Sample records for micro-cavity discharge array

  1. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  2. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  3. A parametric study on the PD pulses activity within micro-cavities

    NASA Astrophysics Data System (ADS)

    Ganjovi, Alireza A.

    2016-03-01

    A two-dimensional kinetic model has been used to parametric investigation of the spark-type partial discharge pulses inside the micro-cavities. The model is based on particle-in-cell methods with Monte Carlo Collision techniques for modeling of collisions. Secondary processes like photo-emission and cathode-emission are considered. The micro-cavity may be sandwiched between two metallic conductors or two dielectrics. The discharge within the micro-cavity is studied in conjunction with the external circuit. The model is used to successfully simulate the evolution of the discharge and yield useful information about the build-up of space charge within the micro-cavity and the consequent modification of the applied electric field. The phase-space scatter plots for electrons, positive, and negative ions are obtained in order to understand the manner in which discharge progresses over time. The rise-time and the magnitude of the discharge current pulse are obtained and are seen to be affected by micro-cavity dimensions, gas pressure within the micro-cavity, and the permittivity of surrounding dielectrics. The results have been compared with existing experimental, theoretical, and computational results, wherever possible. An attempt has been made to understand the nature of the variations in terms of the physical processes involved.

  4. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    NASA Astrophysics Data System (ADS)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  5. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    NASA Astrophysics Data System (ADS)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  6. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  7. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  8. Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration

    2016-09-01

    Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.

  9. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  10. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  11. [The project and simulation of a compositive miniature spectrum instrument based on the array of Fabry-Perot cavity].

    PubMed

    Wen, Zhi-yu; Chen, Gang; Wang, Jian-guo

    2006-10-01

    This paper advances a kind of micro-spectrometer based on Fabry-Perot cavity's character of filtering the waves. The basic structure of the micro-spectrometer is the array of Fabry-Perot cavity which contains many different lengths of cavity on the substrate of silicon, consequently the authors can achieve the detection at several wavelengths simultaneously. The unit of probing is a Fabry-Perot cavity made up of the substrate of silicon-metal film-silicon dioxide layer-metal film. The authors carried out the corresponding simulation. In the basic structure of aluminum film(14 nm)-silicon dioxide layer-silver film(39 nm), the resolution can reach 15 nm. When the area of a unit of probing is 0.14 mm x 0.14 mm only, it can reach the luminous flux of miniature grating spectrum instrument (the minimum volume in the order of cm), but the volume of the part of spectrum detection is only of the order of mm. The design size of the micro-spectrometer is a few millimeters. Furthermore it has no movable parts and could detect several wavelengths at the same time. It is possible to fabricate such micro-spectrometer through existing processing methods of IC technology.

  12. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  13. Experimental characterization of mm-wave detection by a micro-array of Golay cells

    NASA Astrophysics Data System (ADS)

    Denison, Douglas R.; Knotts, Michael E.; McConney, Michael E.; Tsukruk, Vladimir V.

    2009-05-01

    We present experimental results for an uncooled imaging focal plane array technology that consists of a polymer/metal/polymer layered membrane suspended over a micro-fabricated array of cavities. The device operation is Golay-like (heating of air in the cavity causes a detectable deflection of the membrane proportional to incident EM power), but potentially offers both greater sensitivity and more read-out options (optical or electrical) than a traditional Golay cell through tailoring of the membrane properties. The membrane is formed from a layer-by-layer deposition of polymer with one or more monolayers of gold nanoparticles (or other metal) that help control the membrane's elasticity and deformation-dependent optical reflectivity/electrical conductivity. Baseline capabilities of the device have been established through optical measurements of membrane deflection due to incident mm-wave radiation modulated at 30 Hz (corresponding to a video refresh rate). The device demonstrates an NEP of 300 nW/√Hz at 105 GHz for a 19-layer membrane (9 poly/1 Au/9 poly) suspended over an array of 80 μm diameter cavities (depth = 100 μm) etched in a 500 μm thick substrate of Si. Calculations of membrane sensitivity show that this NEP could be reduced to ~ 100 pW/√Hz with enlarged cavity diameters on the order of 600 μm.

  14. Voltage gradients in solar array cavities as possible breakdown sites in spacecraft-charging-induced discharges

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Mills, H. E.; Orange, L.

    1981-01-01

    A possible explanation for environmentally-induced discharges on geosynchronous satellites exists in the electric fields formed in the cavities between solar cells - the small gaps formed by the cover slides, solar cells, metallic interconnects and insulating substrate. When exposed to a substorm environment, the cover slides become less negatively charged than the spacecraft ground. If the resultant electric field becomes large enough, then the interconnect could emit electrons (probably by field emission) which could be accelerated to space by the positive voltage on the covers. An experimental study was conducted using a small solar array segment in which the interconnect potential was controlled by a power supply while the cover slides were irradiated by monoenergetic electrons. It was found that discharges could be triggered when the interconnect potential became at least 500 volts negative with respect to the cover slides. Analytical modeling of satellites exposed to substorm environments indicates that such gradients are possible. Therefore, it appears that this trigger mechanism for discharges is possible.

  15. Pool boiling on surfaces with mini-fins and micro-cavities

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2012-11-01

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  16. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    PubMed

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  17. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    NASA Astrophysics Data System (ADS)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  18. Singlet delta oxygen production in a 2D micro-discharge array in air: effect of gas residence time and discharge power

    NASA Astrophysics Data System (ADS)

    Nayak, Gaurav; Santos Sousa, João; Bruggeman, Peter J.

    2017-03-01

    The production of singlet delta oxygen (O2(a 1Δg)) is of growing interest for many applications. We report on the measurement of O2(a 1Δg) and ozone (O3) in a room temperature atmospheric pressure discharge in dry air. The plasma source is a 2D array of micro-discharges generated by an alternating current voltage at 20 kHz. The study focuses on the effect of gas flow through the discharge. The maximum investigated flow rate allows reducing the gas residence time in the discharge zone to half the discharge period. Results indicate that the residence time and discharge power have a major effect on the O2(a 1Δg) production. Different O2(a 1Δg) density dependencies on power are observed for different flow rates. Effects of collisional quenching on the as-produced and measured O2(a 1Δg) densities are discussed. The flow rate also allows for control of the O2(a 1Δg) to O3 density ratio in the effluent from 0.7 to conditions of pure O3.

  19. Fast discharge in a spherical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A.

    2014-04-15

    The work is devoted to the study of the plasma, created by a fast discharge in a spherical cavity. The discharge was driven by an inductive storage with plasma erosion opening switch (dI/dt ∼10{sup 12} A/s). The plasma was produced in a spherical cavity (alumina, 11 mm diameter). Xe, Ar, and He at the pressure 80 Pa were used as working gases. The time evolution of the spatial structure and of extreme ultraviolet (EUV) spectra of the discharge plasma was studied by means of micro channel plate detector. The discharges with Xe and Ar resulted in the stable appearance of the spherically shapedmore » plasma with the diameter about 1–3 mm. The plasma emission in the EUV region lasts ∼500 ns. The EUV spectrum of Ar discharge at the moment of maximum of the electron temperature T{sub e} contains the lines of Ar X (ionization potential 478.7 eV), that indicates a value of T{sub e} in the range 50–100 eV. The mechanism of plasma appearance can be the cumulation of the convergent spherical shock wave, generated by fast heat deposition and magnetic pressure in working media near the inner surface of the discharge volume.« less

  20. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  1. OH radical production in an atmospheric pressure surface micro-discharge array

    NASA Astrophysics Data System (ADS)

    Li, D.; Nikiforov, A.; Britun, N.; Snyders, R.; Kong, M. G.; Leys, C.

    2016-11-01

    The generation of OH radicals from an array of surface micro-discharges working in atmospheric pressure He/Ar/H2O mixtures is investigated. The absolute OH density and its temporal-and-spatial dynamics are detected by UV broadband absorption spectroscopy (UV-BAS) and laser-induced fluorescence (LIF) spectroscopy. The measured absolute density of OH(X) state is about 1021 m-3 in Ar/H2O mixture reaching a peak at 0.05% of H2O. In the case of He/H2O mixtures however, the peaking at ~1019 m-3 is approximately two orders of magnitude lower and decreases monotonously with increasing H2O content. From a control standpoint, the ratio of the Ar/He mixture may be adjusted to tune the OH density over two orders of magnitude and to modulate the H2O content dependence of the OH density. The capability of modulating the OH radical production over a large density range is of practical interest for many applications such as atmospheric chemistry and biochemistry. With the array of atmospheric micro-discharges sustained over a large electrode area, a uniform distribution of its OH density can be achieved in a plane parallel to the electrodes thus enabling spatially controlled surface treatment of large samples.

  2. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.

  3. Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities

    DTIC Science & Technology

    2014-01-01

    New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and

  4. Custom ceramic microchannel-cooled array for high-power fiber-coupled application

    NASA Astrophysics Data System (ADS)

    Junghans, Jeremy; Feeler, Ryan; Stephens, Ed

    2018-03-01

    A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.

  5. Scale effects and a method for similarity evaluation in micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Liu, Qingyu; Zhang, Qinhe; Wang, Kan; Zhu, Guang; Fu, Xiuzhuo; Zhang, Jianhua

    2016-08-01

    Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.

  6. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.

    PubMed

    Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong

    2018-06-11

    With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

  7. Integrated Arrays on Silicon at Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  8. Review on structured optical field generated from array beams

    NASA Astrophysics Data System (ADS)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  9. Feasibility Analysis and Demonstration of High-Speed Digital Imaging Using Micro-Arrays of Vertical Cavity Surface-Emitting Lasers

    DTIC Science & Technology

    2011-04-01

    Proceedings, Bristol, UK (2006). 5. M. A. Mentzer, Applied Optics Fundamentals and Device Applications: Nano, MOEMS , and Biotechnology, CRC Taylor...ballistic sensing, flash x-ray cineradiography, digital image correlation, image processing al- gorithms, and applications of MOEMS to nano- and

  10. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  11. Cavity-backed, micro-strip dipole antenna array

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr. (Inventor)

    1981-01-01

    A flush-mounted antenna assembly includes a generally rectangular, conductive, box structure open along one face to form a cavity. Within the cavity a pair of mutually orthogonal dielectric plane surfaces in an "egg crate" arrangement are mounted normal to the plane of the open face, each diagonally within the cavity. Each dielectric plane supports a pair of printed circuit dipoles typically each fed from the opposite side of the dielectric plane by a printed "cone-shaped" feed line trace which also serve as an impedance matching device and functions as a balun connected from an unbalanced strip line external feed. The open face of the conductive cavity can be flush mounted with a randome thereover, the assembly thereby being flush with the skin of a aircraft or space vehicle.

  12. Cavity-backed, micro-strip dipole antenna array

    NASA Astrophysics Data System (ADS)

    Ellis, H., Jr.

    1981-09-01

    A flush-mounted antenna assembly includes a generally rectangular, conductive, box structure open along one face to form a cavity. Within the cavity a pair of mutually orthogonal dielectric plane surfaces in an "egg crate" arrangement are mounted normal to the plane of the open face, each diagonally within the cavity. Each dielectric plane supports a pair of printed circuit dipoles typically each fed from the opposite side of the dielectric plane by a printed "cone-shaped" feed line trace which also serve as an impedance matching device and functions as a balun connected from an unbalanced strip line external feed. The open face of the conductive cavity can be flush mounted with a randome thereover, the assembly thereby being flush with the skin of a aircraft or space vehicle.

  13. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less

  14. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    NASA Astrophysics Data System (ADS)

    Shashkov, Ya. V.; Sobenin, N. P.; Petrushina, I. I.; Zobov, M. M.

    2014-12-01

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  15. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  16. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  17. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    NASA Astrophysics Data System (ADS)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J.; Dussart, Rémi

    2016-04-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I-V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3-10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I-V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime.

  18. Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Bichen; Chen, Huimin; Feng, Wei

    Arrays of oriented poly(3,4-ethylenedioxythiophene) (PEDOT) micro/nanorods are synthesized by electrochemical galvanostatic method at the current density of 1 mA cm -2 in the cetyltrimethylammonium bromide (CTAB) aqueous solution whose pH value is 1. The CTAB is used both as the surfactant and the supporting salt in the electrolyte solution. The electrochemical properties of PEDOT films are characterized by cyclic voltammetry and galvanostatic charge/discharge techniques, which indicate that the arrays of oriented PEDOT micro/nanorods can be applied as the electrode materials of supercapacitors. In addition, the cycling performance of PEDOT micro/nanorods is much better than that of traditional PEDOT particles. The effects of the concentration of CTAB, the current density, and pH value of electrolyte solutions on the morphologies and electrochemical properties of PEDOT films are investigated. The mechanism of different morphologies formation is discussed in this study as well.

  19. Cavitation-based hydro-fracturing technique for geothermal reservoir stimulation

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2017-02-21

    A rotary shutter valve 500 is used for geothermal reservoir stimulation. The valve 500 includes a pressure chamber 520 for holding a working fluid (F) under pressure. A rotatable shutter 532 is turned with a powering device 544 to periodically align one or more windows 534 with one or more apertures 526 in a bulkhead 524. When aligned, the pressurized working fluid (F) flows through the bulkhead 524 and enters a pulse cavity 522, where it is discharged from the pulse cavity 522 as pressure waves 200. The pressure wave propagation 200 and eventual collapse of the bubbles 202 can be transmitted to a target rock surface 204 either in the form of a shock wave 206, or by micro jets 208, depending on the bubble-surface distance. Once cavitation at the rock face begins, fractures are initiated in the rock to create a network of micro-fissures for enhanced heat transfer.

  20. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.

    PubMed

    Chau, S W; Hsu, K L; Chen, S C; Liou, T M; Shih, K C

    2004-07-30

    The droplet impingement into a cavity at micrometer-scale is one of important fluidic issues for microfabrications, e.g. the inkjet deposition process in the PLED display manufacturing. The related micro-fluidic behaviors in the deposition process should be carefully treated to ensure the desired quality of microfabrication. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle responds very quickly and jets the droplets into cavities on substrates with micrometer size. The nature of droplet impingement depends on the fluid properties, the initial state of droplet, the impact parameters and the surface characteristics. The commonly chosen non-dimensional numbers to describe this process are the Weber number, the Reynolds number, the Ohnesorge number, and the Bond number. This paper discusses the influences of fluid properties of a Newtonian fluid, such as surface tension and fluid viscosity, on micro-fluidic characteristics for a certain jetting speed in the deposition process via a numerical approach, which indicates the impingement process consists of four different phases. In the first phase, the droplet stretching outwards rapidly, where inertia force is dominated. In the second phase, the recoiling of droplet is observed, where surface tension becomes the most important force. In the third phase, the gravitational force pulls the droplet surface towards cavity walls. The fourth phase begins when the droplet surface touches cavity walls and ends when the droplet obtains a stable shape. If the fluid viscosity is relatively small, the droplet surface touches cavity walls in the second phase. A stable fluid layer would not form if the viscosity is relatively small.

  1. Acoustic trapping in bubble-bounded micro-cavities

    NASA Astrophysics Data System (ADS)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  2. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-12-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.

  3. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  4. Fabrication of plasmonic cavity arrays for SERS analysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  5. Fabrication of plasmonic cavity arrays for SERS analysis.

    PubMed

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-05

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  6. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  7. The two-dimensional hybrid surface plasma micro-cavity

    NASA Astrophysics Data System (ADS)

    Kai, Tong; Mei-yu, Wang; Fu-cheng, Wang; Jia, Guo

    2018-07-01

    A hybrid surface plasma micro-cavity structure with a defect cavity is formed based on the two-dimensional surface plasmon resonance photonic crystal waveguide structure. A cell defect is introduced in the centre of the photonic crystal layer to build the hybrid surface plasma micro-cavity structure. This work is numerical based on the finite-difference time-domain method. The photon energy is confined to the micro-cavity and the photon energy is strongest at the interface between the insulating layer and the metal layer. The micro-cavity structure has a very small mode volume of sub-wavelength scale in the 1550 nm communication band. The value of Q/V is up to 7132.08 λ/n-3.

  8. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing

    2017-09-01

    We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.

  9. Bit Error Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser and MicroCavity VCSEL and Photo Receiver

    DTIC Science & Technology

    2015-08-31

    Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver The views, opinions and/or findings...suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis...for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver Report Title In the previous DURIP award (W911NF-13-1-0287

  10. High voltage testing for the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  11. High voltage testing for the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path,more » including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  12. Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.

    PubMed

    Shen, S C; Huang, J C

    2009-07-20

    Batch-fabrication of a micro-ball lens array (MBA) could not only reduce micro assembly costs but also replace conventional ball lenses or costly GRINs (Gradient Refractive Index) without compromising performance. Compared with conventional half-spherical micro-lenses, the MBA is a spherical micro-lens that can focus light in all directions, thus providing the flexibility required for optical applications. Current MBAs are made of SU-8 photoresist by an extrusion process rather than the traditional thermal reflow process. The aim of this study was to develop a new process for MBA batch-fabrication, performed at ambient temperature, by spin-coating SU-8 onto a silicon-wafer surface, which serves as an extrusion plate, and extruding it through a nozzle to form an MBA. The nozzle consists of a nozzle orifice and nozzle cavity, the former being defined and made from SU-8 photoresist using ultra-violet (UV) lithography, which results in good mechanical properties. In this paper, the fabrication of 4 x 4 MBAs with diameters ranging from 60 to 550 um is described. Optical measurements indicated a diameter variance within 3% and a maximum coupling efficiency of approximately 62% when the single mode fiber (SMF) was placed at a distance of 10 um from the MBA. The results of this study proved that MBA fabrication by the extrusion process can enhance the coupling efficiency.

  13. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  14. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation

    NASA Astrophysics Data System (ADS)

    Majumdar, Arka; Rundquist, Armand; Bajcsy, Michal; Dasika, Vaishno D.; Bank, Seth R.; Vučković, Jelena

    2012-11-01

    We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application in the quantum simulation of many-body systems.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  16. Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).

    PubMed

    Shang, Jintang; Chen, Boyin; Lin, Wei; Wong, Ching-Ping; Zhang, Di; Xu, Chao; Liu, Junwen; Huang, Qing-An

    2011-04-21

    A novel foaming process-chemical foaming process (CFP)-using foaming agents to fabricate wafer-level micro glass cavities including channels and bubbles was investigated. The process consists of the following steps sequentially: (1) shallow cavities were fabricated by a wet etching on a silicon wafer; (2) powders of a proper foaming agent were placed in a silicon cavity, named 'mother cavity', on the etched silicon surface; (3) the silicon cavities were sealed with a glass wafer by anodic bonding; (4) the bonded wafers were heated to above the softening point of the glass, and baked for several minutes, when the gas released by the decomposition of the foaming agent in the 'mother cavity' went into the other sealed interconnected silicon cavities to foam the softened glass into cylindrical channels named 'daughter channels', or spherical bubbles named 'son bubbles'. Results showed that wafer-level micro glass cavities with smooth wall surfaces were achieved successfully without contamination by the CFP. A model for the CFP was proposed to predict the final shape of the glass cavity. Experimental results corresponded with model predictions. The CFP provides a low-cost avenue to preparation of micro glass cavities of high quality for applications such as micro-reactors, micro total analysis systems (μTAS), analytical and bio-analytical applications, and MEMS packaging.

  17. Pocket rocket: An electrothermal plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD-ACE+ package are performed. Simulation results demonstrate that the discharge is driven by ion induced secondary or ‘gamma’ electrons emitted from the surface of the plasma cavity radial wall in the vicinity of the powered electrode. These electrons are accelerated to high velocities through an enhanced sheath formed by the asymmetry of the device, creating a peak in ion density within the centre of the discharge tube.

  18. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  19. Polarized micro-cavity organic light-emitting devices.

    PubMed

    Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk

    2009-04-27

    We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.

