zhang, Kevin J.; Korkaya, Hasan; Clouthier, Shawn G.; Charafe-Jauffret, Emmanuelle; Birnbaum, Daniel; Hannon, Gregory J.; Wicha, Max S.

    2012-01-01

    MicroRNAs (miRNAs) play important roles in normal cellular differentiation and oncogenesis. microRNA93 (mir-93), a member of the mir106b-25 cluster, located in intron 13 of the MCM7 gene, although frequently overexpressed in human malignancies may also function as a tumor suppressor gene. Using a series of breast cancer cell lines representing different stages of differentiation and mouse xenograft models, we demonstrate that mir-93 modulates the fate of breast cancer stem cells (BCSCs) by regulating their proliferation and differentiation states. In “claudinlow” SUM159 cells, expression of mir-93 induces Mesenchymal-Epithelial Transition (MET) associated with downregulation of TGFβ signaling and downregulates multiple stem cell regulatory genes, including JAK1, STAT3, AKT3, SOX4, EZH1, and HMGA2, resulting in cancer stem cell (CSC) depletion. Enforced expression of mir-93 completely blocks tumor development in mammary fat pads and development of metastases following intracardiac injection in mouse xenografts. The effect of mir-93 on the CSC population is dependent on the cellular differentiation state, with mir-93 expression increasing the CSC population in MCF7 cells that display a more differentiated “luminal” phenotype. mir-93 also regulates the proliferation and differentiation of normal breast stem cells isolated from reduction mammoplasties. These studies demonstrate that miRNAs can regulate the states and fates of normal and malignant mammary stem cells, findings which have important biological and clinical implications. PMID:22685420

  9. Micro-Raman spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells

    SciTech Connect

    Chan, J W; Taylor, D; Zwerdling, T; Lane, S M; Ihara, K; Huser, T

    2005-01-18

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often non-specific, slow, biologically perturbing, or a combination, thereof. Here, we show that single-cell micro-Raman spectroscopy averts these shortcomings and can be used to discriminate between unfixed normal human lymphocytes and transformed Jurkat and Raji lymphocyte cell lines based on their biomolecular Raman signatures. We demonstrate that single-cell Raman spectra provide a highly reproducible biomolecular fingerprint of each cell type. Characteristic peaks, mostly due to different DNA and protein concentrations, allow for discerning normal lymphocytes from transformed lymphocytes with high confidence (p << 0.05). Spectra are also compared and analyzed by principal component analysis (PCA) to demonstrate that normal and transformed cells form distinct clusters that can be defined using just two principal components. The method is shown to have a sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as belonging to the normal or transformed type. These results demonstrate the potential application of confocal micro-Raman spectroscopy as a clinical tool for single cell cancer detection based on intrinsic biomolecular signatures, therefore eliminating the need for exogenous fluorescent labeling.

  10. Polymeric optical fiber tweezers as a tool for single cell micro manipulation and sensing

    NASA Astrophysics Data System (ADS)

    Rodrigues Ribeiro, R. S.; Soppera, O.; Guerreiro, A.; Jorge, P. A...

    2015-09-01

    In this paper a new type of polymeric fiber optic tweezers for single cell manipulation is reported. The optical trapping of a yeast cell using a polymeric micro lens fabricated by guided photo polymerization at the fiber tip is demonstrated. The 2D trapping of the yeast cells is analyzed and maximum optical forces on the pN range are calculated. The experimental results are supported by computational simulations using a FDTD method. Moreover, new insights on the potential for simultaneous sensing and optical trapping, are presented.

  11. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    PubMed Central

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  12. MicroRNA-92b represses invasion-metastasis cascade of esophageal squamous cell carcinoma

    PubMed Central

    Ma, Gang; Jing, Chao; Li, Lin; Huang, Furong; Ding, Fang; Wang, Baona; Lin, Dongmei; Luo, Aiping; Liu, Zhihua

    2016-01-01

    Invasion and metastasis are major contributors to cancer-caused death in patients suffered from esophageal squamous cell carcinoma (ESCC). To explore the microRNAs involved in regulating invasion-metastasis cascade of ESCC, we established two pairs of sublines (30-U/D and 180-U/D) with distinct motility capacity from two ESCC cell lines (KYSE30 and KYSE180). Screening of the differentially expressed microRNAs identified that microRNA-92b-3p (miR-92b) could dramatically inhibit invasion and metastasis of ESCC cells in vitro and in vivo. Subsequent studies showed that miR-92b exerted its inhibitory function through suppressing the expression of integrin αV (ITGAV), which further reduced phosphrylated FAK and impaired Rac1 activation. Moreover, higher expression of miR-92b in ESCC tissues correlated inversely with lymph node metastasis and indicated better prognosis. Together, these results for the first time describe how miR-92b suppresses the motility of ESCC cells and provide a promise for diagnosis or therapy of ESCC invasion and metastasis. PMID:26934001

  13. Integrated Field Testing of Fuel Cells and Micro-Turbines

    SciTech Connect

    Jerome R. Temchin; Stephen J. Steffel

    2005-11-01

    A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This report contains installation and operation issues as well as the utility perspective on DG deployment.

  14. Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway-regulated Circulating microRNA

    DTIC Science & Technology

    2013-09-01

    Cancer via VHL /HIF Pathway-regulated Circulating microRNA PRINCIPAL INVESTIGATOR: Allan Pantuck, MD...SUBTITLE Early Diagnosis of Clear Cell Kidney Cancer via VHL /HIF Pathway-regulated Circulating microRNA 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  15. Integrated microRNA-mRNA analysis revealing the potential roles of microRNAs in tongue squamous cell cancer.

    PubMed

    Zhou, Xiao-Li; Wu, Jun-Hua; Wang, Xin-Juan; Guo, Fu-Jun

    2015-07-01

    Tongue squamous cell carcinoma (TSCC) is a rare and aggressive type of cancer, which is associated with a poor prognosis. Identification of patients at high risk of TSCC tumorigenesis may provide information for the early detection of metastases, and for potential treatment strategies. MicroRNA (miRNA; miR) and mRNA expression profiling of TSCC tissue samples and normal control tissue samples were obtained from three Gene Expression Omnibus (GEO) data series. Bioinformatics analyses, including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes were used to identify genes and pathways specifically associated with miRNA-associated TSCC oncology. A total of 25 miRNAs and 769 mRNAs were differentially expressed in the two groups assessed, and all the differentially expressed miRNA and mRNA target interactions were analyzed. The miRNA target genes were predominantly associated with 38 GO terms and 13 pathways. Of the genes differentially expressed between the two groups, and confirmed in another GEO series, miRNA-494, miRNA-96, miRNA-183, runt-related transcription factor 1, programmed cell death protein 4 and membrane-associated guanylate kinase were the most significantly altered, and may be central in the regulation of TSCC. Bioinformatics may be used to analyze large quantities of data in microarrays through rigorous experimental planning, statistical analysis and the collection of complete data on TSCC. In the present study, a novel differential miRNA-mRNA expression network was constructed, and further investigation may provide novel targets for the diagnosis of TSCC.

  16. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  17. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer.

    PubMed

    Kasinski, A L; Kelnar, K; Stahlhut, C; Orellana, E; Zhao, J; Shimer, E; Dysart, S; Chen, X; Bader, A G; Slack, F J

    2015-07-01

    Targeted cancer therapies, although often effective, have limited utility owing to preexisting primary or acquired secondary resistance. Consequently, agents are sometimes used in combination to simultaneously affect multiple targets. MicroRNA mimics are excellent therapeutic candidates because of their ability to repress multiple oncogenic pathways at once. Here we treated the aggressive Kras;p53 non-small cell lung cancer mouse model and demonstrated efficacy with a combination of two tumor-suppressive microRNAs (miRNAs). Systemic nanodelivery of miR-34 and let-7 suppressed tumor growth leading to survival advantage. This combinatorial miRNA therapeutic approach engages numerous components of tumor cell-addictive pathways and highlights the ability to deliver multiple miRNAs in a safe and effective manner to target lung tissue.

  18. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    SciTech Connect

    Gu, Wenbin

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  19. Concise review: harmonies played by microRNAs in cell fate reprogramming.

    PubMed

    Moradi, Sharif; Asgari, Sassan; Baharvand, Hossein

    2014-01-01

    It is now well-established that somatic cells can be reprogrammed to alternative cell fates by ectopic coexpression of defined factors. Reprogramming technology has uncovered a huge plasticity besides gene regulatory networks (GRNs) of differentiated cell states. MicroRNAs (miRNAs), which are an integral part of GRNs, have recently emerged as a powerful reprogramming toolbox. They regulate numerous genes, thereby modulating virtually all cellular processes, including somatic cell reprogramming. Not only can miRNAs provide novel opportunities for interrogating mechanisms of induced pluripotency and direct lineage reprogramming but they also offer hope for the efficient creation of safe cell sources for regenerative medicine. In reviewing landmark roles of miRNAs in cell reprogramming, we offer suggestions for evolution of the reprogramming field.

  20. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

    PubMed

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-10-11

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

  1. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    PubMed Central

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  2. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  3. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    PubMed

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34(+) hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34(+) hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming.

  4. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  5. Multiscale Modeling of Cell Interaction in Angiogenesis: From the Micro- to Macro-scale

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Maini, Philip; Byrne, Helen

    Solid tumors require a supply of nutrients to grow in size. To this end, tumors induce the growth of new blood vessels from existing vasculature through the process of angiogenesis. In this work, we use a discrete agent-based approach to model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death processes. We use the transition probabilities associated with the discrete models to determine collective cell behavior, in terms of partial differential equations, using a Markov chain and master equation framework. We find that the cell-level dynamics gives rise to a migrating cell front in the form of a traveling wave on the macro-scale. The behavior of this front depends on the cell interactions that are included and the extent to which volume exclusion is taken into account in the discrete micro-scale model. We also find that well-established continuum models of angiogenesis cannot distinguish between certain types of cell behavior on the micro-scale. This may impact drug development strategies based on these models.

  6. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  7. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  8. Idiosyncrasies of Physical Vapor Deposition Processes from Various Knudsen Cells for Quinacridone Thin Film Growth on Silicon Dioxide.

    PubMed

    Scherwitzl, Boris; Röthel, Christian; Jones, Andrew O F; Kunert, Birgit; Salzmann, Ingo; Resel, Roland; Leising, Günther; Winkler, Adolf

    2015-09-10

    Thin films of quinacridone deposited by physical vapor deposition on silicon dioxide were investigated by thermal desorption spectroscopy (TDS), mass spectrometry (MS), atomic force microscopy (AFM), specular and grazing incidence X-ray diffraction (XRD, GIXD), and Raman spectroscopy. Using a stainless steel Knudsen cell did not allow the preparation of a pure quinacridone film. TDS and MS unambiguously showed that in addition to quinacridone, desorbing at about 500 K (γ-peak), significant amounts of indigo desorbed at about 420 K (β-peak). The existence of these two species on the surface was verified by XRD, GIXD, and Raman spectroscopy. The latter spectroscopies revealed that additional species are contained in the films, not detected by TDS. In the film mainly composed of indigo a species was identified which we tentatively attribute to carbazole. The film consisting of mainly quinacridone contained in addition p-sexiphenyl. The reason for the various decomposition species effusing from the metal Knudsen cell is the comparably high sublimation temperature of the hydrogen bonded quinacridone. With special experimental methods and by using glass Knudsen-type cells we were able to prepare films which exclusively consist of molecules either corresponding to the β-peak or the γ-peak. These findings are of relevance for choosing the proper deposition techniques in the preparation of quinacridone films in the context of organic electronic devices.

  9. Idiosyncrasies of Physical Vapor Deposition Processes from Various Knudsen Cells for Quinacridone Thin Film Growth on Silicon Dioxide

    PubMed Central

    2015-01-01

    Thin films of quinacridone deposited by physical vapor deposition on silicon dioxide were investigated by thermal desorption spectroscopy (TDS), mass spectrometry (MS), atomic force microscopy (AFM), specular and grazing incidence X-ray diffraction (XRD, GIXD), and Raman spectroscopy. Using a stainless steel Knudsen cell did not allow the preparation of a pure quinacridone film. TDS and MS unambiguously showed that in addition to quinacridone, desorbing at about 500 K (γ-peak), significant amounts of indigo desorbed at about 420 K (β-peak). The existence of these two species on the surface was verified by XRD, GIXD, and Raman spectroscopy. The latter spectroscopies revealed that additional species are contained in the films, not detected by TDS. In the film mainly composed of indigo a species was identified which we tentatively attribute to carbazole. The film consisting of mainly quinacridone contained in addition p-sexiphenyl. The reason for the various decomposition species effusing from the metal Knudsen cell is the comparably high sublimation temperature of the hydrogen bonded quinacridone. With special experimental methods and by using glass Knudsen-type cells we were able to prepare films which exclusively consist of molecules either corresponding to the β-peak or the γ-peak. These findings are of relevance for choosing the proper deposition techniques in the preparation of quinacridone films in the context of organic electronic devices. PMID:26401189

  10. microRNA-103/107 family regulates multiple epithelial stem cell characteristics

    PubMed Central

    Peng, Han; Park, Jong Kook; Katsnelson, Julia; Kaplan, Nihal; Yang, Wending; Getsios, Spiro; Lavker, Robert M.

    2015-01-01

    The stem cell niche is thought to affect cell cycle quiescence, proliferative capacity and communication between stem cells and their neighbors. How these activities are controlled is not completely understood. Here we define a microRNA family (miRs-103/107) preferentially expressed in the stem cell-enriched limbal epithelium that regulates and integrates these stem cell characteristics. miRs-103/107 target the ribosomal kinase p90RSK2, thereby arresting cells in G0/G1 and contributing to a slow-cycling phenotype. Furthermore, miRs-103/107 increase the proliferative capacity of keratinocytes by targeting Wnt3a, which enhances Sox 9 and YAP 1 levels and thus promotes a stem cell phenotype. This miRNA family also regulates keratinocyte cell-cell communication by targeting: (i) the scaffolding protein NEDD9, preserving E-cadherin-mediated cell adhesion; and (ii) the tyrosine phosphatase PTPRM, which negatively regulates connexin 43-based gap junctions. We propose that such regulation of cell communication and adhesion molecules maintains the integrity of the stem cell niche ultimately preserving self-renewal, a hallmark of epithelial stem cells. PMID:25639731

  11. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  12. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  13. Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.

    PubMed

    Nyitray, Crystal E; Chang, Ryan; Faleo, Gaetano; Lance, Kevin D; Bernards, Daniel A; Tang, Qizhi; Desai, Tejal A

    2015-06-23

    Cell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices. The thin-film device construct allows long-term bioluminescent transfer imaging, which can be used for monitoring cell viability and device tracking. The ability to tune the microporous and nanoporous membrane allows selective protection from immune cell invasion and cytokine-mediated cell death in vitro, all while maintaining typical cell function, as demonstrated by encapsulated cells' insulin production in response to glucose stimulation. To demonstrate the ability to track, visualize, and monitor the viability of cells encapsulated in implanted thin-film devices, we encapsulated and implanted luciferase-positive MIN6 cells in allogeneic mouse models for up to 90 days. Lack of foreign body response in combination with rapid neovascularization around the device shows promise in using this technology for cell encapsulation. These devices can help elucidate the metrics required for cell encapsulation success and direct future immune-isolation therapies.

  14. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE PAGES

    Perl, Emmett E.; Simon, John; Geisz, John F.; ...

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  15. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    SciTech Connect

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000 W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.

  16. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    SciTech Connect

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  17. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter.

