Science.gov

Sample records for micro-electro-mechanical deformable mirrors

  1. Design, fabrication and characterization of high-stroke high-aspect ratio micro electro mechanical systems deformable mirrors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernandez Rocha, Bautista

    Adaptive optic (AO) systems for next generation of extremely large telescopes (30--50 meter diameter primary mirrors) require high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. The required specifications are achievable with Micro Electro Mechanical Systems (MEMS) devices fabricated with high-aspect ratio processing techniques. This dissertation will review simulation results compared with displacement measurements of actuators utilizing a white-light interferometer. It will also review different actuator designs, materials and post-processing procedures fabricated in three different high-aspect ratio processes, Microfabrica's Electrochemical Fabrication (EFAB(TM)), HT-Micro's Precision Fabrication Technology (HTPF(TM)), and Innovative Micro Technologies (IMT) fabrication process. These manufacturing processes allow high-precision multilayer fabrication and their sacrificial layer thicknesses can be specified by the designer, rather than by constraints of the fabrication process. Various types of high-stroke gold actuators for AO consisting of folded springs with rectangular and circular membranes as well as X-beam actuators supported diagonally by beams were designed, simulated, fabricated, and tested individually and as part of a continuous facesheet DM system. The design, modeling and simulation of these actuators are compared to experimental measurements of their pull-in voltages, which characterizes their stiffness and maximum stroke. Vertical parallel plate ganged actuators fabricated with the EFAB(TM) process have a calculated pull-in voltage of 95V for a 600mum size device. In contrast, the pull-in voltages for the comb-drive actuators ranged from 55V for the large actuator, to 203V for the smallest actuator. Simulations and interferometer scans of actuator designs fabricated with HT-Micro's Precision Fabrication (HTPF(TM)) two wafer bonded process with different spring supports have shown the ability of

  2. Micro electro mechanical system optical switching

    DOEpatents

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  3. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  4. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  5. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  6. Integrated micro-electro-mechanical sensor development for inertial applications

    SciTech Connect

    Allen, J.J.; Kinney, R.D.; Sarsfield, J.

    1998-04-01

    Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.

  7. Nanoscale Machines (Micro-Electro-Mechanical Systems): These Squeaky Wheels Will Get No Grease

    SciTech Connect

    Krim, Jacqueline

    2002-08-14

    Micro-Electro-Mechanical Systems (MEMS) are an emerging, cutting-edge technology that relies on the microfabrication of small scale mechanical components (actuators, sensors, mirrors, etc.) and the integration of those components with on-board electronic processing. Because MEMS devices must react to mechanical signals, many employ construction topologies that require physical motion and the concomitant lubrication which prevents heating/melting and wear of the device. This talk will address how knowledge of the fundamental origins of friction can be applied to MEMS technology, and vice versa.

  8. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Kropelnicki, Piotr; Singh, Navab; Kwong, Dim-Lee; Lee, Chengkuo

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μm in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.

  9. Electrostatic interactions in micro-electro-mechanical resonant oscillators

    NASA Astrophysics Data System (ADS)

    Baskaran, Rajashree; Turner, Kimberly L.

    2001-11-01

    Resonant mode operation is common in many MicroElectroMechanical (MEM) applications including accelerometers, gyroscopes and filters [Kovacs (1998), Nguyen (1999)]. When electrostatic transduction is used in these applications, concerns about cross talk and fringing field effects due to geometry are major issues. In this paper, an electrostatically coupled system is briefly introduced, modeled and the dynamic response due to small parametric (displacement dependant) electrostatic force is analyzed using perturbation methods. The presence of coupled parametric resonance has a very significant effect on the dynamic response. Experimental verification of the occurrence of this phenomenon is also presented here. The coupled oscillator system can also be used as an in situ test device to understand the electrostatic parameters in a system. The method of modeling and analysis presented here is simple, yet captures the dynamic behavior of a system due to a small force. This method can be generalized and will be a useful tool in any resonant MEM system design.

  10. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Lin, Yu-Sheng; Lee, Chengkuo; Kropelnicki, Piotr; Singh, Navab; Huang, Chia-Yi

    2014-04-14

    We experimentally demonstrate a micro-electro-mechanically tunable metamaterial with enhanced electro-optical performance by increasing the number of movable cantilevers in the symmetrical split ring resonator metamaterial unit cell. Simulations were carried out to understand the interaction of the incident terahertz radiation with out-of-plane deforming metamaterial resonator. In order to improve the overall device performance, the number of released cantilever in a unit cell was increased from one to two, and it was seen that the tunable range was doubled and the switching contrast improved by a factor of around five at 0.7 THz. This simple design approach can be adopted for a wide range of high performance electro-optical devices such as continuously tunable filters, modulators, and electro-optic switches to enable future photonic circuit applications.

  11. Controlling Micro ElectroMechanical Systems (MEMS) in Space

    NASA Astrophysics Data System (ADS)

    Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, D.; Swanson, T. D.

    2003-01-01

    Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of ~200 km and an apogee of ~38,000 km. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Vari-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.

  12. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  13. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  14. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  15. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  16. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  17. Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Reza, L; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; Sommargren, G

    2005-08-16

    ''Extreme'' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. We use a simple optical design to minimize wavefront error and maximize the experimentally achievable contrast. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Previously, we have demonstrated RMS wavefront errors of <1.5 nm and a contrast of >10{sup 7} over a substantial region using a shaped pupil without a deformable mirror. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines for active wavefront control. Using the PSDI as the wavefront sensor we have flattened the deformable mirror to <1 nm within the controllable spatial frequencies and measured a contrast in the far field of >10{sup 6}. Consistent flattening required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  18. Characterization and annealing of high-stroke monolithic gold MEMS deformable mirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2011-03-01

    Adaptive optics for the next generation of extremely large telescopes (30 - 50 meter diameter primary mirrors) requires high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. Lowering the cost while improving the performance of deformable mirrors is possible using Micro-Electro-Mechanical Systems (MEMS) technology. In this paper the fabrication and testing of an array of high-stroke gold MEMS X-beam actuators attached to a continuous gold facesheet will be described. Both the actuator and the facesheet were fabricated monolithically in gold plated onto a thermally matched ceramic-glass substrate (WMS-15) using a high-aspect ratio fabrication process. Continuous facesheets that are deformed due to stress gradients have been annealed at high temperature and for an extended amount of time. The facesheet was flattened to the point where features such as etch holes and support post topography were easily distinguishable. Initial root-mean-square (RMS) topography at center of facesheet attached to a 16x16 X-beam actuator array with 1mm pitch was measured to be ~13.8μm. After annealing, the surface topography was measured to be ~1.0μm.

  19. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  20. Micro-electro-mechanical systems projects at Lawrence Livermore National Laboratory

    SciTech Connect

    Folta, J.A.

    1995-08-04

    The Lawrence Livermore National Laboratory (LLNL) MicroTechnology Center has developed a wide variety of special capabilities used to design, build, and test MEMS (Micro-Electro-Mechanical Systems). Our customers are both the LLNL Programs and a variety of external customers. Typical applications include: custom microstructures for scientific experiments; physical sensors; photonics; miniature tools for catheter-based surgery; and microinstruments for chemical analysis for biomedicine, environments and treaty verification. The majority of our prototype MEMS devices are fabricated with bulk silicon micromachining, but we also utilize surface micromachining capabilities.

  1. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  2. Vibration Damping Materials and Their Applications in Nano/Micro-Electro-Mechanical Systems: A Review.

    PubMed

    Choudhary, Nitin; Kaur, Davinder

    2015-03-01

    The present review explores an overall view of the vibration damping materials ranging from traditionally used viscoelastic materials for macroscale damping to hybrid thin film heterostructures for micro-electro-mechanical systems (MEMS). Vibration damping materials like rubbers, polymers, metals, metal-matrix composites and smart materials are reviewed in terms of damping capacity, stiffness, mechanical strength and figure of merit. Nanoscale shape memory alloys, piezoelectric materials, carbon nanotubes, their composites and thin films are promising materials for future nanoscale damping devices. The main focus of this article is on our development of new vibration damping approach for MEMS structures comprising of ferroelastic/ferroelastic thin film heterostructures. For the first time, nanoindentation has been explored as an alternative tool to evaluate the damping capability of actual components (e.g., thin films for MEMS) where production of dynamic mechanical analyzer (DMA) test samples is not feasible. A comprehensive insight on the existing vibration damping materials and our new approach would definitely trigger some important applications in nano- and micro-electro-mechanical systems. PMID:26413606

  3. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    SciTech Connect

    Panos G. Datskos; Michael J. Sepaniak; Nickolay Lavrik; Pampa Dutta; Mustafa Culha

    2005-12-28

    The main objective of this research program is to develop robust and reliable micro-electro-mechanical sensing systems, based on microcantilevers (MCs), that can operate in liquid environments with high levels of sensitivity and selectivity. The chemical responses of MCs result from analyte-induced differential stress at the cantilever surfaces. We aim to employ various surface nanostructuring strategies that enhance these stresses and hence the degree of static bending of the cantilevers. Receptor phases as self assembled monolayers (SAMs) and thin films are being synthesized and tested to provide selectivity. Selectivity is chemically enhanced by using different phases on individual MCs in arrays and by adding a spectroscopic component, surface enhanced Raman spectrometry (SERS), in hybrid approaches to sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project ''Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste''. Several project areas are listed below and discussed and referenced to our literature on the topics.

  4. Fast Simulating High Order Models Application to Micro Electro-Mechanical Systems (MEMS)

    SciTech Connect

    Yacine, Z.; Benfdila, A.; Djennoune, S.

    2009-03-05

    The approximation of high order systems by low order models is one of the important problems in system theory. The use of a reduced order model makes it easier to implement analysis, simulations and control system designs. Numerous methods are available in the literature for order reduction of linear continuous systems in time domain as well as in frequency domain. But, this is not the case for non linear systems. The well known Trajectory Piece-Wise Linear approach (TPWL) elaborated to nonlinear model order reduction guarantees a simplification and an accurate representation of the behaviour of strongly non linear systems handling local and global approximation. The present attempt is towards evolving an improvement for the TPWL order reduction technique, which ensures a good quality of approximation combining the advantages of the Krylov subspaces method and the local linearization. We illustrate the technique on a MEMS circuit (Micro Electro-Mechanical System)

  5. Micro-Electro-Mechanical-Systems-Based Micro-Ro-Boat Utilizing Steam as Propulsion Power

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Choi, Young Chan; Kyoo Lee, June; Kong, Seong Ho

    2012-06-01

    We report the design and fabrication of a micro-electro-mechanical-systems (MEMS)-based microactuator, that floats on the surface of water and is driven by steam. We named the actuator “micro-Ro-boat”, a compound word created from the words “robot” and “boat”. The MEMS-based micro-Ro-boat utilizes steam as the propulsion power, giving it a high speed and long lifetime. A hydrophobic surface has been utilized for the wing of the actuator to enhance the buoyancy. Instead of using gas or fuel, the proposed micro-Ro-boat utilizes steam form electrically heated water. The velocity of the micro-Ro-boat is in the range of 0.5-2 cm/s and the maximum loading capability for a device size of 10 ×10 mm2 is 0.4 g.

  6. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  7. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures

    PubMed Central

    Ham, Suyun; Popovics, John S.

    2015-01-01

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. Objective: To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology. PMID:25897497

  8. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  9. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    NASA Astrophysics Data System (ADS)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  10. Multiple internal seal right micro-electro-mechanical system vacuum package

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2007-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  11. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    SciTech Connect

    Datskos, Panos G.; Sepaniak, Michael J.

    2004-06-01

    Our multifaceted research program is aimed at the fundamental and practical development of hybrid micro-electro-mechanical-systems (MEMS) that integrates several elements of chemical selectivity and sensor function. We are developing MEMS sensors that combine chemimechanical transduction, and surface enhanced Raman spectroscopy (SERS) and radiation detection. One of our goals is to develop highly effective methods of immobilizing a wide variety of molecular and ionic recognition phases onto micromechanical surfaces. We have introduced fundamentally new modes of adsorbate-induced surface stress through nano-structuring of microcantilever surfaces; the responsivity for has increased by over two-orders of magnitude over previously existing technological approaches. Noble metal nanostructures similar to those that enhance chemi-mechanical transduction exhibit substantial Raman enhancement factors.

  12. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing.

    PubMed

    Erfan, Mazen; Sabry, Yasser M; Sakr, Mohammad; Mortada, Bassem; Medhat, Mostafa; Khalil, Diaa

    2016-05-01

    In this work, we study the detection of acetylene (C2H2), carbon dioxide (CO2) and water vapor (H2O) gases in the near-infrared (NIR) range using an on-chip silicon micro-electro-mechanical system (MEMS) Fourier transform infrared (FT-IR) spectrometer in the wavelength range 1300-2500 nm (4000-7692 cm(-1)). The spectrometer core engine is a scanning Michelson interferometer micro-fabricated using a deep-etching technology producing self-aligned components. The light is free-space propagating in-plane with respect to the silicon chip substrate. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator corresponding to about 30 cm(-1) resolution. Multi-mode optical fibers are used to connect light between the wideband light source, the interferometer, the 10 cm gas cell, and the optical detector. A wide dynamic range of gas concentration down to 2000 parts per million (ppm) in only 10 cm length gas cell is demonstrated. Extending the wavelength range to the mid-infrared (MIR) range up to 4200 nm (2380 cm(-1)) is also experimentally demonstrated, for the first time, using a bulk micro-machined on-chip MEMS FT-IR spectrometer. The obtained results open the door for an on-chip optical gas sensor for many applications including environmental sensing and industrial process control in the NIR/MIR spectral ranges.

  13. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  14. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  15. Fabrication processes for MEMS deformable mirrors in the next generation telescope instruments

    NASA Astrophysics Data System (ADS)

    Diouf, Alioune

    This dissertation advances three critical technology areas at the frontier of research for micro electro-mechanical systems (MEMS) deformable minors (DMs) needed for next generation telescopes (NGTs). High actuator-count MEMS deformable minors are needed for future ground-based large astronomical telescopes. Scaling up the current MEMS DMs to unprecedented numbers of independent actuators---up to 10,000 on a single DM---will require new electrical connection architecture for the actuators in order to replace the wire-bonded scheme that has been used to date. A through-wafer via interconnection fabrication process for MEMS DMs is developed to offer a path to transform the frontier of high actuator count MEMS micromirrors. In a class of NGTs instrument known as the Multi-Object Adaptive Optics (MOAO), the correction made by the DM of the wavefront phase error over the entire telescope field view is not accessible to the sensing unit. To achieve compensation, precise, single step "open-loop" commands must be developed for the DM. Due to the nonlinear relationship between applied voltage and actuation displacement at each actuator, and the mechanical coupling among actuators through the mirror membrane, such open-loop control is a formidable task. A combination of mirror surface modeling and sparse actuator empirical calibration is used to demonstrate open-loop control of MEMS deformable minors to the accuracy of closed-loop control over the entire available DM stroke. Shapes at the limit of achievable minor spatial frequencies with up to 2.5microm amplitudes have been achieved within 20nm RMS error accuracy of closed-loop control. The calibration of a single actuator to be used for predicting shapes results in an additional 14nm RMS surface error compared to parallel calibration of all actuators in the deformable minor. The ubiquitous reflective coatings for MEMS deformable minors are gold and aluminum. Emerging adaptive optics application require broadband optical

  16. Experimental Identification of Smartphones Using Fingerprints of Built-In Micro-Electro Mechanical Systems (MEMS)

    PubMed Central

    Baldini, Gianmarco; Steri, Gary; Dimc, Franc; Giuliani, Raimondo; Kamnik, Roman

    2016-01-01

    The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable. PMID:27271630

  17. RF Micro-Electro-Mechanical Systems Capacitive Switches Using Ultra Thin Hafnium Oxide Dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Onodera, Kazumasa; Maeda, Ryutaro

    2006-01-01

    A π-type RF capacitive switch using about 45-nm-thick HfO2 dielectric layer was fabricated. High isolation performance was obtained in wide-band range when the switch was down-state. The isolation was better than -40 dB at the frequency range of 4-35 GHz. Particularly, the isolation was better than -50 dB in the frequency range of 8-12 GHz, i.e., X band. HfO2 showed excellent process compatibility with conventional microfabrication procedure. The 45-nm-thick HfO2 film was prepared using sputtering at room temperature so that it was feasible to be integrated into RF switch and other microwave circuits. The results of constant bias stressing showed that the ultra thin HfO2 had excellent reliability. The electric breakdown of HfO2 was observed, which had no apparent negative effects on the reliability of the dielectric. HfO2 dielectrics were attractive in the application of RF micro-electro-mechanical systems (MEMS) switch for new generation of low-loss high-linearity microwave circuits.

  18. Mechatronic Scanning System with Integrated Micro Electro Mechanical System Position Sensors

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Chakarov, Dimitar; Shulev, Assen; Tsveov, Mihail

    2016-06-01

    In this paper, a study of a mechatronic scanning system for application in the microbiology, microelectronics research, chemistry, etc. is presented. Integrated silicon micro electro mechanical system (MEMS) position sensor is used for monitoring the displacement of the scanning system. The utilized silicon MEMS sensors with sidewall embedded piezoresistors possess a number of key advantages such as high sensitivity, low noise and extremely low temperature dependence. Design of 2D scanning system with a travel range of 22 × 22 μm2 has been presented in present work. This system includes a Compliant Transmission Mechanism, (CTM) designed as a complex elastic mechanism, comprising four parallelograms. Computer aided desigh (CAD) model and finite element analysis (FEA) of the Compliant Transmission Mechanism mechanisms have been carried out. A prototype of the scanning system is fabricated, based on CAD model. An experimental set-up of an optical system and a correlation technique for digital image processing have been used for testing the scanning system prototype. Results of the experimental investigations of the prototyped scanning system are also presented.