  20. Ignition and extinction phenomena in helium micro hollow cathode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atomsmore » density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.« less

  1. Formation of 2D-PhCs with missing holes based on Si-layers by EBL

    NASA Astrophysics Data System (ADS)

    Utkin, D. E.; Shklyev, A. A.; Tsarev, A. V.; Latyshev, A. V.

    2017-11-01

    The fabrication of the periodic structures, that is two-dimensional photonic crystals (2D PhCs) based on Si-materials by electron beam lithography (EBL) technique has been studied. We have investigated basic lithography processes such as designing, exposition, development, etching and others. The developed top-down approach allows close-packed arrays of elements and holes to be formed in nanometre range. This can be used to produce 2D PhCs with emitting micro-cavities (missing holes) with lateral size parameters with an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.

  2. ELECTRICAL PROTECTIVE DEVICE

    DOEpatents

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  3. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid

    Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.

  4. Initiation and growth kinetics of solidification cracking during welding of steel

    PubMed Central

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.

    2017-01-01

    Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852

  5. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  6. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  7. High-temperature fiber-optic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  8. Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time.

    PubMed

    Weng, Chih-Chiang; Wu, Yi-Te; Liao, Juinn-Der; Kao, Chi-Yuan; Chao, Chih-Cheng; Chang, Juu-En; Hsu, Bo-Wen

    2009-04-01

    A radio-frequency dielectric barrier discharge (DBD) was applied as a micro-plasma device for the inactivation of bacteria, e.g., Escherichia coli. The cultured bacteria were placed on a polydimethyl siloxane (PDMS) film and placed inside the DBD cavity. The bacteria were exposed to micro-plasmas of varying oxygen/argon ratios for different exposure times. The survival of the bacteria was measured by determining bacterial growth using optical methods. The excited oxygen species increased with the increase in the oxygen to argon ratio as measured by optical emission spectroscopy (OES), but the increase of excited oxygen species in argon micro-plasma did not enhance the inactivation of bacteria. In contrast, increases in the time the bacteria were exposed to the micro-plasma were of importance. The results show that a continuous plasma flow containing energetic and reactive species may result in electro-physical interactions with bacteria exposed to the plasma leading to their inactivation. For currently-employed DBD device, addition of 0.5% oxygen to the argon micro-plasma for an exposure time of 30 sec was optimum for the inactivation of E. coli.

  9. Micro Machining Enhances Precision Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  10. Retinal instrument

    DOEpatents

    Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J

    2013-04-23

    In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.

  11. Secure communications using nonlinear silicon photonic keys.

    PubMed

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2018-02-19

    We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

  12. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  13. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, Earl R.

    1994-01-01

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.

  14. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, E.R.

    1994-04-19

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

  15. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    NASA Astrophysics Data System (ADS)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  16. A printable color filter based on the micro-cavity incorporating a nano-grating

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Xu, Fengchuan; Wu, Shangliang; Wan, Wenqiang; Huang, Wenbin; Liu, Yanhua; Pu, Donglin; Wei, Guojun; Zhou, Yun; Wang, Yanyan; Qiao, Wen; Xu, Yishen; Chen, Linsen

    2016-10-01

    A printable color filter based on the photonic micro-cavity incorporating a nanostructure is proposed, which consists of a nano-metallic grating, a dielectric layer and aluminum (Al) film. According to the resonance induced by different dielectric depths of the micro-cavity, two dielectric heights for the same resonant wavelength are chosen to form the grating heights relative to the Al film. With the contribution of the cavity resonance and the surface plasmon resonance, the proposed structure performs enhanced broadband filtering characteristics with good angular tolerance up to 48° compared to the one of the micro-cavity as well as the one of the metallic grating. Therefore, reflective filters for RGB colors are designed incorporating the proposed structure. Furthermore, for the proposed structure shows great polarization dependence even at normal incidence, it can also be utilized as an anticounterfeiting certificate.

  17. Wavelength shift in vertical cavity laser arrays on a patterned substrate

    NASA Astrophysics Data System (ADS)

    Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.

    1995-03-01

    The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.

  18. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  19. Resonant-frequency discharge in a multi-cell radio frequency cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, S; Upadhyay, J; Mammosser, J

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less

  20. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance onmore » a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.« less

  1. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminantsmore » are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.« less

  2. The influence of an external cavity on the emission spectrum of a mercury germicidal lamp

    NASA Astrophysics Data System (ADS)

    Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.

    2016-09-01

    The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.

  3. Photon transport in a dissipative chain of nonlinear cavities

    NASA Astrophysics Data System (ADS)

    Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario

    2015-05-01

    By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.

  4. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  5. Dynamics of interacting Dicke model in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  6. Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yanling, Wan; Jian, Yang; Huadong, Yu

    2018-06-01

    To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.

  7. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.

    Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less

  8. Optical single photons on-demand teleported from microwave cavities

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Sh; Vitali, D.; Tombesi, P.

    2013-03-01

    We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.

  9. Quench dynamics of a disordered array of dissipative coupled cavities.

    PubMed

    Creatore, C; Fazio, R; Keeling, J; Türeci, H E

    2014-09-08

    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.

  10. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  11. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    PubMed Central

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  12. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    PubMed

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-09-11

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  13. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity

    PubMed Central

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-01-01

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580

  14. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  15. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5°. Consequently high efficiency high brightness arrays of micro-LEDs becomes possible. For single emitters the approach is particularly interesting for oscillator strength engineering allowing high speed data transmission and for single photonics applying single quantum dot (QD) emitters and allowing >90% coupling of the emission into single mode fiber. We also note that for longer wavelength ( 1300nm) QDs the thickness of the layers and surface patterns significantly increase allowing greatly reduced processing tolerances and applying further simplifications due to the possibility of using high contrast GaAs-AlOx DBRs.

  16. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  17. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    DOEpatents

    Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  18. Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode

    NASA Astrophysics Data System (ADS)

    Hsin, Wei

    New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.

  19. High-density percutaneous chronic connector for neural prosthetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnetsmore » are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.« less

  20. Fundamental experiment of ion thruster using ECR discharge

    NASA Astrophysics Data System (ADS)

    Yasui, Toshiaki; Kitayama, Jiro; Tahara, Hirokazu; Onoe, Ken-Ichi; Yoshikawa, Takao

    A microwave ion thruster has the potential to overcome a lifetime problem of electric propulsion by eliminating electrodes. Two types of microwave ion thruster have been investigated to examine the operational characteristics. The one is the thruster using cavity-resonance microwave discharge, and the other is the thruster using Electron Cyclotron Resonance (ECR) discharge. Cavity-resonance microwave discharge produced plasmas by strong electric field in the resonant cavity and sustained plasmas at argon mass flow rates above 10 sccm. However, ECR discharge was capable of sustaining plasmas at lower mass flow rate, because ECR discharge efficiently produced plasmas by resonance absorption. From these generated microwave plasmas, ions were electrostatically extracted by two multiaperture grids. In ECR discharge, the maximum ion beam current of 75 mA and the highest mass utilization efficiency of 18.7% were achieved at a total extraction voltage of 950 V.

  1. Collapsing cavities in reactive and nonreactive media

    NASA Astrophysics Data System (ADS)

    Bourne, Neil K.; Field, John E.

    1991-04-01

    This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.

  2. Characterization of a Plasmoid in the Afterglow of a Supersonic Flowing Microwave Discharge

    NASA Technical Reports Server (NTRS)

    Drake, D. J.; Miller, S.; Nikolic, M.; Popovic, S.; Vuskovic, L.

    2009-01-01

    We performed a detailed characterization a plasmoid in the afterglow region of an Ar supersonic microwave cavity discharge. The supersonic flow was generated using a convergent-divergent nozzle upstream of the discharge region. A cylindrical cavity was used to sustain a discharge in the pressure range of 100-600 Pa. Optical emission spectroscopy was used to observe populations of excited and ionic species in the plasmoid region. Plasmoid formation in the supersonic flowing afterglow located downstream from the primary microwave cavity discharge was characterized by measuring the radial and axial distributions of Argon excited states and Argon ions. More experiments are being carried out on the plasmoid to understand the discharge parameters within the region, i.e. rotational temperature, vibrational temperature, electron density, and how the electrodynamic and aerodynamic effects combine to form this plasmoid.

  3. Study on Silicon Microstructure Processing Technology Based on Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing

    2018-03-01

    Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.

  4. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  5. JPRS Report, Science & Technology, China, High-Performance Computer Systems

    DTIC Science & Technology

    1992-10-28

    microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element

  6. High-power VCSELs for smart munitions

    NASA Astrophysics Data System (ADS)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  7. Fabrication and characterization of multi-stopband Fabry-Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut

    2018-05-01

    Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.

  8. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    NASA Astrophysics Data System (ADS)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  9. Formation of controllable polymer micropatterns through liquid film electro-dewetting

    NASA Astrophysics Data System (ADS)

    Zhou, Shangru; Zheng, Huai; Li, Guoliang; Liu, Jie; Liu, Sheng

    2018-04-01

    Controllable polymer micropatterns, served as indispensable function structures, are extensively required in many micro/nano scientific areas and engineering applications. Exploring advanced methods of fabricating micropatterns is always a research hotspot. In this article, we introduce a novel method of patterning polymer by the electro-dewetting induced by corona discharge. For the first time, it is observed experimentally that liquid polymer on conductive/non-conductive patterned substrates, spontaneously converges from non-conductive areas to conductive areas under the action of ion wind. Taking advantage of such a flow phenomenon, controllable polymer micropatterns including microbump arrays and microwell arrays are fabricated successfully. Their sizes range from hundreds of microns to millimeters. Micropattern surfaces present an ultra-smooth characteristic, with roughness in the nanometer range.

  10. 2.07-micron CW diode-laser-pumped Tm,Ho:YLiF4 room-temperature

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1989-01-01

    Continuous-wave action is obtained at 2.07 microns from a 2-mm-long Tm-sensitized Ho:YLiF4 crystal at room temperature when longitudinally pumped by a pair of diode-laser arrays. Laser output power at 300 K is 26 mW, with a 30-percent slope efficiency and a lasing threshold of 108 mW. A maximum output power of 187 mW is obtained from a 4-mm-long crystal at 77 K, with a 67 percent slope efficiency. A preliminary demonstration of cavity Q switching produced 165 microJ of pulse energy at a repetition rate of 100 Hz.

  11. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    PubMed

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  12. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  13. Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity

    DTIC Science & Technology

    2014-01-01

    P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer

  14. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  15. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  16. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  17. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  18. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  19. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  20. Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.

    2008-11-01

    We study the coherent scattering process of a single photon confined in an one-dimensional (1D) coupled cavity-array, where a Λ -type three-level atom is placed inside one of the cavities in the array and behaves as a functional quantum node (FQN). We show that, through the electromagnetically-induced-transparency mechanism, the Λ -type FQN bears complete control over the reflection and transmission of the incident photon along the cavity array. We also demonstrate the emergence of a quasibound state of the single photon inside a secondary cavity constructed by two distant FQN’s as two end mirrors, from which we are motivated to design an all-optical single photon storage device of quantum coherence.

  1. Behavior of Combined Dielectric-Metallic Systems in a Charged Particle Environment

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.; Hoffman, R. W.

    1984-01-01

    The charging and discharging characteristics of an electrically isolated solar array segment were studied in order to simulate discharges seen during geomagnetic substorms. A solar array segment was floated while bombarded with monoenergetic electrons at various angles of incidence. The potentials of the array surface and of the interconnects were monitored using Trek voltage probes to maintain electrical isolation. A back plate was capacitively coupled to the array to provide information on the characteristics of the transients accompanying the discharges. Several modes of discharging of the array were observed at relatively low differential and absolute potentials (a few kilovolts). A relatively slow discharge response in the array was observed, discharging over one second with currents of nanoamps. Two types of faster discharges were also seen which lasted a few hundredths of a millisecond and with currents on the order of microamps. Some results indicate an electron emission process associated with the arcs.

  2. Space shuttle cavity assessment test program

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1976-01-01

    In order to obtain basic radiation properties of the radiator/payload bay door cavity, three tests were conducted on a full-size structural simulator of the cavity. There were three tests conducted: (1) CATA used for determination of exchange factors, absorbed solar flux, and door covering influences, (2) quartz lamp array calibrated to provide IR flux distribution on CATA, and (3) retest with radiometer array for background flux measurement.

  3. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.

    PubMed

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-03-02

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length ( L ), interval ( S ), and height ( H ) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  4. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    PubMed Central

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  5. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  6. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage.

    PubMed

    Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng

    2009-03-01

    The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.

  7. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber.

    PubMed

    Wang, Ying; Wang, D N; Liao, C R; Hu, Tianyi; Guo, Jiangtao; Wei, Huifeng

    2013-02-01

    A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C.

  8. Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.

    PubMed

    Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y

    2009-09-14

    Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

  9. CRSP, numerical results for an electrical resistivity array to detect underground cavities

    NASA Astrophysics Data System (ADS)

    Amini, Amin; Ramazi, Hamidreza

    2017-03-01

    This paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.

  10. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    PubMed

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  11. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  12. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  13. Influence of Ta content in high purity niobium on cavity performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Kneisel; G. Ciovati; G. R. Myneni

    In a previous paper [1] we have reported about initial tests of single cell 1500 MHz cavities made from high purity niobium with three different Ta contents of 160 ppm , {approx}600 ppm and {approx}1400 ppm. These cavities had been treated by buffered chemical polishing several times and 100 {micro}m, 200 {micro}m and 300 {micro}m of material had been removed from the surfaces. This contribution reports about subsequent tests following post purification heat treatments with Ti and ''in situ'' baking. As a result, all cavities exhibited increased quench fields due to the improved thermal conductivity after the heat treatment. Aftermore » the ''in situ'' baking at 120 C for {approx} 40 hrs the always present Q-drop at high fields disappeared and further improvements in accelerating gradient could be realized. Gradients as high as E{sub acc} = 35 MV/m were achieved and there were no clear indications that the cavity performance was influenced by the Ta content in the material. A multi-cell cavity from the high Ta content material has been fabricated and initial results are reported.« less

  14. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao

    2016-06-15

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less

  15. Spectroscopic Imaging of NIR to Visible Upconversion from NaYF4:Yb3+, Er3+ Nanoparticles on Au Nano-cavity Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Jon; Zhao, Bo; Lin, Cuikun; Berry, Mary; May, P. Stanley; Smith, Steve

    2015-03-01

    We use spectroscopic imaging to assess the spatial variations in upconversion luminescence from NaYF4:Er3+,Yb3+ nanoparticles embedded in PMMA on Au nano-cavity arrays. The nano-cavity arrays support a surface plasmon (SP) resonance at 980nm, coincident with the peak absorption of the Yb3+ sensitizer. Spatially-resolved upconversion spectra show a 30X to 3X luminescence intensity enhancement on the nano-cavity array compared to the nearby smooth Au surface, corresponding to excitation intensities from 1 W/cm2 to 300kW/cm2. Our analysis shows the power dependent enhancement in upconversion luminescence can be almost entirely accounted for by a constant shift in the effective excitation intensity, which is maintained over five orders of magnitude variation in excitation intensity. The variations in upconversion luminescence enhancement with power are modeled by a 3-level-system near the saturation limit, and by simultaneous solution of a system of coupled nonlinear differential equations, both analyses agree well with the experiments. Analysis of the statistical distribution of emission intensities in the spectroscopic images on and off the nano-cavity arrays provides an estimate of the average enhancement factor independent of fluctuations in nano-particle density. Funding provided by NSF Award # 0903685 (IGERT).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A.

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It ismore » shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.« less

  17. Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.

    PubMed

    Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C

    2015-04-01

    We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239  pm/MPa.

  18. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  19. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  20. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    DTIC Science & Technology

    2014-08-18

    the super- sonic flow at takeover flight speeds (Mach num- bers ɝ) prohibit auto - ignition . Therefore energy addition techniques typically need to be...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D...45430, USA c Innovative Scientific Solutions, Inc., Dayton, OH 45459, USA Available online 18 August 2014Abstract Ignition of an ethylene fueled cavity

  1. Microfabricated instruments and methods to treat recurrent corneal erosions

    DOEpatents

    Britton, Jr., Charles L.; D'urso, Brian R.; Chaum, Edward; Simpson, John T.; Baba, Justin S.; Ericson, M. Nance; Warmack, Robert J.

    2015-06-02

    In one embodiment, the present invention provides a device and method for treating recurrent corneal erosion. In one embodiment, the method includes the steps of contacting an epithelium layer of a cornea with an array of glass micro-rods including a plurality of sharp features having a length that penetrates a Bowman's layer of the eye, wherein the plurality of sharp features of the array of glass micro-rods produces a plurality of punctures in the Bowman's layer of the eye that are of micro-scale or less. In another embodiment, the present invention provides a method and device for drug delivery. In one embodiment, the device includes an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods, wherein the sharp feature includes a treated surface for delivering a chemical compound to the eye.

  2. Microfabricated instruments and methods to treat recurrent corneal erosion

    DOEpatents

    Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J

    2013-11-26

    In one embodiment, the present invention provides a device and method for treating recurrent corneal erosion. In one embodiment, the method includes the steps of contacting an epithelium layer of a cornea with an array of glass micro-rods including a plurality of sharp features having a length that penetrates a Bowman's layer of the eye, wherein the plurality of sharp features of the array of glass micro-rods produces a plurality of punctures in the Bowman's layer of the eye that are of micro-scale or less. In another embodiment, the present invention provides a method and device for drug delivery. In one embodiment, the device includes an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods, wherein the sharp feature includes a treated surface for delivering a chemical compound to the eye.

  3. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  4. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  5. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  6. Wireless actuation with functional acoustic surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.

    2016-11-01

    Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

  7. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  8. Integration of micro-/nano-/quantum-scale photonic devices: scientific and technological considerations

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun

    2004-08-01

    Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.

  9. Hemispherical cavities on silicon substrates: an overview of micro fabrication techniques

    NASA Astrophysics Data System (ADS)

    Poncelet, O.; Rasson, J.; Tuyaerts, R.; Coulombier, M.; Kotipalli, R.; Raskin, J.-P.; Francis, L. A.

    2018-04-01

    Hemispherical photonic crystals found in species like Papilio blumei and Cicendella chinensis have inspired new applications like anti-counterfeiting devices and gas sensors. In this work, we investigate and compare four different ways to micro fabricate such hemispherical cavities: using colloids as template, by wet (HNA) or dry (XeF2) isotropic etching of silicon and by electrochemical etching of silicon. The shape and the roughness of the obtained cavities have been discussed and the pros/cons for each method are highlighted.

  10. Fabrication of a stretchable solid-state micro-supercapacitor array.

    PubMed

    Kim, Daeil; Shin, Gunchul; Kang, Yu Jin; Kim, Woong; Ha, Jeong Sook

    2013-09-24

    We fabricated a stretchable micro-supercapacitor array with planar SWCNT electrodes and an ionic liquid-based triblock copolymer electrolyte. The mechanical stability of the entire supercapacitor array upon stretching was obtained by adopting strategic design concepts. First, the narrow and long serpentine metallic interconnections were encapsulated with polyimide thin film to ensure that they were within the mechanical neutral plane. Second, an array of two-dimensional planar micro-supercapacitor with SWCNT electrodes and an ion-gel-type electrolyte was made to achieve all-solid-state energy storage devices. The formed micro-supercapacitor array showed excellent performances which were stable over stretching up to 30% without any noticeable degradation. This work shows the strong potential of a stretchable micro-supercapacitor array in applications such as wearable computers, power dressing, electronic newspapers, paper-like mobile phones, and other easily collapsible gadgets.

  11. Localization to delocalization crossover in a driven nonlinear cavity array

    NASA Astrophysics Data System (ADS)

    Brown, Oliver T.; Hartmann, Michael J.