    PubMed

    Lin, Jinda; Li, Yong-qing

    2014-01-01

    We report on ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microsized particles in an aqueous medium with a frequency shift down to 10 cm(-1) by the combination of a hot rubidium (Rb) vapor filter, a confocal pinhole, and optical trapping. A single frequency-stabilized diode laser beam at 780.2 nm is used to optically trap and excite a single living cell or microparticle, and the Rayleigh scattering light from the particle is effectively blocked with a Rb vapor cell and a confocal pinhole. Ultralow frequency Raman spectra of the trapped cells or microparticles in both Stokes and anti-Stokes regions are then measured with a single-stage CCD spectrograph.

  18. Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C.; Skirtach, Andre G.; Braeckmans, Kevin

    2015-03-01

    Macromolecular agents such as nucleic acids and proteins need to be delivered into living cells for therapeutic purposes. Among physical methods to deliver macromolecules across the cell membrane, laser-induced photoporation using plasmonic nanoparticles is a method that is receiving increasing attention in recent years. By irradiating gold nanoparticles bound to the cell membrane with laser light, nanosized membrane pores can be created. Pores are formed by localized heating or by vapour nanobubbles (VNBs) depending on the incident laser energy. Macromolecules in the surrounding cell medium can then diffuse through the transiently formed pores into the cytoplasm. While both heating and VNBs have been reported before for permeabilization of the cell membrane, it remains unclear which of both methods is more efficient in terms of cell loading with minimal cytotoxicity. In this study we report that under condition of a single 7 ns laser pulse VNBs are substantially more efficient for the cytosolic delivery of macromolecules. We conclude that VNB formation is an interesting photoporation mechanism for fast and efficient macromolecular delivery in live cells.

  19. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells.

    PubMed

    Lujambio, Amaia; Ropero, Santiago; Ballestar, Esteban; Fraga, Mario F; Cerrato, Celia; Setién, Fernando; Casado, Sara; Suarez-Gauthier, Ana; Sanchez-Cespedes, Montserrat; Git, Anna; Gitt, Anna; Spiteri, Inmaculada; Das, Partha P; Caldas, Carlos; Miska, Eric; Esteller, Manel

    2007-02-15

    The mechanisms underlying microRNA (miRNA) disruption in human disease are poorly understood. In cancer cells, the transcriptional silencing of tumor suppressor genes by CpG island promoter hypermethylation has emerged as a common hallmark. We wondered if the same epigenetic disruption can "hit" miRNAs in transformed cells. To address this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in combination with a miRNA expression profiling. We have observed that DNA hypomethylation induces a release of miRNA silencing in cancer cells. One of the main targets is miRNA-124a, which undergoes transcriptional inactivation by CpG island hypermethylation in human tumors from different cell types. Interestingly, we functionally link the epigenetic loss of miRNA-124a with the activation of cyclin D kinase 6, a bona fide oncogenic factor, and the phosphorylation of the retinoblastoma, a tumor suppressor gene.

  20. Could microRNAs contribute to the maintenance of β cell identity?

    PubMed

    Kaspi, Haggai; Pasvolsky, Ronit; Hornstein, Eran

    2014-06-01

    Normal physiology depends on defined functional output of differentiated cells. However, differentiated cells are often surprisingly fragile. As an example, phenotypic collapse and dedifferentiation of β cells were recently discovered in the pathogenesis of type 2 diabetes (T2D). These discoveries necessitate the investigation of mechanisms that function to maintain robust cell type identity. microRNAs (miRNAs), which are small non-coding RNAs, are known to impart robustness to development. miRNAs are interlaced within networks, that include also transcriptional and epigenetic regulators, for continuous control of lineage-specific gene expression. In this Opinion article, we provide a framework for conceptualizing how miRNAs might participate in adult β cell identity and suggest that miRNAs may function as important genetic components in metabolic disorders, including diabetes.

  1. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells.

    PubMed

    Mao, Chenyu; Liu, Hao; Chen, Ping; Ye, Jingjia; Teng, Lisong; Jia, Zhenyu; Cao, Jiang

    2015-03-20

    To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.

  2. Regulation of Embryonic Stem Cell Self-Renewal and Differentiation by MicroRNAs.

    PubMed

    Ran, Xi; Xiao, Chun-Hong; Xiang, Gui-Ming; Ran, Xin-Ze

    2017-03-09

    MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression. They play an important role in various cellular processes such as apoptosis, differentiation, secretion, and proliferation. Embryonic stem cells (ESCs) are derived from the inner cell mass of the blastocyst stage of the embryo. miRNAs are critical factors for the self-renewal and differentiation of ESCs. In this review, we will focus on the role of miRNAs in the self-renewal and directional differentiation of ESCs. We will present the current knowledge on key points related to miRNA biogenesis and their function in ESCs.

  3. Induction of somatic cell reprogramming using the microRNA miR-302.

    PubMed

    Kelley, Karen; Lin, Shi-Lung

    2012-01-01

    Since the discovery of pluripotent stem cells, scientists have envisioned their use in regenerative medicine. Unfortunately, such application of embryonic pluripotent stem cells has been impeded by ethical concerns as well as other obstacles. In light of this, the scientific community has begun to explore somatic cell reprogramming (SCR) as a means of producing induced pluripotent stem cells (iPSCs) from somatic cells. Although still far from being clinically applicable, SCR has become a hot research topic, with many groups working to understand its underlying mechanism. The standard method for inducing SCR is achieved by forced expression of four transcription factors defined by Yamanaka and Yu et al. Regrettably, iPSCs produced by the four-factor method tend to be tumorigenic, making them unsafe for clinical application. Recently, a new method has been identified to generate iPSCs through forced expression of an embryonic stem cell (ESC)-enriched microRNA, miR-302. This method holds a distinct advantage over the four-factor method because it can reprogram somatic cells to tumor-free iPSCs. Also, these miR-302-induced iPSCs, termed "mirPSCs," demonstrate a clear mechanism, which explains the process of reprogramming as a response to global DNA demethylation-the first sign of SCR. Nevertheless, miR-302-induced reprogramming is dose-dependent, and microRNA (miRNA) concentration must be within a specific range for the reprogramming to occur. In addition, excessive overexpression of miR-302 in mirPS cells must not occur; otherwise, they will undergo early senescence. mirPSCs represent a new source of pluripotent stem cells without the tumorigenicity traditionally attributed to iPSCs. Looking forward, the next challenge lies with surmounting senescence, an obstacle that often limits stem cell expansion and prevents researchers from growing the large quantities of iPSCs needed for therapeutic use.

  4. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    PubMed Central

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  5. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-02-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface.

  6. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

    PubMed Central

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  7. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.

    PubMed

    Bucha, Sudha; Mukhopadhyay, Debashis; Bhattacharyya, Nitai Pada

    2015-10-02

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD. Earlier, expression of microRNA-214 (miR-214) has been shown to increase in HD cell models and target HTT gene; the expression of the later being inversely correlated to that of miR-214. In the present communication, we observed that the expressions of several HTT co-expressed genes are modulated by exogenous expression of miR-214 or by its mutant. Among several HTT co-expressed genes, MFN2 was shown to be the direct target of miR-214. Exogenous expression of miR-214, repressed the expression of MFN2, increased the distribution of fragmented mitochondria and altered the distribution of cells in different phases of cell cycle. In summary, we have shown that increased expression of miR-214 observed in HD cell model could target MFN2, altered mitochondrial morphology and deregulated cell cycle. Inhibition of miR-214 could be a possible target of intervention in HD pathogenesis.

  8. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  9. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells.

    PubMed

    Brieño-Enríquez, Miguel A; García-López, Jesús; Cárdenas, David B; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; Del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.

  10. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  11. Urinary cell microRNA-based prognostic classifier for non-muscle invasive bladder cancer.

    PubMed

    Ingelmo-Torres, Mercedes; Lozano, Juan José; Izquierdo, Laura; Carrion, Albert; Costa, Meritxell; Gómez, Lidia; Ribal, María José; Alcaraz, Antonio; Mengual, Lourdes

    2017-02-14

    Current prognostic tools for non-muscle invasive bladder cancer (NMIBC) do not have enough discriminative capacity to predict the risk of tumour progression. This study aimed to identify urinary cell microRNAs that may be useful as non-invasive predictive biomarkers of tumour progression in NMIBC patients. To this end, 210 urine samples from NMIBC patients were included in the study. RNA was extracted from urinary cells and expression of 8 microRNAs, previously described by our group, was analysed by quantitative PCR. A tumour progression predicting model was developed by Cox regression analysis and validated by bootstrapping. Regression analysis identified miR-140-5p and miR-92a-3p as independent predictors of tumour progression. The risk score derived from the model containing these two microRNAs was able to discriminate between two groups with a highly significant different probability of tumour progression (HR, 5.204; p<0.001) which was maintained when patients were stratified according to tumour risk. The algorithm was also able to identify two groups with different cancer-specific survival (HR, 3.879; p=0.021). Although the data needs to be externally validated, miRNA analysis in urine appears to be a valuable prognostic tool in NMIBC patients.

  12. Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Zhang, Xiaozhen; He, Beibei; Liu, Beibei; Xia, Changrong

    Micro-tubular proton-conducting solid oxide fuel cells (SOFCs) are developed with thin film BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ (BZCYYb) electrolytes supported on Ni-BZCYYb anodes. The substrates, NiO-BZCYYb hollow fibers, are prepared by an immersion induced phase inversion technique. The resulted fibers have a special asymmetrical structure consisting of a sponge-like layer and a finger-like porous layer, which is propitious to serving as the anode supports for micro-tubular SOFCs. The fibers are characterized in terms of porosity, mechanical strength, and electrical conductivity regarding their sintering temperatures. To make a single cell, a dense BZCYYb electrolyte membrane about 20 μm thick is deposited on the hollow fiber by a suspension-coating process and a porous Sm 0.5Sr 0.5CoO 3 (SSC)-BZCYYb cathode is subsequently fabricated by a slurry coating technique. The micro-tubular proton-conducting SOFC generates a peak power density of 254 mW cm -2 at 650 °C when humidified hydrogen is used as the fuel and ambient air as the oxidant.

  13. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-01

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 μL, 1-10 μL and 10-100 μL) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 μL volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg (~ 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 μL volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for "taking part of the lab to the sample" applications, such as testing for Cu concentration-compliance with the lead-copper rule of the Environmental

  14. A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.

    2016-11-01

    In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.

  15. MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells

    PubMed Central

    Parr, Callum J. C.; Katayama, Shota; Miki, Kenji; Kuang, Yi; Yoshida, Yoshinori; Morizane, Asuka; Takahashi, Jun; Yamanaka, Shinya; Saito, Hirohide

    2016-01-01

    The efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation. We synthesized a new RNA tool, miR-switch, as a live-cell reporter mRNA for miR-302a activity that can specifically detect human induced pluripotent stem cells (hiPSCs) down to a spiked level of 0.05% of hiPSCs in a heterogeneous population and can prevent teratoma formation in an in vivo tumorigenicity assay. Automated and selective hiPSC-elimination was achieved by controlling puromycin resistance using the miR-302a switch. Our system uniquely provides sensitive detection of pluripotent stem cells and partially differentiated cells. In addition to its ability to eliminate undifferentiated cells, miR-302a switch also holds great potential in investigating the dynamics of differentiation and/or reprograming of live-cells based on intracellular information. PMID:27608814

  16. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs

    PubMed Central

    Phinney, Donald G.; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M.; Stolz, Donna B.; Watkins, Simon C.; Di, Y. Peter; Leikauf, George D.; Kolls, Jay; Riches, David W. H.; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V.; McKenna, David H.; Ortiz, Luis A.

    2015-01-01

    Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs. PMID:26442449

  17. A Versatile Automated Platform for Micro-scale Cell Stimulation Experiments

    PubMed Central

    Sinha, Anupama; Jebrail, Mais J.; Kim, Hanyoup; Patel, Kamlesh D.; Branda, Steven S.

    2013-01-01

    Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥105) in milliliter-scale volumes (≥0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100 - 2,000 cells) in micro-scale volumes (1 - 20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of

  18. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  19. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants.

  20. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells

    PubMed Central

    Wang, Hongjiang; Li, Jing; Chi, Hongjie; Zhang, Fan; Zhu, Xiaoming; Cai, Jun; Yang, Xinchun

    2015-01-01

    Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3′ untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis. PMID:25898913

  1. MicroRNA-155 targets the SKI gene in human melanoma cell lines.

    PubMed

    Levati, Lauretta; Pagani, Elena; Romani, Sveva; Castiglia, Daniele; Piccinni, Eugenia; Covaciu, Claudia; Caporaso, Patrizia; Bondanza, Sergio; Antonetti, Francesca R; Bonmassar, Enzo; Martelli, Fabio; Alvino, Ester; D'Atri, Stefania

    2011-06-01

    The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.

  2. MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

    PubMed Central

    Deng, Yifan; Zhu, Gang; Luo, Honghai; Zhao, Shiguang

    2016-01-01

    Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in CD133+ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy. PMID:27484906

  3. microRNA-155 deficiency impairs dendritic cell function in breast cancer

    PubMed Central

    Wang, Junfeng; Iwanowycz, Stephen; Yu, Fang; Jia, Xuemei; Leng, Shuilong; Wang, Yuzhen; Li, Wei; Huang, Shiang; Ai, Walden; Fan, Daping

    2016-01-01

    ABSTRACT In antitumor immunity, dendritic cells (DCs) capture, process, and present tumor antigens to T cells, initiating a tumoricidal response. However, DCs are often dysfunctional due to their exposure to the tumor microenvironment (TME), leading to tumor escape from immune surveillance. Here, a vital role of microRNA-155 (miR-155) in regulating the function of DCs in breast cancer is reported. Host miR-155 deficiency enhanced breast cancer growth in mice, accompanied by reduced DCs in the tumors and draining lymph nodes. miR-155 deficiency in DCs impaired their maturation, migration ability, cytokine production, and the ability to activate T cells. We demonstrate that miR-155 regulates DC migration through epigenetic modulation of CCR7 expression. Moreover, IL-6 and IL-10, two cytokines abundant in the TME, are found to impair DC maturation by suppressing miR-155 expression. Furthermore, animal studies show that a lack of miR-155 diminishes the effectiveness of DC-based immunotherapy for breast cancer. In conclusion, these findings suggest that miR-155 is a master regulator of DC function in breast cancer, including maturation, cytokine secretion, migration toward lymph nodes, and activation of T-cells. These results suggest that boosting the expression of a single microRNA, miR-155, may significantly improve the efficacy of DC-based immunotherapies for breast cancer. PMID:27999745

  4. Processing of microRNA primary transcripts requires heme in mammalian cells.

    PubMed

    Weitz, Sara H; Gong, Ming; Barr, Ian; Weiss, Shimon; Guo, Feng

    2014-02-04

    DiGeorge syndrome critical region gene 8 (DGCR8) is the RNA-binding partner protein of the nuclease Drosha. DGCR8 and Drosha recognize and cleave primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical microRNAs (miRNAs) in animals. We previously reported that human, frog, and starfish DGCR8 bind heme when expressed in Escherichia coli and that Fe(III) heme activates apoDGCR8 in reconstituted pri-miRNA processing assays. However, the physiological relevance of heme in miRNA maturation has not been clear. Here, we present a live-cell pri-miRNA processing assay that produces robust signals and faithfully indicates DGCR8 and Drosha activities. We demonstrate that all known heme-binding-deficient DGCR8 mutants are defective in pri-miRNA processing in HeLa cells. DGCR8 contains a previously uncharacterized heme-binding motif, "IPCL," that is also required for its activity. Heme availability and biosynthesis in HeLa cells positively affect pri-miRNA processing and production of mature miRNA. These results establish an essential function for heme in pri-miRNA processing in mammalian cells. Our study suggests that abnormal heme biosynthesis and degradation may contribute to diseases via miRNA-mediated gene regulation networks.