  19. Softening and Hardening of a Micro-electro-mechanical systems (MEMS) Oscillator in a Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah; Edmonds, Terrence

    Micro-electro-mechanical systems or MEMS are used in a variety of today's technology and can be modeled using equations for nonlinear damped harmonic oscillators. Mathematical expressions have been formulated to determine resonance frequency shifts as a result of hardening and softening effects in MEMS devices. In this work we experimentally test the previous theoretical analysis of MEMS resonance frequency shifts in the nonlinear regime. Devices were put under low pressure at room temperature and swept through a range of frequencies with varying AC and DC excitation voltages to detect shifts in the resonant frequency. The MEMS device studied in this work exhibits a dominating spring softening effect due to the device's physical make-up. The softening effect becomes very dominant as the AC excitation is increased and the frequency shift of the resonance peak becomes quite significant at these larger excitations. Hardening effects are heavily dependent on mechanical factors that make up the MEMS devices. But they are not present in these MEMS devices. I will present our results along with the theoretical analysis of the Duffing oscillator model. This work was supported by NSF grant DMR-1461019 (REU) and DMR-1205891 (YL).

  20. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever. PMID:25971046

  1. Experimental Identification of Smartphones Using Fingerprints of Built-In Micro-Electro Mechanical Systems (MEMS).

    PubMed

    Baldini, Gianmarco; Steri, Gary; Dimc, Franc; Giuliani, Raimondo; Kamnik, Roman

    2016-01-01

    The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable. PMID:27271630

  2. Fracture properties of polycrystalline silicon - a material for micro-electro-mechanical systems

    SciTech Connect

    Johnson, G.C.; Jones, P.T.

    1995-12-31

    A great deal of research has been performed during the past few years to apply the microfabrication technology used for making integrated circuits to the manufacture of microscopic pressure sensors, accelerometers, and other micro-electro-mechanical systems (MEMS). One result of this work has been the choice of polycrystalline silicon (polysilicon) as a primary structural material employed in MEMS devices, particularly when the polysilicon has been doped with such elements as phosphorus for improved electrical and mechanical properties. As MEMS devices become more relied upon for real world applications, it will be necessary to establish design rules to ensure adequate product lifetimes. However, very little work has been done to deter- mine the failure mechanisms of polysilicon. The work presented here offers an experimental evaluation of the ultimate strength and fracture toughness of polysilicon with regard to the effects of exposure to hydrofluoric acid, a commonly used etchant in MEMS fabrication. A series of micromechanical structures have been designed to measure the strain at fracture and fracture toughness of a thin film. These test structures are patterned onto a thin film of polysilicon covering a silicon wafer using standard microfabrication techniques. Since the structures have dimensions on the order of microns, hundreds of multiple test structures are patterned on a single wafer providing a large amount of statistical data. Results using these structures indicate that prolonged exposure to HF can result in a decrease in the fracture strength of polysilicon.

  3. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  4. Experimental Identification of Smartphones Using Fingerprints of Built-In Micro-Electro Mechanical Systems (MEMS).

    PubMed

    Baldini, Gianmarco; Steri, Gary; Dimc, Franc; Giuliani, Raimondo; Kamnik, Roman

    2016-06-03

    The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable.

  5. High voltage, high resolution, digital-to-analog converter for driving deformable mirrors

    NASA Astrophysics Data System (ADS)

    Kittredge, Jeffrey

    Digital-to-analog converters with a range over 50 volts are required for driving micro-electro mechanical system deformable mirrors used in adaptive optics. An existing tested and deployed DM driver has 1024 channels and resolution of 15mV per Least Significant Bit. DMs used in the search for exoplanets require 3mV per LSB resolution. A technique is presented to employ a secondary high resolution and low voltage DAC which has for it's ground the output of the high voltage DAC. The entire system then has the range of high voltage DAC yet the resolution of the low voltage DAC. A method for providing signal and power to the floating system is given. Rudimentary micro controller firmware and also PC software is presented to achieve complete functionality. The technique uses all off-the-shelf components. Resolution of 1.6mV per LSB, 60V range and 36mW of power per channel is achieved.

  6. Analysis of the "Push-pull" Capacitance Bridge Circuit for Comb-Drive Micro-electro-mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Zheng, P.; Jiang, W. G.; Barquist, C. S.; Lee, Y.; Chan, H. B.

    2016-05-01

    We have developed an improved actuation/detection scheme for a comb-drive micro-electro-mechanical oscillator as a probe to study quantum fluids. This symmetric scheme has many advantages over the asymmetric scheme used previously. In this report, we provide a full description and analysis of the method so that researchers interested can readily implement the method in their experiments involving similar devices.

  7. MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Gómez, Udo-Martin

    MEMS sensors gained over the last two decades an impressive width of applications: (a) ESP: A car is skidding and stabilizes itself without driver intervention (b) Free-fall detection: A laptop falls to the floor and protects the hard drive by parking the read/write drive head automatically before impact. (c) Airbag: An airbag fires before the driver/occupant involved in an impending automotive crash impacts the steering wheel, thereby significantly reducing physical injury risk. MEMS sensors are sensing the environmental conditions and are giving input to electronic control systems. These crucial MEMS sensors are making system reactions to human needs more intelligent, precise, and at much faster reaction rates than humanly possible. Important prerequisites for the success of sensors are their size, functionality, power consumption, and costs. This technical progress in sensor development is realized by micro-machining. The development of these processes was the breakthrough to industrial mass-production for micro-electro-mechanical systems (MEMS). Besides leading-edge micromechanical processes, innovative and robust ASIC designs, thorough simulations of the electrical and mechanical behaviour, a deep understanding of the interactions (mainly over temperature and lifetime) of the package and the mechanical structures are needed. This was achieved over the last 20 years by intense and successful development activities combined with the experience of volume production of billions of sensors. This chapter gives an overview of current MEMS technology, its applications and the market share. The MEMS processes are described, and the challenges of MEMS, compared to standard IC fabrication, are discussed. The evolution of MEMS requirements is presented, and a short survey of MEMS applications is shown. Concepts of newest inertial sensors for ESP-systems are given with an emphasis on the design concepts of the sensing element and the evaluation circuit for achieving

  8. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  9. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  10. Parametric resonance voltage response of electrostatically actuated Micro-Electro-Mechanical Systems cantilever resonators

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Martinez, Israel; W. Knecht, Martin

    2016-02-01

    This paper investigates the parametric resonance voltage response of nonlinear parametrically actuated Micro-Electro-Mechanical Systems (MEMS) cantilever resonators. A soft AC voltage of frequency near natural frequency is applied between the resonator and a parallel ground plate. This produces an electrostatic force that leads the structure into parametric resonance. The model consists of an Euler-Bernoulli thin cantilever under the actuation of electrostatic force to include fringe effect, and damping force. Two methods of investigation are used, namely the Method of Multiple Scales (MMS) and Reduced Order Model (ROM) method. ROM convergence of the voltage response and the limitation of MMS to small to moderate amplitudes with respect to the gap (gap-amplitudes) are reported. MMS predicts accurately both Hopf supercritical and supercritical bifurcation voltages. However, MMS overestimates the large gap-amplitudes of the resonator, and. misses completely or overestimates the saddle-node bifurcation occurring at large gap-amplitudes. ROM produces valid results for small and/or large gap-amplitudes for a sufficient number of terms (vibration modes). As the voltage is swept up at constant frequency, the resonator maintains zero amplitude until reaches the subcritical Hopf bifurcation voltage where it loses stability and jumps up to large gap-amplitudes, next the gap-amplitude decreases until it reaches the supercritical Hopf bifurcation point, and after that the gap-amplitude remains zero, for the voltage range considered in this work. As the voltage is swept down at constant frequency, the zero gap-amplitude of the resonator starts increasing continuously after reaching the supercritical Hopf bifurcation voltage until it reaches the saddle-node bifurcation voltage when a sudden jump to zero gap-amplitude occurs. Effects of frequency, damping and fringe parameters on the voltage response show that (1) the supercritical Hopf bifurcation is shifted to lower voltage

  11. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  12. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  13. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  14. Chaos control of the micro-electro-mechanical resonator by using adaptive dynamic surface technology with extended state observer

    NASA Astrophysics Data System (ADS)

    Luo, Shaohua; Sun, Quanping; Cheng, Wei

    2016-04-01

    This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Putting tracking differentiator into chaos controller solves the `explosion of complexity' of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.

  15. Adaptive PVDF piezoelectric deformable mirror system.

    PubMed

    Sato, T; Ishida, H; Ikeda, O

    1980-05-01

    An adaptive mirror system whose surface deforms smoothly according to the desired curve has been made of polyvinylidene fluoride (PVDF) piezoelectric film and laminar glass plate. One surface of the glass plate was evaporated with silver, and this side was used as the mirror surface. A PVDF film, whose shape was determined by the deformation curve, was pasted tightly on the other surface. The mirror deforms smoothly along this curve with the application of a single voltage to the film. Holographic filter and feedback were lso considered to improve the static and dynamic characteristics. Typically, deformation along ax(2)+bx(3) was obtained. PMID:20221054

  16. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  17. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  18. Micro-electro-mechanical systems/near-infrared validation of different sampling modes and sample sets coupled with multiple models.

    PubMed

    Wu, Zhisheng; Shi, Xinyuan; Wan, Guang; Xu, Manfei; Zhan, Xueyan; Qiao, Yanjiang

    2015-01-01

    The aim of the present study was to demonstrate the reliability of micro-electro-mechanical systems/near-infrared technology by investigating analytical models of two modes of sampling (integrating sphere and fiber optic probe modes) and different sample sets. Baicalin in Yinhuang tablets was used as an example, and the experimental procedure included the optimization of spectral pretreatments, selection of wavelength regions using interval partial least squares, moving window partial least squares, and validation of the method using an accuracy profile. The results demonstrated that models that use the integrating sphere mode are better than those that use fiber optic probe modes. Spectra that use fiber optic probe modes tend to be more susceptible to interference information because the intensity of the incident light on a fiber optic probe mode is significantly weaker than that on an integrating sphere mode. According to the test set validation result of the method parameters, such as accuracy, precision, risk, and linearity, the selection of variables was found to make no significant difference to the performance of the full spectral model. The performance of the models whose sample sets ranged widely in concentration (i.e., 1-4 %) was found to be better than that of models whose samples had relatively narrow ranges (i.e., 1-2 %). The establishment and validation of this method can be used to clarify the analytical guideline in Chinese herbal medicine about two sampling modes and different sample sets in the micro-electro-mechanical systems/near-infrared technique.

  19. Smart materials fabrication and materials for micro-electro-mechanical systems; Symposium Proceedings, San Francisco, CA, Apr. 28-30, 1992

    NASA Technical Reports Server (NTRS)

    Jardine, A. Peter (Editor); Johnson, George C. (Editor); Crowson, Andrew (Editor); Allen, Mark (Editor)

    1992-01-01

    A conference on the rapidly developing fields of `smart materials' and micro-electro-mechanical systems produced papers in the areas of fabrication and characterization of ferroelectric thin films; polycrystalline silicon; optical, chemical, and biological sensors; thin film shape memory alloys; materials characterization; and alternative materials and applications.

  20. Unimorph piezoelectric deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Rausch, P.; Verpoort, S.; Wittrock, U.

    2016-07-01

    We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.

  1. Infrastructure, Technology and Applications of Micro-Electro-Mechanical Systems (MEMS)

    SciTech Connect

    Allen, J.J.; Jakubczak, J.F.; Krygowski, T.W.; Miller, S.L.; Montague, S.; Rodgers, M.S.; Sniegowski, J.J.

    1999-07-09

    A review is made of the infrastructure, technology and capabilities of Sandia National Laboratories for the development of micromechanical systems. By incorporating advanced fabrication processes, such as chemical mechanical polishing, and several mechanical polysilicon levels, the range of micromechanical systems that can be fabricated in these technologies is virtually limitless. Representative applications include a micro-engine driven mirror, and a micromachined lock. Using a novel integrated MEMS/CMOS technology, a six degree-of-freedom accelerometer/gyroscope system has been designed by researchers at U.C. Berkeley and fabricated on the same silicon chip as the CMOS control circuits to produce an integrated micro-navigational unit.

  2. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  3. Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects

    NASA Astrophysics Data System (ADS)

    Cercignani, Carlo; Lampis, Maria; Lorenzani, Silvia

    2006-08-01

    Rarefied gas flows in micro-electro-mechanical systems (MEMS) devices, calculated from the linearized Bhatnagar-Gross-Krook model equation [P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954)], are studied in a wide range of Knudsen numbers. Both plane Poiseuille and Couette flows are investigated numerically by extending a finite difference technique first introduced by Cercignani and Daneri [J. Appl. Phys. 34, 3509 (1963)]. Moreover, a variational approach, applied to the integrodifferential form of the linearized Boltzmann equation [C. Cercignani, J. Stat. Phys. 1, 297 (1969)], is used to solve in a unified manner the plane Poiseuille-Couette problem by means of the computation of only one functional. General boundary conditions of Maxwell's type have been considered, assuming both symmetric and nonsymmetric molecular interaction between gas-solid interfaces, in order to take into account possible differences in the accommodation coefficients on the walls of MEMS devices. Based on the analysis presented in this paper, an accurate database valid in the entire Knudsen regime can be created for the Poiseuille-Couette problem, to be used in micromechanical applications.

  4. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    PubMed Central

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  5. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  6. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  7. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Sung, Jiwon; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2015-08-01

    In respiratory-gated radiotherapy of patients with lung or liver cancer, the patient's respiratory pattern and repeatability are important factors affecting therapy accuracy; it has been reported that these factors can be controlled if patients undergo respiration training. As such, this study evaluates the feasibility of micro-electro-mechanical-system (MEMS) in radiotherapy by investigating the effect of radiation on a miniature portable respiratory monitoring system based on the MEMS system, which is currently under development. Using a patient respiration simulation phantom, the time-acceleration graph measured by a normal sensor according to the phantom's respiratory movement before irradiation and the change in this graph with accumulated dose were compared using the baseline slope and the change in amplitude and period of the sine wave. The results showed that with a 400Gy accumulated dose in the sensor, a baseline shift occurred and both the amplitude and period changed. As a result, if the MEMS is applied in respiratory-gated radiotherapy, the sensor should be replaced after use with roughly 6-10 patients so as to ensure continued therapy accuracy, based on the characteristics of the sensor itself. In the future, a more diverse range of sensors should be similarly evaluated.

  8. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  9. Deformable mirrors based on magnetic liquids

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Borra, Ermanno F.; Bergamasco, Rosangela; Gingras, Julie; Truong, Long; Ritcey, Anna

    2004-10-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems such as multi-conjugate adaptive optics is driving the need for deformable mirrors with a large number of low cost actuators. Other applications require strokes larger than those readily available from conventional mirrors. Magnetically deformable liquid mirrors are a potential solution to both these problems. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We have demonstrated a reflective coating that is stable for more than 30 days with a reflectivity of 50% in the near infrared. Additional experiments indicate that MELLF coatings can provide near infrared reflectivity values in excess of 80%. We also report on recent response time measurements of liquid deformable mirrors. We have demonstrated liquid mirror actuators with slew rates of 800 μm/s, corresponding to an actuator bandwidth of approximately 40 Hz and 80 Hz for strokes of 10 μm and 5 μm respectively.

  10. Deformable mirror design of Subaru LGSAO system

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Arimoto, Nobuo; Colley, Stephen; Eldred, Michael; Kane, Thomas; Hattori, Masayuki; Saito, Yoshihiko; Kamata, Yukiko; Kobayashi, Naoto; Minowa, Yosuke; Goto, Miwa; Takato, Naruhisa

    2004-10-01

    As an upgrade plan of Subaru adaptive optics facility, laser-guide-star adaptive-optics (LGSAO) project is on going. One of key components of the project is a deformable mirror (DM). The DM for LGSAO is a bimorph type of PZT with 188 control elements. The specification of design is presented together with the analysis of stroke and vibration properties by FEM.

  11. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  12. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  13. Thermomechanical characterization of a membrane deformable mirror.

    PubMed

    Morse, Kathleen A; McHugh, Stuart L; Fixler, Jeff

    2008-10-10

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 degrees C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 degrees C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 degrees C.

  14. Performance of the deformable mirror for Subaru LGSAO

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Bouvier, Aurelien; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Hattori, Masayuki; Saito, Yoshihiko; Itoh, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2006-06-01

    The performance of a deformable mirror with 188 electrodes is reported in this paper. The deformable mirror has been manufactured by CILAS for a new adaptive optics system at Subaru Telescope equipped with laser-guide-star. The type of deformable mirror is bimorph PZT with the blank diameter of 130 mm (beam size 90 mm).

  15. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  16. Dual-use bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, M. S.; Laycock, L. C.; Bagshaw, J. M.; Rowe, D.

    2005-11-01

    Adaptive Optics (AO) is a critical underpinning technology for future optical countermeasures, laser delivery, target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. AO is also well established in ground based astronomy, and is finding applications in free space optical communications and ophthalmology. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS ATC is developing multi-element Deformable Bimorph Mirrors (DBMs) for such applications. A traditional bimorph deformable mirror uses a set of edge electrodes outside the active area in order to meet the required boundary conditions for the active aperture. This inflicts a significant penalty in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. We have devised a number of novel mounting arrangements that reduce dead space and thus provide a much improved trade-off between bandwidth and stroke. These schemes include a novel method for providing vertical displacement at the periphery of the aperture, a method for providing a continuous compliant support underneath the bimorph mirror, and a method for providing a three point support underneath the bimorph. In all three cases, there is no requirement for edge electrodes to provide the boundary conditions, resulting in devices of much higher bandwidth. The target is to broaden the use of these types of mirror beyond the current limits of either low order/low bandwidth, to address the high order, high bandwidth systems required by long range, horizontal path applications. This paper will discuss the different mirror designs, and present experimental results for the most recently assembled mirrors.