    2018-05-01

    We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium analogs of Mott insulating states. We explore the boundaries of the Mott insulating phase and the crossover to a delocalized phase with spontaneous first order coherence. While sharing many similarities with the Mott insulator to superfluid transition in equilibrium, the phase diagrams we find also show marked differences. Particularly the off diagonal order does not become long range since the influence of dephasing processes increases with increasing tunneling rates.

  12. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    NASA Astrophysics Data System (ADS)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  13. A micro-machined source transducer for a parametric array in air.

    PubMed

    Lee, Haksue; Kang, Daesil; Moon, Wonkyu

    2009-04-01

    Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.

  14. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  15. Ovenized microelectromechanical system (MEMS) resonator

    DOEpatents

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  16. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging.

    PubMed

    Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G

    2017-01-01

    The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10 1  m -3  MP > 500 μm and 1 × 10 1 to 9 × 10 3  m -3  MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10 1 to 1 × 10 3  m -3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10 7 to 4 × 10 9  MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.

    PubMed

    Barclay, Paul; Srinivasan, Kartik; Painter, Oskar

    2005-02-07

    A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.

  18. Comparison of Micro-Leakage from Resin-Modified Glass Ionomer Restorations in Cavities Prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) Laser and Conventional Method in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Razavi, Forooghosadat; Soleymani, Ali Asghar

    2014-01-01

    Introduction: In recent years, significant developments have been taking place in caries removal and cavity preparation using laser in dentistry. As laser use is considered for cavity preparation, it is necessary to determine the quality of restoration margins. Glass ionomer cements have great applications for conservative restoration in the pediatric field. The purpose of this in vitro study was to compare resin-modified glass ionomer restorations micro-leakage in cavities prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) laser irradiation and conventional method in primary teeth. Methods: This was an in vitro experimental study. Forty primary canine teeth were divided into 2 groups: group 1 represented cavities prepared by the no. 008 diamond bur, group 2 represented cavities prepared by Er:YAG laser. After cavity preparation, samples were restored by resin-modified glass ionomer. The teeth were thermocycled for 700 cycles, placed in 2% methylene blue for 24h and sectioned in the buccolingual direction. The degree of dye penetration was scored by 3 examiners. Data was analyzed using Mann-Whitney Test. Results: There was no statistical difference in micro-leakage between the two modes of cavity preparation (P=0.862) Conclusion: Since preparing conservative cavities is very important in pediatric dentistry, it is possible to use Er:YAG laser because of its novel and portable technology. However, further investigations of other restorative materials and other laser powers are required. PMID:25653819

  19. Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz.

    PubMed

    Sidabras, Jason W; Mett, Richard R; Froncisz, Wojciech; Camenisch, Theodore G; Anderson, James R; Hyde, James S

    2007-03-01

    A loop-gap resonator (LGR) and a cylindrical TE(011) cavity resonator for use at W band, 94 GHz, have been designed and characterized using the Ansoft (Pittsburgh, PA) high frequency structure simulator (HFSS; Version 10.0). Field modulation penetration was analyzed using Ansoft MAXWELL 3D (Version 11.0). Optimizing both resonators to the same sample sizes shows that EPR signal intensities of the LGR and TE(011) are similar. The 3 dB bandwidth of the LGR, on the order of 1 GHz, is a new advantage for high frequency experiments. Ultraprecision electric discharge machining (EDM) was used to fabricate the resonators from silver. The TE(011) cavity has slots that are cut into the body to allow penetration of 100 kHz field modulation. The resonator body is embedded in graphite, also cut by EDM techniques, for a combination of reasons that include (i) reduced microwave leakage and improved TE(011) mode purity, (ii) field modulation penetration, (iii) structural support for the cavity body, and (iv) machinability by EDM. Both resonators use a slotted iris. Variable coupling is provided by a three-stub tuning element. A collet system designed to hold sample tubes has been implemented, increasing repeatability of sample placement and reducing sample vibration noise. Initial results include multiquantum experiments up to 9Q using the LGR to examine 1 mM 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in aqueous solution at room temperature and field modulation experiments using the TE(011) cavity to obtain an EPR spectrum of 1 microM TEMPO.

  20. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  1. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition.

    PubMed

    Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori

    2011-05-09

    A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America

  2. Multiple-wavelength vertical cavity laser arrays with wide wavelength span and high uniformity

    NASA Astrophysics Data System (ADS)

    Yuen, Wupen; Li, Gabriel S.; Chang-Hasnain, Connie J.

    1996-12-01

    Vertical-cavity surface-emitting lasers (VCSELs) are promising for numerous applications. In particular, due to their inherent single Fabry-Perot mode operation, VCSELs can be very useful for wavelength division multiplexing (WDM) systems allowing high bandwidth and high functionalities.1, 2 Multiple wavelength VCSEL arrays with wide channel spacings (>10 nm) provide an inexpensive solution to increasing the capacity of local area networks without using active wavelength controls.1 The lasing wavelength of a VCSEL is determined by the equivalent laser cavity thickness which can be varied by changing the thickness of either the l-spacer or the distributed Bragg reflector (DBR) layers. To make monolithic multiple-wavelength VCSEL arrays, the lasing wavelength, and therefore the cavity thickness, has to be varied at reasonable physical distances. For all practical applications, it is imperative for the fabrication technology to be controllable, cost-effective, and wafer-scale. Recently, we demonstrated a patterned-substrate molecular beam epitaxy (MBE) growth technique with in-situ laser reflectometry monitoring for fabricating multiple wavelength VCSEL arrays.3, 4 With this method, VCSEL arrays with very large and highly controllable lasing wavelength spans and excellent lasing characteristics have been achieved.

  3. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.

  4. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  5. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  6. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  7. Fluid pump having magnetic drive

    DOEpatents

    Phillips, Benjamin A.; Roeder, Jr., John; Harvey, Michael N.

    1996-10-15

    A pump includes a housing defining a cavity, an axial bore coaxially communicating with the cavity, at least one radial bore radially extending between the cavity and an outlet, and an inlet communicating with the radial bore intermediate to the cavity and the outlet. A crankshaft having a longitudinal axis is disposed in the axial bore for rotation about the axis and includes an eccentric portion disposed in the cavity. A piston having a base is disposed in the cavity, and has a head disposed in the radial bore for slidable reciprocation between a discharge position proximate the outlet and an intake position at the inlet between the cavity and the outlet. A cage structure including a cage and a slider block connects the piston base to the eccentric portion of the crankshaft for transforming rotation of the eccentric portion in the cavity to reciprocation of the piston in the radial bore. A valve structure opens and closes the outlet in response to movement of the piston head between the discharge position to the intake position.

  8. Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Niu, Dongying; Jia, Pengying; Zhao, Na; Yuan, Ning

    2011-04-01

    In this study, a dielectric barrier discharge device with needle-plate electrodes was used to investigate the characteristics of the micro-discharge in argon at one atmospheric pressure by an optical method. The results show that there are two discharge modes in the dielectric barrier discharge, namely corona mode and filamentary mode. The corona discharge only occurs in the vicinity of the needle tip when the applied voltage is very low. However, the filamentary discharge mode can occur, and micro-discharge bridges the two electrodes when the applied voltage reaches a certain value. The extended area of micro-discharge on the dielectric plate becomes larger with the increase in applied voltage or decrease in gas pressure. The variance of the light emission waveforms is studied as a function of the applied voltage. Results show that very narrow discharge pulse only appears at the negative half cycle of the applied voltage in the corona discharge mode. However, broad hump (about several microseconds) can be discerned at both the negative half cycle and the positive half cycle for a high voltage in the filamentary mode. Furthermore, the inception voltage decreases and the width of the discharge hump increases with the increase in applied voltage. These experimental phenomena can be explained qualitatively by analyzing the discharge mechanism.

  9. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  10. Discharge transient coupling in large space power systems

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Stillwell, R. P.

    1990-01-01

    Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.

  11. A foldable electrode array for 3D recording of deep-seated abnormal brain cavities

    NASA Astrophysics Data System (ADS)

    Kil, Dries; De Vloo, Philippe; Fierens, Guy; Ceyssens, Frederik; Hunyadi, Borbála; Bertrand, Alexander; Nuttin, Bart; Puers, Robert

    2018-06-01

    Objective. This study describes the design and microfabrication of a foldable thin-film neural implant and investigates its suitability for electrical recording of deep-lying brain cavity walls. Approach. A new type of foldable neural electrode array is presented, which can be inserted through a cannula. The microfabricated electrode is specifically designed for electrical recording of the cavity wall of thalamic lesions resulting from stroke. The proof-of-concept is demonstrated by measurements in rat brain cavities. On implantation, the electrode array unfolds in the brain cavity, contacting the cavity walls and allowing recording at multiple anatomical locations. A three-layer microfabrication process based on UV-lithography and Reactive Ion Etching is described. Electrochemical characterization of the electrode is performed in addition to an in vivo experiment in which the implantation procedure and the unfolding of the electrode are tested and visualized. Main results. Electrochemical characterization validated the suitability of the electrode for in vivo use. CT imaging confirmed the unfolding of the electrode in the brain cavity and analysis of recorded local field potentials showed the ability to record neural signals of biological origin. Significance. The conducted research confirms that it is possible to record neural activity from the inside wall of brain cavities at various anatomical locations after a single implantation procedure. This opens up possibilities towards research of abnormal brain cavities and the clinical conditions associated with them, such as central post-stroke pain.

  12. Geometry and surface damage in micro electrical discharge machining of micro-holes

    NASA Astrophysics Data System (ADS)

    Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir

    2009-10-01

    Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.

  13. Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self-powered micro-shock sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Chen, Cong; Guo, Xiaoyu

    2018-04-01

    We report a suspended polytetrafluoroethylene (PTFE) nanostructure electret film in dual variable cavities for a self-powered micro-shock sensing application. The prototype contained series variable air cavities, a suspended nanostructure PTFE electret film and independent electrode films. The charges on the suspended nanostructure PTFE electret film provided the electrostatic field around the electret film in the series variable air cavities. When the reported device was driven by a micro-shock pressure, the inducted electrostatic charges on both the top and bottom electrodes would vary as the micro-shock pressing or releasing. Experimental results showed that the maximum of a short-circuit current density (J sc ) and an open-circuit voltage (V oc ) reached 3 ± 0.1 nA cm‑2 and 3.6 ± 0.1 V, respectively. It was found that the parameter J sc was more advantageous in identifying stronger shocks (parameter acceleration a bigger than 0.1 m s‑2), whereas the parameter V oc was more sensitive for weaker shocks, such as acceleration a smaller than 0.1 m s‑2. Moreover, finger continuous micro-shock pressure taps application was used to demonstrate the mechanical energy conversion performance with 4.5 ± 0.2 V open-circuit voltages. The research on the nanostructure electret PTFE film in series dual variable air cavities not only gave us a fresh idea about the principle and design of the shocking sensor, but also provided an easy fabrication and a low cost shocking sensor for the Internet of Things (IoT) systems.

  14. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  15. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  16. Micro-Ring Structures Stabilize Microdroplets to Enable Long Term Spheroid Culture in 384 Hanging Drop Array Plates

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis. PMID:22057945

  17. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J; Takayama, Shuichi

    2012-04-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.

  18. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    PubMed

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle.

  19. Matrix addressable vertical cavity surface emitting laser array

    NASA Astrophysics Data System (ADS)

    Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.

    1991-02-01

    The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.

  20. A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Wang, Yuzhang; Yan, Yongda; Zhao, Xuesen

    2017-11-01

    This paper presents a novel atomic force microscopy (AFM)-based 5-axis nanoscale machine tool developed to fabricate nanostructures on different annuli of the micro ball. Different nanostructures can be obtained by combining the scratching trajectory of the AFM tip with the movement of the high precision air-bearing spindle. The center of the micro ball is aligned to be coincided with the gyration center of the high precision to guarantee the machining process during the rotating of the air-bearing spindle. Processing on different annuli of the micro ball is achieved by controlling the distance between the center of the micro ball and the rotation center of the AFM head. Nanostructures including square cavities, circular cavities, triangular cavities, and an annular nanochannel are machined successfully on the three different circumferences of a micro ball with a diameter of 1500 μm. Moreover, the influences of the error motions of the high precision air-bearing spindle and the eccentric between the micro ball and the gyration center of the high precision air-bearing spindle on the processing position error on the micro ball are also investigated. This proposed machining method has the potential to prepare the inertial confinement fusion target with the expected dimension defects, which would advance the application of the AFM tip-based nanomachining approach.

  1. SQUID-based microwave cavity search for dark-matter axions.

    PubMed

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2010-01-29

    Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  2. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  3. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  4. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Crawford, D.; Edstrom Jr, D.

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less

  5. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    PubMed

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  6. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  8. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    PubMed

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  10. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  11. [INVITED] Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Janik, Monika; Koba, Marcin; Celebańska, Anna; Bock, Wojtek J.; Śmietana, Mateusz

    2018-07-01

    In this work, we discuss an application of reactive ion etching (RIE) for enhancing the sensing properties of a micro-cavity in-line Mach-Zehnder interferometer (μIMZI). The μIMZI was fabricated using femtosecond laser micromachining in a standard single-mode fiber as a circular hole with a diameter of 54 μm. Next, the structures underwent two kinds of RIE using as reactive gases: sulfur hexafluoride (SF6) and oxygen (O2) mixtures (SF6/O2) or O2 itself. When RIE with SF6/O2 was applied, it allowed for an efficient and well-controlled etching of the fabricated structure at nanometers level observed as an increase in spectral depths of the minima in the μIMZI transmission spectrum. A similar RIE process with O2 alone was ineffective. The well-defined minima obtained with the SF6/O2 RIE significantly improved the resolution of measurements made with the μIMZI. The effect was demonstrated for high-resolution refractive index (RI) measurements of liquids in the cavity. The result of the RIE process was to clean the micro-cavity bottom, increase its depth, and smooth its sidewalls. As an additional effect, the wettability of the micro-cavity surface was improved, making the RI measurements faster and more repeatable. Moreover, we demonstrated that RIE with SF6/O2 results in more stable wettability improvement than when O2 is applied as a reactive gas.

  12. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    PubMed

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  13. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    PubMed

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  14. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    PubMed

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  15. Accuracy of volumetric measurement of simulated root resorption lacunas based on cone beam computed tomography.

    PubMed

    Wang, Y; He, S; Guo, Y; Wang, S; Chen, S

    2013-08-01

    To evaluate the accuracy of volumetric measurement of simulated root resorption cavities based on cone beam computed tomography (CBCT), in comparison with that of Micro-computed tomography (Micro-CT) which served as the reference. The State Key Laboratory of Oral Diseases at Sichuan University. Thirty-two bovine teeth were included for standardized CBCT scanning and Micro-CT scanning before and after the simulation of different degrees of root resorption. The teeth were divided into three groups according to the depths of the root resorption cavity (group 1: 0.15, 0.2, 0.3 mm; group 2: 0.6, 1.0 mm; group 3: 1.5, 2.0, 3.0 mm). Each depth included four specimens. Differences in tooth volume before and after simulated root resorption were then calculated from CBCT and Micro-CT scans, respectively. The overall between-method agreement of the measurements was evaluated using the concordance correlation coefficient (CCC). For the first group, the average volume of resorption cavity was 1.07 mm(3) , and the between-method agreement of measurement for the volume changes was low (CCC = 0.098). For the second and third groups, the average volumes of resorption cavities were 3.47 and 6.73 mm(3) respectively, and the between-method agreements were good (CCC = 0.828 and 0.895, respectively). The accuracy of 3-D quantitative volumetric measurement of simulated root resorption based on CBCT was fairly good in detecting simulated resorption cavities larger than 3.47 mm(3), while it was not sufficient for measuring resorption cavities smaller than 1.07 mm(3) . This method could be applied in future studies of root resorption although further studies are required to improve its accuracy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. GaInNAsSb/GaAs vertical cavity surface-emitting lasers (VCSELs): current challenges and techniques to realize multiple-wavelength laser arrays at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Gobet, Mathilde; Bae, Hopil P.; Sarmiento, Tomas; Harris, James S.

    2008-02-01

    Multiple-wavelength laser arrays at 1.55 μm are key components of wavelength division multiplexing (WDM) systems for increased bandwidth. Vertical cavity surface-emitting lasers (VCSELs) grown on GaAs substrates outperform their InP counterparts in several points. We summarize the current challenges to realize continuous-wave (CW) GaInNAsSb VCSELs on GaAs with 1.55 μm emission wavelength and explain the work in progress to realize CW GaInNAsSb VCSELs. Finally, we detail two techniques to realize GaInNAsSb multiple-wavelength VCSEL arrays at 1.55 μm. The first technique involves the incorporation of a photonic crystal into the upper mirror. Simulation results for GaAs-based VCSEL arrays at 1.55 μm are shown. The second technique uses non-uniform molecular beam epitaxy (MBE). We have successfully demonstrated 1x6 resonant cavity light-emitting diode arrays at 850 nm using this technique, with wavelength spacing of 0.4 nm between devices and present these results.

  17. Effect of hydrograph in the morphology of a channel with lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, Carmelo; Thalmann, Matthias; Schleiss, Anton J.; Franca, Mário J.

    2017-04-01

    Local widening or river bank revitalization in a channelized river is a common practice in restoration projects. The lateral embayments built for this purpose in the river banks can be partially filled up by fine sediments that are conveyed in suspension within the main reach. The embayments areas may present a suitable combination for riparian habitats if they have a limited amount of fine sediments trapped providing morphology diversity and areas with low and high velocities. However, the design of these lateral cavities may be compromised by fluctuations in the water discharge: an increase in the flow discharge may re-mobilize the sediments destroying the shelters for the aquatic biota and causing effects that may hamper the ecology of the main channel and downstream reaches (sudden increase of the sediment concentration and turbidity for instance). Aiming at a better design of lateral embayments with the purpose of restoration projects, systematic experimental investigations were carried out with five hydrographs with different unsteadiness, for five different normalized geometries of the cavities installed in the banks of a laboratory open channel. Water depth, sediment samples, sediment concentration and area covered by the settled sediments are analyzed in each experiment. Sediments patterns evolution within the cavities prior, during and after the increase in discharge were correlated with the unsteadiness character of each hydrograph. It is shown that cavities with larger aspect ratios (defined as the width of the cavity over the length of the cavity) provides a sustainable shelter for aquatic biota. Quantified analysis reveal that the recovery of the sediments patterns before the flushing is different depending on the geometry and unsteadiness. Finally, total mass trapped inside the cavities at the end of the experiments is analyzed. It is shown that the trapping efficiency of the macro-roughness elements with variable discharge is a clear function of the geometry of the lateral cavities and of the shallowness of the flow. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement 607394-SEDITRANS. The experiments were funded by FOEN (Federal Office for the Environment, Switzerland).

  18. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    NASA Astrophysics Data System (ADS)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  19. Active medium gain study of electric-discharge oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Kolobyanin, Yuriy; Adamenkov, Yuriy; Vyskubenko, Boris; Goryachev, Leonid; Ilyin, Sergey; Kalashnik, Anatoliy; Rakhimova, Tatiana; Rogozhnikov, Georgiy

    2007-05-01

    The paper reports on experimental studies of the active medium gain in supersonic electric-discharge oxygen-iodine laser (DOIL) based on traveling mw discharge. The measurements have included: absolute concentration, yield, and energy efficiency of production of SO in pure oxygen and oxygen-helium mixes at an oxygen partial pressure 3 to 15 Torr. For the gas flow to get rid of atomic oxygen, both heterogeneous mercury oxide coatings of the tube walls and homogeneous additives to the work mix, such as nitrogen oxide, have been used. The active medium of DOIL was formed using a nozzle array of the type of ejector sized as 10*50 mm2. The singlet oxygen-helium mix was supplied through three rows of sonic cylindrical nozzles, while the iodine-carrier gas mix - through two rows of supersonic conical nozzles with a half-opening angle of 10°(arc). The gas-phase iodine was produced in a quartz cell filled with iodine crystals. Room-temperature iodine vapors were picked up with a carrier gas (nitrogen or helium) and thus delivered into the nozzle array. The active medium was investigated by the high-resolution laser diode spectroscopy approach that used the laser type Vortex 6025 purchased from New Focus, Inc. The laser medium gain factor was determined by the intra-cavity approach having a sensitivity about 1*10 -6 cm -1. The static temperature of the medium was determined from the measurements of gain half-width. The gain of the active medium of electric-discharge OIL has been investigated. The DOIL in use was operating on a mix composed as O II:He=1:1 at a total pressure of 6 Torr and flowrate - about 1 mmol/s. With helium as an iodine carrier gas at a flowrate ~3 mmol/s, we have recorded a positive gain in the DOIL medium.