  5. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis

    PubMed Central

    Alivernini, Stefano; Kurowska-Stolarska, Mariola; Tolusso, Barbara; Benvenuto, Roberta; Elmesmari, Aziza; Canestri, Silvia; Petricca, Luca; Mangoni, Antonella; Fedele, Anna Laura; Di Mario, Clara; Gigante, Maria Rita; Gremese, Elisa; McInnes, Iain B.; Ferraccioli, Gianfranco

    2016-01-01

    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA. PMID:27671860

  6. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis.

    PubMed

    Alivernini, Stefano; Kurowska-Stolarska, Mariola; Tolusso, Barbara; Benvenuto, Roberta; Elmesmari, Aziza; Canestri, Silvia; Petricca, Luca; Mangoni, Antonella; Fedele, Anna Laura; Di Mario, Clara; Gigante, Maria Rita; Gremese, Elisa; McInnes, Iain B; Ferraccioli, Gianfranco

    2016-09-27

    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD(-)CD27(-) memory B-cell population in ACPA(+) RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA.

  7. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Rongin, Uwitije; Xing, Zhongwen

    2016-02-01

    Blood exhibits a heterogeneous nature of hematocrit, velocity, and effective viscosity in microcapillaries. Microvascular bifurcations have a significant influence on the distribution of the blood cells and blood flow behavior. This paper presents a simulation study performed on the two-dimensional motions and deformation of multiple red blood cells in microvessels with diverging and converging bifurcations. Fluid dynamics and membrane mechanics were incorporated. Effects of cell shape, hematocrit, and deformability of the cell membrane on rheological behavior of the red blood cells and the hemodynamics have been investigated. It was shown that the blood entering the daughter branch with a higher flow rate tended to receive disproportionally more cells. The results also demonstrate that red blood cells in microvessels experienced lateral migration in the parent channel and blunted velocity profiles in both straight section and daughter branches, and this effect was influenced by the shape and the initial position of the cells, the hematocrit, and the membrane deformability. In addition, a cell free region around the tip of the confluence was observed. The simulation results are qualitatively consistent with existing experimental findings. This study may provide fundamental knowledge for a better understanding of hemodynamic behavior of micro-scale blood flow.

  8. MicroRNA-26a Promotes Regulatory T cells and Suppresses Autoimmune Diabetes in Mice.

    PubMed

    Ma, Hui; Zhang, Shoutao; Shi, Doufei; Mao, Yanhua; Cui, Jianguo

    2016-02-01

    Type-1 diabetes (TID) is an autoimmune disease in which the body's own immune cells attack islet β cells, the cells in the pancreas that produce and release the hormone insulin. Mir-26a has been reported to play functions in cellular differentiation, cell growth, cell apoptosis, and metastasis. However, the role of microRNA-26a (Mir-26a) in autoimmune TID has never been investigated. In our current study, we found that pre-Mir-26a (LV-26a)-treated mice had significantly longer normoglycemic time and lower frequency of autoreactive IFN-γ-producing CD4(+) cells compared with an empty lentiviral vector (LV-Con)-treated non-obese diabetic (NOD) mice. Mir-26a suppresses autoreactive T cells and expands Tregs in vivo and in vitro. Furthermore, in our adoptive transfer study, the groups receiving whole splenocytes and CD25-depleted splenocytes from LV-Con-treated diabetic NOD mice develop diabetes at 3 to 4 weeks of age. In comparison, mice injected with undepleted splenocytes obtained from LV-26a-treated reversal NOD mice develop diabetes after 6-8 weeks. And depletion of CD25(+) cells in the splenocytes of reversed mice abrogates the delay in diabetes onset. In conclusion, Mir-26a suppresses autoimmune diabetes in NOD mice in part through promoted regulatory T cells (Tregs) expression.

  9. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.

    PubMed

    Wang, Tong; Rongin, Uwitije; Xing, Zhongwen

    2016-02-02

    Blood exhibits a heterogeneous nature of hematocrit, velocity, and effective viscosity in microcapillaries. Microvascular bifurcations have a significant influence on the distribution of the blood cells and blood flow behavior. This paper presents a simulation study performed on the two-dimensional motions and deformation of multiple red blood cells in microvessels with diverging and converging bifurcations. Fluid dynamics and membrane mechanics were incorporated. Effects of cell shape, hematocrit, and deformability of the cell membrane on rheological behavior of the red blood cells and the hemodynamics have been investigated. It was shown that the blood entering the daughter branch with a higher flow rate tended to receive disproportionally more cells. The results also demonstrate that red blood cells in microvessels experienced lateral migration in the parent channel and blunted velocity profiles in both straight section and daughter branches, and this effect was influenced by the shape and the initial position of the cells, the hematocrit, and the membrane deformability. In addition, a cell free region around the tip of the confluence was observed. The simulation results are qualitatively consistent with existing experimental findings. This study may provide fundamental knowledge for a better understanding of hemodynamic behavior of micro-scale blood flow.

  10. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells using Surface Science Techniques

    DTIC Science & Technology

    2011-02-01

    the surface because it contains no free electron spins and it features a lower adsorption energy than the bare glass, thus re- ducing the residence...in the cell interior and a fluctuating magnetic field gen- erated by the hydrogen nuclei of the paraffin material.3 The adsorption energy for alkali...FTIR spectra of tetracontane (green, top), FR-130 ( blue , middle), and pwMB (black, bottom), with the traces offset vertically for clarity. The

  11. Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.

    PubMed

    Suryavanshi, U B; Bhosale, C H

    2010-06-01

    Carbon nanotubes having large surface area is an interesting material to develop H2-Cl2 fuel cell electrodes. The attempts were made to deposit carbon nanotubes on porous substrates by chemical vapour deposition. Turpentine oil (C10H16) was used as a precursor, decomposed at 1100 degrees C reactor temperature. Nickel, platinum, tin, Ni-Pt, Ni-Sn, Pt-Sn, Ni-Pt-Sn catalysts were used to grow carbon nanotubes. Nickel was deposited with electrodeposition, platinum with sputter coater and tin with vacuum deposition technique. The developed electrodes were characterized by XRD, SEM, TEM, FTIR, and resistivity by van-der Pauw method. Carbon nanotubes have been formed for 0.25 N nickel deposited for 45 and 60 min; 0.5 N, 0.75 N and 1 N nickel deposited for 15 to 60 min, at the interval of 15. Ni-Pt, Ni-Sn, Pt-Sn and Ni-Pt-Sn activated carbon also shows the well grown CNTs. Aqueous H2-Cl2 fuel cell performance was tested with these grown carbon nanotubes. 40% KCl with 1067 mohm(-1) cm(-1) conductivity was used as electrolyte. Linear sweep voltametry shows reduction potential for hydrogen gas. Chronoamperometry results show better half cell performance for nickel, deposited with 1 N, 45 min deposition time period; and combination of Ni-Pt-Sn with 140, and 110-100 mA/cm2 stable current density respectively.

  12. Vapor cell based sodium laser guide star mechanism study lab-bench

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  13. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    SciTech Connect

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  14. Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wei, Qiu-ping; Yu, Z. M.; Ashfold, Michael N. R.; Ye, J.; Ma, L.

    2010-04-01

    Diamond films deposited on tungsten carbide can lead to major improvements in the life and performance of cutting tools. However, deposition of diamond onto cemented tungsten carbide (WC-Co) is problematic due to the cobalt binder in the WC. This binder provides additional toughness to the tool but results in poor adhesion and low nucleation density of any diamond film. A two-step chemical etching pretreatment (Murakami reagent and Caro acid, (MC)-pretreatment) and a boronization pretreatment have both been used extensively to improve adhesion of CVD diamond film on WC-Co substrates. Here we discuss the applicability of MC-pretreatment for a range of Co-containing WC-Co substrates, and demonstrate a controlled synthesis process based on liquid boronizing pretreatment for obtaining smooth and dense micro- or nano-crystalline diamond films on high Co-containing WC-Co substrates. Substrate treatments and deposition parameters were found to have major influences on the smoothness, structure and quality of the diamond films. The best quality diamond films were achieved under conditions of relatively high substrate temperature ( Ts) and the best adhesion was achieved at Ts = 800 °C.

  15. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium.

    PubMed

    Zhu, Yu; Gu, Yingxin; Qiao, Shichong; Zhou, Linyi; Shi, Junyu; Lai, Hongchang

    2017-03-01

    Microorganisms are frequently introduced to dental implants during surgery and start the race for the surface with host cells before osseointegration occurs. The aim of the study was to endow implant surfaces with biological functions that reliably select cells over microbes. Nano-structured tantalum (Ta) has exhibited excellent compatibility. Thus, nano-structured Ta films were deposited on the sand-blasted, large grit, and acid-etched (SLA) titanium by the magnetron sputtering method, thus forming hierarchical micro-/nano-structured surfaces. No obvious Ta release confirmed the robustness of the deposited layer probably arising from the stable Ta2 O5 . Moreover, Ta-modified surfaces not only improved the initial adhesion and spreading of rat bone mesenchymal stem cells (rBMSCs), but also exhibited good antibacterial activities towards Streptococcus mutans and Porphyromonas gingivalis. The satisfactory cell-surface interactions on Ta-modified surfaces depended largely on the up-regulation of adhesion-related genes and activation of focal adhesion kinase (FAK), as confirmed by real-time PCR and Western blot. Here, the coculture model was also forwarded to mimic the perioperative bacterial contamination. We found that the adherent cell number and the cell-surface coverage were hampered by bacteria presence on both surfaces. Yet, rBMSCs still attached and spread more readily on Ta-modified surfaces than on SLA titanium surfaces even in coculture with adhering oral pathogens. Our results revealed that Ta-modified micro-/nano-structured surfaces would selectively promote cell-surface rather than bacteria-surface interactions, boding well for the applications for dental implants in possibly infected environments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 871-878, 2017.

  16. Cyclooxygenase-2 Is a Target of MicroRNA-16 in Human Hepatoma Cells

    PubMed Central

    Agra Andrieu, Noelia; Motiño, Omar; Mayoral, Rafael; Llorente Izquierdo, Cristina; Fernández-Alvarez, Ana; Boscá, Lisardo; Casado, Marta; Martín-Sanz, Paloma

    2012-01-01

    Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3′-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression. PMID:23226427

  17. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  18. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    PubMed

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  19. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    PubMed

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  20. Deposition of zinc oxide photoelectrode using plasma enhanced chemical vapor deposition for dye-sensitized solar cells.

    PubMed

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    We investigated the characteristics of zinc oxide (ZnO) photoelectrodes grown by plasma enhanced chemical vapor deposition. ZnO has many advantages, such as high binding energy, breakdown strength, cohesion, hardness, and electron mobility. On the F-doped SnO2 (FTO) electrode, we deposited ZnO as a function of thickness, and we examined the thickness effect on the I-V, fill factor, open-circuit voltage, short-circuit current density, and especially the power conversion efficiency of the built in dye-sensitized solar cell. To study the thickness effect on the conduction and recombination of electrons in the ZnO electrode, we analyzed the alignment of grains, crystallinity, impedance, and cyclic I-V properties. The thickness of ZnO changed the electron diffusion length and recombination time. As a result, the maximum power conversion efficiency of 2.63% was obtained with a moderately thick (8.06 μm) ZnO.

  1. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Danet, J. M.; Boudot, R.

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad2/Hz and -129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10-14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  2. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    PubMed

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  3. Mechanisms of the micro-crack generation in an ultra-thin AlN/GaN superlattice structure grown on Si(110) substrates by metalorganic chemical vapor deposition

    SciTech Connect

    Shen, X. Q. Takahashi, T.; Ide, T.; Shimizu, M.

    2015-09-28

    We investigate the generation mechanisms of micro-cracks (MCs) in an ultra-thin AlN/GaN superlattice (SL) structure grown on Si(110) substrates by metalorganic chemical vapor deposition. The SL is intended to be used as an interlayer (IL) for relaxing tensile stress and obtaining high-quality crack-free GaN grown on Si substrates. It is found that the MCs can be generated by two different mechanisms, where large mismatches of the lattice constant (LC) and the coefficient of thermal expansion (CTE) play key roles in the issue. Different MC configurations (low-density and high-density MCs) are observed, which are considered to be formed during the different growth stages (SL growth and cooling down processes) due to the LC and the CTE effects. In-situ and ex-situ experimental results support the mechanism interpretations of the MCs generation. The mechanism understanding makes it possible to optimize the SL IL structure for growing high-quality crack-free GaN films on Si substrates for optical and electronic device applications.

  4. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning

    PubMed Central

    Gaylo, Alison; Schrock, Dillon C.; Fernandes, Ninoshka R. J.; Fowell, Deborah J.

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function. PMID:27790220

  5. MicroRNA-9 suppresses the sensitivity of CNE2 cells to ultraviolet radiation.

    PubMed

    Zheng, Chao-Pan; Han, Ling; Hou, Wei-Jian; Tang, Jun; Wen, Yi-Hui; Fu, Ran; Wang, Yue-Jian; Wen, Wei-Ping

    2015-08-01

    MicroRNA (miR)-9 has been demonstrated to regulate the radiosensitivity of tumor cells. In the present study, the mechanism by which miR-9 modulates the sensitivity of nasopharyngeal carcinoma (NPC) cells to ultraviolet (UV) radiation was investigated. The results demonstrated that exposure of NPC cells to UV light resulted in a significant increase in the expression of miR-9, and that CNE2 cells overexpressing miR-9 exhibited reduced levels of DNA damage and increased levels of total glutathione upon UV exposure. Accordingly, the inhibition of the expression of miR-9 promoted UV-induced DNA damage and apoptosis. Although miR-9 inhibited the expression of E-cadherin in the CNE2 cells and increased their resistance to UV radiation, the use of small interfering RNA to inhibit the expression of E-cadherin was not sufficient to decrease the radiosensitivity of the NPC cells. These data demonstrated that miR-9 did not modulate the sensitivity of the CNE2 cells to UV radiation through E-cadherin, but suggested that miR-9 regulated radiosensitivity through its effects on glutathione. These findings suggest that miR-9 may be a potential target for modulating the radiosensitivity of NPC cells.

  6. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

    PubMed Central

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G.; Mullins, John J.; Davies, Jamie A.; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells). PMID:28286747

  7. Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells.

    PubMed

    Miao, Bei-Ping; Zhang, Rui-Shi; Li, Meng; Fu, Yun-Ting; Zhao, Miao; Liu, Zhi-Gang; Yang, Ping-Chang

    2015-11-01

    The prevalence of nasopharyngeal cancer (NPC) is high in the southern area of China and some other districts in the world. The pathogenesis of NPC is unclear. It is reported that some microRNAs (miR) are involved in the progression of NPC. This study aims to investigate the role of miR-21 in the induction of immune tolerance of NPC. In this study, NPC tissue was collected from patients with NPC. Assessment of miR was performed with real time quantitative RT-PCR. Western blotting was used to assess proteins of interleukin 10 and nuclear factor I-A (NFI-A). Immune cells were analyzed by flow cytometry. The results showed that NPC cell line C666-1 and surgically removed NPC tissue expressed miR-21, which was upregulated by the presence of the Toll-like receptor 3 ligand, Poly I: C. Exposure to miR-21 increased the expression of NFI-A and interleukin (IL)-10 in naive B cells. High frequency of IL-10(+) B cells was detected in the NPC tissue. The NPC- or miR-21-primed B cells suppressed cytotoxic CD8(+) T cell activities. We conclude that NPC-derived miR-21 induces IL-10(+) B cells; the latter is capable of suppressing CD8(+) T-cell activities. miR-21 may be a potential target in the treatment of NPC.