  17. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon

  18. High resolution lithography-compatible micro-electro-discharge machining of bulk metal foils for micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Richardson, Mark Thomas

    The application of batch mode micro-electro-discharge machining (microEDM) to the fabrication of micro-electro-mechanical systems has opened the door to lithographically compatible precision machining of all bulk metals. High volume applications in biomedical, communications, and consumer electronics devices are enabled by this technology. This dissertation explores the capabilities, limitations, and further improvement of high density batch mode microEDM. There are four parts to this effort described below. A machining resolution study of high density features in stainless steel identifies the design space. Lithographically fabricated copper tools with single cross, parallel line, and circle/square array features of 5--100microm width and 5--75microm spacing were used. The observed discharge gap varies with shape, spacing, and feature location from 3.8--8microm. As tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two new techniques for mitigating this debris build-up are separately investigated. The first is a silicon passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, for high density batch machining, mean tool wear rate decreases from a typical rate of about 34% to 1.7% and machining non-uniformity reduces from 4.9microm to 1.1microm across the workpiece. The second involves a two-step machining process that enhances the hydraulic removal of machining debris and therefore throughput. Wireless RF signals are inherently emitted by the micro-discharge process. This thesis describes the first reported wireless detection of debris accumulation during microEDM, enabling direct monitoring of machining quality in real time with 5dBm signal drop. The first wireless detection of the interface between two stacked metals during microEDM is also reported giving a 10dBm signal change. The technique enables direct monitoring of

  19. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  20. Next-generation deformable mirror electronics

    NASA Astrophysics Data System (ADS)

    Barberio, Michael J.; Wagner, Karl

    2004-10-01

    Full-custom electronics have been designed to drive Xinetics deformable mirrors, for use with the PYRAMIR (Calar Alto) and LINC/NIRVANA (Large Binocular Telescope) AO instruments, under contract to the Max-Planck-Institut fur Astronomie (MPIA). Significant enhancements to the original 1998 design for ALFA (Calar Alto) have been incorporated, including an embedded 2.1 Gb/s fiber link, temperature-controlled bias voltage, and multiple tip-tilt control outputs. Each 7U chassis with integral power supplies can drive mirrors of up to 349 actuators, and may be cascaded to support larger mirrors. A customized 600 MHz 'C6415 DSP module was specified to minimize latency, with frame rates above 7.5 KHz demonstrated for the 349-actuator DM. Power op-amps with 0.38 W/channel quiescent dissipation were chosen to reduce heat load, while supporting full-power (60 Vpp) bandwidth to above 300 Hz. These subsystems were successfully integrated in Heidelberg during November, 2003. The engineering firm responsible for the design, Cambridge Innovations, has since been awarded two additional contracts for DM electronics, including a new full-custom design for AURA (Gemini Observatory) to drive multiple high-voltage CILAS piezo bimorph DMs.

  1. Characterization of vibrating shape of a bimorph deformable mirror

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Minowa, Yosuke; Hattori, Masayuki; Watanabe, Makoto; Hayano, Yutaka; Itoh, Megru; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Guyon, Olivier; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2008-07-01

    Actual measurement of vibrating shape of a bimorph deformable mirror is presented to discuss the characteristics of resonance. Understanding the vibration properties of a bimorph deformable mirror is a key issue to overcome resonance problem, a major drawback of this type of deformable mirror, and to make full use of its advantages. Two-dimensional vibrating shape of the deformable mirror surface, not only at a point, is essential to figure out the resonance behavior. The results are informative for improvement of mechanical design or control software.

  2. Large aperture nanocomposite deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  3. Unimorph-type deformable mirror for cryogenic telescopes

    NASA Astrophysics Data System (ADS)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Kinast, Jan

    2014-07-01

    Deformable mirrors can be used in cryogenic instruments to compensate for temperature-induced deformations. A unimorph-type deformable mirror consists of a mirror substrate and a piezoelectric layer bonded on substrates rear surface. A challenge in the design of the deformable mirror is the lack of knowledge about material properties. Therefore, we measured the coefficient of thermal expansion (CTE) of the substrate material TiAl6V4 between 295 K and 86 K. The manufactured mirror is characterized by an adaptive optical measurement setup in front of a test cryostat. The measured mirror deformations are feedback into a finite element model to calculate the CTE of the piezoelectric layer. We compare our obtained results to other published CTE-values for the piezoelectric material PIC151.

  4. Method of determining the thermal deformations of astronomical mirrors

    NASA Technical Reports Server (NTRS)

    Khablo-Grossvald, Y. G.

    1986-01-01

    Procedures are given for calculating thermal fields and associated thermal deformations in astronomical mirrors. A technique is described for thermal strain simulation when complex thermal fields develop in astronomical mirrors. Thermal strains in pyroceramic, quartz and pyrex mirrors can be effectively determined at temperatures ranging from -70 to 150 C by this technique.

  5. A large stroke magnetic fluid deformable mirror for focus control

    NASA Astrophysics Data System (ADS)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  6. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  7. Micro-electro-mechanical system (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control

    NASA Astrophysics Data System (ADS)

    Zhang, Sean Z.; Xu, Guoda; Qiu, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-08-01

    A MicroElectroMechanical Systems (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control have been developed. Fabrication involves overwriting two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS fiber optic sensor and sensor network has been derived, and simulation results concerning load, angle, strain, and temperature have been obtained. The fabricated MEMS diaphragm and the overlaid FBGs have been packaged together on the basis of simulation results and mounted on a specially designed cantilever system. The combined multifunctional MEMS fiber optic sensor and sensor network is cost-effective, fast, rugged enough to operate in harsh environmental conditions, compact, and highly sensitive.

  8. Multi-physics simulation and fabrication of a compact 128 × 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager.

    PubMed

    Meng, Qinghua; Chen, Sihai; Lai, Jianjun; Huang, Ying; Sun, Zhenjun

    2015-08-01

    This paper demonstrates the design and fabrication of a 128×128 micro-electro-mechanical systems Fabry-Perot (F-P) cavity filter array, which can be applied for the hyperspectral imager. To obtain better mechanical performance of the filters, F-P cavity supporting structures are analyzed by multi-physics finite element modeling. The simulation results indicate that Z-arm is the key component of the structure. The F-P cavity array with Z-arm structures was also fabricated. The experimental results show excellent parallelism of the bridge deck, which agree with the simulation results. A conclusion is drawn that Z-arm supporting structures are important to hyperspectral imaging system, which can achieve a large tuning range and high fill factor compared to straight arm structures. The filter arrays have the potential to replace the traditional dispersive element.

  9. Testing of thermally piezoelectric deformable mirror with buried functionality

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Appelfelder, M.; Goy, M.; Gebhardt, S.; Gutzeit, N.

    2014-03-01

    Laser-induced mirror deformation and thermal lensing in optical high power systems shall be compensated by a thermally-piezoelectric deformable mirror (DM). In our device, the laser-induced thermal lensing is compensated by heating of the DM as previously described with compound loading. We experimentally show the capability of this mirror for wavefront shaping of up to 6.2 kW laser power and power densities of 2 kW/cm2. The laser-induced defocussing of the membrane is compensated by mirror heating. We introduce a new mirror setup with buried heater and temperature sensor elements. Therewith, the compensation of laser-induced mirror deformation is possible within the same time scale. The piezoelectric stroke of the single actuators depends on their position on the membrane, and is not affected by the reflected laser power.

  10. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  11. Modeling of Intellite 3 Layer Deformable Mirror

    SciTech Connect

    Papavasiliou, A

    2002-04-15

    This is a report on modeling of the Intellite three layer membrane mirror design. The goal of this project was to provide Intellite with a model that will allow them to design a mirror with confidence.

  12. Structure modulated electrostatic deformable mirror for focus and geometry control.

    PubMed

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  13. Modeling electrostrictive deformable mirrors in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Hom, Craig L.; Dean, Peter D.; Winzer, Stephen R.

    2000-06-01

    Adaptive optics correct light wavefront distortion caused by atmospheric turbulence or internal heating of optical components. This distortion often limits performance in ground-based astronomy, space-based earth observation and high energy laser applications. The heart of the adaptive optics system is the deformable mirror. In this study, an electromechanical model of a deformable mirror was developed as a design tool. The model consisted of a continuous, mirrored face sheet driven with multilayered, electrostrictive actuators. A fully coupled constitutive law simulated the nonlinear, electromechanical behavior of the actuators, while finite element computations determined the mirror's mechanical stiffness observed by the array. Static analysis of the mirror/actuator system related different electrical inputs to the array with the deformation of the mirrored surface. The model also examined the nonlinear influence of internal stresses on the active array's electromechanical performance and quantified crosstalk between neighboring elements. The numerical predictions of the static version of the model agreed well with experimental measurements made on an actual mirror system. The model was also used to simulate the systems level performance of a deformable mirror correcting a thermally bloomed laser beam. The nonlinear analysis determined the commanded actuator voltages required for the phase compensation and the resulting wavefront error.

  14. Ferroelectric actuator testing for deformable-mirror applications

    NASA Astrophysics Data System (ADS)

    Costello, Thomas P.; Schell, John D.

    1992-01-01

    Low voltage ferroelectric microdisplacement actuators are excellent candidates for use in zonal correction deformable mirrors (DMs) used in adaptive optical systems. Selection/specification is a critical process, however, since the device's electro-mechanical performance largely determines the mirror performance, and its electrical load characteristics strongly influence the cost of drive electronics. Several commercially available low voltage actuator devices were tested to establish a database for new DM designs. Both quasi-static and dynamic response characteristics were investigated. Test results are presented and conclusions are drawn concerning the merits of each device for typical deformable mirror applications.

  15. An image stabilization optical system using deformable freeform mirrors.

    PubMed

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-01

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors. PMID:25599423

  16. An image stabilization optical system using deformable freeform mirrors.

    PubMed

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-15

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors.

  17. An Image Stabilization Optical System Using Deformable Freeform Mirrors

    PubMed Central

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-01

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors. PMID:25599423

  18. Thermal correction of deformations in a telescope mirror

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.

    1973-01-01

    Orbiting astronomical observatories have the potential for making observations far superior to those from earth-based mirrors. In order for this performance to be realized, the contour of the primary mirror must be very accurately controlled. A preliminary investigation of the use of thermally induced elastic strains for correcting axisymmetric deformations in space telescope mirrors has been presented. The relation between axial deformation and thermal inputs was determined by a finite difference solution of the equations for thin elastic shells. The use of this technique was demonstrated analytically on a beryllium paraboloid. This mirror had 10 equally spaced thermal inputs and results are presented which show the nature of the temperature distribution required to correct deformations due to an acceleration-type loading.

  19. In-situ Iberian pig carcass classification using a micro-electro-mechanical system (MEMS)-based near infrared (NIR) spectrometer.

    PubMed

    Zamora-Rojas, E; Pérez-Marín, D; De Pedro-Sanz, E; Guerrero-Ginel, J E; Garrido-Varo, A

    2012-03-01

    Iberian pig (IP) products are gourmet foods highly appreciated at international markets, reaching high prices, because of its exquisite flavors. At present, there aren't practical and affordable analytical methods which can authenticate every single piece put on the market. This paper reports on the performance of a handheld micro-electro-mechanical system (MEMS)-based spectrometer (1600-2400nm) for authentication-classification of individual IP carcasses into different commercial categories. Performance (accuracy and instrumental design) of the instrument was compared with that of high-resolution NIRS monochromators (400-2500nm). A total of 300 carcasses of IPs raised under different feeding regimes ("Acorn", "Recebo" and "Feed") were analyzed in three modes (intact fat in the carcass, skin-free subcutaneous fat samples and melted fat samples). The best classification results for the MEMS instrument were: 93.9% "Acorn" carcasses correctly classified, 96.4% "Feed" and 60.6% "Recebo", respectively. Evaluation of model performance confirmed the suitability of the handheld device for individual, fast, non-destructive, low-cost analysis of IP carcasses on the slaughterhouse line.

  20. Design of a microelectronic circuit to amplify and modulate the signal of a micro-electro-mechanical systems arterial pressure sensor

    NASA Astrophysics Data System (ADS)

    Vela-Peóa, E.; Quiñones-Urióstegui, I.; Martínez-Piñon, F.; Álvarez-Chávez, J. A.

    2010-04-01

    In the article, the design and stimulation is presented of an integrated circuit for the amplification and modulation of an electrical signal proceeding from a Micro-Electro-Mechanical Systems (MEMS) arterial pressure sensor. The signal consists of voltage ranking from 0-10 mV, 1 mA and frequency of 50- 500 Hz. This simple but effective design consists of an operational amplifier (op-amp) configured as a differential amplifier, which amplifies the signal (up to 1V and 10 mA), originating from a Wheatstone bridge in the MEMS sensor, and then this signal is modulated by Pulse width modulation (PWM). The technology employed in this circuit is MOSIS AMIS 1.5 um. The circuit was designed with a two-state op-amp, which is utilized in diverse stages of the system. The use of a differential amplifier, the op-amp, and PWM simplifies the design and renders this compact due to the employment of few components (40 transistors). The use of the PWM facilitates the signaling process at later stages. Results comprise the design of the circuit and the simulation. This consists of a schematic diagram of the layers of all the rules specified in the MOSIS AMIS 1.5 um. Electric and LTSpice software was employed for the design and simulation of the circuit. We present a complete description of the design philosophy, design criteria, figures, and final results.

  1. Functional Micro-Dispensers based on Micro-Electro-Mechanical-Systems (MEMS) integrated with fabrics as functional materials to protect humans from mosquito feeding.

    PubMed

    Bernier, Ulrich R; Gurman, Pablo; Clark, Gary G; Elman, Noel

    2015-12-28

    Functional Micro-Dispensers (FMDs) based on Micro-Electro-Mechanical-Systems (MEMS) were designed to deliver spatial repellents that reduce the ability of mosquitoes to feed on humans. FMDs were integrated with fabrics as functional materials for protection against mosquito bites. The use of MEMS devices provides an unprecedented control over the release kinetics by means of integration with electronics for selective and timely activation of each device to perform controlled release of pesticides in air. In addition, because MEMS manufacturing techniques evolved from the microelectronic industry, FMDs can be mass produced at very low cost. Trials using FMDs that contained transfluthrin improved protection against mosquito feeding in human subjects above that of permethrin-treated uniform fabric worn on the arm of the volunteer. The overall reduction in feeding was approximately 90% compared to the untreated fabric control, and about 50% reduction compared to the permethrin-treated fabric control. The devices were efficacious over course of 32 days. FMDs have the potential for a simple and cost-effective implementation for mass adoption as wearable devices integrated in fabrics as active functional materials.

  2. Unimorph deformable mirror for space telescopes: design and manufacturing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror. PMID:26367605

  3. Unimorph deformable mirror for space telescopes: design and manufacturing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror.

  4. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  5. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    NASA Astrophysics Data System (ADS)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. The segmented device will have a range of motion of 1um of piston and a 600 arc-seconds of tip/tilt simultaneously and a surface finish of 1nm RMS. The individual mirror elements in this unique device, are designed such that they will maintain their flatness throughout the range of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  6. Unimorph deformable mirror for space telescopes: environmental testing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2016-01-25

    We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of μm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror's performance, and discuss the compliance with the demanded requirements. PMID:26832532

  7. Unimorph deformable mirror for space telescopes: environmental testing.

    PubMed

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2016-01-25

    We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of μm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror's performance, and discuss the compliance with the demanded requirements.

  8. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGES

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  9. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    SciTech Connect

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si, Au-, and Pt-coated KB mirrors under prolonged synchrotron x-ray radiation and low-temperature vacuum annealing will be discussed in terms of film-stress relaxation and Si plastic deformation.

  10. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  11. Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Bergamasco, R.; Bérubé, Vincent; Borra, Ermanno F.; Gingras, Julie; Ritcey, Anna-Marie R.; Rioux, Myriam; Robitaille, Nathalie; Thibault, Simon; Vieira da Silva, L., Jr.; Yockell-Lelièvre, Helene

    2003-02-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  12. Numerical simulation of deformation and figure quality of precise mirror

    NASA Astrophysics Data System (ADS)

    Vit, Tomáš; Melich, Radek; Sandri, Paolo

    2015-01-01

    The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.

  13. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  14. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  15. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  16. HIGH-CONTRAST IMAGING VIA MODAL CONVERGENCE OF DEFORMABLE MIRROR

    SciTech Connect

    Wang Feiling

    2012-06-01

    For extremely high contrast imaging, such as direct observation of faint stellar companions, an adaptive optics system is required to produce low-halo and low-speckle regions in the focal plane. A method for deformable mirror control is proposed to achieve this goal. The method relies on a modal convergence of the deformable mirror driven by a focal-plane metric. The modal sets are derived from the Walsh functions. The Walsh-function modes serve two purposes: the expansion of the actuator displacements and the expansion of the phase functions. Taking advantage of the unique properties of the modal functions, a universal control algorithm is devised for the realization of high-contrast focal planes with and without the help of conventional coronagraphy. Numerical modeling is conducted to simulate complete imaging systems under various scenarios. It is shown that the proposed method reliably produces high-contrast focal planes using either a segmented or a membrane mirror. In the presence of random aberration the method is shown to be able to maintain high-contrast focal planes. Requiring neither retrieval of electric fields nor detailed knowledge of the deformable mirrors, this technique may allow high-contrast imaging in real time.

  17. Design and fabrication of a continuous membrane deformable mirror

    NASA Astrophysics Data System (ADS)

    Hammer, Jay A.; Banish, Michele R.; Whitley, Michael R.; Hao, Zhili; Warren, Keith O.; Sanchez, Sharon; Harchanko, John S.

    2003-01-01

    Adaptive optics systems are used to maintain an optical system at its optimum performance through real time corrections of a wavefront. Deformable mirrors have traditionally been relatively large, expensive devices, suitable for systems such as large telescopes. The objective of the present work is to expand the range of systems that can employ adaptive optics by developing a small, low-cost MEMS deformable mirror. This deformable mirror uses a continuous membrane and has 61 actuators arranged in to approximate a circular pattern. Each actuator has an associated spring suspension, allowing it to push as well as pull on the membrane, producing locally convex or concave curvature. The folded springs are positioned so as to maximize the lateral stability. Maximum actuator displacement is six microns at less than 200 volts. The actuator resonant frequency, is greater than 10 kHz, allowing high-frequency updates of the mirror shape. To operate at high speed, the device must be sealed in a low-pressure environment. Each microactuator uses a vertical comb drive to achieve large travel at a reasonable voltage. The continuous membranes are made of silicon or silicon nitride. Both the actuator and membrane are fabricated with bulk micromachine process technologies. The design targets laser based communication specifications and medical imaging applications.