  20. Experimental and numerical study of shock-driven collapse of multiple cavity arrays

    NASA Astrophysics Data System (ADS)

    Betney, Matthew; Anderson, Phillip; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; Ventikos, Yiannis

    2014-10-01

    This study presents a numerical and experimental investigation of the interaction of a single shock wave with multiple air-filled spherical cavities. The 5 mm diameter cavities are cast in a hydrogel, and collapsed by a shock wave generated by the impact of a projectile fired from a single-stage light-gas gun. Incident shock pressures of up to 1 GPa have been measured, and the results compared to simulations conducted using a front-tracking approach. The authors have previously studied the collapse dynamics of a single cavity. An important process is the formation of a high-speed transverse jet, which impacts the leeward cavity wall and produces a shockwave. The speed of this shock has been measured using schlieren imaging, and the density has been measured with a fibre optic probe. This confirmed the computational prediction that the produced shock is of a higher pressure than the original incident shock. When employing multiple cavity arrays, the strong shock produced by the collapse of one cavity can substantially affect the collapse of further cavities. With control over cavity placement, these effects may be utilised to intensify collapse. This intensification is experimentally measured via analysis of the optical emission.

  1. Multi-Source Generation Mechanisms for Low Frequency Noise Induced by Flood Discharge and Energy Dissipation from a High Dam with a Ski-Jump Type Spillway

    PubMed Central

    Lian, Jijian; Zhang, Wenjiao; Ma, Bin; Liu, Dongming

    2017-01-01

    As excess water is discharged from a high dam, low frequency noise (air pulsation lower than 10 Hz, LFN) is generated and propagated in the surrounding areas, causing environmental hazards such as the vibration of windows and doors and the discomfort of local residents. To study the generation mechanisms and key influencing factors of LFN induced by flood discharge and energy dissipation from a high dam with a ski-jump type spillway, detailed prototype observations and analyses of LFN are carried out. The discharge flow field is simulated and analyzed using a gas-liquid turbulent flow model. The acoustic response characteristics of the air cavity, which is formed between the discharge nappe and dam body, are analyzed using an acoustic numerical model. The multi-sources generation mechanisms are first proposed basing on the prototype observation results, vortex sound model, turbulent flow model and acoustic numerical model. Two kinds of sources of LFN are studied. One comes from the energy dissipation of submerged jets in the plunge pool, the other comes from nappe-cavity coupled vibration. The results of the analyses reveal that the submerged jets in the plunge pool only contribute to an on-site LFN energy of 0–1.0 Hz, and the strong shear layers around the high-velocity submerged jets and wall jet development areas are the main acoustic source regions of LFN in the plunge pool. In addition, the nappe-cavity coupled vibration, which is induced when the discharge nappe vibrates with close frequency to the model frequency of the cavity, can induce on-site LFN energy with wider frequency spectrum energy within 0–4.0 Hz. By contrast, the contribution degrees to LFN energy from two acoustic sources are almost same, while the contribution degree from nappe-cavity coupled vibration is slightly higher. PMID:29189750

  2. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  3. Direct laser writing for micro-optical devices using a negative photoresist.

    PubMed

    Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru

    2017-12-11

    Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

  4. Micro electrical discharge milling using deionized water as a dielectric fluid

    NASA Astrophysics Data System (ADS)

    Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam

    2007-05-01

    In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.

  5. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  6. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick

    2014-02-03

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.

  7. Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry-Pérot-filter-array-based nanospectrometers

    NASA Astrophysics Data System (ADS)

    Memon, Imran; Shen, Yannan; Khan, Abdullah; Woidt, Carsten; Hillmer, Hartmut

    2016-04-01

    Miniaturized optical spectrometers can be implemented by an array of Fabry-Pérot (FP) filters. FP filters are composed of two highly reflecting parallel mirrors and a resonance cavity. Each filter transmits a small spectral band (filter line) depending on its individual cavity height. The optical nanospectrometer, a miniaturized FP-based spectrometer, implements 3D NanoImprint technology for the fabrication of multiple FP filter cavities in a single process step. However, it is challenging to avoid the dependency of residual layer (RL) thickness on the shape of the printed patterns in NanoImprint. Since in a nanospectrometer the filter cavities vary in height between neighboring FP filters and, thus, the volume of each cavity varies causing that the RL varies slightly or noticeably between different filters. This is one of the few disadvantages of NanoImprint using soft templates such as substrate conformal imprint lithography which is used in this paper. The advantages of large area soft templates can be revealed substantially if the problem of laterally inhomogeneous RLs can be avoided or reduced considerably. In the case of the nanospectrometer, non-uniform RLs lead to random variations in the designed cavity heights resulting in the shift of desired filter lines. To achieve highly uniform RLs, we report a volume-equalized template design with the lateral distribution of 64 different cavity heights into several units with each unit comprising four cavity heights. The average volume of each unit is kept constant to obtain uniform filling of imprint material per unit area. The imprint results, based on the volume-equalized template, demonstrate highly uniform RLs of 110 nm thickness.

  8. Development of chipscale chalcogenide glass based infrared chemical sensors

    NASA Astrophysics Data System (ADS)

    Hu, Juejun; Musgraves, J. David; Carlie, Nathan; Zdyrko, Bogdan; Luzinov, Igor; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel

    2011-01-01

    In this paper, we review the design, processing, and characterization of novel planar infrared chemical sensors. Chalcogenide glasses are identified as the material of choice for sensing given their wide infrared transparency as well as almost unlimited capacity for composition alloying and property tailoring. Three generations of on-chip spectroscopic chemical sensor devices we have developed: waveguide evanescent sensors, micro-disk cavity-enhanced sensors and micro-cavity photothermal sensors are discussed.

  9. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  10. Study on the steady operating state of a micro-pulse electron gun.

    PubMed

    Kui, Zhou; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Xing, Luo; Ziqin, Yang

    2014-09-01

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  11. Energy dissipation in plasma treated Nb and Secondary Electron Emission for modeling of multipactor discharges

    NASA Astrophysics Data System (ADS)

    Samolov, Ana; Popovic, Svetozar; Vuskovic, Leposava; Basovic, Milos; Cuckov, Filip; Raitses, Yevgeny; Kaganovich, Igor

    2013-09-01

    Electron-induced Secondary Electron Emission (SEE) is important in many gas discharge applications such as Hall thrusters, surface and multipactor discharges. Often they present the inhibiting phenomena in designing and operating of these systems, examples being the Superconducting Radio Frequency (SRF) accelerator cavities. The multipactor discharges depend on the resonant field configuration and on the SEE from the cavity surface. SEE is proportional to the energy dissipated by the primary electrons near the surface. Our analysis of energy spectra of secondary electrons indicates that the fraction of dissipated energy of primary electrons in solid reaches the maximum at the primary energies that produce the maximum yield. The better understanding of this mechanism is crucial for successful modeling of the multipactor discharge and design of vacuum electronic devices. We have developed an experimental set up to measure energy distribution of SEE from Nb coupons under different incident angles, since Nb is used for manufacturing of SRF accelerating cavities. Samples are placed in carousel target manifolds which are manipulated by robotic arm providing multiple degrees of freedom of a whole target system. Work supported by JSA/DOE contract No. DE-AC05-06OR23177.

  12. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOEpatents

    Schmitt, III, Jerome J.; Halpern, Bret L.

    1994-01-01

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets.

  13. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.

    2015-09-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.

  14. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  15. Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Ogura, Ichiro; Sugimoto, Yoshimasa; Kasahara, Kenichi

    1995-05-01

    The monolithic incorporation and performance of vertical-cavity surface-emitting lasers (VCSELs) emitting at two distinct wavelengths, which were suited for application to wavelength division multiplexing (WDM) systems were reported. The monolithic integration of two-wavelength VCSEL arrays was achieved by using mask molecular beam epitaxy. This method can generate arrays that have the desired integration area size and wavelength separation.

  16. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates.

    PubMed

    Grilli, S; Miccio, L; Vespini, V; Finizio, A; De Nicola, S; Ferraro, Pietro

    2008-05-26

    Lens effect was obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal like LiNbO3. An array of liquid micro-lenses was generated by electrowetting effect in pyroelectric periodically poled crystals. Compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuit-less configuration. An interferometric technique was used to characterize the curvature of the micro-lenses and the corresponding results are presented and discussed. The preliminary results concerning the imaging capability of the micro-lens array are also reported.

  17. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    PubMed

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  18. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  19. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    PubMed Central

    Takahata, Kenichi; Gianchandani, Yogesh B.

    2008-01-01

    This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824

  20. Application of electrical resistivity tomography techniques for mapping man-made sinkholes

    NASA Astrophysics Data System (ADS)

    Rey, J.; Martínez, J.; Hidalgo, C.; Dueñas, J.

    2012-04-01

    The suitability of the geophysical prospecting by electrical resistivity tomography to detect and map man-made subsurface cavities and related sinkholes has been studied in the Linares abandoned mining district (Spain). We have selected for this study four mined sectors constituted of different lithologies: granite and phyllites of Paleozoic age, and Triassic shales and sandstones. In three of these sectors, detail underground topographic surveys were carried out to chart the position and dimensions of the mining voids (galleries and chamber), in order to analyze the resolution of this methodology to characterize these cavities by using different electrode arrays. The results are variable, depending on the depth and diameter of the void, the selected electrode array, the spacing between electrodes, geological complexity and data density. These results also indicate that when the cavity is empty, an anomaly with a steep gradient and high resistivity values is registered, because the air that fills the mining void is dielectric, while when the cavities are filled with fine grain sediments, frequently saturated in water, the electrical resistance is lower. In relation with the three different multi-electrode arrays tested, the Wenner-Schlumberger array has resulted to offer the maximum resolution in all these cases, with lower and more stable values for the RMS than the other arrays. Therefore, this electrode array has been applied in the fourth studied sector, a former mine near the city centre of Linares, in an area of urban expansion in which there are problems of subsidence. Two sets of four electrical tomography profiles have been carried out, perpendicular to each other, and which have allowed reaching depths of research between 30-35 m. This net-array allowed the identification of two shallow anomalies of low resistivity values, interpreted as old mining galleries filled with fine material saturated in water. It also allows detecting two fractures, correlated in the profiles and which can be mapped to more than 25 m in depth. As showed by this case study, electrical resistivity tomography can be a suitable tool in sub-surface cavities detection and man-made sinkhole investigations.

  1. High speed holographic digital recorder.

    PubMed

    Roberts, H N; Watkins, J W; Johnson, R H

    1974-04-01

    Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.

  2. High Sensitivity Optomechanical Reference Accelerometer over 10 kHz

    DTIC Science & Technology

    2014-06-05

    bandwidth of 10 kHz and is traceable. We have incorporated a Fabry-P erot fiber-optic micro-cavity that is currently capable of measuring the test-mass...10 kHz- bandwidth requires displacement detection sensitivities at levels of 10 16 m= Hz p . Optical detection schemes, such as Fabry-P erot ...based micro- mirror Fabry-P erot cavity19,20 was built to operate in reflec- tion as the optical sensor. The mechanical oscillator ground platform and

  3. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  4. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.

  5. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  6. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.

  7. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    NASA Technical Reports Server (NTRS)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  8. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less

  9. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  10. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.

  11. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.

    PubMed

    Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi

    2016-12-26

    We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.

  12. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  13. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  14. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  15. Life on magnets: stem cell networking on micro-magnet arrays.

    PubMed

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  16. Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays

    PubMed Central

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  17. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    PubMed

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  18. MicroRNA Array Normalization: An Evaluation Using a Randomized Dataset as the Benchmark

    PubMed Central

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays. PMID:24905456

  19. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  20. Testing Microshutter Arrays Using Commercial FPGA Hardware

    NASA Technical Reports Server (NTRS)

    Rapchun, David

    2008-01-01

    NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.

  1. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOEpatents

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  2. Multipartite quantum correlations among atoms in QED cavities

    NASA Astrophysics Data System (ADS)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  3. Lens-and-Detector Array for Spectrometer

    NASA Technical Reports Server (NTRS)

    Oberheuser, J.

    1985-01-01

    Supporting structure alines lenses and serves as light baffle. Lenses and infrared detectors mounted together in cavities in electroformed plate. Plate and cavities maintain optical alinement while serving as light baffle and aperture stop.

  4. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  5. Multi-wavelength VCSEL arrays using high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders

    2017-02-01

    The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.

  6. Study on the steady operating state of a micro-pulse electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kui, Zhou; Xing, Luo; Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed,more » constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.« less

  7. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOEpatents

    Schmitt, J.J. III; Halpern, B.L.

    1994-10-18

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets. 5 figs.

  8. Establishment of temporomandibular joint puncture technique in rats using in vivo micro-computed tomography (R_mCT®)

    PubMed Central

    Kameoka, S; Matsumoto, K; Kai, Y; Yonehara, Y; Arai, Y; Honda, K

    2010-01-01

    The aim of the report was to establish puncture techniques for the temporomandibular joint (TMJ) cavity in rats. The experimental sample comprised 30 male Sprague–Dawley rats. Under general anaesthesia the superior joint cavity of the rat was punctured either laterally (lateral puncture technique (LPT), n = 11), anteriorly (anterosuperior puncture technique (ASPT), n = 13) or anteroinferior puncture technique (AIPT), n = 6) using a 27-gauge needle. After the tip of the needle was confirmed by micro-CT (R-mCT®, Rigaku, Tokyo, Japan) located on the mandibular fossa, 0.05 ml of contrast media was injected under micro-CT fluoroscopic guidance. After confirmation that the joint cavity was filled with contrast media, micro-CT imaging was carried out. The puncture for LPT was accurate in 5 of the 11 animals. The ASPT was accurate in all 13 animals. The AIPT punctured 3 of the 6 animals. Furthermore, the ASPT and AIPT demonstrated improved preservation of the needle; it was harder to detach the needle, which led to greater stability. These results suggest that ASPT assisted by R-mCT® is useful for basic research, including drug discovery and pathogenesis of TMJ diseases. PMID:20841463

  9. Extraordinary optical transmission through wedge-shape metallic slits array embedded with rectangular cavities

    NASA Astrophysics Data System (ADS)

    Qi, Yunping; Zhang, Xuewei; Hu, Yue; Nan, Xianghong; Wang, Xiangxian

    2017-10-01

    The non-resonantly enhanced optical transmission phenomenon of sub-wavelength metallic slits on a thin film is significant for broadband light integrated devices. In order to improve the EOT characteristics of sub-wavelength metallic slits further more, in this paper, wedge-shape metallic slits array embedded with rectangular cavities structure is proposed and its transmission properties are investigated using the finite element method. The results show that wedgeshape metallic slits array can achieve higher transmission compared with straight slits array embedded with rectangular cavities and the light is strongly localized and enhanced at the slit exits. We describe the phenomenon with a transmission line model. The width of entrance of the slit influences the transmission property: the transmittance can be 94%, after optimizing the structure parameters, with the widths 150nm and 30nm at the entrance and exit of the slit, respectively. The thickness of metal film influences the transmission peak position and transmission rate: when the increase of the thickness of the metal film, the transmittance increases and the transmission peak is red-shift, however, the law of long wavelength range is opposite. In addition, the effects of structural period of wedge-shaped slits embedded with rectangular cavities structure on the transmission property are also studied. These results would be helpful for optical signal transmission and the design of near field optical conductor devices with higher transmission capability.

  10. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  11. Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Scott, Austin Murphy

    The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.

  12. Micromachined structures for vertical microelectrooptical devices on InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seassal, C.; Leclercq, J.L.; Letartre, X.

    1996-12-31

    The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less

  13. Design and analysis of photonic crystal micro-cavity based optical sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit Kumar, E-mail: amitgoyal.ceeri@gmail.com; Dutta, Hemant Sankar, E-mail: hemantdutta97@gmail.com; Pal, Suchandan, E-mail: spal@ceeri.ernet.in

    2016-04-13

    In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index ofmore » analyte.« less

  14. Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser

    NASA Astrophysics Data System (ADS)

    Wang, Li-qiang

    2009-07-01

    A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.

  15. The development of a multichannel electrode array for retinal prostheses.

    PubMed

    Terasawa, Yasuo; Tashiro, Hiroyuki; Uehara, Akihiro; Saitoh, Tohru; Ozawa, Motoki; Tokuda, Takashi; Ohta, Jun

    2006-01-01

    The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 x 10 platinum electrode array that consists of an 8-microm polyimide layer sandwiched between 5-microm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-microm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 x 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 microC/cm2, which corresponds to the charge density of pulses of 500 micros duration and 200 microA amplitude for a 200-microm-diameter planar electrode.

  16. A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.

  17. Development of optics with micro-LED arrays for improved opto-electronic neural stimulation

    NASA Astrophysics Data System (ADS)

    Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond

    2013-03-01

    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec­ tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).

  18. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    NASA Astrophysics Data System (ADS)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  19. Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode

    NASA Technical Reports Server (NTRS)

    Philipp-Rutz, E. M.

    1975-01-01

    Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.

  20. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  1. Electrical equivalent circuit for microstrip micro-plasma: control of EM propagation and numerical simulations.

    PubMed

    Mohamad, Almustafa; Tân-Hoa, Vuong; Jacques, David

    2012-01-01

    An approach to determine an equivalent electrical circuit of a micro planar discharge on a microstrip printed circuit is reported. The micro discharge is used to realize a dynamic microwave switching circuit. This approach is based on the measurement of the discharge current and the transmission coefficient for a given frequency 2.45 GHz. Numerical methods like FEM can be used to study the effect of plasma parameters on the propagation of electromagnetic waves through a microstrip printed circuit. Plasma behaves as flexible elements that can change its electrical proprieties such as conductivity.

  2. Generation of Hermite-Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser.

    PubMed

    Kong, Weipeng; Sugita, Atsushi; Taira, Takunori

    2012-07-01

    We have demonstrated high-order Hermite-Gaussian (HG) mode generation based on 2D gain distribution control edge-pumped, composite all-ceramic Yb:YAG/YAG microchip lasers using a V-type cavity. Several hundred milliwatts to several watts HG(mn) modes are achieved. We also generated different kinds of vortex arrays directly from the oscillator with the same power level. In addition, a more than 7 W doughnut-shape mode can be generated in the same cavity.

  3. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  4. Micromirror array nanostructures for anticounterfeiting applications

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  5. Suppression of Higher Order Modes in an Array of Cavities Using Waveguides

    NASA Astrophysics Data System (ADS)

    Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.

    An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.

  6. Method of lungs regional ventilation function assessment on the basis of continuous lung monitoring results using multi-angle electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.

  7. Analytical and Experimental Characterization of a Linear-Array Thermopile Scanning Radiometer for Geo-Synchronous Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Sorensen, Ira J.

    1998-01-01

    The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.

  8. Multiple period s-p hybridization in nano-strip embedded photonic crystal.

    PubMed

    Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho

    2005-04-04

    We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.