  8. MicroRNA-150 upregulation reduces osteosarcoma cell invasion and metastasis by downregulating Ezrin

    PubMed Central

    Zhan, Ce; Li, Cheng; Zhang, Hao; Tang, Hao; Ji, Fang; Qiao, Su-Chi; Xu, Wei-Dong; Wang, Zhi-Wei

    2016-01-01

    The present study aimed to investigate the effect of microRNA-150 (miRNA/miR-150) in osteosarcoma (OS) cell invasion and metastasis by the regulation of Ezrin. To compare the differences in the expression of miR-150 and Ezrin, cell models of OS metastasis were established by exogenous transfection of miR-150 on the basis of different expression levels of miR-150. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to estimate these expression levels. Ezrin expression was detected by western blot assay. Methylthiazolyldiphenyl-tetrazolium bromide assay was performed to determine cells proliferation. Cell invasion and migration were measured in vitro by Transwell migration assays. Detection of apoptosis adopted flow cytometry. The results of RT-qPCR showed that the miR-150 expression in OS F5M2 cells was significantly increased following exogenous transfection of miR-150 mimics, and the expression of miR-150 was positively correlated with the concentration of the miR-150 mimics. Western blot assay indicated that the Ezrin expression in the F5M2 cells was decreased with the exogenous overexpression of miR-150. Additionally, Transwell assays revealed that the overexpression of miR-150 significantly suppressed the invasion and metastasis ability of the F5M2 cells. miR-150 upregulation may reduce OS cell invasion and metastasis by downregulating the expression of Ezrin. PMID:27900020

  9. Regulation of Marginal Zone B-Cell Differentiation by MicroRNA-146a

    PubMed Central

    King, Jennifer K.; Ung, Nolan M.; Paing, May H.; Contreras, Jorge R.; Alberti, Michael O.; Fernando, Thilini R.; Zhang, Kelvin; Pellegrini, Matteo; Rao, Dinesh S.

    2017-01-01

    B-cell development in the bone marrow is followed by specification into functional subsets in the spleen, including marginal zone (MZ) B-cells. MZ B-cells are classically characterized by T-independent antigenic responses and require the elaboration of distinct gene expression programs for development. Given their role in gene regulation, it is not surprising that microRNAs are important factors in B-cell development. Recent work demonstrated that deficiency of the NFκB feedback regulator, miR-146a, led to a range of hematopoietic phenotypes, but B-cell phenotypes have not been extensively characterized. Here, we found that miR-146a-deficient mice demonstrate a reduction in MZ B-cells, likely from a developmental block. Utilizing high-throughput sequencing and comparative analysis of developmental stage-specific transcriptomes, we determined that MZ cell differentiation was impaired due to decreases in Notch2 signaling. Our studies reveal miR-146a-dependent B-cell phenotypes and highlight the complex role of miR-146a in the hematopoietic system. PMID:28138326

  10. Preliminary micro-Raman images of normal and malignant human skin cells

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Chen, Michael X.

    2006-02-01

    Micro-Raman spectroscopy covering a frequency range from 200 to 4000 cm -1 was used to image human skin melanocytes and keratinocytes with a spatial resolution of 0.5 μm. The cells were either cultivated on glass microscope slides or were located within thin sections of skin biopsies mounted on low fluorescence BaF II. A commercially available system was used to obtain the spectra utilizing a x100 long working distance objective with a numerical aperture of 0.8, and a cooled CCD. Both 633 and 515 nm excitations were tried, although the latter proved to be more effcient at producing Raman emission mostly due to the 1/λ 4 dependence in light scattering. Fluorescence emission from the cells was surprisingly low. The excitation power at the sample was kept below about 2 mW to avoid damaging the cells; this was the limiting factor on how quickly a Raman image could be obtained. Despite this diffculty we were able to obtain Raman images with rich information about the spectroscopic and structural features within the cytoplasm and cell nuclei. Differences were observed between the Raman images of normal and malignant cells. Spectra from purified DNA, RNA, lipids, proteins and melanin were obtained and these spectra were compared with the skin cell spectra with the aim of understanding how they are distributed over a cell and how the distribution changes between different cells.

  11. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells.

    PubMed

    Funamizu, Naotake; Lacy, Curtis R; Kamada, Minori; Yanaga, Katsuhiko; Manome, Yoshinobu

    2015-11-01

    The present study investigated the relationship between microRNA-203 (miR-203) and the p53 upregulated modulator of apoptosis (Puma) in colon (HCT116) and lung cancer (A549) cells. Colon and lung cancer cell lines were selected for this study since a relationship between p53/miR-203 and p53/Puma has been established in both cancers. In the present study, adriamycin and nutlin-3 were used to activate p53, which induced both miR-203 and Puma expression in HCT116 cells. In contrast, HCT 116 cells with downregulated p53 showed decreased miR-203 and Puma expression. Importantly, we found that overexpressed miR-203 in HCT116 cells resulted in significantly increased Puma expression (P<0.05). Based on these findings, we hypothesized that another limb of the p53/Puma axis depends on miR-203 expression. To further validate this relationship, we used lung cancer cells (A549) and found that activated p53 increased both miR-203 and Puma expression. In addition, we found that Puma expression remained elevated in cells with overexpressed miR-203 in the presence of p53 downregulation. Cumulatively, our data purport that p53 not only increased Puma expression directly, but that it may also do so through miR-203. Additionally, functional studies revealed that miR-203 overexpression induced apoptosis and inhibited cell invasiveness.

  12. MicroRNAs in B-cells: from normal differentiation to treatment of malignancies

    PubMed Central

    Marques, Sara Correia; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Falgreen, Steffen; Schmitz, Alexander; Bøgsted, Martin; Johnsen, Hans Erik; Dybkaer, Karen

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that play important post-transcriptional regulatory roles in a wide range of biological processes. They are fundamental to the normal development of cells, and evidence suggests that the deregulation of specific miRNAs is involved in malignant transformation due to their function as oncogenes or tumor suppressors. We know that miRNAs are involved in the development of normal B-cells and that different B-cell subsets express specific miRNA profiles according to their degree of differentiation. B-cell-derived malignancies contain transcription signatures reminiscent of their cell of origin. Therefore, we believe that normal and malignant B-cells share features of regulatory networks controlling differentiation and the ability to respond to treatment. The involvement of miRNAs in these processes makes them good biomarker candidates. B-cell malignancies are highly prevalent, and the poor overall survival of patients with these malignancies demands an improvement in stratification according to prognosis and therapy response, wherein we believe miRNAs may be of great importance. We have critically reviewed the literature, and here we sum up the findings of miRNA studies in hematological cancers, from the development and progression of the disease to the response to treatment, with a particular emphasis on B-cell malignancies. PMID:25622103

  13. Freeze-Etching and Vapor Matrix Deposition for ToF-SIMS Imaging of Single Cells

    PubMed Central

    Piehowski, Paul D.; Kurczy, Michael E.; Willingham, David; Parry, Shawn; Heien, Michael L.; Winograd, Nicholas; Ewing, Andrew G.

    2008-01-01

    Freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment, has been extensively used in conjunction with electron microscopy. Here, we apply this technique to time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging of cryogenically preserved single cells. By removing the excess water which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. We demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the topmost surface layers. In addition, we found water can be controllably redeposited onto the sample at temperatures below −100 °C in vacuum. The redeposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures, we have obtained high quality spectra with both atomic bombardment as well as C60+ cluster ion bombardment. PMID:18570446

  14. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.

  15. Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility.

    PubMed

    Paital, Sameer R; He, Wei; Dahotre, Narendra B

    2010-07-01

    Surface wettability of an implant material is an important criterion in biological response as it controls the adsorption of proteins followed by attachment of cells to its surface. Hence, micro-textured calcium phosphate coatings with four length scales were synthesized on Ti-6Al-4V substrates by a laser cladding technique and their effects on wettability and cell adhesion were systematically evaluated. Microstructure and morphological evolutions of the coatings were studied using scanning electron and light optical microscopes respectively. The surface texture of coating defined in terms of a texture parameter was correlated to its wetting behavior. The contact angle of simulated body fluid measured by a static sessile drop technique, demonstrated an increased hydrophilicity with decreasing value of texture parameter. The influence of such textures on the in vitro bioactivity and in vitro biocompatibility were studied by the immersion of the samples in simulated body fluid and mouse MC3T3-E1 osteoblast-like cell culture respectively.

  16. 3'uridylation controls mature microRNA turnover during CD4 T cell activation.

    PubMed

    Gutierrez-Vazquez, Cristina; Enright, Anton J; Rodríguez-Galán, Ana; Perez-García, Arantxa; Collier, Paul; Jones, Matthew R; Benes, Vladimir; Mizgerd, Joseph P; Mittelbrunn, María; Ramiro, Almudena R; Sanchez-Madrid, Francisco

    2017-03-28

    Activation of T lymphocytes requires a tight regulation of microRNAs (miRNAs) expression. Terminal uridyltransferases (TUTases) catalyze 3' non-templated nucleotide addition (3'NTA) to miRNAs which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with downregulation of TUT4 and TUT7 enzymes. Analyzing TUT4 deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine tune miRNA levels during T cell activation.

  17. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development.

    PubMed

    Roese-Koerner, B; Stappert, L; Koch, P; Brüstle, O; Borghese, L

    2013-06-01

    The in vitro differentiation of human pluripotent stem cells represents a convenient approach to generate large numbers of neural cells for basic and translational research. We recently described the derivation of homogeneous populations of long-term self-renewing neuroepithelial-like stem cells from human pluripotent stem cells (lt-NES® cells). These cells constitute a suitable source of neural stem cells for in vitro modelling of early human neural development. Recent evidence demonstrates that microRNAs are important regulators of stem cells and nervous system development. Studies in several model organisms suggest that microRNAs contribute to different stages of neurogenesis - from progenitor self-renewal to survival and function of differentiated neurons. However, the understanding of the impact of microRNA-based regulation in human neural development is still at its dawn. Here, we give an overview on the current state of microRNA biology in stem cells and neural development and examine the role of the neural-associated miR-124, miR- 125b and miR-9/9* in human lt-NES® cells. We show that overexpression of miR-124, as well as overexpression of miR-125b, impair lt-NES® cell self-renewal and induce differentiation into neurons. Overexpression of the miR-9/9* locus also impairs self-renewal of lt-NES® cells and supports their commitment to neuronal differentiation. A detailed examination revealed that overexpression of miR-9 promotes differentiation, while overexpression of miR-9* affects both proliferation and differentiation of lt-NES® cells. This work provides insights into the regulation of early human neuroepithelial cells by microRNAs and highlights the potential of controlling differentiation of human stem cells by modulating the expression of selected microRNAs.

  18. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer.

    PubMed

    Mao, Guangmei; Liu, Yan; Fang, Xi; Liu, Yahan; Fang, Li; Lin, Lianjun; Liu, Xinmin; Wang, Nanping

    2015-07-01

    Angiogenesis, a crucial step in tumor growth and metastasis, is regulated by various pro- or anti-angiogenic factors. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, roles of tumor-derived microRNAs in regulating tumor vascularization remain to be elucidated. In this study, we found that delivery of miR-494 into human vascular endothelial cells (ECs) enhanced the EC migration and promoted angiogenesis. The angiogenic effect of miR-494 was mediated by the targeting of PTEN and the subsequent activation of Akt/eNOS pathway. Importantly, co-culture experiments demonstrated that a lung cancer cell line, A549, secreted and delivered miR-494 into ECs via a microvesicle-mediated route. In addition, we found that the expression of miR-494 was induced in the tumor cells in response to hypoxia, likely via a HIF-1α-mediated mechanism. Furthermore, a specific miR-494 antagomiR effectively inhibited angiogenesis and attenuated the growth of tumor xenografts in nude mice. Taken together, these results demonstrated that miR-494 is a novel tumor-derived paracrine signal to promote angiogenesis and tumor growth under hypoxic condition.

  19. Micro and Nano-patterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype

    PubMed Central

    Luu, Thuy U.; Gott, Shannon C.; Woo, Bryan W. K.; Rao, Masaru P.; Liu, Wendy F.

    2016-01-01

    Controlling the interactions between macrophages and biomaterials is critical for modulating the response to implants. While it has long been thought that biomaterial surface chemistry regulates the immune response, recent studies have suggested that material geometry may in fact dominate. Our previous work demonstrated that elongation of macrophages regulates their polarization towards a pro-healing phenotype. In this work, we elucidate how surface topology might be leveraged to alter macrophage cell morphology and polarization state. Using a deep etch technique, we fabricated titanium surfaces containing micro and nano-patterned grooves, which have been previously shown to promote cell elongation. Morphology, phenotypic markers, and cytokine secretion of murine bone marrow derived macrophages on different groove widths were analyzed. The results suggest that micro and nano-patterned grooves influenced macrophage elongation, which peaked on substrates with 400-500 nm wide grooves. Surface grooves did not affect inflammatory activation, but drove macrophages towards an anti-inflammatory, pro-healing phenotype. While secretion of TNF-alpha remained low in macrophages across all conditions, macrophages secreted significantly higher levels of anti-inflammatory cytokine, IL-10, on intermediate groove widths compared to cells on other Ti surfaces. Our findings highlight the potential of using surface topography to regulate macrophage function, and thus control the wound healing and tissue repair response to biomaterials. PMID:26605491

  20. Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms

    PubMed Central

    Baac, Hyoung Won; Lee, Taehwa; Guo, L. Jay

    2013-01-01

    Laser-generated focused ultrasound (LGFU) is a unique modality that can produce single-pulsed cavitation and strong local disturbances on a tight focal spot (<100 μm). We utilize LGFU as a non-contact, non-thermal, high-precision tool to fractionate and cleave cell clusters cultured on glass substrates. Fractionation processes are investigated in detail, which confirms distinct cell behaviors in the focal center and the periphery of LGFU spot. For better understanding of local disturbances under LGFU, we use a high-speed laser-flash shadowgraphy technique and then fully visualize instantaneous microscopic processes from the ultrasound wave focusing to the micro-bubble collapse. Based on these visual evidences, we discuss possible mechanisms responsible for the focal and peripheral disruptions, such as a liquid jet-induced wall shear stress and shock emissions due to bubble collapse. The ultrasonic micro-fractionation is readily available for in vitro cell patterning and harvesting. Moreover, it is significant as a preliminary step towards high-precision surgery applications in future. PMID:24010006

  1. A depletable micro-layer model for nucleate pool boiling

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Niceno, Bojan

    2015-11-01

    A depletable micro-layer model has been developed for the simulation of nucleate pool boiling within the framework of Computational Fluid Dynamics (CFD) modeling using an interface-tracking method. A micro-layer model is required for the CFD simulation to take into account vaporization from the thin liquid film - called the micro-layer - existing beneath a growing vapor bubble on a hot surface. In our model, the thickness of the micro-layer is a variable defined at each discretized fluid cell adjacent to the heat-transfer surface; the layer decreases due to vaporization, and can finally disappear. Compared to existing micro-region models, most of them based on the concept of contact-line evaporation, as originally proposed by Stephan and Busse, and by Lay and Dhir, our model incorporates simplified modeling ideas, but can nonetheless predict the temperature field beneath the growing bubble accurately. The model proposed in this paper has been validated against measurements of pool boiling in water at atmospheric pressure. Specifically, the bubble principal dimensions and the temperature distribution over the heat-transfer surface are in good agreement with experimental data.