  18. Lightweight in-plane actuated deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Shepherd, Michael J.

    This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-meter or larger diameter light gathering aperture for space telescopes. Membrane optics is the study of these structures which may be stowed compactly and unfurled in orbit. This effort comprised four research areas: modelling, analytical solutions, surface control strategy, and scaling. Initially, experimental results were compared to theory using a 0.127 meter diameter deformable mirror testbed. The mirror was modelled using finite elements with MSC.Nastran software, where a boundary tension field was determined using laser vibrometer data. A non-linear solution technique was used to incorporate the membrane stiffening from the applied tension. Statically obtained actuator influence functions were compared to experimentally achieved data, and then a least squares approach was used as the basis for creating a quasi-static control algorithm. Experimental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully demonstrated. The analytical solutions to plate-membrane and beam-string ordinary differential equation representing the deformable mirror equations were developed. A simplified approach to modelling the axisymmetric cases was also presented. Significantly, it was shown both analytically and through numerical analysis that static actuation for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was simply a localized piston displacement in the region of the actuator. Next, a novel static control strategy, the Modal Transformation Method, was developed for membrane mirrors. The method was implemented in finite element simulation, and shows the capability of the in-plane actuated mirror to form Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated structural modes. Lastly, the scaling problem for membrane optics was addressed. Linear modelling was

  19. "Pocket" Deformable Mirror for an Integrated On-Mirror Adaptive System

    NASA Astrophysics Data System (ADS)

    Beresnev, L.; Voronstov, M.; Wangsness, P.

    Existing HEL beam control architectures are extremely complicated because they require installation and alignment of a large number of optical elements, resulting in substantial increase of the entire HEL system size, weight and cost. There is a strong interest in designing new robust beam control capabilities integrated directly to a beam director system. The discussed technical effort is focused on development and demonstration of a new adaptive beam director (ABD) consisting of a beam forming telescope with wavefront compensation integrated solely on its ultra-lightweight primary mirror. This on-mirror AO system will be controlled using a stochastic parallel gradient descent (SPGD) controller specifically designed for target-in-the-loop (TIL) operation. The key component of the on-mirror AO system is its primary mirror. This mirror contains an array of pockets machined on its backside, called a pocket-mirror. A special dielectric layer deposited on the front surface of the pocket-mirror is highly reflective for the HEL wavelength ???HEL, and semi-transparent for the laser illuminator wavelength ?ILL. Thus the wave ?ILL scattered by the target surface enters inside the mirror pockets, while the outgoing HEL beam with wavelength ?HEL is totally reflected. The pockets of the ABD pocket-mirror include opto-electronic components that can provide local (inside pocket-window) wavefront correction and sensing. Wavefront correction at each pocket aperture is performed using electrically sectioned piezo-ceramic annular rings made from thin (~0.3 mm) bimorph discs glued to the pocket bottoms. Control voltages applied to these electrodes result in mechanical deformation of the pocket-window front surface thus providing compensation of low-order aberrations at each pocket-window. Packaging the pockets with a high fill factor allows high resolution control of the beam director primary mirror shape. Preliminary analysis has shown that surface stroke near 3 microns with

  20. Effects of alloying and local order in AuNi contacts for Ohmic radio frequency micro electro mechanical systems switches via multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Gaddy, Benjamin E.; Kingon, Angus I.; Irving, Douglas L.

    2013-05-01

    Ohmic RF-MEMS switches hold much promise for low power wireless communication, but long-term degradation currently plagues their reliable use. Failure in these devices occurs at the contact and is complicated by the fact that the same asperities that bear the mechanical load are also important to the flow of electrical current needed for signal processing. Materials selection holds the key to overcoming the barriers that prevent widespread use. Current efforts in materials selection have been based on the material's (or alloy's) ability to resist oxidation as well as its room-temperature properties, such as hardness and electrical conductivity. No ideal solution has yet been found via this route. This may be due, in part, to the fact that the in-use changes to the local environment of the asperity are not included in the selection criteria. For example, Joule heating would be expected to raise the local temperature of the asperity and impose a non-equilibrium thermal gradient in the same region expected to respond to mechanical actuation. We propose that these conditions should be considered in the selection process, as they would be expected to alter mechanical, electrical, and chemical mechanisms in the vicinity of the surface. To this end, we simulate the actuation of an Ohmic radio frequency micro electro mechanical systems switch by using a multi-scale method to model a current-carrying asperity in contact with a polycrystalline substrate. Our method couples continuum solutions of electrical and thermal transport equations to an underlying molecular dynamics simulation. We present simulations of gold-nickel asperities and substrates in order to evaluate the influence of alloying and local order on the early stages of contact actuation. The room temperature response of these materials is compared to the response of the material when a voltage is applied. Au-Ni interactions are accounted for through modification of the existing Zhou embedded atom method

  1. Deformable mirror with combined piezoelectric and electrostatic actuators

    NASA Astrophysics Data System (ADS)

    Merkle, F.; Freischlad, K.; Reischmann, H.-L.

    1982-10-01

    An adaptive optics system with modal phase correction for reconstituting astronomical images passing through the atmosphere is described. An active mirror in a gimbal mount houses an electrostatic deformable membrane for the modal corrections. Piezoelectric actuators are attached behind the mirror for tilt correction. Wavefronts triggering the electrode detectors in the mirror also result in generation of a map of the wave-front errors. Compensating phase distributions for successive waves are calculated automatically by an expansion of the phase distortions into modes of a set of basis functions. Turbulence compensation is accomplished with Zernike polynomials if only a small number of modes is present, while Karhunen-Loeve functions serve for any number of modes. Phase aberrations are detected by diode arrays connected to amplifier tubes. Actual measurement of the wavefront phase is performed by a shearing interferometer and by use of an iterative algorithm to assay the intensity distribution of the image.

  2. Carbon fibre composite deformable mirrors: developments at UCL

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter; Brooks, David; King, Andrew M.; Dorn, Chris; Dwan, Richard M.; Yates, Chris; Dando, Glyn; Richardson, Ian; Evans, Glynn

    2006-06-01

    Adaptive optics performance is essential for achieving the demanding science goals set for the ground-based optical telescopes of the future - the so-called extremely large telescopes (ELTs). Research into novel technologies for lightweight and robust active and adaptive mirrors is crucial for ensuring this capability. Surface quality, form, and a high level of stability during operation are very important criteria for such mirrors. In 2004 we reported initial results from a project into the design and manufacture of a prototype carbon fibre reinforced polymer (CFRP) deformable mirror. This system has now been extensively characterised and tested, and results of dynamical testing and influence function measurements are discussed here. Manual grinding and polishing resulted in a residual form error of the order of 10 μm P-V and a surface roughness of approximately 5 nm rms. A good agreement was observed between the modeling data and experimental results.

  3. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  4. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  5. Smart structures for deformable mirrors actuated by piezocomposites

    NASA Astrophysics Data System (ADS)

    Riva, M.; Di Sanzo, D.; Airoldi, A.; Sala, G.; Zerbi, F. M.

    2010-07-01

    Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation. The piezo technology and in particular piezoceramics is currently among the most investigated structural materials. Fragility makes Ceramic materials extremely vulnerable to accidental breakage during bonding and embedding processes and limits the ability to comply to curved surfaces (typical of mirrors). Moreover lead-based piezoceramics typically have relevant additional masses. To overcome these limitations, we studied the applicability of composites piezoceramics actuators to smart structures with these purposes. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance predictions of a smart Piezocomposites based substrate applicable to deformable mirrors. We took in detail into account the possibility to change the focal length of the mirror keeping a satisfactory image quality. In this paper we present a specific type of Piezocomposite actuators and numerical/experimental techniques purposely developed to integrate them into smart structures. We evaluated numerical and experimental results comparing bonding and embedding of these devices.

  6. Miniature non-mechanical zoom camera using deformable MOEMS mirrors

    NASA Astrophysics Data System (ADS)

    Kaylor, Brant M.; Wilson, Christopher R.; Greenfield, Nathan J.; Roos, Peter A.; Seger, Eric M.; Moghimi, Mohammad J.; Dickensheets, David L.

    2012-03-01

    We present a miniature non-mechanical zoom camera using deformable MOEMS mirrors. Bridger Photonics, Inc. (Bridger) in collaboration with Montana State University (MSU), has developed electrostatically actuated deformable MEMS mirrors for use in compact focus control and zoom imaging systems. Applications including microscopy, endomicroscopy, robotic surgery and cell-phone cameras. In comparison to conventional systems, our MEMS-based designs require no mechanically moving parts. Both circular and elliptical membranes are now being manufactured at the wafer level and possess excellent optical surface quality (membrane flatness < λ/4). The mirror diameters range from 1 - 4 mm. For membranes with a 25 μm air gap, the membrane stroke is 10 μm. In terms of the optical design, the mirrors are considered variable power optical elements. A device with 2 mm diameter and 10 μm stroke can vary its optical power over 40 diopters or 0.04mm∧(-1). Equivalently, this corresponds to a focal length ranging from infinity to 25 mm. We have designed and demonstrated a zoom system using two MOEMS elements and exclusively commercial off-the-shelf optical components to achieve an optical zoom of 1.9x with a 15° full field of view. The total optical track length of the system is 36 mm. The design is approximately 30 mm x 30 mm x 20 mm including the optomechanical housing and image sensor. With custom optics, we anticipate achieving form factors that are compatible with incorporation into cell phones.

  7. Smart structures for deformable mirrors actuated by shape memory alloy

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.; Zerbi, F. M.

    2010-07-01

    Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation. Thermal activated Shape Memory Alloys are materials able to recover their original shape, after an external deformation, if heated above a characteristic temperature. If the recovery of the shape is completely or partially prevented by the presence of constraints, the material can generate recovery stress. Thanks to this feature, these materials can be positively exploited in Smart Structures if properly embedded into host materials. This paper will show the technological processes developed for an efficient use of SMA-based actuators embedded in smart structures tailored to astronomical instrumentation. In particular the analysis of the interface with the host material. Some possible modeling approaches to the actuators behavior will be addressed taking into account trade-offs between detailed analysis and overall performance prediction as a function of the computational time. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance predictions of a SMA based substrate applicable to deformable mirrors. We took in detail into account the possibility to change the focal length of the mirror keeping a satisfactory image quality. Finally a possible approach with some preliminary results for an efficient control system for the strongly non-linear SMA actuators will be presented.

  8. Membrane-based deformable mirror: intrinsic aberrations and alignment issues

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Louis, Rohan E.; Chatterjee, S.; Mathew, Shibu K.; Venkatakrishnan, P.

    2015-03-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astigmatism is a dominant aberration which was determined by measuring the difference between the tangential and sagital focal planes. We justify our results on the basis of theoretical simulations and discuss the feasibility of using such a system for adaptive optics considering a trade-off between wavefront correction and astigmatism due to deformation.

  9. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  10. Improved DMD configurations for image correlation. [deformable mirror devices

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Lin, Tsen-Hwang; Wu, Wen-Rong; Juday, Richard D.

    1990-01-01

    Two novel deformable mirror structures have been developed for spatial light modulators: an 'AM torsion beam' and a 'phase-mostly single-quadrant cantilever' beam. Both devices are well-suited to optical correlator input and filtering functions. Which the optical modulation characteristic of the torsion-beam modulator is essential amplitude only, which is well suited for use as the input modulator of the optical correlator, the characteristic of the one-quadrant modulator is a phase-mostly modulation whose amplitude changes are coupled to the phase changes; this renders it operable in the Fourier plane of the optical correlator as the filtering device.

  11. Steerable diffraction limited line illumination system using deformable mirror

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Kim, Dae Wook; Shimura, Kei; Burge, James H.

    2013-09-01

    Many scientific and industrial applications often require high performance optical systems utilizing spatially shaped illumination patterns of laser beams. Precisely shaped line illumination can be used for various line scanning systems or surface inspection devices. In order to achieve the highest resolution or superior signal to noise ratio limited by the fundamental theory, a diffraction limited illumination optical system (e.g. <0.8 Strehl ratio) gives the narrowest illumination line width determined by the system's NA (Numerical Aperture) value. For high precision and in-factory industrial applications, the Diffraction Limited Line Illumination (DLLI) needs to be controlled in three dimensional space rapidly as the target object under the illumination may not be always aligned with respect to the illumination system. A steerable DLLI system with three degrees of freedom (i.e. axial displacement, rotation, and tilt) is developed using an adaptive optics system. By electronically controlling the Zernike based surface shapes of the deformable mirror, the DLLI in free space is actively positioned and oriented with high accuracy. The geometrical optics based mathematical model to control the Zernike modes of the deformable mirror and the performance of a bench-top proof-ofconcept system will be presented with experimental data and analysis results.

  12. A new deformable mirror architecture for coronagraphic instrumentation

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Lemmer, Aaron; Eldorado Riggs, A. J.

    2016-07-01

    Coronagraphs are a promising solution for the next generation of exoplanet imaging instrumentation. While a coronagraph can have very good contrast and inner working angle performance, it is highly sensitive to optical aberrations. This necessitates a wavefront control system to correct aberrations within the telescope. The wavefront requirements and desired search area in a deformable mirror (DM) demand control of the electric field out to relatively high spatial frequencies. Conventional wisdom leads us to high stroke, high actuator density DMs that are capable of reaching these spatial frequencies on a single surface. Here we model a different architecture, where nearly every optical surface, powered or unpowered, is a controllable element. Rather than relying on one or two controllable surfaces for the success of the entire instrument the modeled instrument consists of a series of lower actuator count deformable mirrors to achieve the same result by leveraging the conjugate planes that exist in a coronagraphic instrument. To make such an instrument concept effective the imaging optics themselves must become precision deformable elements, akin to the deformable secondary mirrors at major telescope facilities. Such a DM does not exist commercially; all current DMs, while not necessarily incapable of carrying optical power, are manufactured with flat nominal surfaces. This simplifies control and manufacturing, but complicates their integration into an optical system because there is oftentimes a need to pack several into collimated space. Furthermore, high actuator count DMs cannot approximate low order shapes such as focus or tip-tilt without significant mid-spatial frequency residuals, which is not acceptable for a coronagraphic high-contrast imager. The ability to integrate the wavefront control system into the nominal coronagraphic optical train simplifies packaging, reduces cost and complexity, and increases optical throughput of any coronagraphic instrument

  13. Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Hadaegh, F. Y.

    1996-01-01

    In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.

  14. USB-based controller for generic MEM device deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Teare, Scott; Wilcox, Christopher; Restaino, Sergio; Martinez, Ty; Payne, Don

    2006-01-01

    The use of Micro-Electro-Machined (MEM) devices as deformable mirrors (DM) for active and adaptive optics is increasing dramatically. Such increases are due to both the cost and simplicity of use of these devices. Our experience with MEM DMs has been positive, however the controlling protocols of these devices presents some issues. Based on our experience and needs we decided to design a generic controller based on a fast communication protocol. These requirements have pushed us to design a system around a USB 2.0 protocol. In this paper we present our architectural design for such controller. We present also experimental data and analysis on the performance of the controller. We describe the pros and cons of such approach versus other techniques. We will address how general such architecture is and how portable is to other systems.

  15. Actuating the deformable mirror: a multiphysics design approach

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Riccardi, Armando; Spairani, Roberto

    2008-07-01

    The crucial component of an Adaptive Optics unit is the actuation system of the deformable mirror. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Due to the extreme accuracy required by the optics, a proper design of the actuator is essential in order to fulfill the specifications. In the device, mechanics, electrostatics, electromagnetism and thermal effects are mutually related, and they have to be properly considered in the design phase. This paper analyzes such a multiphysics behavior of the actuation system, providing an inter-disciplinary approach able to define the optimized device: a capacitive sensor measuring the displacements at the nanometer accuracy and a closed loop linear motor delivering the requested force with the lowest possible power dissipation, in order to minimize the degrading of the optical waves propagation.

  16. Deformable mirrors for x-ray astronomy and beyond

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Cao, J.; Takacs, P. Z.

    2011-05-01

    We discuss a technique of shape modification that can be applied to thin walled (~; 100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the mid-frequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback,locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  17. Modeling of microelectromechanical systems deformable mirror diffraction grating

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Pluzhnik, Eugene; Belikov, Ruslan

    2016-07-01

    Model-based wavefront control methods such as electric field conjugation require accurate optical propagation models to create high-contrast regions in the focal plane using deformable mirrors (DMs). Recently, it has been shown that it is possible to exceed the controllable outer-working angle imposed by the Nyquist limit based on the number of actuators by utilizing a diffraction grating. The print-through pattern on MEMS-based DMs formed during the fabrication process creates both an amplitude and a phase diffraction grating that can be used to enable Super-Nyquist wavefront control. Using interferometric measurements of a DM-actuator, we develop a DM-diffraction grating model. We compare the total energy enclosed in the first diffraction order due to the phase, amplitude, and combined phase-amplitude gratings with laboratory measurements.

  18. Hysteresis Compensation for a Piezo Deformable Mirror - Poster Paper

    NASA Astrophysics Data System (ADS)

    Song, H.; Fraanje, R.; Schitter, G.; Verhaegen, M.; Vdovin, G.

    2008-01-01

    The field of adaptive optics (AO) has received rapidly increasing attention in recent years, the intrinsic hysteresis of the piezo deformable mirror (DM) imposes a limit in the accuracy when the stroke of the piezo-actuator is on the order of micrometers. This contribution discusses the hysteresis compensation of a piezo DM by an inverse Preisach hysteresis model. The inverse Preisach hysteresis model is identified from the measured input-output data with a neural network and with a hinging hyperplane based approach. Experimental results demonstrate that hysteresis of the piezo-actuator can be reduced from 20% to about 6% and 9% by the neural network and by the hinging hyperplanes, respectively.

  19. Path Length Control in a Nulling Coronagraph with a MEMS Deformable Mirror and a Calibration Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.; Wallacea, J. Kent; Samuele, Rocco; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul; Lane, Benjamin; Levine, B. Martin; Mendillo, Chris; Schmidtlin, Edouard; Shao, Mike; Stewart, Jason B.

    2008-01-01

    We report progress on a nulling coronagraph intended for direct imaging of extrasolar planets. White light is suppressed in an interferometer, and phase errors are measured by a second interferometer. A 1020-pixel MEMS deformable mirror in the first interferometer adjusts the path length across the pupil. A feedback control system reduces deflections of the deformable mirror to order of 1 nm rms.