  9. Studies of a driven Alfvénic cavity and cylindrical Alfven eigenmodes in LAPD

    NASA Astrophysics Data System (ADS)

    Lybarger, Warren; Carter, Troy; Brugman, Brian; Pribyl, Pat

    2004-11-01

    An Alfven wave MASER has been observed in the Large Plasma Device (LAPD), where an instability drives a resonant Alfven wave in the cavity defined by the cathode and anode of the discharge source(J.E. Maggs and G.J. Morales, PRL, 91, 035004-1 (2003)). We will present a study of external driving of this cavity, motivated by a desire to find a source of large amplitude Alfvén waves for studies of nonlinear interactions. The cavity is driven by modulating the discharge current using a broadband, high power push-pull amplifier. The Alfvén waves launched by exciting the cavity are large amplitude (δ B/B ˜ 1%) and are eigenmodes of the cylindrical column. Experimental results will be presented on the structure of the eigenmodes in the plasma column, the Q-value of the cavity and its dependence on plasma parameters, and deviations in the structure of the eigenmodes from ideal MHD due to kinetic effects. Experimental results will be compared to theories of Alfvén eigenmodes in a cylindrical column. * Work supported by DOE grant # DE-FG03-02ER54688

  10. Ultralow-threshold Raman lasing with CaF2 resonators.

    PubMed

    Grudinin, Ivan S; Maleki, Lute

    2007-01-15

    We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1 microW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5x10(10). Stokes components of up to the fifth order were observed at a pump power of 160 microW, and up to the eighth order at 1 mW. A lasing threshold of 15 microW was also observed in a 100 microm CaF2 microcavity. Potential applications are discussed.

  11. Fabricating interlocking support walls, with an adjustable backshort, in a TES bolometer array for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.

    2006-04-01

    We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.

  12. Study of cavity effect in micro-Pirani gauge chamber with improved sensitivity for high vacuum regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guohe; Lai, Junhua; Kong, Yanmei; Jiao, Binbin; Yun, Shichang; Ye, Yuxin

    2018-05-01

    Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime.

  13. Depth of array micro-holes with large aspect ratio in Al based cast alloy

    NASA Astrophysics Data System (ADS)

    Jin, Meiling; Qu, Yingdong; Li, Rongde

    2018-03-01

    In order to study on the depth of array micro-holes on Al base cast alloy, micro-hole with depth of 50 mm and diameter of 0.55 mm are successfully prepared by using poor wetting between carbon and Al. Accordingly, the mold of depth is established, the results show that calculated depth of micro-hole is 53.22 mm, relative error is 6% compare with the actual measured depth, and the depth of hole exponentially increases with the increasing of distance between two micro-holes. Surface tension and metallostatic pressure of metal molten are mainly affecting factors for depth of micro-holes.

  14. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  15. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  16. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2006-08-29

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  17. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2007-09-04

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  18. Coherent emission from integrated Talbot-cavity quantum cascade lasers.

    PubMed

    Meng, Bo; Qiang, Bo; Rodriguez, Etienne; Hu, Xiao Nan; Liang, Guozhen; Wang, Qi Jie

    2017-02-20

    We report experimental realization of phase-locked quantum cascade laser (QCL) array using a monolithically integrated Talbot cavity. An array with six laser elements at a wavelength of ~4.8 μm shows a maximum peak power of ~4 W which is more than 5 times higher than that of a single ridge laser element and a slope efficiency of 1 W/A at room temperature. Operation of in-phase coherent supermode has been achieved over the whole dynamic range of the Talbot-cavity QCL. The structure was analysed using a straightforward theoretical model, showing quantitatively good agreement with the experimental results. The reduced thermal resistance makes the structure an attractive approach to achieve high beam quality continuous wave QCLs.

  19. Strikingly enhanced cooling performance for a micro-cooler using unique Cu nanowire array with high electrical conductivity and fast heat transfer behavior

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan

    2017-06-01

    It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.

  20. A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation.

    PubMed

    McGovern, B; Berlinguer Palmini, R; Grossman, N; Drakakis, E; Poher, V; Neil, M A A; Degenaar, P

    2010-12-01

    Here, we demonstrate the use of a micro light emitting diode (LED) array as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2-D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro LEDs. We present the system optically integrated into a microscope environment and patch clamp electrophysiology. The results show that the emitters have sufficient radiance at the required wavelength to stimulate neurons expressing channelrhodopsin-2 (ChR2).

  1. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  2. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  3. Plasmonic resonances in ordered and disordered aluminum nanocavities arrays.

    NASA Astrophysics Data System (ADS)

    Campuzano, R. G.; Mendoza, D.

    2017-01-01

    Nanocavities arrays were synthesized by electrochemical anodization of aluminum using oxalic and phosphoric acids as electrolytes. The morphology and topography of these structures were evaluated by SEM and AFM. Plasmonic properties of Al cavities arrays with different ordering and dimensions were analysed based on specular reflectivity. Al cavities arrays fabricated with phosphoric acid dramatically reduced the optical reflectivity as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 300nm-400nm range, which were ascribed to (0,1) plasmonic mode, and also a colored appearance in the samples is noticeably depending on the observation angle. These changes are not observed in samples made with oxalic acid and this fact was explained, based on a theoretical model, in terms that the surface plasmons are excited far in the UV range.

  4. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  5. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  6. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  7. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.

  8. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.

    2014-03-01

    The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.

  9. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  10. Antarctic ice discharge due to warm water intrusion into shelf cavities

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Reese, R.; Albrecht, T.; Mengel, M.; Asay-Davis, X.

    2017-12-01

    Ocean-induced melting below ice shelves is the dominant driver for mass loss from the Antarctic Ice Sheet at present. Observations show that many Antarctic ice shelves are thinning which reduces their buttressing potential and can lead to increased ice discharge from the glaciers upstream. Melt rates from Antarctic ice shelves are determined by the temperature and salinity of the ambient ocean. In many parts, ice shelves are shielded by clearly defined density fronts which keep relatively warm Northern water from entering the cavity underneath the ice shelves. Projections show that a redirection of coastal currents might allow these warmer waters to intrude into ice shelf cavities, for instance in the Weddell Sea, and thereby cause a strong increase in sub-shelf melt rates. Using the Potsdam Ice-shelf Cavity mOdel (PICO), we assess how such a change would influence the dynamic ice loss from Antarctica. PICO is implemented as part of the Parallel Ice Sheet Model (PISM) and mimics the vertical overturning circulation in ice-shelf cavities. The model is capable of capturing the wide range of melt rates currently observed for Antarctic ice shelves and reproduces the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. Based on regional observations of ocean temperatures, we use PISM-PICO to estimate an upper limit for ice discharge resulting from the potential erosion of ocean fronts around Antarctica.

  11. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu

    2018-02-01

    Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.

  12. Performance of s-192 (hg,cd)te arrays.

    PubMed

    Aldrich, N C; Beck, J D

    1972-10-01

    Very high performance (Hg,Cd)Te photoconductive detectors have been fabricated for use on the S-192 experiment, which is a multispectral scanner being built by Honeywell for the NASA Manned Space Center's Skylab. The S-192 will scan the earth from Skylab and record data in twelve near ir spectral bands and one long wavelength band. The near ir bands range from 0.4 micro to 2.35 micro. At 87 K with a 90 degrees FOV, we have consistently produced arrays with specific detectivities at 2.35 micro close to or greater than 8 x 10(11) cm Hz((1/2))/W and with detective time constants less than 1 microsec. These detectors demonstrate good uniformity in performance across an array. State-of-the-art fabrication techniques have been used to make detectors with good definition that are 5-10 micro thick with 25-micro spacing between elements.

  13. Parallel multipoint recording of aligned and cultured neurons on corresponding Micro Channel Array toward on-chip cell analysis.

    PubMed

    Tonomura, W; Moriguchi, H; Jimbo, Y; Konishi, S

    2008-01-01

    This paper describes an advanced Micro Channel Array (MCA) so as to record neuronal network at multiple points simultaneously. Developed MCA is designed for neuronal network analysis which has been studied by co-authors using MEA (Micro Electrode Arrays) system. The MCA employs the principle of the extracellular recording. Presented MCA has the following advantages. First of all, the electrodes integrated around individual micro channels are electrically isolated for parallel multipoint recording. Sucking and clamping of cells through micro channels is expected to improve the cellular selectivity and S/N ratio. In this study, hippocampal neurons were cultured on the developed MCA. As a result, the spontaneous and evoked spike potential could be recorded by sucking and clamping the cells at multiple points. Herein, we describe the successful experimental results together with the design and fabrication of the advanced MCA toward on-chip analysis of neuronal network.

  14. Tuning the ferromagnetic resonance frequency of soft magnetic film by patterned permalloy micro-stripes with stripe-domain

    NASA Astrophysics Data System (ADS)

    Pan, Lining; Xie, Hongkang; Cheng, Xiaohong; Zhao, Chenbo; Feng, Hongmei; Cao, Derang; Wang, Jianbo; Liu, Qingfang

    2018-07-01

    Periodic micro-stripes arrays with stripe domains structures upon continuous permalloy (Py) film were fabricated by sputtering, photolithography and ion beam etching technology. These samples display in-plane magnetic anisotropy, and stripe domains structure is observed by the magnetic force microscopy (MFM) in the area of the micro-stripes. The periodic micro-stripes show an effective impact on static and dynamic magnetic properties of Py continuous film. In the case of dynamic magnetic properties, the resonance frequency fr of these samples can be tuned by periodic micro-stripes arrays. Compared to continuous film with resonance frequency fr of 0.64 GHz, the fr of composite structures can be tuned by the separation gap of periodic micro-stripes arrays from 0.8 GHz to 2.3 GHz at zero-field. At the same time, the fr could be also tuned by rotating the samples within the plane. This attributes to the competition of shape anisotropy induced by micro-stripes and the dynamic anisotropy originating by stripe domains structure.

  15. Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    PubMed

    Flood, P; Alvarez, L; Reynaud, E G

    2016-10-11

    Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturing printers and open source 3D design software offers us the possibility to easily create affordable 3D cell culture platforms. To demonstrate this, we established a simple, inexpensive and robust method for producing arrays of free-floating epithelial micro-tissues. Using a combination of 3D computer aided design and 3D printing, hydrogel micro-moulding and collagen cell encapsulation we engineered microenvironments that consistently direct the growth of micro-tissue arrays. We described the adaptability of this technique by testing several immortalised epithelial cell lines (MDCK, A549, Caco-2) and by generating branching morphology and micron to millimetre scaled micro-tissues. We established by fluorescence and electron microscopy that micro-tissues are polarised, have cell type specific differentiated phenotypes and regain native in vivo tissue qualities. Finally, using Salmonella typhimurium we show micro-tissues display a more physiologically relevant infection response compared to epithelial monolayers grown on permeable filter supports. In summary, we have developed a robust and adaptable technique for producing arrays of epithelial micro-tissues. This in vitro model has the potential to be a valuable tool for studying epithelial cell and tissue function/architecture in a physiologically relevant context.

  16. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-24

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  17. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    PubMed Central

    2014-01-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure. PMID:24565201

  18. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  19. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  20. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    NASA Astrophysics Data System (ADS)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  1. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  2. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection.

    PubMed

    Gu, Xuefang; Yan, Yuerong; Jiang, Guoqing; Adkins, Jason; Shi, Jian; Jiang, Guomin; Tian, Shu

    2014-03-01

    A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle-protein-bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL(-1) for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

  3. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    PubMed

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  4. Biological Evaluation of Implant Drill Made from Zirconium Dioxide.

    PubMed

    Akiba, Yosuke; Eguchi, Kaori; Akiba, Nami; Uoshima, Katsumi

    2017-04-01

    Zirconia is a good candidate material in the dental field. In this study, we evaluated biological responses against a zirconia drill using a bone cavity healing model. Zirconia drills, stainless steel drills, and the drilled bone surface were observed by scanning electron microscopy (SEM), before and after cavity preparation. For the bone cavity healing model, the upper first and second molars of Wistar rats were extracted. After 4 weeks, cavities were prepared with zirconia drills on the left side. As a control, a stainless steel drill was used on the right side. At 3, 7, and 14 days after surgery, micro-CT images were taken. Samples were prepared for histological staining. SEM images revealed that zirconia drills maintained sharpness even after 30 drilling procedures. The bone surface was smoother with the zirconia drill. Micro-CT images showed faster and earlier bone healing in the zirconia drill cavity. On H-E staining, at 7 days, the zirconia drill defect had a smaller blank lacunae area. At 14 days, the zirconia drill defect was filled with newly formed bone. The zirconia drill induces less damage during cavity preparation and is advantageous for bone healing. (197 words). © 2016 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  5. Experimental study of atmospheric-pressure micro-plasmas for the ambient sampling of conductive materials

    NASA Astrophysics Data System (ADS)

    Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting

    2018-02-01

    Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.

  6. [The screening diagnostic of micro ecological disorders of oral cavity].

    PubMed

    Petrushanko, T A; Tchereda, V V; Loban, G A

    2014-06-01

    The original mode of screening evaluation of colonizational resistance of oral cavity made it possible to detect its decreasing under caries of teeth solid tissue and development of catarrhal gingivitis. In springtime, the degree of failure of primarily barrier mechanism of oral mucous membrane increases.

  7. A Broad-Band Array of Aperture-Coupled Cavity-Backed Slot Elements

    DTIC Science & Technology

    1988-01-01

    RPOR NUM3ER2. GOVT ACCESSION HO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED A, 1(A--BND iP ,LUPY 09...Repor t AUG 0 4 988SAME AS REPORT 1SUPPL-EMENTARY NOTES LYNNve E. r WOLAVERlease:j) IAW AFR 190-1 Dean for Research an4’Prot e-ssional Develomn Air Force...previous CBS arrays: aperture coupling, and ’half-width’ cavities. Expiremental results demonstrated these departures enhance the po- tential for larger

  8. Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD

    NASA Astrophysics Data System (ADS)

    Koyama, F.; Mukaihara, T.; Hayashi, Y.; Ohnoki, N.; Hatori, N.; Iga, K.

    1995-01-01

    We present a novel approach of on-wafer wavelength control for vertical cavity surface-emitting lasers (VCSEL's) using nonplanar metalorganic chemical vapor deposition. The resonant wavelength of 980 nm VCSEL's grown on a patterned substrate can be controlled in the wavelength range over 45 nm by changing the size of circular patterns. A multi-wavelength VCSEL linear array was fabricated by using this technique. The proposed method will be useful for multi-wavelength VCSEL arrays as well as for the cancellation of wavelength nonuniformity over a wafer.

  9. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  10. The system analysis of light field information collection based on the light field imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Li, Wenhua; Hao, Chenyang

    2016-10-01

    Augmented reality(AR) technology is becoming the study focus, and the AR effect of the light field imaging makes the research of light field camera attractive. The micro array structure was adopted in most light field information acquisition system(LFIAS) since emergence of light field camera, micro lens array(MLA) and micro pinhole array(MPA) system mainly included. It is reviewed in this paper the structure of the LFIAS that the Light field camera commonly used in recent years. LFIAS has been analyzed based on the theory of geometrical optics. Meanwhile, this paper presents a novel LFIAS, plane grating system, we call it "micro aperture array(MAA." And the LFIAS are analyzed based on the knowledge of information optics; This paper proves that there is a little difference in the multiple image produced by the plane grating system. And the plane grating system can collect and record the amplitude and phase information of the field light.

  11. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proudnikov, D.; Kirillov, E.; Chumakov, K.

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less

  12. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  13. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  14. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  15. Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations

    NASA Astrophysics Data System (ADS)

    Tan, Huatang; Wei, Yanghua; Li, Gaoxiang

    2017-11-01

    Greenberger-Horne-Zeilinger (GHZ) and cluster states are two typical kinds of multipartite entangled states and can respectively be used for realizing quantum networks and one-way computation. We propose a feasible scheme for generating Gaussian GHZ and cluster states of multiple mechanical oscillators by pulsed cavity optomechanics. In our scheme, each optomechanical cavity is driven by a blue-detuned pulse to establish quantum steerable correlations between the cavity output field and the mechanical oscillator, and the cavity outputs are combined at a beam-splitter array with given transmissivity and reflectivity for each beam splitter. We show that by harnessing the light-mechanical steerable correlations, the mechanical GHZ and cluster states can be realized via homodyne detection on the amplitude and phase quadratures of the output fields from the beam-splitter array. These achieved mechanical entangled states can be viewed as the output states of an effective mechanical beam-splitter array with the mechanical inputs prepared in squeezed states with the light-mechanical steering. The effects of detection efficiency and thermal noise on the achieved mechanical states are investigated. The present scheme does not require externally injected squeezing and it can also be applicable to other systems such as light-atomic-ensemble interface, apart from optomechanical systems.

  16. Three distinct modes in a surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dong; Liu, Dingxin, E-mail: liudingxin@mail.xjtu.edu.cn; He, Tongtong

    2015-12-15

    A surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures is studied in this paper with an emphasis on the discharge modes. With the N{sub 2} admixture increasing from 0.1% to 20%, the discharge evolves from a spatially diffuse mode to a filamentary mode during positive half-cycles of the applied voltage. However during the negative half-cycles, an additional patterned mode emerges between the diffuse and the filamentary modes, which has not been reported before to exist in surface micro-discharges. In the diffuse and patterned modes, the plasmas cover almost the entirety of the mesh area during one cycle after plasma ignitionmore » in all mesh elements, and the discharge power increases linearly with the applied voltage. In contrast, plasma coverage of the mesh area is only partial in the filamentary mode and the plasma is more unstable with the discharge power increasing exponentially with the applied voltage. As the surface micro-discharge evolves through the three modes, the density of excited species changes significantly, for instance, the density of N{sub 2}{sup +}(B) drops by ∼20-fold from [N{sub 2}] = 0.2% to 20%. The N{sub 2}{sup +}(B) is predicted to be generated mainly through successive processes of Penning ionization by helium metastables and electron-impact excitation of N{sub 2}{sup +}(X), the latter is most responsible for the density decrease of N{sub 2}{sup +}(B) because much more N{sub 2}{sup +}(X) is converted to N{sub 4}{sup +}(X) as the increase of N{sub 2} fraction. Also, the electron density and electron temperature decrease with the discharge mode transition.« less

  17. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  18. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  19. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  20. Micro-field evoked potentials recorded from the porcine sub-dural cortical surface utilizing a microelectrode array.

    PubMed

    Kitzmiller, Joseph P; Hansford, Derek J; Fortin, Linda D; Obrietan, Karl H; Bergdall, Valerie K; Beversdorf, David Q

    2007-05-15

    A sub-dural surface microelectrode array designed to detect micro-field evoked potentials has been developed. The device is comprised of an array of 350-microm square gold contacts, with bidirectional spacing of 150 microm, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these micro-field potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex.

  1. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix

    NASA Astrophysics Data System (ADS)

    Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi

    2017-02-01

    Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.

  2. Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging.

    PubMed

    Zheng, Chong; Hu, Anming; Kihm, Kenneth D; Ma, Qian; Li, Ruozhou; Chen, Tao; Duley, W W

    2015-07-01

    Since microlenses have to date been fabricated primarily by surface manufacturing, they are highly susceptible to surface damage, and their microscale size makes it cumbersome to handle. Thus, cavity lenses are preferred, as they alleviate these difficulties associated with the surface-manufactured microlenses. Here, it is shown that a high repetition femtosecond laser can effectively fabricate cavity microball lenses (CMBLs) inside a polymethyl methacrylate slice. Optimal CMBL fabrication conditions are determined by examining the pertinent parameters, including the laser processing time, the average irradiation power, and the pulse repetition rates. In addition, a heat diffusion modeling is developed to better understand the formation of the spherical cavity and the slightly compressed affected zone surrounding the cavity. A micro-telescope consisting of a microscope objective and a CMBL demonstrates a super-wide field-of-view imaging capability. Finally, detailed optical characterizations of CMBLs are elaborated to account for the refractive index variations of the affected zone. The results presented in the current study demonstrate that a femtosecond laser-fabricated CMBL can be used for robust and super-wide viewing micro imaging applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reduction of solar vector magnetograph data using a microMSP array processor

    NASA Technical Reports Server (NTRS)

    Kineke, Jack

    1990-01-01

    The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.