  2. Proliferating cell nuclear antigen, p53 and micro vessel density: Grade II vs. Grade III astrocytoma.

    PubMed

    Malhan, Priya; Husain, Nuzhat; Bhalla, Shalini; Gupta, Rakesh K; Husain, Mazhar

    2010-01-01

    Histological classification and grading are prime procedures in the management of patients with astrocytoma, providing vital data for therapeutic decision making and prognostication. However, it has limitations in assessing biological tumor behavior. This can be overcome by using newer immunohistochemical techniques. This study was carried out to compare proliferative indices using proliferating cell nuclear antigen (PCNA), extent of p53 expression and micro vessel morphometric parameters in patients with low grade and anaplastic astrocytoma. Twenty-five patients, each of grade II and grade III astrocytoma were evaluated using monoclonal antibodies to PCNA, p53 protein and factor VIII related antigen. PCNA, p53-labeling indices were calculated along with micro vessel morphometric analysis using Biovis Image plus Software. Patients with grade III astrocytoma had higher PCNA and p53 labeling indices as compared with grade II astrocytoma (29.14 plus/minus 9.87% vs. 16.84 plus/minus 6.57%, p 0.001; 18.18 plus/minus 6.14% vs. 6.14 plus/minus 7.23%, p 0.001, respectively). Micro vessel percentage area of patients with grade III astrocytoma was also (4.26 plus/minus 3.70 vs. 1.05 plus/minus 0.56, p 0.001), higher along with other micro vessel morphometric parameters. Discordance between histology and one or more IHC parameters was seen in 5/25 (20%) of patients with grade III astrocytoma and 9/25 (36%) of patients with grade II disease. PCNA and p53 labeling indices were positively correlated with Pearson's correlation, p less than 0.001 for both). Increased proliferative fraction, genetic alterations and neovascularization mark biological aggressiveness in astrocytoma. Immunohistochemical evaluation scores over meet the challenge of accurate prognostication of this potentially fatal malignancy.

  3. MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1

    PubMed Central

    Contreras, Jorge R.; Palanichamy, Jayanth Kumar; Tran, Tiffany M.; Fernando, Thilini R.; Rodriguez-Malave, Norma I.; Goswami, Neha; Arboleda, Valerie A.; Casero, David; Rao, Dinesh S.

    2015-01-01

    miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context. PMID:25906746

  4. MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1.

    PubMed

    Contreras, Jorge R; Palanichamy, Jayanth Kumar; Tran, Tiffany M; Fernando, Thilini R; Rodriguez-Malave, Norma I; Goswami, Neha; Arboleda, Valerie A; Casero, David; Rao, Dinesh S

    2015-05-10

    miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context.

  5. MicroRNA-224 delays oocyte maturation through targeting Ptx3 in cumulus cells.

    PubMed

    Li, Xiufang; Wang, Huidan; Sheng, Yan; Wang, Zhongqing

    2017-02-01

    MicroRNAs (miRNAs) have been improved to regulate oocyte development in a cell- or stage-specific manner. In this study, we aimed to clarify microRNA-224's (miR-224) role in cumulus cells (CCs), to find out whether a change level of miR-224 in CCs could influence the maturation of oocyte. We found that overexpression of miR-224 of CCs led to the impairment of cell expansion, along with a decrease in the gene expression associated with cell expansion and maturation of oocyte. The increased expression of miR-224 in CC interrupted oocyte cell cycle at the GV stage. The GDF9, BMP15 and ZP3 of the oocytes were also down-regulated. The following in vitro fertilization had yielded a lower number of oocytes from cumulus-oocyte complexes (COCs) overexpressing miR-224 when reaching the blastocyst stage. The suppressive effect of miR-224 in the maturation of COC is validated by the miR-224 knockdown model, where the expansion of cumulus cell was increased and oocyte was developed to MII stage. In addition, the expression of aromatase in CCs was down-regulated by miR-224, resulting in a decreased level of estradiol (E2). A further investigation found that miR-224 down-regulated the expression of protein and mRNA of Ptx3 by targeting its 3'UTR. Our study revealed that miR-224 regulates the gene expression and function of CCs, which influences the maturation of oocyte, at least in part, via targeting Ptx3.

  6. Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development.

    PubMed

    Diao, Hua Jia; Low, Wei Ching; Lu, Q Richard; Chew, Sing Yian

    2015-11-01

    Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP(+) cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP(+) cells (p < 0.05). Random fiber enhanced more RIP(+) cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 μm aligned fibers supported the most MBP(+) cells (∼17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS.

  7. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    PubMed

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

  8. Efficiency enhancement using ArF laser induced micro/nanostructures on the polymeric layer of solar cell

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Reyhani, A.; Mehrabi, M.; Refahizadeh, M.; Mortazavi, S. Z.; Ranjbar, A.

    2017-02-01

    Here, the solar cell surface is irradiated with ArF excimer laser at 193 nm. This process forms regular micro/nanostructures on the samples, most likely due to the surface resonance phenomena. Laser induced surface rippling in the form of the conical micro/nanostructures or micro/nano-pillars are strongly dependent on the energy dose which induces a great number of micro/nano cavities on the surface. Despite the reflection events are taken into account as the major source of the optical losses, however the laser induced self-micro/nano structuring significantly reduces the spectral reflectivity. It leads to enhance the efficiency of solar cell accordingly. The effect of laser fluence is also investigated as to several forms of the micro/nanostructures are created at various UV doses. Finally, the electrical characterization is carried out based on the current-voltage plots. The surface morphology is analyzed using SEM and the spectral reflectivity is measured by the spectrophotometry, indicating that the current density rises due to the light trapping in micro/nano-cavities.

  9. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non

  10. Vapor phase heat transport systems

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.; Neeper, D. A.

    1985-09-01

    Progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating is described, which could also be applied to service water heating. The refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compared the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  11. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies.

    PubMed

    Scott, Elizabeth; Loya, Komal; Mountford, Joanne; Milligan, Graeme; Baker, Andrew H

    2013-09-01

    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration.

  12. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization.

    PubMed

    Li, Jingan; Qin, Wei; Zhang, Kun; Wu, Feng; Yang, Ping; He, Zikun; Zhao, Ansha; Huang, Nan

    2016-09-01

    Building healthy and oriented smooth muscle cells (SMCs) environment is an effective method for improving the surface endothelialization of the cardiovascular implants. However, a long-term and stable source of SMCs for implantation without immune rejection and inflammation has not been solved, and mesenchymal stem cells (MSCs) differentiation may be a good choice. In this work, two types of TiO2 micro/nano interfaces were fabricated on titanium surface by photolithography and anodic oxidation. These TiO2 micro/nano interfaces were used to regulate the differentiation of the MSCs. The X-ray diffraction (XRD) detection showed that the TiO2 micro/nano interfaces possessed the anatase crystal structure, suggesting good cytocompatibility. The CCK-8 results indicated the TiO2 micro/nano interfaces improved MSC proliferation, further immunofluorescence staining and calculation of the cell morphology index proved the micro/nano surfaces also elongated MSCs and regulated MSCs oriented growth. The specific staining of α-SMA, CNN-1, vWF, CD44 and CD133 markers revealed that the micro/nano surfaces induced MSCs differentiation to contractile SMCs, and the endothelial cells (ECs) culture experiment indicated that the MSCs induced by micro/nano interfaces contributed to the ECs attachment and proliferation. This method will be further studied and applied for the surface modification of the cardiovascular implants.

  13. Congruent Vaporization in the V-Si System as Studied by High Temperature Knudsen Cell Mass Spectrometry.

    DTIC Science & Technology

    1985-11-26

    PERFORMING ORGANIZATION |6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION C.E. Myers, Chem. Dept., State (If aplicable ) Univ. of NY, Univ. Ctr...GROUP 3 vaporization thermodynamics activities, free energy of forma tion, enthalpy of formation, congruent vaporization, Knudsen 19. ABSTRACT...V Si single phase region. Thermodynamic activities relative to the solid elements were otained by direct comparison. Free energies and enthalpies of

  14. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    NASA Astrophysics Data System (ADS)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  15. MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma

    PubMed Central

    Huang, Ruixia; Li, Lifeng; Wang, Xinhua; Li, Ling; Fu, Xiaorui; Sun, Zhenchang; Li, Zhaoming; Chen, Qingjiang; Zhang, Mingzhi

    2016-01-01

    Natural killer/T-cell lymphoma (NKTCL) is characterized by its highly aggressive nature and rapid progression. MicroRNAs (miRNAs) play key roles in the development of NKTCL. We utilized next-generation Solexa high-throughput sequencing to compare miRNA expression in the SNK-6 and YTS NKTCL cell lines with expression in normal NK cells. We found that 195 miRNAs were upregulated in the SNK-6 cells and 286 miRNAs were upregulated in the YTS cells. Based on those results, we selected six miRNAs, including miRNA-155, and confirmed their expression using real-time polymerase chain reaction. Expression of miRNA-155 was higher in SNK-6 and YKS cells than in normal NK cells. We next determined the levels of miRNA-155 in the serum of healthy individuals and NKTCL patients, and correlated its expression with clinical parameters and inflammatory factors detected using enzyme-linked immunoabsorbent assays. Levels of miRNA-155 were higher in NKTCL patients’ serum than in serum from healthy individuals. miRNA-155 expression was higher in patients with stable or progressive disease (SD+PD) than in those with partial or complete remission (PR+CR). While further studies are needed to clarify the underlying molecular mechanisms, it appears miRNA-155 may be a molecular marker of NKTCL. PMID:27462776

  16. MicroRNA regulation of myogenic satellite cell proliferation and differentiation.

    PubMed

    Harding, Rachel L; Velleman, Sandra G

    2016-01-01

    Myogenic satellite cells are stem cells responsible for muscle growth and regeneration. MicroRNAs (miRNAs) play significant roles in regulating numerous cellular processes. Two genes essential to satellite cell function are syndecan-4 and glypican-1. To determine if miRNAs influence myogenic satellite cell function, one miRNA predicted to bind syndecan-4 (miR-128) and two predicted to bind glypican-1 (miR-24 and miR-16) were inhibited in vitro by transfection of inhibitors targeting each miRNA. Inhibition of these miRNAs differentially affected the expression of syndecan-4, glypican-1, and myogenic regulatory factors myoD and myogenin. Inhibition of miR-16 reduced proliferation of satellite cells at 72 h. Inhibition of miR-128 and miR-24 did not affect proliferation. Inhibition of miRNAs reduced differentiation of satellite cells into myotubes at 48 and 72 h except for miR-16, which only affected differentiation at 72 h. Inhibition of all three miRNAs decreased myotube width at 24 h of differentiation and increased myotube width at 48 h of differentiation. Inhibiting these miRNAs also increased the number of nuclei per myotube at 72 h of differentiation. These data demonstrate individual miRNAs regulate genes essential for myogenic satellite cell proliferation and differentiation.

  17. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    PubMed

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  18. Pancreatic acinar cells: effects of micro-ionophoretic polypeptide application on membrane potential and resistance.

    PubMed

    Petersen, O H; Philpott, H G

    1979-05-01

    1. Acinar cell membrane potential and resistance were measured from superfused segments of mouse pancreas, in vitro, using intracellular glass micro-electrodes. One or two extracellular micropipettes containing caerulein, bombesin nonapeptide (Bn) or acetylcholine (ACh) were placed near to the surface of the impaled acinus. The secretagogues were ejected rapidly from the micropipettes by ionophoresis.2. Each secretagogue evoked a similar electrical response from the impaled acinar cell: membrane depolarization and a simultaneous reduction in input resistance. The duration of cell activation from caerulein ionophoresis was longer than that observed for ACh and Bn. The cell response to the peptide hormone applications could be repeated in the presence of atropine.3. The minimum interval before the onset of cell depolarization after caerulein ionophoresis was determined. Values ranged between 500 and 1000 msec. The minimum latencies after Bn ionophoresis were 500-1400 msec.4. With two electrodes inserted into electrically coupled acinar cells, direct measurements of the caerulein and Bn null potentials were made. At high negative membrane potentials an enhanced depolarization was evoked by caerulein ionophoresis. At low negative membrane potentials the caerulein stimulation produced a diminished depolarization, and at membrane potentials less than - 10 mV acinar cell hyperpolarizations were observed. A similar series of responses was obtained in experiments where Bn ionophoresis was used. The caerulein and the Bn null potentials were always contained within - 10 to - 15 mV.5. The results describe the almost identical electrical response of acinar cells to stimulation by ACh, caerulein and bombesin. All three secretagogues have similar null potentials and latencies of activation on acinar cells. The bombesin latency responses appear as short as those measured for caerulein and provide electro-physiological evidence that Bn acts directly on acinar cells. The findings

  19. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  20. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637.

    PubMed

    Yi, Wenbo; Li, Dongliang; Guo, Yongmin; Zhang, Yan; Huang, Bin; Li, Xingang

    2016-12-01

    Cancer cell migration and invasion are essential features of the metastatic process. Volatile anesthetic sevoflurane inhibits the migration and invasion of multiple cancer cell lines; however, its effects on glioma cells are unclear. Emerging evidence suggests that microRNA (miRNA)-637 regulates glioma cell migration and invasion through the Akt1 pathway. Sevoflurane has been shown to modulate a number of miRNAs. In the present study, we examined whether sevoflurane inhibits glioma cell migration and invasion and, if so, whether these beneficial effects are mediated by miRNA-637. U251 glioma cells were treated without (control) or with sevoflurane at low, moderate or high concentrations for 6 h. To explore the molecular mechanisms, an additional group of U251 cells was treated with a miRNA‑637 inhibitor prior to treatment with a high concentration of sevoflurane. Compared with the control group, sevoflurane inhibited the migration and invasion of U251 cells in a dose-dependent manner. Molecular analyses revealed that sevoflurane increased the expression of miRNA‑637 and decreased the expression of Akt1 and phosphorylated Akt1 in a dose-dependent manner. Moreover, the inhibitory effects of sevoflurane on U251 cell migration and invasion were completely abolished by pre-treatment with miRNA‑637 inhibitor, which reversed the sevoflurane-induced reduction in the expression of Akt1 and phosphorylated Akt1 in the U251 cells. These results demonstrate that sevoflurane inhibits glioma cell migration and invasion and that these beneficial effects are mediated by the upregulation of miRNA‑637, which suppresses Akt1 expression and activity. These findings may have significant clinical implications for anesthesiologists regarding the choice of volatile anesthetic agents for the surgical resection of gliomas to prevent metastases and improve patient outcomes.