  20. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    SciTech Connect

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  1. A new concept for large deformable mirrors for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Owner-Petersen, Mette; Ardeberg, Arne; Korhonen, Tapio

    2006-06-01

    For extremely large telescopes, there is strong need for thin deformable mirrors in the 3-4 m class. So far, feasibility of such mirrors has not been demonstrated. Extrapolation from existing techniques suggests that the mirrors could be highly expensive. We give a progress report on a study of an approach for construction of large deformable mirrors with a moderate cost. We have developed low-cost actuators and deflection sensors that can absorb mounting tolerances in the millimeter range, and we have tested prototypes in the laboratory. Studies of control laws for mirrors with thousands of sensors and actuators are in good progress and simulations have been carried out. Manufacturing of thin, glass mirror blanks is being studied and first prototypes have been produced by a slumping technique. Development of polishing procedures for thin mirrors is in progress.

  2. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  3. Prototype Small Footprint Amplifier for Piezoelectric Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Caputa, Kris; Herriot, Glen; Niebergal, Joel; Zielinski, Adam

    2011-09-01

    AO subsystems of the ELT observatories will incorporate deformable mirrors with an order of magnitude larger number of piezoelectric actuators than the AO systems currently deployed. Simply scaling up the drive electronics that are presently available commercially would substantially drive up the AO cost, pose unacceptably high demands for the supply power and heat dissipation, and occupy large physical volume. We have set out to prototype a high voltage amplifier that is compact enough to allow packaging 100 amplifier channels on a single 6U Eurocard with the goal to have a DM drive channel density of 1200 per 6U VME crate. Individual amplifier circuits should be driven by a multichannel A/D converter, consume no more than 0.5W from the +/-400V power supply, be slew rate limited in hardware, and be short-circuit protected. The component cost should be an order of magnitude less than the integrated circuit high voltage amplifiers currently on the market. We started out with modeling candidate circuits in SPICE, then built physical prototypes using inexpensive off the shelf components. In this paper we present experimental results of exposing several prototype circuits to both normal operating conditions and foreseeable fault conditions. The performance is evaluated against the AO requirements for the output range and bandwidth and the DM actuator safety requirements.

  4. VLT deformable secondary mirror: integration and electromechanical tests results

    NASA Astrophysics Data System (ADS)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  5. Imaging performance of elliptical-boundary varifocal mirrors in active optical systems

    NASA Astrophysics Data System (ADS)

    Lukes, Sarah Jane

    Micro-electro-mechanical systems deformable-membrane mirrors provide a means of focus control and attendant spherical aberration correction for miniaturized imaging systems. The technology has greatly advanced in the last decade, thereby extending their focal range capabilities. This dissertation describes a novel SU-8 2002 silicon-on-insulator wafer deformable mirror. A 4.000 mm x 5.657 mm mirror for 45o incident light rays achieves 22 mum stroke or 65 diopters, limited by snapdown. The mirrors show excellent optical quality while flat. Most have peak-to-valley difference of less than 150 nm and root-mean-square less than 25 nm. The process proves simple, only requiring a silicon-on-insulator wafer, SU-8 2002, and a metal layer. Xenon difluoride etches the silicon to release the mirrors. Greater than 90% of the devices survive fabrication and release. While current literature includes several aberration analyses on static mirrors, analyses that incorporate the dynamic nature of these mirrors do not exist. Optical designers may have a choice between deformable mirrors and other types of varifocal mirrors or lenses. Furthermore, a dynamic mirror at an incidence angle other than normal may be desired due to space limitations or for higher throughput (normal incidence requires a beam splitter). This dissertation presents an analysis based on the characteristic function of the system. It provides 2nd and 3rd order aberration coefficients in terms of dynamic focus range and base ray incidence angle. These afford an understanding of the significance of different types of aberrations. Root-mean-square and Strehl calculations provide insight into overall imaging performance for various conditions. I present general guidelines for maximum incidence angle and field of fiew that provide near diffraction-limited performance. Experimental verification of the MEMS mirrors at 5o and 45o incidence angles validates the analytical results. A Blu-ray optical pick-up imaging

  6. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  7. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  8. Temperature deformations of the mirror of a radio telescope antenna

    NASA Technical Reports Server (NTRS)

    Avdeyev, V. I.; Grach, S. A.; Kozhakhmetov, K. K.; Kostenko, F. I.

    1979-01-01

    The stress informed state of the mirror of an antenna, with a diameter of 3 m, for a radio interferometer used in space, and located in a temperature field is examined. The mirror represents a parabolic shell, consisting of 19 identical parts. The problem is based on representations of the thermoelasticity of thin shells.

  9. The Development and Optimisation of High Bandwidth Bimorph Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Rowe, D.; Laycock, L.; Griffith, M.; Archer, N.

    Our first mirror designs were based on a standard bimorph construction and exhibited a resonant frequency of 1 kHz with a maximum stroke of ±5 μm. These devices were limited by the requirement to have a "dead space" between the inner active area and the mirror boundary. This was necessary to ensure that the requirements for both the stroke and the static boundary conditions at the edge of the mirror could be met simultaneously, but there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of design iteration steps, we have created mounting arrangements that seek not only to reduce dead space, but also to improve ruggedness and temperature stability through the use of a repeatable and reliable assembly procedure. As a result, the most recently modeled mirrors display a resonance in excess of 5 kHz, combined with a maximum stroke in excess of ±10 μm. This has been achieved by virtually eliminating the "dead space" around the mirror. By careful thermal matching of the mirror and piezoelectric substrates, operation over a wide temperature range is possible. This paper will discuss the outcomes from the design study and present our initial experimental results for the most recently assembled mirror.

  10. Northop Grumman/Xinetics Deformable Mirrors: Enabling Reliable Advanced Imaging for 20 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Jeff Cavaco, Northrop Grumman Xinetics

    2015-01-01

    Adaptive Optics Xinetics (AOX), a wholly-owned subsidiary of Northrop Grumman, has manufactured and delivered more than 300 deformable mirrors (DMs) since 1995. With more than 32 gigacycles of use, these mirrors have significantly increased the scientific return of ground based astronomical telescopes by removing atmospheric distortion from the image plane. AOX deformable mirrors exhibit little or no hysteresis, aging or creep, making them highly reliable and predictable. A range of space -based applications are currently in development or under consideration as key enablers for future astronomical missions. We will review a variety of AOX DMs and discuss a number of their real world applications and results.

  11. Out-of-plane actuation with a sub-micron initial gap for reconfigurable terahertz micro-electro-mechanical systems metamaterials.

    PubMed

    Isozaki, Akihiro; Kan, Tetsuo; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    We propose a reconfigurable terahertz (THz) metamaterial that can control the transmittance by out-of-plane actuation with changing the sub-micron gap distance between electrically coupled metamaterial elements. By using the out-of-plane actuation, it was possible to avoid contact between the coupled metamaterial elements across the small initial gap during the adjustment of the gap size. THz spectroscopy was performed during actuation, and the transmission dip frequency was confirmed to be tunable from 0.82 to 0.92 THz for one linear polarization state and from 0.80 to 0.91 THz for the other linear polarization; the two polarizations were orthogonal. The proposed approach will contribute to the development of tunable metamaterials based on structural deformations. PMID:26480137

  12. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  13. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  14. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  15. Micro drilling using deformable mirror for beam shaping of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Smarra, Marco; Strube, Anja; Dickmann, Klaus

    2016-03-01

    Using ultra-short laser pulses for micro structuring or drilling applications reduces the thermal influence to the surrounding material. The best achievable beam profile equals a Gaussian beam. Drilling with this beam profile results in cylindrical holes. To vary the shape of the holes, the beam can either be scanned or - for single pulse and percussion drilling - manipulated by masks or lenses. A high flexible method for beam shaping can be realized by using a deformable mirror. This mirror contains a piezo-electric ceramic, which can be deformed by an electric potential. By separating the ceramic into independent controllable segments, the shape of the surface can be varied individually. Due to the closed surface of the mirror, there is no loss of intensity due to diffraction. The mirror deformation is controlled by Zernike polynomials and results e.g. in a lens behavior. In this study a deformable mirror was used to generate e.g. slits in thin steel foils by percussion drilling using ultra-short laser pulses. The influence of the cylindrical deformation to the laser beam and the resulting geometry of the generated holes was studied. It was demonstrated that due to the high update rate up to 150 Hz the mirror surface can be varied in each scan cycle, which results in a high flexible drilling process.

  16. Structural design and mitigation of mirror deformations in lunar-based telescopes

    NASA Astrophysics Data System (ADS)

    Luz, Paul L.

    1993-09-01

    A driving concern of the Lunar Ultraviolet Telescope Experiment (LUTE) preliminary design study was the degradation of the LUTE optical figure due to thermal deformations, during a temperature cycle of 65 K to 265 K at the reference 40 deg latitude, 0 deg longitude landing site. A multidisciplinary analysis process was developed, temperature effects were characterized, and primary mirror thermal deformations calculated for use in the optical analyses. Trade studies evaluated the qualitative performance of various design schemes. Results indicated that kinematic mirror supports with bottom-mounted flexures rendered less optical disturbance under thermal loading than mirror supports at the inner or outer periphery. Another trade indicated that a telescope's baseplate should be athermalized by matching thermal distortion coefficients. A comparison of three materials for the primary mirror predicted that silicon carbide would be the best material for resisting thermally induced figure deformations on the moon.

  17. Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere.

    PubMed

    Roggemann, M C; Lee, D J

    1998-07-20

    A two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere is presented. This system uses a deformable mirror and a Fourier-transforming mirror to adjust the amplitude of the wave front in the telescope pupil, similar to kinoforms used in laser beam shaping. A second deformable mirror is used to correct the phase of the wave front before it leaves the aperture. The phase applied to the deformable mirror used for controlling the beam amplitude is obtained with a technique based on the Fienup phase-retrieval algorithm. Simulations of propagation through a single turbulent layer sufficiently distant from the beacon observation and laser beam transmission aperture to cause scintillation shows that, for an ideal deformable-mirror system, this field-conjugation approach improves the on-axis field amplitude by a factor of approximately 1.4 to 1.5 compared with a conventional phase-only correction system.

  18. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  19. Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics

    NASA Astrophysics Data System (ADS)

    Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.

    1999-10-01

    We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.

  20. Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Reinlein, Claudia; Appelfelder, Michael; Gebhardt, Sylvia; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2013-01-01

    This paper reports on the thermomechanical modeling and characterization of a micro-opto-electro-mechanical systems deformable mirror (DM). This unimorph DM offers a low-temperature cofired ceramic substrate with screen-printed piezoceramic actuators on its rear surface and a machined copper layer on its front surface. We present the DM setup, thermomechanical modeling, and hybrid fabrication. The setup of the DM is transferred into a thermomechanical model in ANSYS Multiphysics. The thermomechanical modeling of the DM evaluates and optimizes the mount material and the copper-layer thickness for the loading cases: homogeneous thermal loading and laser-loading of the mirror. Subsequently, the developed and theoretically optimized DM setup is experimentally validated. The homogeneous loading of the optimized design results in a membrane deformation with a rate of -0.2 μm K-1, whereas the laser loading causes an opposed change with a rate of -0.2 μm W-1. Therefore, the proposed mirror design is suitable to precompensate laser-generated mirror deformations by homogeneous thermal loading (heating). We experimentally show that a 35-K preheating of the mirror assembly compensates for an absorbed laser power of 1.25 W. Therefore, the novel compensation regime "compound loading" for the suppression of laser-induced deformations is developed and proven.

  1. Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Marinan, Anne; Cahoy, Kerri; Webber, Matthew; Belikov, Ruslan; Bendek, Eduardo

    2014-08-01

    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.

  2. Test results for an AOA-Xinetics grazing incidence x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Lillie, Charles; Egan, Richard; Landers, Franklin; Cavaco, Jeffrey; Ezzo, Kevin; Khounsary, Ali

    2014-09-01

    X-ray telescopes use grazing incidence mirrors to focus X-ray photons from celestial objects. To achieve the large collecting areas required to image faint sources, thousands of thin, doubly curved mirrors are arranged in nested cylindrical shells to approximate a filled aperture. These mirrors require extremely smooth surfaces with precise figures to provide well-focused beams and small image spot sizes. The Generation-X telescope proposed by SAO would have a 12-meter aperture, a 50 m2 collecting area and 0.1 arc-second spatial resolution. This resolution would be obtained by actively controlling the mirror figure with piezoelectric actuators deposited on the back of each 0.4 mm thick mirror segment. To support SAO's Generation-X study, Northrop Grumman used internal funds to look at the feasibility of using Xinetics deformable mirror technologies to meet the Generation-X requirements. We designed and fabricated two 10 x 30 cm Platinum-coated silicon mirrors with 108 surface-parallel electrostrictive Lead Magnesium Niobate (PMN) actuators bonded to the mirror substrates. These mirrors were tested at optical wavelengths by Xinetics to assess the actuator's performance, but no funds were available for X-ray tests. In 2013, after receiving an invitation to evaluate the mirror's performance at Argonne National Laboratory, the mirrors were taken out of storage, refurbished, retested at Xinetics and transported to ANL for metrology measurements with a Long Trace Profilometer, a Fizeau laser interferometer, and X-ray tests. This paper describes the development and testing of the adaptive x-ray mirrors at AOAXinetics. Marathe, et al, will present the results of the tests at Argonne.

  3. Deformed quantum cohomology and (0,2) mirror symmetry

    NASA Astrophysics Data System (ADS)

    Guffin, Josh; Katz, Sheldon

    2010-08-01

    We compute instanton corrections to correlators in the genus-zero topological subsector of a (0, 2) supersymmetric gauged linear sigma model with target space {mathbb{P}^1} × {mathbb{P}^1} , whose left-moving fermions couple to a deformation of the tangent bundle. We then deduce the theory’s chiral ring from these correlators, which reduces in the limit of zero deformation to the (2, 2) ring. Finally, we compare our results with the computations carried out by Adams et al. [1] and Katz and Sharpe [17]. We find immediate agreement with the latter and an interesting puzzle in completely matching the chiral ring of the former.

  4. Simulating wavefront correction via deformable mirrors at x-ray beamlines

    NASA Astrophysics Data System (ADS)

    Pardini, Tommaso; Poyneer, Lisa A.; Plinta, Audrey; Cavaco, Jeffrey L.; Pivovaroff, Michael J.

    2012-10-01

    Deformable mirrors (DMs) have been successfully used in astronomical adaptive optics at visible and near-infrared wavelengths, greatly reducing atmospheric-induced aberrations. Building upon the extensive techniques and methods developed for these applications, we propose to extend this capability to the soft and hard x-ray regime in order to take full advantage of the beam quality characteristic of new facilities such as the National Synchrotron Light Source (NSLS-II), and the Linac Coherent Light Source (LCLS). Achieving this goal challenges both current mirror manufacturing techniques and wavefront propagation modeling. Lawrence Livermore National Laboratory (LLNL), in collaboration with Northrop Grumman AOA Xinetics Inc., is currently developing an x-ray deformable mirror to correct for wave-front aberrations introduced along the beam path of a typical x-ray beamline. To model the expected performance of such a mirror, we have developed a simulation based on the wavefront propagation code PROPER. We will present the current implementation of the software, which models actuation of a deformable mirror and evaluates its effect on wavefront correction.

  5. Structural design and mitigation of mirror deformations in lunar-based telescopes

    NASA Astrophysics Data System (ADS)

    Luz, Paul L.

    1994-11-01

    Structural design and analysis of the optical systems for lunar-based telescopes is a challenging task. A driving concern of the Lunar Ultraviolet Telescope Experiment (LUTE) preliminary design study was the degradation of the LUTE optical figure due to thermal deformations, during a temperature cycle of 65 to 265 K at the reference 40 deg latitude, 0 deg longitude landing site. In addressing this task, temperature effects were characterized, and primary-mirror thermal deformations calculated for use in the optical analyses. Trade studies evaluated the qualitative performance of various design schemes. Results indicated that statically determinate mirror supports with bottom-mounted flexures created less optical disturbance under thermal loading than mirror supports at the inner or outer periphery. Another trade indicated that a telescope's baseplate must be athermalized with respect to the mirrors by matching thermal distortion coefficients. A comparison of three materials for the primary mirror predicted that silicon carbide would be the best material for resisting thermally induced figure deformations on the moon.

  6. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frederic

    2004-09-01

    Since micro deformable mirrors based on Micro-Opto-Electronico-Mechanical Systems (MOEMS) technology would be essential in next generation adaptive optics system, we are designing, realizing and characterizing blocks of this key-component. An in-house designed tiltable mirror (170*100 μm2) has been processed by surface micromachining in the Cronos foundry, and a dedicated characterization bench has been developed for the complete analysis of building blocks as well as operational deformable mirrors. This modular Twyman-Green interferometer allows high in-plane resolution (4μm) or large field of view (40mm). Out-of-plane measurements are performed with phase-shifting interferometry showing highly repeatable results (standard deviation<5nm). Features such as optical quality or electro-mechanical behavior are extracted from these high precision three-dimensional component maps. Range is increased without loosing accuracy by using two-wavelength phase-shifting interferometry authorizing large steps measurements such as 590 nm print-through steps caused by the Cronos process. Dynamic analysis like vibration mode and cut-off frequency is realized with time-averaged interferometry. Rotation mode frequency of 31-3kHz of the micro tiltable mirror, and a resonance with a tuned damping at 1.1kHz of the commercial OKO deformable mirror are revealed.

  7. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  8. Picard-Fuchs uniformization and geometric isomonodromic deformations: Modularity and variation of the mirror map

    NASA Astrophysics Data System (ADS)

    Doran, Charles Francis, Jr.