  4. Optical Characteristics of Vertical Cavity Surface Emitting Lasers and Two Dimensional Coherently Coupled Arrays.

    NASA Astrophysics Data System (ADS)

    Catchmark, Jeffrey Michael

    1995-01-01

    The following describes extensive experimental and theoretical research concerning the optical, electrical and thermal characteristics of GaAs/AlGaAs vertical cavity surface emitting lasers (VCSELs) and coherently coupled two dimensional VCSEL arrays grown by molecular beam epitaxy. The temperature and wavelength performance of VCSELs containing various epitaxial designs is discussed in detail. By employing a high barrier confinement spacer region and by blue shifting the optical gain with respect to the Fabry Perot transmission wavelength, greater than 150^circ rm C continuous wave operation was obtained. This is accomplished while maintaining a variation in the threshold current of only +/-0.93mA over a temperature range of 150^circrm C. This exceptional performance is achieved while attaining a minimum threshold current of approximately 4.3mA at 75^circrm C. In addition, the optical characteristics of multi-transverse mode VCSEL arrays are examined experimentally. A total of nine transverse modes have been identified and are found to couple coherently into distinct array modes. While operating in higher order transverse modes, a record 1.4W (pulsed) of optical power is obtained from a 15 x 15 VCSEL array. Array mode formation in coherently coupled VCSEL arrays is also examined theoretically. A numerical model is developed to describe the formation of supermodes in reflectivity modulated VCSEL arrays. Using this model, the effects of depth of reflectivity modulation, cavity length, window size and grid size on mode formation are explored. The array modes predicted by this model are in agreement with those observed experimentally. Analytic models will also be presented describing the effects of thermally induced waveguiding on the optical characteristics of VCSELs operating in the fundamental transverse mode. A thermal waveguide is found to have a significant effect on the spot size and radius of curvature of the phase of the fundamental optical mode. In addition, an analytic model is developed to predict the higher order transverse modes of a VCSEL exhibiting a cruciform type geometry.

  5. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  6. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  7. A novel piezoelectric quartz micro-array immunosensor for detection of immunoglobulinE.

    PubMed

    Yao, Chunyan; Chen, Qinghai; Chen, Ming; Zhang, Bo; Luo, Yang; Huang, Qing; Huang, Junfu; Fu, Weiling

    2006-12-01

    A novel multi-channel 2 x 5 model of piezoelectric (PZ) micro-array immunosensor has been developed for quantitative detection of human immunoglobulinE (IgE) in serum. Every crystal unit of the fabricated piezoelectric IgE micro-array immunosensor can oscillate without interfering each other. A multi-channel 2 x 5 model micro-array immunosensor as compared with the traditional one-channel immunosensor can provide eight times higher detection speeds for IgE assay. The anti-IgE antibody is deposited on the gold electrode's surface of 10 MHz AT-cut quartz crystals by SPA (staphylococcal protein A), and serves as an antibody recognizing layer. The highly ordered antibody monolayers ensure well-controlled surface structure and offer many advantages to the performance of the sensor. The uniform amount of antibody monolayer coated by the SPA is good, and non-specific reaction caused by other immunoglobulin in sample is found. The fabricated PZ immunosensor can be used for human IgE determination in the range of 5-300 IU/ml with high precision (CV is 4%). 50 human serum samples were detected by the micro-array immunosensor, and the results agreed well with those given by the commercially ELISA test kits. The correlation coefficient is 0.94 between ELISA and PZ immunosensor. After regeneration with NaOH the coated immunosensor can be reused 6 times without appreciable loss of activity.

  8. Direct laser writing of polymer micro-ring resonator ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-04-01

    With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.

  9. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  10. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  11. Design And Commissioning Status Of New Cylindrical HiPIMS Nb Coating System for SRF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H. Lawrence; Macha, Kurt M.; Valente-Feliciano, Anne-Marie

    2014-02-01

    For the past 19 years Jefferson Lab has sustained a program studying niobium films deposited on small samples in order to develop an understanding of the correlation between deposition parameters, film micro-structure, and RF performance. A new cavity deposition system employing a cylindrical cathode using the HiPIMS technique has been developed to apply this work to cylindrical cavities. The status of this system will be presented.

  12. Micro- and Nanoscale Capacitors that Incorporate an Array of Conductive Elements Having Elongated Bodies

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement micro- and nanoscale capacitors that incorporate a conductive element that conforms to the shape of an array elongated bodies. In one embodiment, a capacitor that incorporates a conductive element that conforms to the shape of an array of elongated bodies includes: a first conductive element that conforms to the shape of an array of elongated bodies; a second conductive element that conforms to the shape of an array of elongated bodies; and a dielectric material disposed in between the first conductive element and the second conductive element, and thereby physically separates them.

  13. Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Gao, Zihe; Johnson, Matthew T.; Choquette, Kent D.

    2018-05-01

    Optically coupled semiconductor laser arrays are described by coupled rate equations. The coupled mode equations and carrier densities are included in the analysis, which inherently incorporate the carrier-induced nonlinearities including gain saturation and amplitude-phase coupling. We solve the steady-state coupled rate equations and consider the cavity frequency detuning and the individual laser pump rates as the experimentally controlled variables. We show that the carrier-induced nonlinearities play a critical role in the mode control, and we identify gain contrast induced by cavity frequency detuning as a unique mechanism for mode control. Photon-mediated energy transfer between cavities is also discussed. Parity-time symmetry and exceptional points in this system are studied. Unbroken parity-time symmetry can be achieved by judiciously combining cavity detuning and unequal pump rates, while broken symmetry lies on the boundary of the optical locking region. Exceptional points are identified at the intersection between broken symmetry and unbroken parity-time symmetry.

  14. High Stability Induced by the TiN/Ti Interlayer in Three-Dimensional Si/Ge Nanorod Arrays as Anode in Micro Lithium Ion Battery.

    PubMed

    Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; Sun, Shibo; He, Xu; Li, Juntao; Zhao, Libo; Wu, Suntao; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-03-01

    Three-dimensional (3D) Si/Ge-based micro/nano batteries are promising lab-on-chip power supply sources because of the good process compatibility with integrated circuits and Micro/Nano-Electro-Mechanical System technologies. In this work, the effective interlayer of TiN/Ti thin films were introduced to coat around the 3D Si nanorod (NR) arrays before the amorphous Ge layer deposition as anode in micro/nano lithium ion batteries, thus the superior cycling stability was realized by reason for the restriction of Si activation in this unique 3D matchlike Si/TiN/Ti/Ge NR array electrode. Moreover, the volume expansion properties after the repeated lithium-ion insertion/extraction were experimentally investigated to evidence the superior stability of this unique multilayered Si composite electrode. The demonstration of this wafer-scale, cost-effective, and Si-compatible fabrication for anodes in Li-ion micro/nano batteries provides new routes to configurate more efficient 3D energy storage systems for micro/nano smart semiconductor devices.

  15. Effects of Arg-Gly-Asp sequence peptide and hyperosmolarity on the permeability of interstitial matrix and fenestrated endothelium in joints.

    PubMed

    Poli, A; Mason, R M; Levick, J R

    2004-09-01

    The aims were to assess the contribution of arg-gly-asp (RGD) mediated cell integrin-matrix bonds to interstitial hydraulic resistance and to fenestrated endothelial permeability in joints. Joint fluid is generated by filtration from fenestrated capillaries and drains through a fibronectin-rich synovial intercellular matrix. The role of parenchymal cell-matrix bonding in determining tissue hydraulic resistance is unknown. The knee cavity of anesthetized rabbits was infused with saline or the competitive hexapeptide blocker GRGDTP, with or without added osmotic stress (600 mosm saline). Intra-articular pressure Pj, net trans-synovial drainage rate s, and the permeation of Evans blue-labeled albumin (EVA) from plasma into the joint cavity were measured. GRGDTP increased the hydraulic conductance of the synovial drainage pathway, ds/dPj, by 71% (p =.02, paired t test, n = 6 animals). Synovial plasma EVA clearance (control 7.1 +/- 0.8 microL h-1, mean +/- SEM, n = 15) was unaffected by GRGDTP (7.0 +/- 2.3 microL h(-1), n = 6) or hyperosmolarity (4.9 +/- 1.5 microL h(-1), n = 8) but was increased by GRGDTP and hyperosmolarity together (15.9 +/- 4.8 microL h(-1), n = 5) (p =.01, ANOVA). Changes in dPj/dt evoked by GRGDTP plus hyperosmolarity, but neither alone, demonstrated increased microvascular filtration into the joint cavity (p <.001, ANOVA), as did changes in fluid absorption from the infusion system at fixed Pj. RGD-mediated bonds between the parenchymal cells and interstitial polymers reduce the interstitial hydraulic conductance by 42%. This helps to retain the lubricating fluid inside a joint cavity. RGD-mediated bonds also support the macromolecular barrier function of fenestrated endothelium, but in vivo this is evident only in stressed endothelium (cf. in vitro).

  16. Calibrating the MicroBooNE Photomultiplier Tube (PMT) Array with Michel Electrons from Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Greene, Amy

    2013-04-01

    MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.

  17. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  18. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  19. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  20. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  1. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  2. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  3. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    PubMed Central

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-01-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. PMID:27708286

  4. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  5. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  6. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  7. Development of an automation technique for the establishment of functional lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.

    2009-02-01

    In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.

  8. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker.

    PubMed

    Tao, Jiancheng; Jing, Ruixiang; Qiu, Xiaojun

    2014-01-01

    Deep back cavities are usually required for micro-perforated panel (MPP) constructions to achieve good low frequency absorption. To overcome the problem, a close-box loudspeaker with a shunted circuit is proposed to substitute the back wall of the cavity of the MPP constructions to constitute a composite absorber. Based on the equivalent circuit model, the acoustic impedance of the shunted loudspeaker is formulated first, then a prediction model of the sound absorption of the MPP backed by shunted loudspeaker is developed by employing the mode solution of a finite size MPP coupled by an air cavity with an impendence back wall. The MPP absorbs mid to high frequency sound, and with properly adjusted electrical parameters of its shunted circuit, the shunted loudspeaker absorbs low frequency sound, so the composite absorber provides a compact solution to broadband sound control. Numerical simulations and experiments are carried out to validate the model.

  9. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  10. Effective spin physics in two-dimensional cavity QED arrays

    NASA Astrophysics Data System (ADS)

    Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor

    2017-06-01

    We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.

  11. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  12. Electrodynamic characterisitcs measurements of higher order modes in S-band cavity

    NASA Astrophysics Data System (ADS)

    Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.

    2017-12-01

    The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.

  13. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  14. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

    EPA Science Inventory

    The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...

  15. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  16. Development of atmospheric pressure large area plasma jet for sterilisation and investigation of molecule and plasma interaction

    NASA Astrophysics Data System (ADS)

    Zerbe, Kristina; Iberler, Marcus; Jacoby, Joachim; Wagner, Christopher

    2016-09-01

    The intention of the project is the development and improvement of an atmospheric plasma jet based on various discharge forms (e.g. DBD, RF, micro-array) for sterilisation of biomedical equipment and investigation of biomolecules under the influence of plasma stress. The major objective is to design a plasma jet with a large area and an extended length. Due to the success on small scale plasma sterilisation the request of large area plasma has increased. Many applications of chemical disinfection in environmental and medical cleaning could thereby be complemented. Subsequently, the interaction between plasma and biomolecules should be investigated to improve plasma strerilisation. Special interest will be on non equilibrium plasma electrons affecting the chemical bindings of organic molecules.

  17. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters.

    PubMed

    Campobello, D; Lindström, J; Di Maggio, R; Sarà, M

    2017-01-01

    The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

  18. Practical system for the generation of pulsed quantum frequency combs.

    PubMed

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  19. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters

    PubMed Central

    Campobello, D.; Lindström, J.; Di Maggio, R.; Sarà, M.

    2017-01-01

    The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales. PMID:28319183

  20. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    NASA Astrophysics Data System (ADS)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  1. Fabrication of optical fiber sensor based on double-layer SU-8 diaphragm and the partial discharge detection

    NASA Astrophysics Data System (ADS)

    Shang, Ya-na; Ni, Qing-yan; Ding, Ding; Chen, Na; Wang, Ting-yun

    2015-01-01

    In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot (FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young's modulus and potentially high sensitivity for ultrasound detection. The FP cavity is formed by coating the fiber end face with two layers of SU-8 so that the cavity can be controlled by the thickness of the middle layer of SU-8. Static pressure measurement experiments are done to estimate the sensing performance. The results show that the SU-8 based sensor has a sensitivity of 154.8 nm/kPa, which is much higher than that of silica based sensor under the same condition. Moreover, the sensor is demonstrated successfully to detect ultrasound from electrode discharge.

  2. Three-dimensional micro-electrode array for recording dissociated neuronal cultures.

    PubMed

    Musick, Katherine; Khatami, David; Wheeler, Bruce C

    2009-07-21

    This work demonstrates the design, fabrication, packaging, characterization, and functionality of an electrically and fluidically active three-dimensional micro-electrode array (3D MEA) for use with neuronal cell cultures. The successful function of the device implies that this basic concept-construction of a 3D array with a layered approach-can be utilized as the basis for a new family of neural electrode arrays. The 3D MEA prototype consists of a stack of individually patterned thin films that form a cell chamber conducive to maintaining and recording the electrical activity of a long-term three-dimensional network of rat cortical neurons. Silicon electrode layers contain a polymer grid for neural branching, growth, and network formation. Along the walls of these electrode layers lie exposed gold electrodes which permit recording and stimulation of the neuronal electrical activity. Silicone elastomer micro-fluidic layers provide a means for loading dissociated neurons into the structure and serve as the artificial vasculature for nutrient supply and aeration. The fluidic layers also serve as insulation for the micro-electrodes. Cells have been shown to survive in the 3D MEA for up to 28 days, with spontaneous and evoked electrical recordings performed in that time. The micro-fluidic capability was demonstrated by flowing in the drug tetrotodoxin to influence the activity of the culture.

  3. Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho

    2012-06-01

    We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.

  4. Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2016-03-01

    Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.

  5. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  6. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  7. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  8. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  9. Electro-thermal modelling of anode and cathode in micro-EDM

    NASA Astrophysics Data System (ADS)

    Yeo, S. H.; Kurnia, W.; Tan, P. C.

    2007-04-01

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively.

  10. Design and fabrication of plasmonic cavities for magneto-optical sensing

    NASA Astrophysics Data System (ADS)

    Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.

    2018-05-01

    The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.

  11. Inertial focusing in a straight channel with asymmetrical expansion-contraction cavity arrays using two secondary flows

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, M.; Li, W. H.; Alici, G.

    2013-08-01

    The focusing of particles has a variety of applications in industry and biomedicine, including wastewater purification, fermentation filtration, and pathogen detection in flow cytometry, etc. In this paper a novel inertial microfluidic device using two secondary flows to focus particles is presented. The geometry of the proposed microfluidic channel is a simple straight channel with asymmetrically patterned triangular expansion-contraction cavity arrays. Three different focusing patterns were observed under different flow conditions: (1) a single focusing streak on the cavity side; (2) double focusing streaks on both sides; (3) half of the particles were focused on the opposite side of the cavity, while the other particles were trapped by a horizontal vortex in the cavity. The focusing performance was studied comprehensively up to flow rates of 700 µl min-1. The focusing mechanism was investigated by analysing the balance of forces between the inertial lift forces and secondary flow drag in the cross section. The influence of particle size and cavity geometry on the focusing performance was also studied. The experimental results showed that more precise focusing could be obtained with large particles, some of which even showed a single-particle focusing streak in the horizontal plane. Meanwhile, the focusing patterns and their working conditions could be adjusted by the geometry of the cavity. This novel inertial microfluidic device could offer a continuous, sheathless, and high-throughput performance, which can be potentially applied to high-speed flow cytometry or the extraction of blood cells.

  12. Pitch variable liquid lens array using electrowetting

    NASA Astrophysics Data System (ADS)

    Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub

    2017-02-01

    These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.

  13. 5-Fluorouracil sensitivity varies among oral micro-organisms.

    PubMed

    Vanlancker, Eline; Vanhoecke, Barbara; Smet, Rozel; Props, Ruben; Van de Wiele, Tom

    2016-08-01

    5-Fluorouracil (5-FU), a commonly used chemotherapeutic agent, often causes oral mucositis, an inflammation and ulceration of the oral mucosa. Micro-organisms in the oral cavity are thought to play an important role in the aggravation and severity of mucositis, but the mechanisms behind this remain unclear. Although 5-FU has been shown to elicit antibacterial effects at high concentrations (>100 µM), its antibacterial effect at physiologically relevant concentrations in the oral cavity is unknown. This study reports the effect of different concentrations of 5-FU (range 0.1-50 µM) on the growth and viability of bacterial monocultures that are present in the oral cavity and the possible role in the activity of dihydropyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU resistance. Our data showed a differential sensitivity among the tested oral species towards physiological concentrations of 5-FU. Klebsiellaoxytoca, Streptococcus salivarius, Streptococcus mitis, Streptococcus oralis, Pseudomonas aeruginosa and Lactobacillus salivarius appeared to be highly resistant to all tested concentrations. In contrast, Lactobacillusoris, Lactobacillus plantarum, Streptococcus pyogenes, Fusobacterium nucleatum and Neisseria mucosa showed a significant reduction in growth and viability starting from very low concentrations (0.2-3.1 µM). We can also provide evidence that DPD is not involved in the 5-FU resistance of the selected species. The observed variability in response to physiological 5-FU concentrations may explain why certain microbiota lead to a community dysbiosis and/or an overgrowth of certain resistant micro-organisms in the oral cavity following cancer treatment.

  14. Theoretical and experimental analysis of the electromechanical behavior of a compact spherical loudspeaker array for directivity control.

    PubMed

    Pasqual, Alexander Mattioli; Herzog, Philippe; Arruda, José Roberto de França

    2010-12-01

    Sound directivity control is made possible by a compact array of independent loudspeakers operating at the same frequency range. The drivers are usually distributed over a sphere-like frame according to a Platonic solid geometry to obtain a highly symmetrical configuration. The radiation pattern of spherical loudspeaker arrays has been predicted from the surface velocity pattern by approximating the drivers membranes as rigid vibrating spherical caps, although a rigorous assessment of this model has not been provided so far. Many aspects concerning compact array electromechanics remain unclear, such as the effects on the acoustical performance of the drivers interaction inside the array cavity, or the fact that voltages rather than velocities are controlled in practice. This work presents a detailed investigation of the electromechanical behavior of spherical loudspeaker arrays. Simulation results are shown to agree with laser vibrometer measurements and experimental sound power data obtained for a 12-driver spherical array prototype at low frequencies, whereas the non-rigid body motion and the first cavity eigenfrequency yield a discrepancy between theoretical and experimental results at high frequencies. Finally, although the internal acoustic coupling affects the drivers vibration in the low-frequency range, it does not play an important role on the radiated sound power.

  15. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity

    PubMed Central

    Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.

    2014-01-01

    Objective Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography (EEG) remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complimentary methods to simultaneously modulate cortical activity while recording are needed. Approach We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2 (ChR2). We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main Results Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. PMID:24445482

  16. Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)

    NASA Astrophysics Data System (ADS)

    Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard

    2013-09-01

    Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.

  17. Lithographic fine-tuning of vertical cavity surface emitting laser-pumped two-dimensional photonic crystal lasers.

    PubMed

    Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel

    2002-01-01

    Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.