  1. microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells

    PubMed Central

    Cui, Yan; Zhao, Jizong; Yi, Lei; Jiang, Yugang

    2016-01-01

    Rictor upregulation and mTORC complex 2 (mTORC2) over-activation participate in glioma cell progression, yet the underling mechanisms are not known. We here identified microRNA-153 (miR-153) as a potential anti-Rictor miRNA, which was downregulated in multiple human glioma tissues and glioma cell lines (U87MG, T98G, U373MG and U251MG). miR-153 downregulation was correlated with Rictor (mRNA and protein) upregulation and p-Akt Ser473 (the mTORC2 indicator) over-activation in the glioma tissues and cells. Our in vitro evidences suggested that Rictor could be one primary target of miR-153 in glioma cells. Exogenous overexpression of miR-153 downregulated Rictor (mRNA and protein) and decreased p-Akt Ser473 in U87MG cells, leading to significant growth inhibition and apoptosis activation. Notably, U87MG cells with Rictor shRNA knockdown showed similar phenotypes of cells with miR-153 overexpression. More importantly, in Rictor-silenced U87MG cells, miR-153 expression failed to further affect cell growth nor apoptosis. In vivo, we showed that miR-153 overexpression dramatically inhibited U87MG tumor growth in nude mice. Together, these results suggest that miR-153 downregulation could be one important reason of Rictor upregulation and mTORC2 over-activation in glioma cells. Further, miR-153-induced anti-glioma cell activity is possibly via downregulating Rictor. PMID:27295037

  2. Laser-assisted modification of polymers for microfluidic, micro-optics, and cell culture applications

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Adamietz, R.; Brückner, H. J.; Bruns, M.; Welle, A.

    2007-02-01

    Laser-assisted patterning of polymers is investigated for the direct fabrication of polymeric lab-on-a-chip devices in microsystem technology for capillary electrophoresis chips in bio-analytical applications. In many cases the laser process induces a chemical, physical and topographical change in the laser treated surface. This material modification significantly influences the lab-on-a-chip-functionalities. We will present our current research results in laser-assisted modification of polystyrene (PS) and polymethylmethacrylate (PMMA) with respect to applications in micro-optics, micro-fluidics and cell culture applications. For this purpose the refractive index change, the wettability and the adsorption of proteins and the adhesion of animal cells were investigated as function of laser- and processing parameters. The possible change of surface chemistry was characterized by X-ray photoelectron spectroscopy. The local UV-laser-assisted formation of chemical structures suitable for improved cell adhesion was realized on two- and three-dimensional PS and polycarbonate (PC) surfaces. Above and below the laser ablation threshold two different mechanisms were detected. In one case the produced debris was responsible for improved cell adhesion, while in the other case a photolytical activation of the polymer surface including a subsequent oxidization in oxygen or ambient air leads to a highly localized alteration of protein adsorption from cell culture media and increased cell adhesion. The highly localized control of wettability on polymeric surfaces was investigated for PS and PMMA. In the case of PS the dynamic advancing contact angle could be adjusted between 2° and 150°. This was possible for a suitable exposure dose and an appropriate choice of processing gas (helium or oxygen). A similar but not so significant effect was observed for PMMA below the laser ablation threshold. For PMMA the dynamic advancing contact angle could be adjusted between nearly 50° and

  3. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells

    PubMed Central

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during

  4. MicroRNA-135a Regulates Apoptosis Induced by Hydrogen Peroxide in Rat Cardiomyoblast Cells

    PubMed Central

    Liu, Ning; Shi, Yong-Feng; Diao, Hong-Ying; Li, Yang-Xue; Cui, Yan; Song, Xian-Jing; Tian, Xin; Li, Tian-Yi; Liu, Bin

    2017-01-01

    Oxidative stress and apoptosis are the most important pathologic features of ischemic heart disease. Recent research has indicated that microRNAs (miRs) play an essential role in apoptosis. However, whether miRs might regulate B cell lymphoma-2 (Bcl-2) protein in apoptosis during ischemic heart disease is still unclear. The aim of this study, therefore, was to confirm the regulation of microRNA-135a (miR-135a) in oxidative stress injuries induced by hydrogen peroxide (H2O2) in rat cardiomyoblast cells H9c2. To this end, we analyzed the effects of H2O2 treatment on miR-135a expression in rat cardiomyocytes. Furthermore, we upregulated and inhibited miR-135a using mimics and inhibitors, respectively, and examined the effects on cell viability and apoptosis-related proteins. We observed that miR-135a was markedly up-regulated under H2O2 treatment in rat cardiomyoblast cells. Overexpression of miR-135a blocked the Bcl-2 protein and enhanced the apoptosis induced by H2O2, and miR-135a inhibition restored Bcl-2 protein expression. Interestingly, miR-135a inhibition did not attenuate H2O2-induced apoptosis with Bcl-2 knockdown. The results of the present study indicate that miR-135a regulates H2O2-induced apoptosis in H9c2 cells via targeting Bcl-2, and that miR-135a may be a novel therapeutic target for ischemic heart disease. PMID:28123342

  5. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    NASA Astrophysics Data System (ADS)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  6. Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma.

    PubMed

    Munari, Enrico; Marchionni, Luigi; Chitre, Apurva; Hayashi, Masamichi; Martignoni, Guido; Brunelli, Matteo; Gobbo, Stefano; Argani, Pedram; Allaf, Mohamad; Hoque, Mohammad O; Netto, George J

    2014-06-01

    Clear cell papillary renal cell carcinoma (CCPRCC) is a low-grade renal neoplasm with morphological characteristics mimicking both clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). However, despite some overlapping features, their morphological, immunohistochemical, and molecular profiles are distinct. Micro-RNAs (miRNAs) are small noncoding RNAs that play a crucial role in regulating gene expression and are involved in various biological processes, including cancer development. To better understand the biology of this tumor, we aimed to analyze the miRNA expression profile of a set of CCPRCC using microarray and quantitative reverse transcription-polymerase chain reaction. A total of 15 cases diagnosed as CCPRCC were used in this study. Among the most differentially expressed miRNA in CCPRCC, we found miR-210, miR-122, miR-34a, miR-21, miR-34b*, and miR-489 to be up-regulated, whereas miR-4284, miR-1202, miR-135a, miR-1973, and miR-204 were down-regulated compared with normal renal parenchyma. To identify consensus of differentially regulated miRNA between CCPRCC, CCRCC, and PRCC, we additionally determined differential miRNA expression using 2 publically available microarray data sets from the NCBI Gene Expression Omnibus database (GSE41282 and GSE3798). This comparison revealed that the miRNA expression profile of CCPRCC shows some overlapping characteristics between CCRCC and PRCC. Moreover, CCPRCC lacks dysregulation of important miRNAs typically associated with aggressive behavior. In summary, we describe the miRNA expression profile of a relatively infrequent type of renal cancer. Our results may help in understanding the molecular underpinning of this newly recognized entity.

  7. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures

    NASA Astrophysics Data System (ADS)

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-07-01

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the

  8. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells.

    PubMed

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-09-01

    Coating the surfaces of titanium-based implants with appropriate hierarchical micro/nano-topographies resembling the structure of natural bone significantly enhances their biological performance. However, the relationship between nanostructures surfaces and their effects on modulating cellular response is not clearly understood. Moreover, it is not clear whether the surface chemistry or topography is the main factor on modulating cellular behavior, because the commonly used surface modification techniques for titanium-based implants simultaneously modify surface topography and chemistry. The aim of this study is to investigate osteoblast-like cell adhesion, proliferation and differentiation on hierarchical micro/nano-topographies with similar surface chemistry but different nano-scale features. Micro-arc oxidation and post hydrothermal treatment were employed to fabricate micro/nano-topographies on titanium. According to the morphological features, they were classified as microcrater (micro-topography), nanoplate (hierarchical topography with nanoplates) and nanoleaf (hierarchical topography with nanoleaves). The response of osteoblast like cells (SaOS-2) was studied on each surface after sputtering with a thin layer of gold (Au) to minimize the influence of surface chemistry. The morphological evaluation after histochemical staining revealed that the adherent cells were polygonal-shaped on microcrater surface, roundish on nanoplate surface and elongated on nanoleaf surface. Additionally, compared to microcrater surface, nanoplate surface slowed down cell proliferation and exhibited no enhancement on cell differentiation. However, nanoleaf surface supported cell proliferation and promoted cell differentiation. The results indicate that tuning morphological features of nanostructures on micro-topography can serve as a promising strategy to specifically modulate cellular response, such as cell morphology, proliferation, differentiation and mineralization.

  9. Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells

    PubMed Central

    Grespi, Francesca; Landré, Vivien; Molchadsky, Alina; Di Daniele, Nicola; Marsella, Luigi Tonino; Melino, Gerry; Rotter, Varda

    2016-01-01

    The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency. PMID:28032868

  10. Roles of microRNA-Mediated Drug Resistance in Tumor Stem Cells of Small Cell Lung Carcinoma

    DTIC Science & Technology

    2014-10-01

    including miR16 and 21) that are involved in Cisplatin resistance by microRNA library screening. Our results strongly suggest that miR16 and miR21...the animal with Cisplatin (3mg/kg) by intraperitoneal injection for 3 times in every 3 days. After 4 weeks, mice were sacrificed and the tumour...population (CD133+/ALDH+ ) was prepared from these cells, and they were seeded in a 24- well plate followed by treating the culture with Cisplatin (20 µM

  11. ALA-PDT of glioma cell micro-clusters in BD-IX rat brain

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Angell-Petersen, Even; Spetalen, Signe; Carper, Stephen W.; Ziegler, Sarah A.; Hirschberg, Henry

    2006-02-01

    A significant contributory factor to the poor prognosis of patients with glioblastoma multiforme is the inability of conventional treatments to eradicate infiltrating glioma cells. A syngeneic rat brain tumor model is used to investigate the effects of aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on small clusters of tumor cells sequestered in normal brain. The intrinsic sensitivity of rat glioma cells to PDT was investigated by exposing ALA-incubated cells to a range of radiant exposures and irradiances using 635 nm light. Biodistribution studies were undertaken on tumor-bearing animals in order to determine the tumor selectivity of the photosensitizer following systemic administration (i.p.) of ALA. Effects of ALA-PDT on normal brain and gross tumor were evaluated using histopathology. Effects of PDT on isolated glioma cells in normal brain were investigated by treating animals 48 h after tumor cell implantation: a time when the micro-clusters of cells are protected by an intact blood-brain-barrier (BBB). Rat glioma cells in monolayer are susceptible to ALA-PDT - lower irradiances are more effective than higher ones. Fluorescence microscopy of frozen tissue sections showed that photosensitizer is produced with better than 200:1 tumor-to-normal tissue selectivity following i.p. ALA administration. ALA-PDT resulted in significant damage to both gross tumor and normal brain, however, the treatment failed to prolong survival of animals with newly implanted glioma cells compared to non-treated controls if the drug was delivered either i.p. or directly into the brain. In contrast, animals inoculated with tumor cells pre-incubated in vitro with ALA showed a significant survival advantage in response to PDT.

  12. Profile of Exosomal and Intracellular microRNA in Gamma-Herpesvirus-Infected Lymphoma Cell Lines

    PubMed Central

    Hoshina, Shiho; Sekizuka, Tsuyoshi; Kataoka, Michiyo; Hasegawa, Hideki; Hamada, Hiromichi; Kuroda, Makoto; Katano, Harutaka

    2016-01-01

    Exosomes are small vesicles released from cells, into which microRNAs (miRNA) are specifically sorted and accumulated. Two gamma-herpesviruses, Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein—Barr virus (EBV), encode miRNAs in their genomes and express virus-encoded miRNAs in cells and exosomes. However, there is little information about the detailed distribution of virus-encoded miRNAs in cells and exosomes. In this study, we thus identified virus- and host-encoded miRNAs in exosomes released from KSHV- or EBV-infected lymphoma cell lines and compared them with intracellular miRNAs using a next-generation sequencer. Sequencing analysis demonstrated that 48% of the annotated miRNAs in the exosomes from KSHV-infected cells originated from KSHV. Human mir-10b-5p and mir-143-3p were much more highly concentrated in exosomes than in cells. Exosomes contained more nonexact mature miRNAs that did not exactly match those in miRBase than cells. Among the KSHV-encoded miRNAs, miRK12-3-5p was the most abundant exact mature miRNA in both cells and exosomes that exactly matched those in miRBase. Recently identified EXOmotifs, nucleotide motifs that control the loading of miRNAs into exosomes were frequently found within the sequences of KSHV-encoded miRNAs, and the presence of the EXOmotif CCCT or CCCG was associated with the localization of miRNA in exosomes in KSHV-infected cells. These observations suggest that specific virus-encoded miRNAs are sorted by EXOmotifs and accumulate in exosomes in virus-infected cells. PMID:27611973

  13. Global microRNA expression is essential for murine mast cell development in vivo.

    PubMed

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M

    2014-10-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast-cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast-cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast-cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre × Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast-cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast-cell-specific Dicer deletion using an immunoglobulin-E-dependent passive systemic anaphylaxis murine model. Immunoglobulin-E-sensitized wild type Mcpt5-Cre × Dicer +/+ and heterozygous Mcpt5-Cre × Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre × Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo.

  14. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression.

    PubMed

    He, Xigan; Li, Chunxia; Wu, Xiaoyan; Yang, Guotao

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and about 85% of these are non-small cell lung cancer (NSCLC). Several new chemotherapeutic agents have recently shown encouraging activity in NSCLC, especially docetaxel. MiRNAs (MicroRNAs) are closely related to cancer development. We studied miRNAs in NSCLC cell lines to identify those that can regulate and predict the effectiveness of docetaxel on NSCLC. CCK8, Annexin and V-FITC assays were carried out to evaluate the inhibitory effect of docetaxel on NSCLC cell lines A549 and H460, and qRT-PCR was used to detect and compare six miRNAs expression levels in the two cells with docetaxel or not. Knockdown of miR-7 by RNA interference and overexpression of miR-7 were taken to evaluate the effect of miR-7 on docetaxel effectiveness. Western blotting was used to evaluate the effect of miR-7 on Bcl2 in A549 and H460 cells. Docetaxel induced non-small cell lung cancer cell apoptosis and suppressed cell proliferation in vitro. MiR-7 expression levels were increased by docetaxel in the two cell lines. MiR-7 overexpression improved anti-proliferative and pro-apoptotic effects of docetaxel on the NSCLC cells and that miR-7 down-regulation decreased those effects. Moreover, subsequent experiments showed that BCL-2 was downregulated by miR-7 at both transcriptional and translational levels. This study further extends the biological role of miR-7 in NSCLC A549 and H460 cells and identifies BCL-2 as a novel target possibly involved in miR-7-mediated growth suppression and apoptosis induction of NSCLC cells.

  15. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    NASA Astrophysics Data System (ADS)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  16. Exploring the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue, and Sera of Prostate Cancer Patients and its Possible Application as Biomarker

    DTIC Science & Technology

    2015-08-01

    AWARD NUMBER: W81XWH-13-1-0088 TITLE: Exploring the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue , and Sera of Prostate Cancer...the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue , and Sera of Prostate Cancer Patients and its Possible Application as Biomarker 5c...extra chromosomal circular DNA present in normal mammalian somatic cells. To find the prostate tissue -specific microDNA a panel of human prostrate

  17. Effects of α-Particle Radiation on MicroRNA Responses in Human Cell-Lines

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2012-01-01

    A variety of alpha (α)-particle emitters are found ubiquitously in the environment, in commercial/therapeutic prod-ucts and are a potential threat in the form of a radiological dispersal device. Our understanding of the biological mechanisms and long-term health effects resulting from α-particle exposure is limited. Exposure to radiation induces modulations of gene networks, possibly through microRNAs (miRNAs), which could be targets for studying biological effects. In this study, changes in miRNA expression patterns after 0.5 Gy, 1.0 Gy and 1.5 Gy of α-particle radiation at a low dose-rate of exposure in three human cell-lines (A549, THP-1 and HFL) were investigated. The screening of 1,145 miRNAs across three human cell-lines resulted in unique, cell-specific responses with no overlap in miRNA expression observed in the three cell-lines. Prediction analysis suggests these α-particle induced miRNA mapped to target genes related to ribosomal assembly, lung carcinoma development, cell communication and keratin sulfate biosynthesis. Taken together, these results suggest that exposure to α-particle radiation results in cell-type specific responses in gene network regulatory processes. PMID:22481983

  18. MicroRNA-3713 regulates bladder cell invasion via MMP9.

    PubMed

    Wu, Wen-Bo; Wang, Wei; Du, Yi-Heng; Li, Hao; Xia, Shu-Jie; Liu, Hai-Tao

    2016-08-31

    Transitional cell carcinoma (TCC) is the most common type of bladder cancer but its carcinogenesis remains not completely elucidated. Dysregulation of microRNAs (miRNAs) is well known to be involved in the development of various cancers, including TCC, whereas a role of miR-3713 in the pathogenesis of TCC has not been appreciated. Here, we reported that significantly higher levels of matrix metallopeptidase 9 (MMP9), and significantly lower levels of miR-3713 were detected in TCC tissue, compared to the adjacent non-tumor tissue, and were inversely correlated. Moreover, the low miR-3713 levels in TCC specimens were associated with poor survival of the patients. In vitro, overexpression of miR-3713 significantly decreased cell invasion, and depletion of miR-3713 increased cell invasion in TCC cells. The effects of miR-3713 on TCC cell growth appeared to result from its modification of MMP9 levels, in which miR-3713 was found to bind to the 3'-UTR of MMP9 mRNA to inhibit its protein translation in TCC cells. This study highlights miR-3713 as a previously unrecognized factor that controls TCC invasiveness, which may be important for developing innovative therapeutic targets for TCC treatment.