    1999-12-01

    In the first half of this thesis we determine geometric criteria for when the Picard-Fuchs equations of certain families of elliptic curves and K3 surfaces orbifold uniformize their base spaces. This problem is motivated by the Mirror-Moonshine Conjecture of Lian and Yau, which asserts that for a particular class of K3 surface families the local inverse to the period mapping (the ``mirror map'') is a McKay-Thompson series. We completely answer the related question, ``When is the mirror map a modular function?'', for families of elliptic curves with a section and certain lattice polarized families of K3 surfaces, in terms of the functional and generalized functional invariants. In the second half of the thesis we define, via the Gauss-Manin connection, a new class of algebraic solutions to isomonodromic deformation equations. Given a suitable family of varieties fibered over P1, with positions of the singular fibers varying, the associated family of Picard-Fuchs equations is monodromy preserving. Any family of monodromy preserving differential equations defines a solution to an auxiliary completely integrable Hamiltonian system-the isomonodromic deformation equation. We call the solutions coming from deformations of Picard-Fuchs equations, through Picard-Fuchs equations, ``geometric isomonodromic deformations''. These describe the variation of the mirror map in families.

  9. Theory and computation of three cosmic origin spectrograph aspheric gratings recorded with a multimode deformable mirror.

    PubMed

    Duban, M

    1999-03-01

    The theory of three Cosmic Origin Spectrograph holographic gratings recorded with a deformable plane mirror is presented. Their working conditions are severe, since they have to correct the strong spherical aberration and the field astigmatism of the Hubble Space Telescope. Recorded on aspherized substrates, the gratings produce images that are diffraction limited with regard to spectral resolution. PMID:18305717

  10. Interferometric nulling limits with tip-tilt-piston deformable mirrors and a pinhole spatial filter array

    NASA Astrophysics Data System (ADS)

    Hicks, Brian A.; Chakrabarti, Supriya; Cook, Timothy A.

    2015-01-01

    We explore the use of hexagonal segment tip-tilt-piston deformable mirrors alone and paired with pinhole spatial filter arrays for high-order wavefront correction of nulling interferometers used for visible light study of exoplanetary systems at 107 to 1010 contrast within regions extending ˜0.1 to 6 arc s from a parent star. A similar system has been proposed using a single-mode fiber array as an alternative to using multiple deformable mirrors to correct both phase aberrations and balance electric field amplitude, the benefit being drastically reduced component and control complexity. Performance is compared using measured deformable mirror data for hexagonal arrays consisting of a number of rings NR=2 to 18, emphasizing the trade between throughput and the additional contrast gained from suppressing wavefront errors introduced by the deformable mirror at spatial frequencies Λ≥NR that are otherwise present in the image at corresponding field locations. Taking into account effects of loss of throughput and vignetting, the nulled signal-to-noise ratio is shown to improve for filtered systems in the outer portion of the field of view. Modeled performance shows no significant change in signal-to-noise in the inner field of view.

  11. Concept and modeling analysis of a high fidelity multimode deformable mirror.

    PubMed

    Zhou, Chao; Li, Yun; Wang, Anding; Xing, Tingwen

    2015-06-10

    Conventional deformable mirrors (DM) cannot meet the requirement of aberration controlling for advanced lithography tools. This paper illustrates an approach using the property that deformation of a thin plate is similar to optical modes to realize a high fidelity multimode deformable mirror whose deformation has characteristics of optical aberration modes. The way to arrange actuators is also examined. In this paper, a 36-actuator deformable mirror is taken as an example to generate low-order Zernike modes. The result shows that this DM generates the fourth fringe Zernike mode (Z4) defocus, and primary aberration Z5-Z8 with an error less than 0.5%, generates the fifth-order aberration Z10-Z14, and generates the seventh-order aberration Z17-Z20 with an error less than 1.1%. The high fidelity replication of the Zernike mode indicates that the DM satisfies the demand of controlling aberrations corresponding to the first 20 Zernike modes in an advanced lithography tool. PMID:26192845

  12. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  13. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  14. Operation of a deformable mirror device as a Fourier plane phase modulating filter

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Giles, Michael K.; Smith, Jeffery Z.

    1988-01-01

    The operation of a deformable mirror device (DMD) as a Fourier plane phase modulating filter is described. An analysis of the optical characteristics of the DMD elements as phase modulators is summarized. Analytical and experimental results indicating the existence of a quasi-phase-only operational mode are presented. These results are used to specify the mirror deflection required to implement a binary phase-only image correlation operation. An optical correlator system is implemented using the DMD Fourier plane filter and experimental results from this system are compared with computer simulations of the correlator operation.

  15. Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

    SciTech Connect

    Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

    2011-09-12

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  16. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications.

    PubMed

    Wlodarczyk, Krystian L; Bryce, Emma; Schwartz, Noah; Strachan, Mel; Hutson, David; Maier, Robert R J; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Kirk, Katherine; Hand, Duncan P

    2014-02-01

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  17. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications

    SciTech Connect

    Wlodarczyk, Krystian L. Maier, Robert R. J.; Hand, Duncan P.; Bryce, Emma; Hutson, David; Kirk, Katherine; Schwartz, Noah; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Strachan, Mel

    2014-02-15

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  18. Continuous optical zoom module based on two deformable mirrors for mobile device applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hung; Su, Guo-Dung J.

    2011-10-01

    In recent years, optical zoom function of the mobile camera phones has been studied. However, traditional systems use motors to change separation of lenses to achieve zoom function, suffering from long total length and high power consumption, which is not suitable for mobile phones use. Adopting MEMS polymer deformable mirrors in zoom systems has the potential to reduce thickness and have the advantage of low chromatic aberration. In this paper, we presented a 2X continuous optical zoom systems for mobile phones, using two deformable mirrors, suitable for 5-Mega-pixel image sensors. In our design, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  19. Using a deformable mirror to generate custom laser guidestar asterisms: simulation and laboratory results

    NASA Astrophysics Data System (ADS)

    Norton, Andrew P.; Srinath, Srikar; Gavel, Donald; Kupke, Renate; Dillon, Daren

    2014-08-01

    It is possible to create custom laser guidestar (LGS) asterisms from a single beam by using a deformable mirror to pattern the phase of the outgoing laser guidestar beam. This avoids the need for multiple laser launch assemblies, and in principle would allow one to position the multiple LGS spots in any desired arrangement around the science target, as well as dynamically rotate the LGS pattern on-sky and control the distribution of intensity in each spot. Simulations and laboratory experiments indicate that a PTT111 and PTT489 IrisAO MEMS deformable mirror and a Hamamatsu X8267 spatial light modulator may have applications for creating small LGS asterisms for biological imaging with adaptive optics. For astronomy applications, the phase values required to produce the "3+1" laser guidestar asterism of Keck's Next Generation AO system is also investigated.

  20. Static modeling for membrane deformable mirror used in high-power laser

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Chen, Haiqing; Li, Jie; Yu, Hongbin

    2007-01-01

    The technology of membrane deformable mirror (DMs) that has the potential to achieve comprehensive wavefront compensation and control in high power laser has been developed rapidly in recent years. Experimental results reveal that strong nonlinearity is induced to the deformation of DMs with respect to the square of input voltage when operating voltage is more than 120V. The nonlinear response and strong coupling effect of control channel in DMs make it difficult to obtain the desired mirror surface shapes. A test bed is built up to measure the deformation of DMs driven by specified voltages. An efficient nonlinear model of deformation with respect to input voltages is presented using a back propagation neural network (BPNN). Deformation due to arbitrary actuator voltages applied to actuators to correct wavefront aberration can be calculated directly with a higher precision using the BPNN model proposed. The residual relative error of the proposed model shows the improvement of accuracy of an order about 5 as compared to that of linear model, and with no significant increase of time consumption. A preliminary open-loop control experiment of laser wavefront compensation is performed to exam the validity of applying the proposed BPNN model in laser wavefront compensation application.

  1. Lightweight deformable mirrors for ground- and space-based imaging systems

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah

    2006-08-01

    The next generation of ground- and space-based astronomical observatories will generate an increased requirement for lightweight and robust deformable optics. In space ultra-lightweight actively controlled mirrors will enable a continuing increase of aperture sizes, whilst large adaptive mirrors will become increasingly standard features in the optical design of adaptive optics-optimised Extremely Large Telescopes on the ground. This thesis presents results from a project to design, manufacture and test a prototype active mirror in a nickel-carbon fibre reinforced polymer (CFRP), which has been suggested in the literature to be a promising candidate material for such applications. Extensive finite element analysis results from gravitational sag and thermal models, as well as finite element-based predictions of the central actuator influence function profile, are presented. The main problems were encountered as a result of the in-mold nickel coating process, which resulted in residual form errors, and poor design of the support structures, leading to deterioration of the mirror surface quality. No fundamental reason ruling this material out for the use of precision deformable optics was identified. The finite element analysis results show significant promise for increased use of the method in optical design, as well as in integrated optical simulations for Extremely Large Telescopes.

  2. Thumb reconstruction without formal pollicization in mirror hand deformity: a series of four cases.

    PubMed

    Al-Qattan, M M; Al-Kahtani, A R; Al-Sharif, E M; Al-Otaibi, N J

    2013-11-01

    Thumb reconstruction in mirror hands is usually done by pollicization. However, objective pinch strength and power grip data in mirror hands following pollicization are lacking. Alternative thumb reconstruction techniques include doing nothing, rotation osteotomy or syndactylization of the radial digits. In this article, we report a series of four cases of mirror hand deformity where the thumb was not reconstructed by formal pollicization. Two cases had non-classic mirror hand deformity (the forearm contained a radius and an ulna) and the other two had classic ulnar dimelia. In all cases, thumb reconstruction was done by keeping one of the radial fingers in place (without pollicization) as the new thumb; and then (if required) performing a secondary osteotomy procedure to rotate the new thumb into pronation. The four cases were recalled back to the clinic for functional assessment at ages 20 years, 5 years, 4 years and 2 years, respectively. The overall hand function was considered 'fair' in the case with concurrent unique features, and was considered 'excellent' in the other three cases. It was concluded that the technique of thumb reconstruction used in the current series is an acceptable option. However, objective measurements, especially with regards to pinch strength and power grip, need to be compared with the pollicization technique.

  3. Wave-front correction of a femtosecond laser using a deformable mirror

    NASA Astrophysics Data System (ADS)

    Daly, Elizabeth; Dainty, Christopher; O'Connor, Gerard; Glynn, Thomas

    2005-04-01

    Typical applications of ultra-high-power femtosecond lasers include precision drilling and surface micro-machining of metals, and micro-structuring of transparent materials. However, high peak-power pulsed lasers are difficult to focus close to the diffraction limit because of aberrations that induce deviations from a perfect spatial wave-front. The sources of these aberrations include thermally induced and nonlinear optical distortions, as well as static distortions such as those introduced by gratings used in chirped-pulse amplification (CPA). A spatially clean beam is desirable to achieve the highest possible intensity on-target, and to minimize the energy deposited outside the central focus. One way to achieve this is to correct the wave-front using an adaptive optical element such as a deformable mirror, a more cost-effective solution than increasing peak intensity by providing further pulse amplification. The wave-front of the femtosecond system is measured using a Hartmann-Shack wave-front sensor, and corrected with a 37-channel deformable membrane mirror used slightly off-axis. The deformable mirror has been tested with a FISBA OPTIK μPhase HR digital interferometer, which is also used to calibrate the performance of the wave-front sensor. The influence of fluctuations of the laser on the measurement is minimised by averaging the centroid positions obtained from several consecutive frames. The distorted wave-front is compared to a reference flat wave-front which is obtained from a collimated laser diode operating at the same wavelength as the femtosecond system. The voltages on the deformable mirror actuators are then set to minimise the difference between the measured and reference wave-fronts using a simple least squares approach. Wave-front sensor and correction software is implemented in Matlab.

  4. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Gale, Richard O.

    1988-01-01

    Attention is given to experimental results for a binary phase-only filter implementation's correlation operations, using the deformable mirror device (DMD) spatial light modulator as the Fourier plane filter. These results demonstrate the basic capabilities of the DMD in an image correlator system which, in combination with the potential 8-kHz frame rate for 128 x 128 DMDs, can constitute a very high speed pattern recognition system. The DMD has the further capability of operating in the analog mode.

  5. Wave-front sensing and deformable-mirror control in strong scintillation

    PubMed

    Roggemann; Koivunen

    2000-05-01

    Recent studies of coherent wave propagation through turbulence have shown that under conditions where scintillation is significant a continuous phase function does not in general exist, owing to the presence of branch points in the complex optical field. Because of branch points and the associated branch cuts, least-squares approaches to wave-front reconstruction and deformable-mirror control can have large errors. Branch-point reconstructors are known to provide superior performance to least-squares reconstructors, but they require that branch points be explicitly detected. Detecting branch points is a significant practical impediment owing to spatial sampling and measurement noise in real wave-front sensors. Branch points are associated with real zeros in an optical field, and hence information about the phase of the field is encoded in the amplitude of the wave. We present a new wave-front-sensor processing algorithm that exploits this observation in the wave-front-reconstruction and deformable-mirror-control process. This algorithm jointly processes three intensity measurements by using light from the beacon field to develop a set of deformable-mirror actuator commands that are maximally consistent with three intensity measurements: (1) the entire wave-front-sensor image, (2) a pupil intensity image, and (3) a conventional image. Owing to the nonlinear nature of the resulting algorithm, we have used a simulation to evaluate performance. We find that in a focused laser beam projection paradigm that uses a point-source beacon, the new algorithm provides significantly improved performance over that of conventional Hartmann sensor least-squares deformable-mirror control based on centroid processing of wave-front-sensor outputs. The performance of the new algorithm approaches, the performance of an idealized branch-point reconstructor that requires pointwise phase differences for operation.

  6. Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions

    NASA Astrophysics Data System (ADS)

    Arao, Yoshihiko; Koyanagi, Jun; Utsunomiya, Shin; Takeda, Shin-Ichi; Kawada, Hiroyuki

    2009-05-01

    The long-term micro-dimensional stability of a carbon fiber reinforced plastic (CFRP) mirror was investigated in terms of creep deformation, moisture swelling and self-shrinkage. A 4-point bending creep test was carried out using specimens made from pitch-based high-modulus CFRP laminates to obtain a creep constant based on linear viscoelasticity, and we then investigated the weight change and geometrical change during a moisture absorption test using a CFRP specimen. The anisotropic diffusivities and coefficients of moisture expansion (CMEs) in CFRP laminates were obtained by fitting analytical data into the experimental data. Finally, the shrinkage behavior caused by physical aging of the polymeric material was examined using a fiber Bragg grating (FBG) sensor embedded in the neat resin specimen. Applying these results, we analyzed the geometrical changes in a CFRP mirror that resulted from time-dependent deformation by the mirror’s weight, moisture absorption and physical aging, respectively. We discuss which factor is dominant in the deformation of CFRP mirrors under various conditions.

  7. A 1-metre Ni coated CFRP demonstrator for large deformable mirrors

    NASA Astrophysics Data System (ADS)

    Thompson, Samantha J.; Doel, Peter; Brooks, David; Strangwood, Martin

    We present results from our current project to develop an alternative substrate for large deformable mirrors, particularly with the European Extremely Large Telescope (E-ELT) in mind. Our mirror substrate consists of a carbon-fibre reinforced polymer (CFRP) core encapsulated in a thick (50µm) coating of nickel; the coating entirely covers the CFRP front, back and edges. The benefits of CFRP are: that it has high tensile strength, making it exceptionally resistant to breakage and able to withstand high inter-actuator forces; that it can be fabricated in large sections, allowing the production of a 2.6 m monolithic mirror, simplifying system control and eliminating additional diffraction/scattering introduced by segmented mirror systems; its low density (< 1800 kgm-3 for a Ni coated substrate). By the end of summer this year (2009) we aim to have constructed a 19 cm diameter fully actuated (37 piezo-stack actuators on a 29 mm triangular grid) prototype and a 1.0 m diameter substrate mounted on a static set of points to demonstrate the scalability of the technology. We discuss the processes involved in forming a Ni-CFRP mirror, the results obtained so far and a current status update.

  8. Control and network system of force actuators for deformable mirror active optics in LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Shengtao; Zhang, Zhenchao; Wang, You

    2007-12-01

    The reflecting Schmidt plate M A of LAMOST consists of 24 segmented hexagonal sub-mirrors. Each sub-mirror is 25mm thick and 1.1m in diagonal. There are 34 force actuators on the back of one sub-mirror which need to be controlled to offer precise load to create correct mirror deformation. This paper presents the control method and network configuration of force actuators for one sub-mirror. Master computer running Windows NT operation system and slave controllers running DOS operation system are connected together via Ethernet local area network (ELAN) by means of TCP/IP protocol. Adopting five slave controllers, 34 force actuators are combined into a distributed system. Master computer controls five slave controllers and five slave controllers operate 34 force actuators. Master computer communicates with slave controllers normally, which receives state of each force actuator from slave controllers and sends instructions to slave controllers via Ethernet LAN. Each slave controller operates 8 force actuators to offer correct load. Axial load capacity of force actuator is +/-150N (pull and push) with accuracy RMS <=0.05N. Force sensor is used as close-loop feedback apparatus to detect the micro load of the actuator.

  9. Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    NASA Astrophysics Data System (ADS)

    Costa, Christopher; Bradu, Adrian; Rogers, John; Phelan, Pauline; Podoleanu, Adrian

    2015-01-01

    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.

  10. Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry

    PubMed Central

    Horsley, David A.; Park, Hyunkyu; Laut, Sophie P.; Werner, John S.

    2008-01-01

    The static and dynamic characteristics of a bimorph deformable mirror (DM) for use in an adaptive optics system are described. The DM is a 35-actuator device composed of two disks of lead magnesium niobate (PMN), an electrostrictive ceramic that produces a mechanical strain in response to an imposed electric field. A custom stroboscopic phase-shifting interferometer was developed to measure the deformation of the mirror in response to applied voltage. The ability of the mirror to replicate optical aberrations described by the Zernike polynomials was tested as a measure of the mirror’s static performance. The natural frequencies of the DM were measured up to 20 kHz using both stroboscopic interferometry as well as a commercial laser Doppler vibrometer (LDV). Interferometric measurements of the DM surface profile were analyzed by fitting the surface with mode-shapes predicted using classical plate theory for an elastically supported disk. The measured natural frequencies were found to be in good agreement with the predictions of the theoretical model. PMID:19122798

  11. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  12. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  13. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  14. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  15. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  16. Joint-transform correlator systems using deformable-mirror spatial light modulators

    NASA Technical Reports Server (NTRS)

    Florence, James M.