  18. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  19. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  20. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1994-04-09

    surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy (MBE) growth of GaAs...substrate surface temperature across the wafer during the growth of the cavity spacer region. Using the fact that, during an molecular beam epitaxy (MBE...K. Bacher and J.S. Harris, "Periodically Induced Mode Shift in Vertical Cavity Fabry Perot Etalons Grown by Molecular Beam Epitaxy ," to be presented

  1. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    NASA Astrophysics Data System (ADS)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.

  2. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    NASA Astrophysics Data System (ADS)

    Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  3. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

  4. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  5. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  6. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  7. A Flexible Annular-Array Imaging Platform for Micro-Ultrasound

    PubMed Central

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923

  8. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  9. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less

  10. Arrayed Micro-Ring Spectrometer System and Method of Use

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.

  11. Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.

    PubMed

    Clarke, Clyde; Etienne-Cummings, Ralph

    2006-01-01

    A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.

  12. High density pixel array and laser micro-milling method for fabricating array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2003-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  13. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  14. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  15. Two-dimensional frequency scanning from a metasurface-based Fabry–Pérot resonant cavity

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Yang, Rui

    2018-06-01

    A spatial angular filtering metasurface is introduced into a Fabry–Pérot (FP) resonant cavity design for the frequency scanning performance in this paper. More specifically, asymmetrical unit cells printed on the metasurface enable the radiation energy to move in different directions as the frequency changes, and the released emissions, meanwhile, are split into dual-beams from the initial pencil beam. We continue to implement a patch array to provide excitation with the aim of achieving scanned beams in another dimension, and the proposed design ultimately demonstrates a two-dimensional dual-beam scanning performance with 42° and 9° scanning angles respectively in two dimensions of the coordinate system over a frequency range from 10.50 GHz–11.25 GHz. The proposed technique, by integrating a spatial angular filtering metasurface with a patch array feed to generate steerable beams, should offer an efficient way to fulfill FP resonant cavities with reconfigurable radiation.

  16. Parallel multipoint recording of aligned and cultured neurons on micro channel array toward cellular network analysis.

    PubMed

    Tonomura, Wataru; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    2010-08-01

    This paper describes an advanced Micro Channel Array (MCA) for recording electrophysiological signals of neuronal networks at multiple points simultaneously. The developed MCA is designed for neuronal network analysis which has been studied by the co-authors using the Micro Electrode Arrays (MEA) system, and employs the principles of extracellular recordings. A prerequisite for extracellular recordings with good signal-to-noise ratio is a tight contact between cells and electrodes. The MCA described herein has the following advantages. The electrodes integrated around individual micro channels are electrically isolated to enable parallel multipoint recording. Reliable clamping of a targeted cell through micro channels is expected to improve the cellular selectivity and the attachment between the cell and the electrode toward steady electrophysiological recordings. We cultured hippocampal neurons on the developed MCA. As a result, the spontaneous and evoked spike potentials could be recorded by sucking and clamping the cells at multiple points. In this paper, we describe the design and fabrication of the MCA and the successful electrophysiological recordings leading to the development of an effective cellular network analysis device.

  17. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  18. Enhanced flow boiling in microchannels through integrating multiple micro-nozzles and reentry microcavities

    NASA Astrophysics Data System (ADS)

    Li, Wenming; Qu, Xiaopeng; Alam, Tamanna; Yang, Fanghao; Chang, Wei; Khan, Jamil; Li, Chen

    2017-01-01

    In a microchannel system, a higher mass velocity can lead to enhanced flow boiling performances, but at a cost of two-phase pressure drop. It is highly desirable to achieve a high heat transfer rate and critical heat flux (CHF) exceeding 1 kW/cm2 without elevating the pressure drop, particularly, at a reduced mass velocity. In this study, we developed a microchannel configuration that enables more efficient utilization of the coolant through integrating multiple microscale nozzles connected to auxiliary channels as well as microscale reentry cavities on sidewalls of main microchannels. We achieved a CHF of 1016 W/cm2 with a 50% less mass velocity, i.e., 680 kg/m2s, compared to the two-nozzle configuration developed in our previous studies. Two primary enhancement mechanisms are: (a) the enhanced global liquid supply by four evenly distributed micronozzles, particularly near the outlet region and (b) the effective management of local dryout by the capillary flow-induced sustainable thin liquid film resulting from an array of microscale cavities. A significantly improved heat transfer coefficient of 131 kW/m2 K at a mass velocity of 680 kg/m2s is attributed to the enhanced nucleate boiling, the established capillary/thin film evaporation, and the induced advection from the present microchannel configuration. All these significant enhancements have been achieved with a ˜55% lower two-phase pressure drop.

  19. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  20. Plasma-enhanced deposition and processing of transition metals and transition metal silicides for VLSI

    NASA Astrophysics Data System (ADS)

    Hess, D. W.

    1986-05-01

    Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.

  1. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  2. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  3. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  4. Evidence of nonuniform phase-diffusion in a bad-cavity laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuppens, S.J.M.; Exter, M.P. van; Duin, M. van

    1995-07-01

    The quantum-limited linewidth of a short HeNe 3.39-{micro}m laser was measured and seen to increase with increasing nonuniformity of the intracavity intensity distribution. Experiments were done inside as well as outside the bad-cavity regime; in this regime the polarization of the gain medium can not be adiabatically eliminated but acts as a memory. Good quantitative agreement with theory is obtained inside as well as outside the bad-cavity regime. The effect of nonuniformity is well described by the longitudinal Petermann K-factor. The bad-cavity and nonuniformity effects can be separated from each other as predicted by theory.

  5. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Hosokawa, M.; Sasaki, T.; Mukaigawa, S.; Fujiwara, T.

    2005-04-01

    An atmospheric pressure glow discharge was generated using a needle-array electrode in nitrogen, and the voltage-current characteristics of the glow discharge were obtained in a range from 1 mA to 60 A. A pulsed high voltage with short rise time under 10 ns was employed to generate streamer discharges simultaneously at all needle tips. The large number of streamer discharges prevented the glow-to-arc transition caused by inhomogeneous thermalization. Semiconductor opening switch diodes were employed as an opening switch to shorten the rise time. The glow voltage was almost constant until the discharge current became 0.3 A, whereas the voltage increased with the current higher than 0.3 A. Electron density and temperature in a positive column of the glow discharge at 60 A were obtained to 1.4×1012cm-3 and 1.3 eV from calculation based on nitrogen swarm data.

  6. Micro ring cavity resonator incorporating total internal reflection mirrors

    NASA Astrophysics Data System (ADS)

    Kim, Doo Gun; Choi, Woon Kyung; Choi, Young Wan; Yi, Jong Chang; Chung, Youngchul; Dagli, Nadir

    2007-02-01

    We investigate the properties of a multimode-interference (MMI) coupled micro ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA). The TIR mirrors were fabricated by the self-aligned process with a loss of 0.7 dB per mirror. The length and width of an MMI are 142 μm and 10 μm, respectively. The resulting free spectral range (FSR) of the resonator was approximately 1.698 nm near 1571 nm and the extinction ratio was about 17 dB. These devices might be useful as optical switching and add-drop filters in a photonic integrated circuit or as small and fast resonator devices.

  7. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  8. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo

    2011-05-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  9. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  10. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  11. Observatory enabled discovery of diffuse discharge temperature structure

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Lee, R.; Ivakin, A. N.

    2016-12-01

    Underwater cabled observatories provide long term but short time and spatial scale measurements of hydrothermal discharge properties. For the first time, an intricate picture of diffuse discharge has been captured at both Axial Volcano (Axial) and the Main Endeavour Field (MEF) on the Juan de Fuca Ridge. This study combines thermistor (3D array, 2D array and spot) and acoustic data to compare the statistical and distribution characteristics of diffuse discharge for narrow crack flow (at ASHES field on Axial) and distributive flow out of a sulfide structure (at Grotto vent in MEF). Two surprising observations seem to apply to both styles of diffuse discharge: (1) thermal variance scales with the mean temperature suggesting coherent flow structures exist in the form of plumes, wakes or boundary layers, and (2) thermal hot spots are persistently localized in space, despite tidal current disruption. Thermal variance was measured at ASHES using a 3D thermistor array (TMPSF) with 10 s sampling over two years and at Grotto using 2D thermistor arrays with 1 hr sampling over several years and a ROV-held CTD (Seabird 39plus) with 0.5 second sampling over several minutes. For locations with temperatures greater than ambient, the variance in temperature scales with the mean temperature. This unusual statistical property is characteristic of self-similar flows like plumes, wakes, and boundary layers and arises from the bounded mixing of a cooling high temperature fluid with a cold ambient fluid. Thus this observation implies an underlying coherence to the diffuse discharge that has not yet been adequately captured or described. A coherent flow like a plume should have a discoverable spatial pattern, albeit one that may vary with the influence of tides. Acoustic observations ( 1m diameter footprint) of the Grotto sulfide edifice found stable local hot spots of diffuse discharge that sway with tides. In contrast, the 3D thermistor array at ASHES sees very localized (single thermistor) hot spots that persist for months. Is this a fundamental difference between two styles of diffuse discharge? Alternate conceptual models of diffuse discharge are used to place localized observations in a spatial context and develop a rigorous understanding of the spatial and temporal pattern of diffuse discharge for both crack and distributive styles.

  12. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  13. The dynamics of a polariton dimer in a disordered coupled array of cavities

    NASA Astrophysics Data System (ADS)

    Aiyejina, Abuenameh; Andrews, Roger

    2018-03-01

    We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent - 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

  14. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Michael; Ma, Zhiwen; Martinek, Janna

    An aspect of the present disclosure is a receiver for receiving radiation from a heliostat array that includes at least one external panel configured to form an internal cavity and an open face. The open face is positioned substantially perpendicular to a longitudinal axis and forms an entrance to the internal cavity. The receiver also includes at least one internal panel positioned within the cavity and aligned substantially parallel to the longitudinal axis, and the at least one internal panel includes at least one channel configured to distribute a heat transfer medium.

  16. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  17. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  18. Effect of oxygen plasma modification on refractive index sensing with micro-cavity in-line Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Debowska, Anna K.; Dominik, Magdalena; Koba, Marcin; Janik, Monika; Bock, Wojtek; Śmietana, Mateusz

    2016-12-01

    A micro-cavity in-line Mach-Zehnder interferometer (μIMZI) is an optical sensing structure fabricated in an optical fiber. Its design allows for refractive index sensing of liquid and gas in picoliter volumes, making it suitable for biochemical and medical sensing where measured material is often scarce. The fabricated structures show satisfactory levels of sensitivity, from about 400 nm/RIU in the near-water range of solutions (nD 1.336+/-0.003 RIU) to about 16 000 nm/RIU for solutions in approximate range from nD = 1.35 RIU to nD = 1.4 RIU. The structures were subjected to oxygen plasma, the process which was supposed to modify physical parameters of the structures, i.e., cavity surface wettability and roughness, and in consequence their sensitivity. As a result of the oxygen plasma modification we have observed a improved wettability of the structure surface, what makes it easier to introduce liquid into the cavity and simplifies the measurement process. In the case where the plasma processing is preceded by biological layer deposition, the bottom surface of the structure is smoothed and slightly deepened, causing a shift in the transmission spectrum and change in sensitivity.

  19. Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han

    2018-02-01

    In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.

  20. Multipurpose Fiber Injected-micro-spherical LIDAR System

    NASA Technical Reports Server (NTRS)

    Abdelayem, Hossin; Jamison, Tracee

    2005-01-01

    A technological revolution is occurring in the field of fiber lasers. Over the past two years, the level of power has increased from approx. 100 watts to nearly 1 kilowatt. We are developing a novel fiber laser system, which is a satellite-based LIDAR transmitter of multi-lines. The system is made of a hollow fiber filled with micro-spheres doped with lasing materials. Each sphere has its inherent optical cavity, which makes the system a cavity free and in the same time, emits multi-laser lines for simultaneous multi-task operations. The system is also rugged, compact, lightweight, and durable. Our earlier studies on micro-spheres doped with different laser dyes demonstrated the emission of extremely fine laser lines of less than 3 A line-width, which are of interest for spectroscopic applications, sensing, imaging, and optical communications. Individual dye-doped micro-spheres demonstrated a lasing resonance peaks phenomenon in their fluorescence spectra of linear and nonlinear features that do not exist in the bulk dye solutions. Each individual micro-sphere acts as a laser system with inherent cavity, where the fluorescence line suffers multiple internal reflections within the micro-sphere and gains enough energy to become a laser line. Such resonance peaks are dependent on the sphere's morphology, size, shape, and its refractive index. These resonance peaks are named structural resonance, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomenon of morphology dependent resonance (MDR), which has already been described and predicted precisely by electromagnetic theory and Lorentz-Mie theory since 1908. The resonance peaks become more obvious when the particle size approaches and exceeds the wavelength of the laser used and the relative index of the particle is greater than that of the surrounding medium. Additional information is included in the original extended abstract.

  1. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  2. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  3. Stress reduction for pillar filled structures

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.

    2015-09-01

    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.

  4. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimization and Surface Modification of Al-6351 Alloy Using SiC-Cu Green Compact Electrode by Electro Discharge Coating Process

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sujoy; Kar, Siddhartha; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-06-01

    This paper introduces the surface modification of Al-6351 alloy by green compact SiC-Cu electrode using electro-discharge coating (EDC) process. A Taguchi L-16 orthogonal array is employed to investigate the process by varying tool parameters like composition and compaction load and electro-discharge machining (EDM) parameters like pulse-on time and peak current. Material deposition rate (MDR), tool wear rate (TWR) and surface roughness (SR) are measured on the coated specimens. An optimum condition is achieved by formulating overall evaluation criteria (OEC), which combines multi-objective task into a single index. The signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) is employed to investigate the effect of relevant process parameters. A confirmation test is conducted based on optimal process parameters and experimental results are provided to illustrate the effectiveness of this approach. The modified surface is characterized by optical microscope and X-ray diffraction (XRD) analysis. XRD analysis of the deposited layer confirmed the transfer of tool materials to the work surface and formation of inter-metallic phases. The micro-hardness of the resulting composite layer is also measured which is 1.5-3 times more than work material’s one and highest layer thickness (LT) of 83.644μm has been successfully achieved.

  6. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  7. Full-frame, programmable hyperspectral imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Steven P.; Graff, David L.

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less

  8. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the device's Q factor has been realized by shifting the device's working wavelength to near-visible wavelength and further reducing the device's sidewall roughness. A record new high Q-˜x105 has been measured and the device's NEP as low as 21Pa has been measured. Furthermore, a smaller size polymer microring device has been developed and fabricated to realize larger angle beam forming applications.

  9. A Case of Recurrent Schneiderian Papilloma of the Lacrimal Sac Invading the Nasal Cavity

    PubMed Central

    Jang, Ji Hye; Choe, Mi Sun

    2009-01-01

    A 44-year-old man presented with a history of chronic epiphora, discharge from the right eye, and a palpable mass in the medial canthal area. Irrigation of the lacrimal system revealed bloody discharge. Orbital magnetic resonance imaging (MRI) showed a well-defined heterogeneous enhanced mass filling the lacrimal sac and upper nasolacrimal duct (NLD). A wide excision and surgical biopsy were performed. Histopathology showed the tumor to be an exophytic Schneiderian papilloma with moderate to severe dysplasia. Three months later, the mass was found to be invading the nasal cavity through the NLD. Endoscopic histopathological evaluation confirmed that it was identical to the originally identified papilloma. PMID:19568358

  10. Hierarchical nanoparticle assemblies formed by decorating breath figures.

    PubMed

    Böker, Alexander; Lin, Yao; Chiapperini, Kristen; Horowitz, Reina; Thompson, Mike; Carreon, Vincent; Xu, Ting; Abetz, Clarissa; Skaff, Habib; Dinsmore, A D; Emrick, Todd; Russell, Thomas P

    2004-05-01

    The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.

  11. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    PubMed

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  12. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin

    2010-11-01

    A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.

  13. Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    PubMed Central

    2012-01-01

    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306

  14. Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz

    NASA Astrophysics Data System (ADS)

    Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.

    2016-09-01

    In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..

  15. Broad-band beam buncher

    DOEpatents

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  16. Experimental investigation of the charge/discharge process for an organic PCM macroencapsulated in an aluminium rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana Verona; Catalina, Tiberiu; Chehouani, Hassan; Benhamou, Brahim

    2018-02-01

    Buildings sector has one of the highest potential regarding the reduction of greenhouse gases emissions, as being responsible for more than 40% of energy consumption worldwide. This is why, in order to achieve indoor thermal comfort, it is mandatory to use energy-efficient systems. Materials acting as thermal energy storage (TES) represents one of the most effective strategy that can be implemented and nowadays, many studies are focusing their attention on latent heat storage, respectively on phase changing materials (PCM) which can embed a large embed a high quantity of energy, unlike classic materials acting as thermal mass. This purpose of this paper is to experimentally investigate the charge and discharge processes for an organic PCM (RT35 paraffin) macroencapsulated in an aluminium rectangular cavity which was placed first in a horizontal position and after in a vertical position. After several experimental campaigns conducted we determined that the vertical position enhance the heat transfer because of the natural convection which occurs inside the cavity. Therefore, the charging time is lower in case of the vertical cavity and the temperature measured inside and on the surface is higher.

  17. Metasurface external cavity laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S.

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  18. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1985-08-05

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises: (1) a whole blood sample disc; (2) a serum sample disc; (3) a sample preparation rotor; and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analyticaly rotor for conventional methods. 5 figs.

  19. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1988-01-01

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

  20. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  1. Development and Implementation of High Bandwidth Pulsed Microactuators for Sub and Supersonic Applications

    DTIC Science & Technology

    2012-06-15

    Microactuators of High –Speed Flow Control”, AIAA- 2938 , 2011. 12. Kreth, P., Solomon, J.T., Alvi, F.S., “Resonance-Enhanced High Frequency Micro...paper 2938 , 2011. 34. Ali, M.Y., Solomon, J.T., Gustavsson, J., Kumar, R., Alvi, F.S., “Control of Supersonic Cavity Flows Using High Bandwidth Micro

  2. Novel octanuclear copper(I) metallomacrocycles and their transformation into hexanuclear 2-dimensional grids of copper(i) coordination polymers containing cyclodiphosphazanes, [(micro-NtBuP)2(NC4H8X)2] (X = NMe, O).

    PubMed

    Suresh, D; Balakrishna, Maravanji S; Mague, Joel T

    2008-07-07

    Novel octanuclear copper(I) macrocyclic complexes and hexanuclear 2-dimensional grid-like polymers containing [P(micro-NR)](2) scaffold in which the anionic moieties are trapped inside the cationic macrocyclic cavities are reported.

  3. Feasibility of geophysical methods as a tool to detect urban subsurface cavity

    NASA Astrophysics Data System (ADS)

    Bang, E.; Kim, C.; Rim, H.; Ryu, D.; Lee, H.; Jeong, S. W.; Jung, B.; Yum, B. W.