  19. A micro-sized bio-solar cell for self-sustaining power generation.

    PubMed

    Lee, Hankeun; Choi, Seokheun

    2015-01-21

    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  20. Micro-topographies promote late chondrogenic differentiation markers in the ATDC5 cell line.

    PubMed

    Bach, Le Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios; van Blitterswijk, Clemens; de Boer, Jan

    2017-02-03

    Chemical and mechanical cues are well-established influencers of the in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process. Previously using a library of surface micro-topographies, we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation. Thus, we hypothesized that these patterns could influence chondrogenic differentiation of ATDC5 cells. We randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with Insulin-Transferrin-Selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a down-regulation of early markers and up-regulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition with other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  1. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.

    PubMed

    Shinoda, Keiji; Noguchi, Naoki

    2008-01-01

    A new external heating configuration is presented for high-temperature diamond anvil cell instruments. The supporting rockers are thermally excited by induction from an externally mounted copper coil passing a 30 kHz alternating current. The inductive heating configuration therefore avoids the use of breakable wires, yet is capable of cell temperatures of 1100 K or higher. The diamond anvil cell has no resistive heaters, but uses a single-turn induction coil for elevating the temperature. The induction coil is placed near the diamonds and directly heats the tungsten carbide rockers that support the diamond. The temperature in the cell is determined from a temperature-power curve calibrated by the ratio between the intensities of the Stokes and anti-Stokes Raman lines of silicon. The high-pressure transformation of quartz to coesite is successfully observed by micro-Raman spectroscopy using this apparatus. The induction heating diamond anvil cell is thus a useful alternative to resistively heated diamond anvil cells.

  2. Micro RNA-17-92 cluster mediates interleukin-4-suppressed IL-10 expression in B cells.

    PubMed

    Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jiang-Qi; Mo, Li-Hua; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    The pathogenesis of allergen-related inflammation in the intestine is to be further understood. Micro RNA (miR) can regulate immune responses. This study aims to investigate the role of miR-17-92 cluster in the induction of food allergen-related inflammation in the intestine. In this study, a mouse model of food allergen-related intestinal inflammation was developed. Expression of miR-17-92 cluster in B cells of the intestinal mucosa was analyzed by real time quantitative RT-PCR. The results showed that the levels of miR-19a, one of the members of the miR-17-92 cluster, were detected in the B cells of the intestine of mice sensitized to ovalbumin, which was significantly higher than that in naïve control mice. The expression of IL-10 by B cells was significantly lower in the sensitized mice as compared with naive control mice. Exposure to IL-4 in the culture increased the expression of miR-19a as well as suppression the expression of IL-10 in B cells via remolding DNA structure at the IL-10 promoter locus. We conclude that B cells from sensitized mice show higher levels of miR-19a, which plays an important role in the suppression of IL-10 in the B cells.

  3. Micro RNA-19a suppresses interleukin-10 in peripheral B cells of patients with diabetic retinopathy

    PubMed Central

    Wang, Cong; You, Qisheng; Cao, Xusheng; Guo, Huiling; Gao, Xinxiao; Peng, Xiaoyan

    2017-01-01

    A number of patients with diabetes suffer from retinopathy; the pathogenesis is to be further investigated. Recent reports indicate that micro RNA (miR) plays critical roles in the development of immune inflammation. This study test a hypothesis that miR-17-92 cluster is associated with the pathogenesis of diabetes retinopathy (DR). In this study, peripheral blood samples were collected from DR patients and healthy subjects. B cells were isolated from the blood samples to be analyzed the expression of interleukin (IL)-10. The results showed that lower levels of IL-10 were detected in peripheral B cells of DR patients as compared with healthy subjects. miR-19a was increased in B cells of DR patients, which was negatively correlated with the IL-10 expression. Exposure of naive B cells to IL-17 increased the expression of miR-19a and suppression of IL-10 expression in the B cells, in which histone deacetylase 11 (HDAC 11) played a critical role. In conclusion, the IL-17 suppresses IL-10 expression in peripheral B cells via enhancing miR-19a expression and HDAC activity in DR patients. The miR-19a and HDAC 11 may be novel therapeutic targets in the treatment of DR. PMID:28386366

  4. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  5. MicroRNA-3713 regulates bladder cell invasion via MMP9

    PubMed Central

    Wu, Wen-Bo; Wang, Wei; Du, Yi-Heng; Li, Hao; Xia, Shu-Jie; Liu, Hai-Tao

    2016-01-01

    Transitional cell carcinoma (TCC) is the most common type of bladder cancer but its carcinogenesis remains not completely elucidated. Dysregulation of microRNAs (miRNAs) is well known to be involved in the development of various cancers, including TCC, whereas a role of miR-3713 in the pathogenesis of TCC has not been appreciated. Here, we reported that significantly higher levels of matrix metallopeptidase 9 (MMP9), and significantly lower levels of miR-3713 were detected in TCC tissue, compared to the adjacent non-tumor tissue, and were inversely correlated. Moreover, the low miR-3713 levels in TCC specimens were associated with poor survival of the patients. In vitro, overexpression of miR-3713 significantly decreased cell invasion, and depletion of miR-3713 increased cell invasion in TCC cells. The effects of miR-3713 on TCC cell growth appeared to result from its modification of MMP9 levels, in which miR-3713 was found to bind to the 3′-UTR of MMP9 mRNA to inhibit its protein translation in TCC cells. This study highlights miR-3713 as a previously unrecognized factor that controls TCC invasiveness, which may be important for developing innovative therapeutic targets for TCC treatment. PMID:27577949

  6. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells.

    PubMed

    Yang, Qi-En; Racicot, Karen E; Kaucher, Amy V; Oatley, Melissa J; Oatley, Jon M

    2013-01-15

    Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.

  7. The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma

    PubMed Central

    Goto, Yusuke; Kurozumi, Akira; Nohata, Nijiro; Kojima, Satoko; Matsushita, Ryosuke; Yoshino, Hirofumi; Yamazaki, Kazuto; Ishida, Yasuo; Ichikawa, Tomohiko; Naya, Yukio; Seki, Naohiko

    2016-01-01

    Molecular targeted therapy is a standard treatment for patients with advanced renal cell carcinoma (RCC). Sunitinib is one of the most common molecular-targeted drugs for metastatic RCC. Molecular mechanisms of sunitinib resistance in RCC cells is still ambiguous. The microRNA (miRNA) expression signature of patients with sunitinib failure in RCC was constructed using a polymerase chain reaction (PCR)-based array. Several miRNAs that were aberrantly expressed in RCC tissues from patients treated with sunitinib were identified in this analysis. MicroRNA-101 (miR- 101) was markedly suppressed in sunitinib treated RCC tissues. Restoration of miR-101 significantly inhibited cell migration and invasion in Caki-1 and 786-O cells. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) was directly suppressed by miR-101 in RCC cells, and overexpression of UHRF1 was confirmed in sunitinib-treated RCC tissues. The pathways of nucleotide excision repair and mismatch repair were significantly suppressed by knockdown of UHRF1. Our findings showed that antitumor miR-101- mediated UHRF1 pathways may be suppressed by sunitinib treatment. PMID:27487138

  8. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells.

    PubMed

    Comer, Brian S; Camoretti-Mercado, Blanca; Kogut, Paul C; Halayko, Andrew J; Solway, Julian; Gerthoffer, William T

    2015-04-01

    Cyclooxygenase-2 (COX-2) expression and PGE2 secretion from human airway smooth muscle cells (hASMCs) may contribute to β2-adrenoceptor hyporesponsiveness, a clinical feature observed in some patients with asthma. hASMCs from patients with asthma exhibit elevated expression of cytokine-responsive genes, and in some instances this is attributable to an altered histone code and/or microRNA expression. We hypothesized that COX-2 expression and PGE2 secretion might be elevated in asthmatic hASMCs in response to proinflammatory signals in part due to altered histone acetylation and/or microRNA expression. hASMCs obtained from nonasthmatic and asthmatic human subjects were treated with cytomix (IL-1β, TNF-α, and IFN-γ). A greater elevation of COX-2 mRNA, COX-2 protein, and PGE2 secretion was observed in the asthmatic cells. We investigated histone H3/H4-acetylation, transcription factor binding, mRNA stability, p38 mitogen-activated protein kinase signaling, and microRNA (miR)-155 expression as potential mechanisms responsible for the differential elevation of COX-2 expression. We found that histone H3/H4-acetylation and transcription factor binding to the COX-2 promoter were similar in both groups, and histone H3/H4-acetylation did not increase after cytomix treatment. Cytomix treatment elevated NF-κB and RNA polymerase II binding to similar levels in both groups. COX-2 mRNA stability was increased in asthmatic cells. MiR-155 expression was higher in cytomix-treated asthmatic cells, and we show it enhances COX-2 expression and PGE2 secretion in asthmatic and nonasthmatic hASMCs. Thus, miR-155 expression positively correlates with COX-2 expression in the asthmatic hASMCs and may contribute to the elevated expression observed in these cells. These findings may explain, at least in part, β2-adrenoceptor hyporesponsiveness in patients with asthma.

  9. MicroRNA-34c expression in donor cells influences the early development of somatic cell nuclear transfer bovine embryos.

    PubMed

    Wang, Bo; Wang, Yongsheng; Zhang, Man; Du, Yue; Zhang, Yijun; Xing, Xupeng; Zhang, Lei; Su, JianMin; Zhang, Yong; Zheng, Yuemao

    2014-12-01

    The essence of the reprogramming activity of somatic cell nuclear transfer (SCNT) embryos is to produce normal fertilized embryos. However, reprogramming of somatic cells is not as efficient as the reprogramming of sperm. In this report, we describe the effect of an inducible, specific miR-34 microRNA expression in donor cells that enables a similar level of sperm:transgene expression on the early development of SCNT embryos. Our results showed that donor cells with doxycycline (dox)-induced miR-34c expression for the preparation of SCNT embryos resulted in altered developmental rates, histone modification (H3K9ac and H3K4me3), and extent of apoptosis. The cleavage rate and blastocyst formation of the induced nuclear transfer (NT) group were significantly increased. The immunofluorescence signal of H3K9ac in embryos in the induced NT group significantly increased in two-cell- and eight-cell-stage embryos; that of H3K4me3 increased significantly in eight-cell-stage embryos. Although significant differences in staining signals of apoptosis were not detected between groups, lower apoptosis levels were observed in the induced NT group. In conclusion, miR-34c expression induced by dox treatment enhances the developmental potential of SCNT embryos, modifies the epigenetic status, and changes blastocyst quality.

  10. Spaceflight alters expression of microRNA during T-cell activation

    PubMed Central

    Hughes-Fulford, Millie; Chang, Tammy T.; Martinez, Emily M.; Li, Chai-Fei

    2015-01-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21.—Hughes-Fulford, M., Chang, T. T., Martinez, E. M., Li, C.-F. Spaceflight alters expression of microRNA during T-cell activation. PMID:26276131

  11. Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line.

    PubMed

    Kumarswamy, Regalla; Chandna, Sudhir

    2010-08-01

    Actinomycin-D (Act-D) and other inhibitors of RNA synthesis induce extensive and rapid apoptosis in the lepidopteran insect cells. Interestingly, a similar effect is not observed in the case of protein synthesis shutdown, implying that certain RNA species may be critically required for cell survival. In order to assess whether depletion of certain anti-apoptotic microRNAs may result in insect cell apoptosis induced by these transcriptional inhibitors, we inhibited two antiapoptotic microRNAs, viz. bantam and miR-14 (microRNA-14), with known functions in insect systems, by transfecting lepidopteran Sf9 cell line (derived from Spodoptera frugiperda) with sequence-specific inhibitory anti-miRs. Our results indicate that miR-14 is indeed required for constitutive cell survival as its inhibition caused considerable apoptosis. Importantly, exogenous supplementation with the mimics of miR-14 precursor molecules could partially inhibit the Act-D-induced Sf9 cell death. Further, our results indicate that miR-14 may function downstream of mitochondrial cytochrome c release in preventing Act-D-induced apoptosis, implying possible inhibitory interactions with caspases as reported previously in other organisms. While the microRNA species are known to regulate cell death in Drosophila, which belongs the insect order Diptera, the present study demonstrates a definitive antiapoptotic role of miR-14 in lepidopteran apoptosis as well. Our study also indicates that additional microRNA species may be regulating lepidopteran cell survival and death, thus warranting further in-depth investigations into these important mechanisms of cell death. Since lepidopteran cells are an excellent model for general stress resistance, this study presents important information about their stress response mechanisms.

  12. MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells

    PubMed Central

    Ruan, Wen-Dong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Zhang, Bin

    2016-01-01

    MicroRNAs (miRNAs) have a role in the development and progression of human malignancy. The expression of miR-497 is decreased in malignant tumors, which suggests a role for miR-497 as a tumor suppressor. Angiomotin is encoded by the AMOT gene, which is a target for miR-497. Angiomotin has a role in angiogenesis, cell proliferation, and invasion in human malignancies, including osteosarcoma. However, the role of miR-497 in human osteosarcoma is unknown. This preliminary study included human osteosarcoma tissues and normal tissues from 20 patients, the osteosarcoma cell lines, MG-63, SAOS-2, U-2 OS, and the human osteoblast cell line hFOB (OB3). Western blots for angiomotin and quantitative real-time polymerase chain reaction for the expression of miR-497 and AMOT were performed. Knockdown studies were performed using RNA interference and transfection studies used miR-497 mimics. Quantitative cell migration assays were performed, and cell apoptosis was studied by flow cytometry. Osteosarcoma cells and cell lines showed reduced expression of miR-497 and increased expression of angiomotin. Transfection of osteosarcoma cells with miR-497 mimics suppressed the expression of angiomotin. Results from a dual-luciferase reporter system supported AMOT as a direct target gene of miR-497. Knockdown of AMOT using RNA interference resulted in inhibition of osteosarcoma cell proliferation, migration, and invasion. These preliminary studies support a role for miR-497 as a suppressor of AMOT gene expression in human osteosarcoma cells, resulting in suppression of tumor cell proliferation and invasion. Further studies are recommended to investigate the role of miR-497 in osteosarcoma and other malignant mesenchymal tumors. PMID:26855583

  13. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression

    PubMed Central

    Yang, N.; Liang, Y.; Yang, P.; Yang, T.; Jiang, L.