    1989-01-01

    Two joint-transform correlator systems based on deformable-mirror-device (DMD) spatial light modulators and CCD video cameras are described. The system designs provide for real-time correlation between video-formatted input scenes and stored reference images. The DMD light modulators are used exclusively for inputting data in the optical stages of these systems, and the CCD cameras are used to provide the critical square-law detection required in joint-transform achitectures. Experimental verification of the functionality of these DMD/CCD joint-transform systems is also presented.

  17. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; McCarville, Thomas; Pardini, Tommaso; Palmer, David; Brooks, Audrey; Pivovaroff, Michael J; Macintosh, Bruce

    2014-06-01

    We have built a 45 cm long x-ray deformable mirror (XDM) of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly, the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the XDM and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  18. Measurement of thermal deformation of an engine piston using a conical mirror and ESPI

    NASA Astrophysics Data System (ADS)

    Albertazzi, Armando, Jr.; Melao, Iza; Devece, Eugenio

    1998-07-01

    An experimental technique is developed to measure the radial displacement component of cylindrical surfaces using a conical mirror for normal illumination and observation. Single illumination ESPI is used to obtain fringe patterns related to the radial displacement field. Some data processing strategies are presented and discussed to properly extract the measurement data. Data reduction algorithms are developed to quantify and compensate the rigid body displacements: translations and rotations. The displacement component responsible for shape distortion (deformation) can be separated from the total displacement field. The thermal radial deformation of an aluminum engine piston with a steel sash is measured by this technique. A temperature change of about 2 degrees Celsius was applied to the engine piston by means of an electrical wire wrapped up in the first engine piston grove. The fringe patterns are processed and the results are presented as polar graphics and 3D representation. The main advantages and limitations of the developed technique are discussed.

  19. Experimental evaluation of a positive-voltage-driven unimorph deformable mirror for astronomical applications

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Ma, Jianqiang; Mao, Yuxin; Liu, Ying; Li, Baoqing; Chu, Jiaru

    2015-11-01

    A modified low-cost unimorph deformable mirror (DM) driven only by positive voltages for atmospheric turbulence compensation is presented. The 214 patterned inner actuators generate convex deformations for aberration correction, while one outer ring actuator generates an overall concave bias. To evaluate the aberration correction capability of the proposed DM, the iterative reconstruction of Zernike aberrations and correction were performed in an adaptive optics test system. The experimental results indicate that the fabricated DM has an excellent aberration correction capability, particularly matching the first 20 term Zernike aberrations with the normalized residual root-mean-square (RMS) error <5%. Furthermore, the random atmospheric turbulence aberrations were simulated based on Karhunen-Loève coefficients and reconstructed using the fabricated DM. The simulative and experimental results show that the atmospheric turbulence aberrations can be steadily compensated with λ/40 (λ=2.2 μm) RMS residual error, indicating the prospect for atmospheric applications.

  20. Concept, modeling, and performance prediction of a low-cost, large deformable mirror.

    PubMed

    Heimsten, Rikard; MacMynowski, Douglas G; Andersen, Torben; Owner-Petersen, Mette

    2012-02-10

    While it is attractive to integrate a deformable mirror (DM) for adaptive optics (AO) into the telescope itself rather than using relay optics within an instrument, the resulting large DM can be expensive, particularly for extremely large telescopes. A low-cost approach for building a large DM is to use voice-coil actuators connected to the back of the DM through suction cups. Use of such inexpensive voice-coil actuators leads to a poorly damped system with many structural modes within the desired bandwidth. Control of the mirror dynamics using electro-mechanical sensors is thus required for integration within an AO system. We introduce a distributed control approach, and we show that the "inner" back sensor control loop does not need to function at low frequencies, leading to significant cost reduction for the sensors. Incorporating realistic models of low-cost actuators and sensors together with an atmospheric seeing model, we demonstrate that the low-cost mirror strategy is feasible within a closed-loop AO system. PMID:22330282

  1. Thin zoom camera module by large-stroke micromachined deformable mirrors

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hung; Lin, Yu-Hung; Su, Guo-Dong J.

    2012-10-01

    Miniaturization is the key point to design image system for portable devices. Motor-driven lens technique is the traditional way to achieve auto-focus and zoom functions, this method usually requires a larger space and causes greater power consumption. Reflective optics is a technology not only can make the space application become more efficient and flexible, but also has the advantage that it induces low chromatic aberrations. In this paper, we use organic deformable mirror (DM) as reflective element of the system. PDMS used as an actuated membrane of DM has lower young's modulus and residual stress. The maximum stoke is 90 um and corresponding diopter is 39.964m(-1) . The system we designed with MEMS deformable mirror is a 5M pixel zoom image system which is only 10mm in thickness before packaging and 16mm in thickness after packaging. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  2. Development of Robust, Light-weight, Agile Deformable Mirrors in Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Hart, M.; Ammons, S. M.; Coughenour, B.; Richardson, L.,; Romeo, R.; Martin, R.

    2012-09-01

    Carbon fiber reinforced polymer (CFRP) has recently been developed to the point that surfaces of high optical quality can be routinely replicated. Building on this advance, we are developing a new generation of deformable mirrors (DMs) for adaptive optics application that extends long-standing expertise at the University of Arizona in large, optically powered DMs for astronomy. Our existing mirrors, up to 90 cm in diameter and with aspheric deformable facesheets, are deployed on a number of large astronomical telescopes. With actuator stroke of up to 50 microns and no hysteresis, they are delivering the best imaging ever seen from an astronomical AO system. Their Zerodur glass ceramic facesheets though are not well suited to non-astronomical applications. In this paper, we describe developmental work to replace the glass components of the DMs with CFRP, an attractive material for optics fabrication because of its high stiffness-to-weight ratio, strength, and very low coefficient of thermal expansion. Surface roughness arising from fiber print-through in the CFRP facesheets is low, < 3 nm PTV across a range of temperature, and the optical figure after correction of static terms by the DM actuators is on the order of 20 nm rms. After initial investment in an optical quality mandrel, replication costs of identical units in CFRP are very low, making the technology ideal for rapid mass production.

  3. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  4. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.

  5. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986

  6. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    PubMed

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  7. Optical stabilization system based on deformable mirrors for retina-like sensors.

    PubMed

    Hao, Qun; Fan, Fan; Cheng, Xuemin; Wang, Dongdong; Jiang, Yang

    2016-07-20

    This paper presents an optical stabilization system based on deformable mirrors (DMs) for retina-like sensors. This system achieves image stabilization by changing the reflective plate of the DM's compensating tilt angle. The mathematical model is constructed with relative parameters, and the simulation experiments and parameter analysis are discussed to verify the system's reliability. The experimental results show that this system achieved optical image stabilization. The maximum relative error of the compensation angle is 8.78%. The system is close to the diffraction limit, and the distortion is less than 0.33%. This study presents an image stabilization system and offers possible improvement in the aberrations in the system, which will provide great support to retina-like sensors.

  8. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  9. X-ray metrology and performance of a 45-cm long x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; Brejnholt, Nicolai F; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-01

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  10. Optical stabilization system based on deformable mirrors for retina-like sensors.

    PubMed

    Hao, Qun; Fan, Fan; Cheng, Xuemin; Wang, Dongdong; Jiang, Yang

    2016-07-20

    This paper presents an optical stabilization system based on deformable mirrors (DMs) for retina-like sensors. This system achieves image stabilization by changing the reflective plate of the DM's compensating tilt angle. The mathematical model is constructed with relative parameters, and the simulation experiments and parameter analysis are discussed to verify the system's reliability. The experimental results show that this system achieved optical image stabilization. The maximum relative error of the compensation angle is 8.78%. The system is close to the diffraction limit, and the distortion is less than 0.33%. This study presents an image stabilization system and offers possible improvement in the aberrations in the system, which will provide great support to retina-like sensors. PMID:27463916

  11. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  12. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  13. Assessing the stability of an ALPAO deformable mirror for feed-forward operation.

    PubMed

    Bitenc, Urban; Bharmal, Nazim A; Morris, Timothy J; Myers, Richard M

    2014-05-19

    A deformable mirror (DM) is a mirror whose surface can be deformed in order to correct for optical aberrations. If a DM is used in a feed-forward operation (i.e. without feed-back, also known as open-loop) it is, among other requirements, crucial that a set of actuator commands repeatedly results in the same surface shape. We have tested an ALPAO DM against this criterion, by repeatedly applying a set of actuator commands over hours and monitoring the DM shape with an interferometer. We found that if the surface shape was held to shape A for several hours, then changed to a second shape, ℬ, the DM surface will drift from this new shape over the course of several hours. During this period the root-mean-square (RMS) of the deviation from shape ℬ can exceed 30% of the RMS of the difference between shapes A and ℬ. This can correspond to a surface deviation with RMS of several hundred nanometers, and would severely impact the resulting performance of an AO system using such a DM in a feed-forward operation. We have developed a model to correct for the time-varying surface shape in software by continuously adapting the actuator commands over the stabilization period. Application of the stabilisation procedure allows the surface to remain stable to within 4 nm RMS after a period of 6 minutes. We also provide a suggestion on how to improve the repeatability of surface response to different sets of actuator commands, which can be affected by the surface drift. PMID:24921361

  14. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  15. Application of modern-control-design methodologies to a multi-segmented deformable-mirror system. Master's thesis

    SciTech Connect

    Vaughan, E.M.

    1991-05-23

    The multi-segmented deformable mirror system is proposed as an element for a portion of a ballistic missile defense system. The size of the mirror required for this defense function requires that the mirror be developed in segments, and then these segments should be phased together to produce one continuous, large optic. The application of multivariable control system synthesis techniques to provide closed-loop wavefront control of the deformable mirror system is the problem discussed in this thesis. The method of H at infinity control system synthesis using loop-shaping techniques was used to develop a controller that meets a robust performance specification. The number and location of sensors was treated as a design variable, and the structured singular value (mu) was used to determine the performance robustness of the deformable mirror system. Decentralized control issues are also addressed through the use of necessary conditions in an effort to determine a suitable decentralized control structure with performance similar to that of the centralized controller.

  16. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films. PMID:25322105

  17. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  18. Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror.

    PubMed

    Vdovin, G; Kiyko, V

    2001-06-01

    A silicon micromachined membrane deformable mirror with a diameter of 10 mm, reflectivity of better than 99.8%, and a surface deflection range of 3mum has been used for intracavity control of an industrial 200-W cw Nd:YAG laser. When it was placed in the resonator, the mirror demonstrated continuous (more than 40-h) stable operation under an ~550-W cw optical load, with beam diameters in the range 3-6 mm. Periodic modulation of the curvature of the deformable mirror with a frequency of 250 Hz produced quick switching between stable and unstable resonator configurations, which resulted in pulse-period Q -switched generation with average power in the range 50-200 W, modulation depth from 95% to 10%, and an M(2) parameter of 6.5 to 30. PMID:18040454

  19. Application of a new high-speed magnetic deformable mirror for in-vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Balderas-Mata, Sandra E.; Jones, Steven M.; Zawadzki, Robert J.; Werner, John S.

    2011-08-01

    Nowadays in ophthalmologic practice several commercial instruments are available to image patient retinas in vivo. Many modern fundus cameras and confocal scanning laser ophthalmoscopes allow acquisition of two dimensional en face images of the retina with both back reflected as well as fluorescent light. Additionally, optical coherence tomography systems allow non-invasive probing of three-dimensional retinal morphology. For all of these instruments the available lateral resolution is limited by optical quality of the human eye used as the imaging objective. To improve lateral resolution and achieve diffraction-limited imaging, adaptive optics (AO) can be implemented with any of these imaging systems to correct both static and dynamic aberrations inherent in human eyes. Most of the wavefront correctors used previously in AO systems have limited dynamic range and an insufficient number of actuators to achieve diffraction-limited correction of most human eyes. Thus, additional corrections were necessary, either by trial lenses or additional deformable mirrors (DMs). The UC Davis AO flood-illuminated fundus camera system described in this paper has been previously used to acquire in vivo images of the photoreceptor mosaic and for psychophysical studies on normal and diseased retinas. These results were acquired using a DM manufactured by Litton ITEK (DM109), which has 109 actuators arranged in a hexagonal array below a continuous front-surface mirror. It has an approximate surface actuator stroke of +/-2μm. Here we present results with a new hi-speed magnetic DM manufactured by ALPAO (DM97, voice coil technology), which has 97 actuators and similar inter-actuator stroke (>3μm, mirror surface) but much higher low-order aberration correction (defocus stroke of at least +/-30μm) than the previous one. In this paper we report results of testing performance of the ALPAO DM for the correction of human eye aberrations. Additionally changes made to our AO flood

  20. Optical zoom lens module using MEMS deformable mirrors for portable device

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  1. Characterization of a MEMS deformable mirror by far field intensity evaluation

    NASA Astrophysics Data System (ADS)

    Greiner, Cherry; Finn, Susanna; Choi, Stacey; Doble, Nathan

    2013-03-01

    The performance of an adaptive optics (AO) system is typically measured using the wavefront sensor (WFS). However, another method is to use the point spread function (PSF), which is sensitive to scatter, does not act as a low pass filter and is not dependent on the WFS calibration. We decided to examine the performance of an AO system built for vision science that employed a micromechanical systems (MEMS) based deformable mirror (DM). Specifically, the MEMS DM consists of 489 actuators, resulting in 163 segments each with individual piston/tip/tilt control. Initial evaluation of the DM with a model eye included determining the ability of the DM to generate individual Zernike polynomials and evaluating the far field PSF to measure wavefront correction performance. For individual Zernike polynomial terms, the DM was found to be capable of correcting the aberration magnitudes expected from previously published human population studies.1, 2 Finally, the DM was used in an AO fundus camera to successfully acquire images of cone photoreceptors in a living human eye. This is part of ongoing work which will incorporate the MEMS DM into both an AO scanning laser ophthalmoscope (SLO) and an AO optical coherence tomography (OCT) system where the form of the PSF at the confocal pinhole/optical fiber is important for optimal imaging.

  2. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    NASA Astrophysics Data System (ADS)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  3. A novel deformable mirror with curvature and tip/tilt control based on the spider actuator concept

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Button, Tim; Meggs, Carl; Michette, Alan; Pfauntsch, Slawka; James, Ady; Willis, Graham; Dunare, Camelia; Stevenson, Tom; Parkes, William

    2012-06-01

    The Smart X-Ray Optics (SXO) project comprises a UK-based consortium developing active/adaptive micro-structured optical arrays (MOAs). MOA devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels. Adaptability is achieved using a combination of piezoelectric actuators, which bend the edges of the silicon chip, and a spider structure, which forms a series of levers connecting the edges of the chip with the active area at the centre, effectively amplifying the bend radius. The spider actuation concept, in combination with deep silicon etching stopped close to the surface, can also be used to create deformable mirrors where the curvature and tip/tilt angles of the mirror can be controlled. Finite Element Analysis (FEA) modelling, carried out for the optimization of the spider MOA device, indicates that deformable mirrors with curvature varying from flat to 5cm ROC and control over the tip/tilt angles of the mirror of +/-3mrad could be achieved. Test spider structures, manufactured using a Viscous Plastic Processing Process for the PZT piezoelectric actuators and a single wet etch step using <111> planes in a (110) silicon wafer for both the silicon channels and the spider structure, have been bent to a radius of curvature smaller than 5 cm. This paper evaluates the spider MOA's concept as a means to achieve deformable mirrors with controllable ROC and control over the tip/tilt angles. FEA modelling results are compared with obtained characterization data of prototype structures. Finally, manufacturing and integration methods and design characteristics of the device, such its scalability, are also discussed.

  4. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  5. Universal method for holographic grating recording: multimode deformable mirrors generating Clebsch-Zernike polynomials.

    PubMed

    Lemaître, G R; Duban, M

    2001-02-01

    Recording methods for making aberration-corrected holographic gratings are greatly simplified by use of a plane multimode deformable mirror (MDM) upon one of the two recording beams. It is shown that MDM compensators easily provide the superposition of many interesting active optics modes, which we have named Clebsch-Zernike modes. When we apply only a uniform loading or no loading at all onto the rear side of the MDM clear aperture, the available Clebsch-Zernike modes are made to belong to a subclass of the Zernike modes that includes the three modes of the third-order aberration theory as well as a well-defined part of the Zernike higher-order modes. Such a recording method is considered to be universal, since it does not require the use of a sophisticated optical system such as a compensator. Active optics 12-arm MDM's in the vase form have been designed from the elasticity theory. The design of six-arm MDM's is currently carried out with theoretical results. As an example of the method, the recording of three holographic gratings of the Hubble Space Telescope Cosmic Origins Spectrograph has been investigated. Substantial improvements in image quality have been found by use of a six-arm MDM as recording compensator. The result is that aberrations of much higher order can simultaneously be corrected so that the residual blur images of the spectra occupy areas approximately 10 (direction of dispersion) x 3 (cross dispersion) = 30 times smaller--also in terms of pixel number--than those obtained by our American colleagues. Therefore the active optics recording method appears to provide substantial gains in resolving power and in sensitivity: (i) For all three gratings the spectral resolution would be increased by a factor of 10, and (ii), in addition, for the two higher dispersion gratings, the limiting magnitude on the sky appears to be increased by a magnitude of approximately 1-1.2. PMID:18357020

  6. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  7. Characterising x-ray mirror deformations with a phase measuring deflectometry system

    NASA Astrophysics Data System (ADS)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400µm. One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure. In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces. A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  8. Micro-electro-mechanical systems (MEMS) for enzymatic detection

    NASA Astrophysics Data System (ADS)

    Jeetender, Amritsar; Packirisamy, Muthukumaran; Stiharu, Ion G.; Balagopal, Ganesharam

    2004-08-01

    Early enzymatic identification and confirmation is essential for diagnosis and prevention as in the case of Acute Myocardial Infarction (AMI). Biochemical markers continue to be an important clinical tool for the enzymatic detection. The advent of MEMS devices can enable the use of various microstructures for the detection of enzymes. In this study, the concept of MEMS is applied for the detection of enzyme reaction, in which microcantilevers undergo changes in mechanical behavior that can be optically detected when enzyme molecules adsorb on their surface. This paper presents the static behavior of microcantilevers under Horse Radish Peroxide (HRP) enzyme reaction. The reported experimental results provide valuable information that will be useful in the development of MEMS sensors for enzymatic detection. The surface stress produced due to enzyme reactions results in the bending of cantilevers as similar to the influencing of thermal stress in the cantilevers. This paper also reports the influence of thermal gradient on the microcantilevers.