    2016-12-01

    Urban road collapse problem become a social issue in Korea these days. Underground cavity cannot be cured by itself, we need to detect existing underground cavity before road collapse. We should consider cost, reliability, availability, skill requirement for field work and interpretation procedure in selecting detecting method because it's huge area and very long length to complete. We constructed a real-scale ground model for this purpose. Its size is about 15m*8m*3m (L*W*D) and sewer pipes are buried at the depth of 1.2m. We modeled upward moving or enlargement of underground cavity by digging the ground through the hole of sewer pipe inside. There are two or three steps having different cavity size and depth. We performed all five methods on the ground model to monitor ground collapse and detect underground cavity at each step. The first one is GPR method, which is very popular for this kind of project. GPR provided very good images showing underground cavity well at each step. DC resistivity survey is also selected because it is a common tool to locate underground anomaly. It provided the images showing underground cavity, but field setup is not favorable for the project. The third method is micro gravity method which can differentiate cavity zone from gravity distribution. Micro Gravity gave smaller g values around the cavity compared to normal condition, but it takes very long time to perform. The fourth method is thermal image. The temperature of the ground surface on the cavity will be different from the other area. We used multi-copter for rapid thermal imaging and we could pick the area of underground cavity from the aerial thermal image of ground surface. The last method we applied is RFID/magnetic survey. When the ground is collapsed around the buried RFID/magnetic tag in depth, tag will be moved downward. We can know the ground collapse through checking tag detecting condition. We could pick the area of ground collapse easily. When we compared each method from a variety of views, we could check GPR method, aerial thermal imaging method and RFID/magnetic survey show better performance as a tool to detect subsurface cavity.

  4. CALUTRON

    DOEpatents

    Lawrence, E.O.; Brobeck, W.M.

    1959-04-14

    ABS>An ion source is described for a calutron especially designed to improve the uniformity of charge vapor flow when the vapor encounters the arc. The inventive feature of the source consists of a specific source block construction wherein heater means prevents condensation from taking place within the block, and a separate vapor generator is supported on the wall of the block by a hollow thimble. The thimble communicates with a bore cavity in the block and the vapor flows therethrough into the cavity and uniformly out a slot along the length of the cavity where the arc discharge is located.

  5. Cavitation in flow through a micro-orifice inside a silicon microchannel

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan; Peles, Yoav

    2005-01-01

    Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5μm wide micro-orifice inside a 100.2μm wide and 101.3μm deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

  6. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.

    2013-05-01

    We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.

  7. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  8. Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes

    DTIC Science & Technology

    2001-06-01

    vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated

  9. Development of a microimpedance pump for pulsatile flow transport - Part : Flow characteristics of the microimpedance pump. Part 2: A systematic study of steady and pulsatile transport in microscale cavities

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Derek

    Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.

  10. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.

  11. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  12. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based on the time-resolved absolute intensity of a Nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N2 (C 3piu) state. Measured electron density waveforms are in fair agreement with electron densities obtained using the Stark broadening technique. In addition, time dependent population densities of Ar I metastable and resonant levels were obtained by employing a kinetic model developed based on analysis of population density rates of excited Ar I p levels. Both the experimental results and numerical models for both types of gas discharges indicate that multispecies chemistry of gases plays an important role in understanding the dynamics and characterizing the properties of these discharges.

  13. High pressure capillary micro-fluidic valve device and a method of fabricating same

    DOEpatents

    Crocker, Robert W [Fremont, CA; Caton, Pamela F [Berkely, CA; Gerhardt, Geoff C [Milbury, MA

    2007-04-17

    A freeze-thaw valve and a method of micro-machining the freeze-thaw valve is provided and includes a valve housing, wherein the valve housing defines a housing cavity and includes a housing inlet, a housing vent, a capillary tubing inlet and a capillary tubing outlet. A valve body is provided, at least a portion of which is lithographically constructed, wherein the valve body includes a refrigerant inlet, a refrigerant outlet and an expansion chamber. The expansion chamber is disposed to communicate the refrigerant inlet with the refrigerant outlet and includes a restriction region having a flow restriction. Additionally, the valve body is disposed within the housing cavity to form an insulating channel between the valve housing and the valve body.

  14. A cost-effective edge-filter-based FBG strain interrogator using catastrophic fuse effect microcavity interferometers

    NASA Astrophysics Data System (ADS)

    Díaz, Camilo A. R.; Marques, Carlos A. F.; Domingues, M. Fátima F.; Ribeiro, Moisés. R. N.; Neto, Anselmo F.; Pontes, Maria J.; André, Paulo S.; Antunes, Paulo F. C.

    2018-02-01

    This paper presents a simple, compact, stable and inexpensive in-line solution based on catastrophic fuse effect micro-cavity interferometers for edge-filter strain interrogation of a fiber Bragg grating sensor. By using a commercial spliced machine and recycling damage fiber for the catastrophic fuse effect it is possible to construct a micro-cavity with high contrast of more than 20dB, and acceptable half free spectra range (FSR) around 13nm of interrogation range. The strain from 0 to 1440μStrain of the FBG sensor is measured with evidences of high repeatability and stability. Future work will investigate the use of the proposed method for applications requiring higher interrogation rates.

  15. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  16. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    PubMed

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  17. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  18. Forward Modeling of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  19. Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization

    NASA Astrophysics Data System (ADS)

    Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.

    1991-06-01

    The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.

  20. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  1. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  2. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    NASA Astrophysics Data System (ADS)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  3. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  4. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  5. Development of Individually Addressable Micro-Mirror-Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent

    2000-01-01

    We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.

  6. Micromirror Arrays for Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, E.J.

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ({lambda}/20), high fill factor (> 95%), large stroke (5-10 {micro}m), and pixel size {approx}-200 {micro}m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed.

  7. Direct electronic communication at bio-interfaces assisted by layered-metal-hydroxide slab arrays with controlled nano-micro structures.

    PubMed

    An, Zhe; He, Jing

    2011-10-28

    The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011

  8. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  9. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.

  10. Digital holographic characterization of liquid microlenses array fabricated in electrode-less configuration

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Vespini, V.; Grilli, S.; Paturzo, M.; Finizio, A.; De Nicola, S.; Ferraro, P.

    2009-06-01

    We show how thin liquid film on polar dielectric substrate can form an array of liquid micro-lenses. The effect is driven by the pyroelectric effect leading to a new concept in electro-wetting (EW). EW is a viable method for actuation of liquids in microfluidic systems and requires the design and fabrication of complex electrodes for suitable actuation of liquids. When compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. In our case the surface electric charge induced by the thermal stimulus is able to pattern selectively the surface wettability according to geometry of the ferroelectric domains micro-engineered into the lithium niobate crystal. We show that different geometries of liquid microlenses can be obtained showing also a tuneability of the focal lenses down to 1.6 mm. Thousand of liquid microlenses, each with 100 μm diameter, can be formed and actuated. Also different geometries such as hemi-cylindrical and toroidal liquid structures can be easily obtained. By means of a digital holography method, an accurate characterization of the micro-lenses curvature is performed and presented. The preliminary results concerning the imaging capability of the micro-lens array are also reported. Microlens array can find application in medical stereo-endoscopy, imaging, telecommunication and optical data storage too.

  11. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  12. Varactor with integrated micro-discharge source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.

    2016-10-18

    An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of themore » np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).« less

  13. Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror.

    PubMed

    Fabert, Marc; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Crunteanu, Aurelian; Bouyge, David; Blondy, Pierre

    2008-12-22

    We present an Ytterbium fibre laser operating in the Q-switch regime by using a Micro- Opto- Electro- Mechanical System (MOEMS) of novel design. The cantilever-type micro-mirror is designed to generate short laser pulses with duration between 20 ns and 100 ns at repetition rates ranging from a few kilohertz up to 800 kHz. The bent profile of this new type of MOEMS ensures a high modulation rate of the laser cavity losses while keeping a high actuating frequency.

  14. Discharge characteristics of a needle-to-plate electrode at a micro-scale gap

    NASA Astrophysics Data System (ADS)

    Ronggang, WANG; Qizheng, JI; Tongkai, ZHANG; Qing, XIA; Yu, ZHANG; Jiting, OUYANG

    2018-05-01

    To understand the discharge characteristics under a gap of micrometers, the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a micro-scale gap of 3–50 μm in air. The effect of the needle radius and the gas pressure on the discharge characteristics are tested. The results show that when the gap is larger than 10 μm, the relation between the breakdown voltage and the gap looks like the Paschen curve; while below 10 μm, the breakdown voltage is nearly constant in the range of the tested gap. However, at the same gap distance, the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen’s law. The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge. A simple model is used to explain the non-normality of breakdown in the micro-gaps. The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.

  15. Capacity fading of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi1-x-yCoxO2 particle)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shoichiro; Kinoshita, Masahiro; Hosokawa, Takashi; Morigaki, Kenichi; Nakura, Kensuke

    2014-08-01

    Cycle performance of a LiAl0.10Ni0.76Co0.14O2 (NCA) cathode/graphite cell closely depended on the range of depth of discharge in charge-discharge processes (ΔDOD). When ΔDOD was 10-70%, cycle performance at 25 °C was maintained even at 60 °C. Deterioration phenomena were analyzed by electrochemical method, X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), and micro-cracks in NCA particles were analyzed with cross-sectional views by scanning electron microscopy (SEM). Many micro-cracks were observed only after a 0-100% DOD region cycle test. Cycle tests in several restricted ΔDOD conditions showed that the deterioration was closely related to not the upper and lower limits of DOD or operation voltage but the width of ΔDOD.

  16. Anatomo-radiological correlation using 18-FDG-PET in abdominal sepsis model in rats. A preliminary study.

    PubMed

    Azevedo, Ítalo Medeiros; Carvalho, Marília Daniela Ferreira; Nascimento, Rafael Pereira; Macedo, Robson; Aquino, Mônica Raquel de Souza; Medeiros, Aldo Cunha

    2017-03-01

    To examine a correlation of micro-PET images with photographic images of the digestive organs in abdominal sepsis model. Male Wistar rats weighing 265±18g were used. Abdominal sepsis was induced by ligature and cecal puncture. Micro-PET Images from abdominal cavity septic foci were obtained using 18-Fluoro-deoxyglucose, looking for a correlation with photographic images of abdominal cavity organs. Pearson's correlation test was used. The mean standard uptake values (SUV) and lesion areas were 2.58±0.63SUVbwg/ml and 546.87±300.95mm2, respectively. There was a strong positive correlation between the two variables (r=0.863, p=0.137), which resulted in a coefficient of determination r2?0.75, meaning that 75% of SUV variation is explained by the lesion areas of digestive organs. Micro-PET allows high throughput assessment of lesion count and volume in pre-clinical rat model of CPL abdominal sepsis.

  17. Instrumentation for localized superconducting cavity diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-01-12

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  18. New design for a microwave discharge lamp.

    PubMed

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  19. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  20. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  1. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  2. Arrays of very small voltammetric electrodes based on reticulated vitreous carbon

    NASA Astrophysics Data System (ADS)

    Sleszynski, N.; Osteryoung, J.; Carter, M.

    1983-10-01

    Micro-electrode arrays constructed from reticulated vitreous carbon are described and characterized. Sterological analysis and cyclic voltammetric data indicate the arrays have equivalent radii as small as 32 microns, with densities as high as 1650 electrodes/sq cm.

  3. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan

    2018-02-01

    This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.

  4. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  5. Mapping lightning in the sky with a mini array

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Liu, Zhongjian; Koh, Kuang; Mezentsev, Andrew; Pedeboy, Stéphane; Soula, Serge; Enno, Sven-Erik; Sugier, Jacqueline; Rycroft, Michael J.

    2016-10-01

    Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ˜4.2·10-2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ˜69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ˜900-1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.

  6. Controlling Nanoantenna Polarizability through Backaction via a Single Cavity Mode

    NASA Astrophysics Data System (ADS)

    Ruesink, Freek; Doeleman, Hugo M.; Verhagen, Ewold; Koenderink, A. Femius

    2018-05-01

    The polarizability α determines the absorption, extinction, and scattering by small particles. Beyond being purely set by scatterer size and material, in fact polarizability can be affected by backaction: the influence of the photonic environment on the scatterer. As such, controlling the strength of backaction provides a tool to tailor the (radiative) properties of nanoparticles. Here, we control the backaction between broadband scatterers and a single mode of a high-quality cavity. We demonstrate that backaction from a microtoroid ring resonator significantly alters the polarizability of an array of nanorods: the polarizability is renormalized as fields scattered from—and returning to—the nanorods via the ring resonator depolarize the rods. Moreover, we show that it is possible to control the strength of the backaction by exploiting the diffractive properties of the array. This perturbation of a strong scatterer by a nearby cavity has important implications for hybrid plasmonic-photonic resonators and the understanding of coupled optical resonators in general.

  7. Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene.

    PubMed

    Lewis, Grace E M; Dale, Sara E C; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Barnes, Edward O; Compton, Richard G; Marken, Frank

    2014-09-21

    Two types of generator-collector electrode systems, (i) a gold-gold interdigitated microband array and (ii) a gold-gold dual-plate microtrench, are compared for nitrobenzene electroanalysis in aerated aqueous 0.1 M NaOH. The complexity of the nitrobenzene reduction in conjunction with the presence of ambient levels of oxygen in the analysis solution provide a challenging problem in which feedback-amplified generator-collector steady state currents provide the analytical signal. In contrast to the more openly accessible geometry of the interdigitated array electrode, where the voltammetric response for nitrobenzene is less well-defined and signals drift, the voltammetric response for the cavity-like microtrench electrode is stable and readily detectable at 1 μM level. Both types of electrode show oxygen-enhanced low concentration collector current responses due to additional feedback via reaction intermediates. The observations are rationalised in terms of a "cavity transport coefficient" which is beneficial in the dual-plate microtrench, where oxygen interference effects are suppressed and the analytical signal is amplified and stabilised.

  8. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  9. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  10. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  11. Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array

    NASA Astrophysics Data System (ADS)

    Hashiba, Kunio; Masuzawa, Hiroshi

    2003-05-01

    The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.

  12. Laminated chemical and physical micro-jet actuators based on conductive media

    NASA Astrophysics Data System (ADS)

    Gadiraju, Priya D.

    2008-04-01

    This dissertation presents the development of electrically-powered, lamination-based microactuators for the realization of large arrays of high impulse and short duration micro-jets with potential applications in the field of micro-electro-mechanical systems (MEMS). Microactuators offer unique control opportunities by converting the input electrical or chemical energy stored in a propellant into useful mechanical energy. This small and precise control obtained can potentially be applied towards aerodynamic control and transdermal drug delivery applications. This thesis work discusses the feasibility of using microactuators for two such applications: Control of the motion of a spinning projectile by utilizing the chemically-driven microjets ejected from the actuators, and enhancement of the permeability properties of skin by selectively ablating the stratum corneum layer of skin using the physical microjets ejected from the actuators. This enhanced permeability of skin can later be used for the delivery of high molecular weight drugs for transdermal drug delivery. The development of electrically powered microactuators starts by fabricating an array of radially firing microactuators using lamination-based microfabrication techniques that potentially enable batch fabrication at low cost. The microactuators of this thesis consist of three main parts: a micro chamber in which the propellant is stored; two electrode structures through which electrical energy is supplied to the propellant; and a micro nozzle through which the propellant or released gases from the propellant are expanded as a jet. Once the actuators are fabricated, they are integrated with MEMS-process-compatible propellants and optimized so as to produce instantaneous ignition of the propellant. This instantaneous ignition is achieved either by making the propellant itself conductive, thus, passing an electric current directly through the propellant; or by discharging an arc across the propellant by placing it between two closely spaced electrodes. The first concept is demonstrated for the application of projectile maneuvering where energetic solid propellant is used in generating a high velocity gaseous jet and the second concept is demonstrated for transdermal drug delivery application where a rapid physical jet of a non-energetic propellant is generated. In the case of chemical-based microactuators, the feasibility of using conductive solid propellant based actuators for maneuvering a 25 mm bluff body projectile spinning at 600 Hz is presented. Several conductive solid propellants are developed and characterized for their electrical conductivity and required ignition energy. Finally, the propellant integrated microactuators are characterized for performance in terms of impulse delivered, thrust generated and duration of the jet. These experimental results are then compared to predicted results from simulations. In the case of physical based microactuators, the feasibility of using released physical jets from the microactuator array for transdermal drug delivery application is presented. Several bio-compatible and FDA-approved liquids are used as propellants and are characterized in terms of thrusts delivered and duration of the released jets. These thermo-mechanical jets are then used to expose skin locally so as to create micro conduits in the stratum corneum layer of skin. Both thermal effects and thermo-mechanical effects of the jet on exposed skin are studied. For both cases, histology of exposed skin is presented and its permeability to drug analog molecules is studied.

  13. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.

    PubMed

    Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia

    2011-02-28

    We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 
1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

  14. Methods for fabricating a micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  15. Dynamic behaviour of a planar micro-beam loaded by a fluid-gap: Analytical and numerical approach in a high frequency range, benchmark solutions

    NASA Astrophysics Data System (ADS)

    Novak, A.; Honzik, P.; Bruneau, M.

    2017-08-01

    Miniaturized vibrating MEMS devices, active (receivers or emitters) or passive devices, and their use for either new applications (hearing, meta-materials, consumer devices,…) or metrological purposes under non-standard conditions, are involved today in several acoustic domains. More in-depth characterisation than the classical ones available until now are needed. In this context, the paper presents analytical and numerical approaches for describing the behaviour of three kinds of planar micro-beams of rectangular shape (suspended rigid or clamped elastic planar beam) loaded by a backing cavity or a fluid-gap, surrounded by very thin slits, and excited by an incident acoustic field. The analytical approach accounts for the coupling between the vibrating structure and the acoustic field in the backing cavity, the thermal and viscous diffusion processes in the boundary layers in the slits and the cavity, the modal behaviour for the vibrating structure, and the non-uniformity of the acoustic field in the backing cavity which is modelled in using an integral formulation with a suitable Green's function. Benchmark solutions are proposed in terms of beam motion (from which the sensitivity, input impedance, and pressure transfer function can be calculated). A numerical implementation (FEM) is handled against which the analytical results are tested.

  16. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    PubMed

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  17. FPGA Control System for the Automated Test of MicroShutters

    NASA Technical Reports Server (NTRS)

    Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey

    2008-01-01

    The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.

  18. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    PubMed Central

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-01-01

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring. PMID:27322278

  19. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    PubMed

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  20. An improved electronic twist-drill craniostomy procedure with post-operative urokinase instillation in treating chronic subdural hematoma.

    PubMed

    Lu, Jing; Shen, Dongwei; Hu, Fangjin; Zhou, Jianjun; Lan, Folin; Guo, Dongbing; Liu, Tianqing

    2015-09-01

    Twist-drill craniostomy (TDC) with closed-system drainage is a less invasive surgical technique for the treatment of chronic subdural hematoma (CSDH), but results in a higher disease recurrence rate. Therefore, we aimed to modify the TDC procedure in order to reduce the recurrence rate and further decrease complications. We retrospectively reviewed 230 cases of standard CSDH in 202 patients treated in our hospital between January 2006 and December 2013. We employed a new TDC device called micro-steel-needle-tube-bit for puncture and drainage. We chose an entry point 0.5cm anterior to the coronal suture at the superior temporal line and maintained post-operative drainage with urokinase instillation into the hematoma cavity. Clinical performance was assessed and compared by the Markwalder Grading Scale (MGS) score during the pre-operative period and at discharge. Recurrence of CSDH and complications were also recorded. Mean operation time was only 8.9 (6-13) min. Mean catheter indwelling duration and hospital stay were 1.18 (271/230, 1-3) and 2.27 (458/202, 2-9) days, respectively. The average frequency of urokinase instillation was 1.14 (262/230, 1-3) times. Intracerebral and sub-arachnoid hemorrhages were found in one patient, but were not in the puncture pathway. No perioperative deaths occurred. Recurrence was observed in only one patient at 28 days post-operation. Among 202 patients, 193 (95.54%) showed improved clinical symptoms and neurological function, and significantly lower MGS scores at discharge than pre-operation (0.13±0.45 vs. 1.37±0.55, P<0.01). In conclusion, electric TDC with micro-steel-needle-tube-bit at the pre-coronal suture entry point might be a safer, simpler, and faster mini-invasive surgical procedure for CSDH treatment. Post-operative drainage with instillation of urokinase could dramatically shorten drainage time and decrease recurrence rate. Copyright © 2015 Elsevier B.V. All rights reserved.

Top