    2017-01-01

    Propofol is a frequently used intravenous anesthetic agent. Recent studies show that propofol exerts a number of non-anesthetic effects. The present study aimed to investigate the effects of propofol on lung cancer cell lines H1299 and H1792 and functional role of microRNA (miR)-486 in these effects. H1299 and/or H1792 cells were treated with or without propofol and transfected or not with miR-486 inhibitor, and then cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry. The expression of miR-486 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) with or without propofol treatment. Western blot was performed to analyze the protein expression of Forkhead box, class O (FOXO) 1 and 3, Bcl-2 interacting mediator of cell death (Bim), and pro- and activated caspases-3. Results showed that propofol significantly increased the miR-486 levels in both H1299 and H1792 cells compared to untreated cells in a dose-dependent manner (P<0.05 or P<0.01). Propofol statistically decreased cell viability but increased the percentages of apoptotic cells and protein expressions of FOXO1, FOXO3, Bim, and pro- and activated caspases-3; however, miR-486 inhibitor reversed the effects of propofol on cell viability, apoptosis, and protein expression (P<0.05 or P<0.01). In conclusion, propofol might be an ideal anesthetic for lung cancer surgery by effectively inhibiting lung cancer cell viability and inducing cell apoptosis. Modulation of miR-486 might contribute to the anti-tumor activity of propofol. PMID:28076456

  14. MicroRNA-27a Contributes to Rhabdomyosarcoma Cell Proliferation by Suppressing RARA and RXRA

    PubMed Central

    Tombolan, Lucia; Zampini, Matteo; Casara, Silvia; Boldrin, Elena; Zin, Angelica; Bisogno, Gianni; De Pittà, Cristiano; Lanfranchi, Gerolamo

    2015-01-01

    Background Rhabdomyosarcomas (RMS) are rare but very aggressive childhood tumors that arise as a consequence of a regulatory disruption in the growth and differentiation pathways of myogenic precursor cells. According to morphological criteria, there are two major RMS subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS) with the latter showing greater aggressiveness and metastatic potential with respect to the former. Efforts to unravel the complex molecular mechanisms underlying RMS pathogenesis and progression have revealed that microRNAs (miRNAs) play a key role in tumorigenesis. Methodology/Principal Findings The expression profiles of 8 different RMS cell lines were analyzed to investigate the involvement of miRNAs in RMS. The miRNA population from each cell line was compared to a reference sample consisting of a balanced pool of total RNA extracted from those 8 cell lines. Sixteen miRNAs whose expression discriminates between translocation-positive ARMS and negative RMS were identified. Attention was focused on the role of miR-27a that is up-regulated in the more aggressive RMS cell lines (translocation-positive ARMS) in which it probably acts as an oncogene. MiR-27a overexpressing cells showed a significant increase in their proliferation rate that was paralleled by a decrease in the number of cells in the G1 phase of the cell cycle. It was possible to demonstrate that miR-27a is implicated in cell cycle control by targeting the retinoic acid alpha receptor (RARA) and retinoic X receptor alpha (RXRA). Conclusions Study results have demonstrated that miRNA expression signature profiling can be used to classify different RMS subtypes and suggest that miR-27a may have a therapeutic potential in RMS by modulating the expression of retinoic acid receptors. PMID:25915942

  15. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a.

    PubMed

    Wang, Ning; Wei, Heng; Yin, Duo; Lu, Yanming; Zhang, Yao; Zhang, Qiao; Ma, Xiaoxin; Zhang, Shulan

    2016-04-01

    Cervical cancer is one of the most frequent gynecological malignancies in women worldwide. MicroRNA-195 (miR-195) was recently found highly expressed in cervical cancer. However, the role of miR-195 in the pathology of cervical cancer remains poorly understood. In this study, we first confirmed the downregulation of miR-195 in primary cervical cancer tissues. For the functional study, we introduced the sequences of miR-195 or miR-195 inhibitor into Hela and SiHa cervical cancer cell lines. Overexpression of miR-195 inhibited the proliferation of both Hela and SiHa cells. In contrast, reducing the endogenous miR-195 level by miR-195 inhibitor promoted the proliferation of cervical cancer cells. Flow cytometric assay showed that overexpression of miR-195 induced G1 phase arrest, whereas miR-195 inhibitor shortened G1 phase of cervical cancer cells. In addition, the suppressive role of miR-195 in cell cycle was also demonstrated by the western blot results of various cell cycle indicators, such as phosphorylated retinoblastoma (p-Rb) and proliferating cell nuclear antigen (PCNA), in the gain and loss of function experiments. Furthermore, Dual-Luciferase Reporter Assay revealed that miR-195 targeted the 3'-untranslated region of cyclin D1a transcript, such as to regulate cyclin D1 expression. In summary, our results suggest that miR-195 acts as a suppressor in the proliferation and cell cycle of cervical cancer cells by directly targeting cyclin D1a mRNA.

  16. MicroRNA 211 Functions as a Metabolic Switch in Human Melanoma Cells

    PubMed Central

    Mazar, Joseph; Qi, Feng; Lee, Bongyong; Marchica, John; Govindarajan, Subramaniam; Shelley, John; Li, Jian-Liang; Ray, Animesh

    2016-01-01

    MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma. PMID:26787841

  17. Micro RNA-155 participates in re-activation of encephalitogenic T cells.

    PubMed

    Jevtić, Bojan; Timotijević, Gordana; Stanisavljević, Suzana; Momčilović, Miljana; Mostarica Stojković, Marija; Miljković, Djordje

    2015-08-01

    MicroRNAs (miR) are small non-coding RNAs involved in the immune response regulation. miR-155 has been attributed a major pro-inflammatory role in the pathogenesis of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Here, a role of miR-155 in re-activation of encephalitogenic CD4(+) T cells was investigated. Dark Agouti rats were immunized with myelin basic protein (MBP) emulsified in complete Freund's adjuvant. CD4(+) T cells were purified from draining lymph node cells (DLNC) obtained in the inductive phase and from spinal cord immune cells (SCIC) isolated at the peak of EAE. CD4(+) T cells obtained from SCIC (i.e., in vivo re-activated cells) had markedly higher expression of miR-155 in comparison to those purified from DLNC (not re-activated). Likewise, in vitro re-activation of DLNC with MBP led to increase in miR-155 expression. Further, DLNC and DLNC CD4(+) T cells were transfected with an inhibitor of miR-155 during in vitro re-activation. As a result, expression of important CD4(+) T cell effector cytokines IFN-γ and IL-17, but not of regulatory cytokines IL-10 and TGF-β, was reduced. These results imply that miR-155 supports re-activation of encephalitogenic CD4(+) T cells. Our results contribute to a view that miR-155 might be a valuable target in multiple sclerosis therapy.

  18. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells

    SciTech Connect

    Yao, Qing; Xu, Hui; Zhang, Qian-Qian; Zhou, Hui; Qu, Liang-Hu

    2009-10-23

    MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.

  19. Sol-Generating Chemical Vapor into Liquid (SG-CViL) Deposition- A Facile Method for Encapsulation of Diverse Cell Types in Silica Matrices

    PubMed Central

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-01-01

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex-vivo environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications. PMID:25688296

  20. Sol-Generating Chemical Vapor into Liquid (SG-CViL) Deposition- A Facile Method for Encapsulation of Diverse Cell Types in Silica Matrices.

    PubMed

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C; Tartis, Michaelann

    2015-02-14

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex-vivo environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  1. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203.

    PubMed

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-07-05

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) treated with a retina differentiation cocktail induced gene expressions of retina development-relevant genes. Furthermore, microRNA-203 (miR-203) is abundantly expressed in human AESCs and human UCB-MSCs. This miR-203 is predicted to target multiple retina development-relevant genes, particularly DKK1, CRX, RORβ, NEUROD1, NRL and THRB. The inhibition of miR-203 induced a retina differentiation of AESCs and UCB-MSCs. Moreover, successive treatments of anti-miR-203 led to the expression of both mature photoreceptor (PR) markers, rhodopsin and opsin. In addition, we determined that CRX, NRL and DKK1 are direct targets of miR-203 using a luciferase assay. Thus, the work presented here suggests that somatic stem cells can potentially differentiate into neural retina cell types when treated with anti-miR-203. They may prove to be a source of both PR subtypes for future allogeneic stem cell-based therapies of non-regenerative retina diseases.

  2. Flavin fluorescence lifetime imaging of living peripheral blood mononuclear cells on micro and nano-structured surfaces

    NASA Astrophysics Data System (ADS)

    Teplicky, T.; Horilova, J.; Bruncko, J.; Gladine, C.; Lajdova, I.; Mateasik, A.; Chorvat, D.; Marcek Chorvatova, A.

    2015-03-01

    Fabricated micro- and nano-structured surfaces were evaluated for use with living cells. Metabolic state was tested by means of endogenous flavin fluorescence of living peripheral blood mononuclear cells (PBMC) positioned on a coverslip, non-covered, or covered with micro- or nano-structured surfaces (OrmoComp polymer structures produced by 2-photon photopolymerisation, or Zinc Oxide (ZnO) layer fabricated by pulsed laser deposition). Confocal microscopy and Fluorescence Lifetime Imaging Microscopy (FLIM) were employed to gather flavin fluorescence lifetime images of living PBMC on structured surfaces. Gathered data are the first step towards monitoring of the live cell interaction with different micro/nano-structured surfaces and thus evaluate their potential applicability in the biomedical field.

  3. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  4. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  5. Concise review: MicroRNAs as modulators of stem cells and angiogenesis.

    PubMed

    Kane, Nicole M; Thrasher, Adrian J; Angelini, Gianni D; Emanueli, Costanza

    2014-05-01

    MicroRNAs (miRs) are highly conserved, short noncoding RNA molecules that negatively regulate messenger RNA (mRNA) stability and/or translational efficiency. Since a given miR can control the expression of many mRNAs, their importance in governing gene expression in specific cell types including vascular cells and their progenitor cells has become increasingly clear. Understanding how the expression of miRs themselves is regulated and how miRs exert their influence on post-transcriptional gene control provides novel opportunities to dissect gene regulatory networks in clinically relevant cell types. A multitude of miRs have been identified with key roles in vascular development, homeostasis, function, disease, and regeneration. In this review, we will describe the impact of miRs on angiogenesis and their capacity to modulate the behavior of stem and progenitor cells which may be utilitarian for promoting vascular growth in ischemic tissue. Moreover, we summarize these strategies available for modulating miR expression and function and future therapeutic applications.

  6. Arrays of EAP micro-actuators for single-cell stretching applications

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Niklaus, M.; Shea, H.

    2010-04-01

    Mechanical stimuli are critical for the development and maintenance of most tissues such as muscles, cartilage, bones and blood vessels. The commercially available cell culture systems replicating the in vivo environment are typically based on simple membrane cell-stretching equipment, which can only measure the average response of large colonies of cells over areas of greater than one cm2. We present here the conceptual design and the complete fabrication process of an array of 128 Electro-Active Polymer (EAP) micro-actuators which are uni-axially stretched and hence used to impose unidirectional strain on single cells, make it feasible to do experiments on the cytomechanics of individual cells. The Finite Element Method is employed to study the effect of different design parameters on achievable strain, leading to the optimized design. Compliant gold electrodes are deposited by low-energy ion implantation on both sides of a PDMS membrane, as this technique allows making electrodes that support large strain with minimal stiffening of the elastomer. The membrane is bonded to a rigid support, leading to an array of 100×100 μm2 EAP actuators.

  7. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  8. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene.

    PubMed

    Li, Liang-Qing; Yang, Yang; Chen, Hui; Zhang, Lin; Pan, Dun; Xie, Wen-Jun

    2016-06-07

    Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, which is named as ``Warburg effect''. Recent studies have shown that MicroRNAs (miRNAs), a class of short and non-coding RNAs, play a role in the regulation of metabolic reprograming in cancer cells. In the present study, we report that miR-181b negatively regulates glycolysis in gastric cancer cells. Over-expression of miR-181b mimics reduces the glucose uptake and lactate production, while increasing the cellular ATP levels in NCI-N87 and MGC80-3 cells. At the molecular level, miR-181b directly inhibits the expression level of hexokinase 2 (HK2), a key enzyme that catalyzes the first step of glycolysis, through targeting its 3'-untranslated region. In addition, miR-181b represses cell proliferation and migration and is dramatically down-regulated in human gastric cancers. Therefore, our data disclose a novel function of miR-181b in reprogramming the metabolic process in gastric cancer.

  9. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing

    PubMed Central

    Sousa, Elsa J.; Graça, Inês; Baptista, Tiago; Vieira, Filipa Q.; Palmeira, Carlos; Henrique, Rui; Jerónimo, Carmen

    2013-01-01

    Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa. PMID:23644875

  10. Epigallocatechin-3-gallate Modulates MicroRNA Expression Profiles in Human Nasopharyngeal Carcinoma CNE2 Cells

    PubMed Central

    Li, Bin-Bin; Huang, Guo-Liang; Li, Hua-Hui; Kong, Xia; He, Zhi-Wei

    2017-01-01

    Background: Epigallocatechin-3-gallate (EGCG) has exhibited antitumor properties in several types of cancers, including nasopharyngeal carcinoma (NPC), but the molecular mechanisms underlying this function remain incompletely understood. The aim of the present study was to characterize the global impact of EGCG on the expression of microRNAs (miRNAs) in NPC cells. Methods: Using microarray analysis, the alterations of miRNA expression profiles were investigated in EGCG-treated CNE2 cells. Furthermore, the target genes and signaling pathways regulated by EGCG-specific miRNAs were identified using target prediction program and gene ontology analysis. Results: A total of 14 miRNAs exhibited >2-fold expression changes in a dose-dependent manner after treatment with 20 μmol/L and 40 μmol/L EGCG. Totally 43, 49, and 52 target genes from these differentially expressed miRNAs were associated with the apoptosis, cell cycle regulation, and cell proliferation, respectively. A total of 66 signaling pathways, primarily involved in cancer development and lipid and glucose metabolism, were shown to be regulated by EGCG-specific miRNAs. Conclusion: EGCG induces considerable alterations of miRNA expression profiles in CNE2 cells, which provides mechanistic insights into cellular responses and antitumor activity mediated by EGCG. PMID:28051030

  11. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures.

    PubMed

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-08-14

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm(2) exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm(-2) because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.

  12. Three-Dimensional Characterization of Cell Clusters Using Synchrotron-Radiation-Based Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Müller, Ert; Riedel, Marco; Thurner, Philipp J.

    2006-04-01

    Micro-computed tomography with the highly intense, monochromatic X rays produced by the synchrotron is a superior method to nondestructively measure the local absorption in three-dimensional space. Because biological tissues and cells consist mainly of water as the surrounding medium, higher absorbing agents have to be incorporated into the structures of interest. Even without X-ray optics such as refractive lens, one can uncover the stain distribution with the spatial resolution of about 1 [mu]m. Incorporating the stain at selected cell compartments, for example, binding to the RNA/DNA, their density distribution becomes quantified. In this communication, we demonstrate that tomograms obtained at the beamlines BW2 and W2 (HASYLAB at DESY, Hamburg, Germany) and 4S (SLS, Villigen, Switzerland) clearly show that the RNA/DNA-stained HEK 293 cell clusters have a core of high density and a peripheral part of lower density, which correlate with results of optical microscopy. The inner part of the clusters is associ