  9. Using Micro-Electro-Mechanical Systems (MEMS) as Small Antennas

    SciTech Connect

    Datskos, Panos G; Lavrik, Nickolay V; Tobin, Jacob D; Bowland, Landon T

    2012-01-01

    We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.

  10. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  11. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  12. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  13. Figure control of flexible structures - Optical surfaces of thin deformable primary mirrors

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.; Ostroff, A. J.

    1980-01-01

    Application of a modal control design technique to achieve discrete control of distributed parameter systems is considered. Results are presented for application of the design technique to achieve diffraction limited performance from the primary mirror of a space telescope and to provide flutter suppression for an aircraft wing.

  14. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  15. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future. PMID:27526166

  16. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  17. A two deformable-mirror concept to improve the laser efficiency of Gemini South MCAO (GeMS)

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; Guzman, Dani

    2013-12-01

    Gem's is the first laser-based multi-conjugate adaptive optics offeredto the astronomical community. Its asterism of 5 laser guide stars hasrecently proved to provide very uniform turbulence correction over the85''x85'' observation field, opening the new era of wide-field highangular resolution studies from the ground. Good AO performance requireshowever good wavefront sensing measurements from the laser guide stars,which directly depends on the quality of the laser spot image. Theoptimization of the lasers launched out of the telescope requires tofollow frequent and constraining calibrations and alignments procedures(quasi-static aberrations), in order to guarantee satisfying amplitudeand phase of the beam. These complex and time-consuming procedures willstrongly penalize the availability of Gem's.A laser beam shaping concept has been recently suggested to overcomesuch issues. It consists in applying, in the beam transfer optics, afield-conjugation thanks to 2 deformable mirrors. We review thisconcept. In particular, we discuss the criterion to be optimized and thedesired amplitude and phase shapes at the output of the Gemini beamtransfer optics. We deduce the control to be applied to the mirrors fromthe optimization of the signal-to-noise ratio of the wavefront sensingin Gem's. An iterative algorithm is used to estimate the phases, with aweighted least-squares unwrapper to avoid branch points. This algorithmefficiency is demonstrated with adequate beam shaping simulations.Discussion is made about how to implement such concept at Gemini.

  18. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  19. Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origins Spectrograph gratings of the Hubble Space Telescope.

    PubMed

    Duban, M; Dohlen, K; Lemaitre, G R

    1998-11-01

    To illustrate the efficiency of using a deformable plane mirror to record holographic gratings, we have computed the three gratings for the Cosmic Origins Spectrograph. Their working conditions are severe, since they have to correct the residual spherical aberration of the Hubble Space Telescope. Nevertheless, all images obtained are largely diffraction limited with regard to the resolution.

  20. Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origins Spectrograph gratings of the Hubble Space Telescope.

    PubMed

    Duban, M; Dohlen, K; Lemaitre, G R

    1998-11-01

    To illustrate the efficiency of using a deformable plane mirror to record holographic gratings, we have computed the three gratings for the Cosmic Origins Spectrograph. Their working conditions are severe, since they have to correct the residual spherical aberration of the Hubble Space Telescope. Nevertheless, all images obtained are largely diffraction limited with regard to the resolution. PMID:18301548

  1. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  2. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  3. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  4. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  5. Development of an ELT XAO testbed using a Mach-Zehnder wavefront sensor: calibration of the deformable mirror

    NASA Astrophysics Data System (ADS)

    Delacroix, Christian; Langlois, Maud P.; Loupias, Magali; Thiébaut, Eric; Adjali, Louisa; Leger, Jonathan; Tallon, Michel

    2015-09-01

    Extreme adaptive optics (XAO) encounters severe difficulties to cope with the high speed (<1kHz), high accuracy and high order requirements for future extremely large telescopes. An innovative high order adaptive optics system using a self-referenced Mach-Zehnder wavefront sensor (MZWFS) allows counteracting these limitations. This sensor estimates very accurately the wavefront phase at small spatial scale by measuring intensity differences between two outputs, with a λ/4 path length difference between its two legs, but is limited in dynamic range due to phase ambiguity. During the past few years, such an XAO system has been studied by our team in the framework of 8-meter class telescopes. In this work, we report on our latest results with the XAO testbed recently installed in our lab, and dedicated to high contrast imaging with 30m-class telescopes (such as the E-ELT or the TMT). After reminding the principle of a MZWFS and describing the optical layout of our experiment, we will show the results of the assessment of the woofer-tweeter phase correctors, i.e., a Boston Micromachine continuous membrane deformable mirror (DM) and a Boulder Nonlinear Systems liquid crystal spatial light modulator (SLM). In particular, we will detail the calibration of the DM using Zygo interferometer metrology. Our method consists in the precise measurement of the membrane deformation while applying a constant deformation to 9 out of 140 actuators at the same time. By varying the poke voltage across the DM operating range, we propose a simple but efficient way of modeling the DM influence function using a Gaussian model. Finally, we show the DM flattening on the MZWFS allowing to compensate for low order aberrations. This work is carried out in synergy with the validation of fast iterative wavefront reconstruction algorithms, and the optimal treatment of phase ambiguities in order to mitigate the dynamical range limitation of such an MZWFS.

  6. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    PubMed Central

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-01-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range. PMID:26423346

  7. Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Kim, Eun-San; Kim, Changbum; Huang, Jung-Yun; Kim, Dotae

    2016-10-01

    Extraction mirrors installed at the most upstream position of interferometry beam size monitor are frequently used for measuring the beam size in storage rings. These mirrors receive the high power synchrotron radiation and are distorted owing to the heat distribution that depends on the position on the mirror surface. The distortion of the mirror changes the effective separation of the slit in the interferometry beam size monitor. Estimation of the effects of the front-end mirror distortion is important for measuring the beam size accurately. In this paper, we present the result of the numerical simulation of the temperature distribution and thermal expansion of the front-end mirror using ANSYS code, the theoretical basis of the effects of mirror distortion and compare with experimental results from Pohang Light Source II (PLS-II) at the Pohang Accelerator Laboratory (PAL). The equipment in the beam diagnosis line in PLS-II and experimental set-up for measuring the distortion of the front-end mirror using a multi-hole square array Hartmann screen are described.

  8. Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2015-04-01

    The surface shape accuracy of the active stressed lap impacts the performance of grinding and polishing in the fabrication of large mirrors. We introduce a model of active stressed lap for the fabrication of a 4 m f/1.5 mirror based on finite element analysis (FEA), and the lap surface accuracy achieves RMS<1.8  μm in the FEA method. Using the lap surface measurement system, experimental verification is put forward, and the RMS of the measured lap surface is within 2 μm in practice. A general improvement in lap surface accuracy using the Zernike polynomial is shown. After compensating the calculation errors, the lap surface accuracy is improved by 8%-23%, and achieves RMS<1.5  μm, which is appropriate for practical grinding and polishing. PMID:25967173

  9. The actuator design and the experimental tests of a new technology large deformable mirror for visible wavelengths adaptive optics

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Agapito, Guido; Arcidiacono, Carmelo; Carbonaro, Luca; Marignetti, Fabrizio; De Santis, Enzo; Biliotti, Valdemaro; Riccardi, Armando

    2012-07-01

    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As the inductance depends on the mover position, the electronics of this generator, provided with an inductance measure circuit, works also as a displacement sensor, supplying the control system with an accurate feed-back signal. A preliminary prototype, built according to the several FEA thermo-magnetic analyses, has undergone some preliminary laboratory tests. The results of these checks, matching the design results in terms of power and force, show that the the magnetic design addresses the severe specifications.

  10. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  11. Surface Micro-Machining: Progress Towards Micro-Electro Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Doscher, James

    1995-01-01

    Surface micromachining is a technique for building electromechanical systems in silicon. A number of electromechanical systems have been implemented in miniature using the fundamental structural building blocks of tensile and non-tensile springs, differential capacitance sensing cells, and electrostatic drive. The integration of complicated mechanical structures and electrical circuits onto a single chip is expected to improve reliability and testability of systems. Reduction in interconnect wiring, the increased use of automation, and the inherent reliability of integrated circuits will all contribute to increased reliability of systems.

  12. STEAM: a software tool based on empirical analysis for micro electro mechanical systems

    NASA Astrophysics Data System (ADS)

    Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat

    2006-03-01

    In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.

  13. Magnetic energy coupling system based on micro-electro-mechanical system coils

    NASA Astrophysics Data System (ADS)

    Li, Xiuhan; Yuan, Quan; Yang, Tianyang; Liu, Jian; Zhang, Haixia

    2012-04-01

    In this paper, a high efficiency wireless energy transfer system based on MEMS coils is first developed. The permanent magnetic core used in the transmitting coil can not only enhance the magnetic flux but also applies a strong and uniform magnetic field distribution around the core. Ansoft hfss is then used to analyze the performance of two coupling coils designed to be resonated at the same frequency. The distribution of magnetic field strength and coupling efficiency is modeled and characterized. High-performance bio-compatible MEMS coils were fabricated on a glass wafer by thick glue photolithography and electroplating technique. We measured a peak value of energy transfer at the resonant frequency of 23 MHz, and the coupling efficiency is higher than 10% within the distance of 10-20 cm by sweeping frequencies from 1 MHz to 200 MHz. Experiments also show that the resonant coupling efficiency is not much affected by the relative position of the two coils in a large range.

  14. Development of Characterization Tools for Reliability Testing of MicroElectroMechanical System Actuators

    SciTech Connect

    Allen, James J.; Eaton, William P.; Smith, Norman F.; Tanner, Danelle M.

    1999-07-26

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  15. Novel Micro ElectroMechanical Systems (MEMS) Packaging for the Skin of the Satellite

    NASA Technical Reports Server (NTRS)

    Darrin, M. Ann; Osiander, Robert; Lehtonen, John; Farrar, Dawnielle; Douglas, Donya; Swanson, Ted

    2004-01-01

    This paper includes a discussion of the novel packaging techniques that are needed to place MEMS based thermal control devices on the skin of various satellites, eliminating the concern associated with potential particulates &om integration and test or the launch environment. Protection of this MEMS based thermal device is achieved using a novel polymer that is both IR transmissive and electrically conductive. This polymer was originally developed and qualified for space flight application by NASA at the Langley Research Center. The polymer material, commercially known as CPI, is coated with a thin layer of ITO and sandwiched between two window-like frames. The packaging of the MEMS based radiator assembly offers the benefits of micro-scale devices in a chip on board fashion, with the level of protection generally found in packaged parts.

  16. Applications of ferrofluids in Micro Electro Mechanical Systems (MEMS) and micropumps

    NASA Astrophysics Data System (ADS)

    Jain, V. K.; Pant, R. P.; Vinod Kumar, .

    2008-12-01

    The micro-pump is one of the most promising micro-flow devices. At micro-level electronically controlled pumping of any fluid by a mechanical pump is not so easy and reliable. In the realm of nano-tech materials, ferrofluids have unique properties in both liquids and solids and have potential applications for MEMS/NEMS devices. This paper presents two new types of concepts, a micro-flowmeter based on a micro-turbine made using MEMS technology and the other is a micro-pump based on ferrofluidic actuation. In our first device an optical photovoltaic sensor has also been integrated with this device, and the micro-turbine rotates with a speed of 50000 rpm. We have fabricated a ferrofluid-based glass micro-pump of size 20 × 20 × 10 mm^{3}, in which micro actuation is electrically controlled by NdFeB (N50) permanent magnets (diameter 5 × 3 mm, B_{r} = 1400 mT, coercive field H_c=840 ,kA/m) with a ferrofluid bearing. The device is able to pump the fluid at the rate of 10 μ L/actuation. Figs 3, Refs 19.

  17. Of magnetic imaging system experiments and micro electro-mechanical systems "of mise and MEMS"

    NASA Astrophysics Data System (ADS)

    Patterson, William C.

    Magnetic fields can occur over an extremely broad range of amplitudes, and spatial and temporal scales. Practical scientific and engineering systems have fields ranging in strength from pico-tesla to hundreds of tesla. Furthermore, spatial variations can range in scale from nanometers to tens of meters, and temporal variations can range from picoseconds to hours. Due to these large variations, many different devices and methods have been previously designed for measuring and mapping magnetic fields. The primary application area for the systems developed here is magnetic microsystems. Such systems make use of one or more microscale electromagnets, soft magnets, and/or permanent magnets for sensors, actuators, inductors, electronics, biomedical devices, etc. A single magnet dimension may range from one mum to hundreds of mum, and the overall area of interest may span over distances of millimeters to centimeters. To map the stray fields from such structures, a field measurement tool must be capable of measuring fields ranging from mT to T, while mapping over distances of millimeters with a spatial resolution of approximately one mum. This current study is focused only on static fields, but time-varying fields are of great interest and could be addressed in further research. This research focuses on the development of two tools that meet the requirements of microscale magnetic measurements. The first tool is based on an optical method and excels at extremely rapid measurements of large spatial regions. The second tool is a raster based system that focuses on high magnetic and spatial accuracy. The optical system quantitatively maps the stray magnetic fields of microscale magnetic structures with field resolution down to 50 muT and spatial resolution down to 4 mum. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane. A novel single-light-path construction and discrete multi-image polarimetry processing method are used to extract quantitative areal field measurements from the optical images. The integrated system, including the equipment, image analysis software, and experimental methods are described. MOIFs with three different magnetic field ranges are calibrated, and the entire system is validated by measurement of the field patterns from two calibration samples. The final specifications for the MOIF system are: a spacial resolution of 4.2, 6.2, 20.1 mum for each respective MOIF type, a magnetic range of +/-230 mT with the use of the largest saturation MOIF film, magnetic resolution of +/-0.05, +/-0.5, +/-1 mT for each respective MOIF type, and quantification of a 2660 x 2128 mum area within tens of seconds. The raster system, or scanning Hall probe microscope (SHPM), also quantitatively maps the stray magnetic fields of microscale magnetic structures, with field range of +/-1 T and spatial resolution down to 1.6+/-0.1 mum. The system uses a micro Hall sensor to accurately measure the magnetic field perpendicular to the sample surface. The micro Hall sensor is integrated onto the edge of a quartz tuning fork to accurately detect sensor-to-sample contact, allowing precise control of the measurement height. The sample is raster scanned beneath the sensor with a 3-axis stage system for measurement of a spatial magnetic map. The SHPM components completed during the design and construction are: a raster scan system and enclosure, a Novel AC spinning Gaussmeter, a micro Hall probe integrated on a distance-sensing quartz tuning fork, and a self-oscillating excitation circuit for height control. The final specifications for the SHPM system are: raster scan spatial resolution of 0.3 mum, an average sampling speed of one sample per 0.7 seconds, magnetic active area spacial resolution for the smallest active area Hall sensor (nominally one mum) of 1.6+/-0.1 mum, magnetic sensitivity of the 5, 10 mum Hall probes were 0.47+/-0.006, and 0.420+/-009 VT-1A-1 , respectively, although the

  18. Of magnetic imaging system experiments and micro electro-mechanical systems "of mise and MEMS"

    NASA Astrophysics Data System (ADS)

    Patterson, William C.

    Magnetic fields can occur over an extremely broad range of amplitudes, and spatial and temporal scales. Practical scientific and engineering systems have fields ranging in strength from pico-tesla to hundreds of tesla. Furthermore, spatial variations can range in scale from nanometers to tens of meters, and temporal variations can range from picoseconds to hours. Due to these large variations, many different devices and methods have been previously designed for measuring and mapping magnetic fields. The primary application area for the systems developed here is magnetic microsystems. Such systems make use of one or more microscale electromagnets, soft magnets, and/or permanent magnets for sensors, actuators, inductors, electronics, biomedical devices, etc. A single magnet dimension may range from one mum to hundreds of mum, and the overall area of interest may span over distances of millimeters to centimeters. To map the stray fields from such structures, a field measurement tool must be capable of measuring fields ranging from mT to T, while mapping over distances of millimeters with a spatial resolution of approximately one mum. This current study is focused only on static fields, but time-varying fields are of great interest and could be addressed in further research. This research focuses on the development of two tools that meet the requirements of microscale magnetic measurements. The first tool is based on an optical method and excels at extremely rapid measurements of large spatial regions. The second tool is a raster based system that focuses on high magnetic and spatial accuracy. The optical system quantitatively maps the stray magnetic fields of microscale magnetic structures with field resolution down to 50 muT and spatial resolution down to 4 mum. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane. A novel single-light-path construction and discrete multi-image polarimetry processing method are used to extract quantitative areal field measurements from the optical images. The integrated system, including the equipment, image analysis software, and experimental methods are described. MOIFs with three different magnetic field ranges are calibrated, and the entire system is validated by measurement of the field patterns from two calibration samples. The final specifications for the MOIF system are: a spacial resolution of 4.2, 6.2, 20.1 mum for each respective MOIF type, a magnetic range of +/-230 mT with the use of the largest saturation MOIF film, magnetic resolution of +/-0.05, +/-0.5, +/-1 mT for each respective MOIF type, and quantification of a 2660 x 2128 mum area within tens of seconds. The raster system, or scanning Hall probe microscope (SHPM), also quantitatively maps the stray magnetic fields of microscale magnetic structures, with field range of +/-1 T and spatial resolution down to 1.6+/-0.1 mum. The system uses a micro Hall sensor to accurately measure the magnetic field perpendicular to the sample surface. The micro Hall sensor is integrated onto the edge of a quartz tuning fork to accurately detect sensor-to-sample contact, allowing precise control of the measurement height. The sample is raster scanned beneath the sensor with a 3-axis stage system for measurement of a spatial magnetic map. The SHPM components completed during the design and construction are: a raster scan system and enclosure, a Novel AC spinning Gaussmeter, a micro Hall probe integrated on a distance-sensing quartz tuning fork, and a self-oscillating excitation circuit for height control. The final specifications for the SHPM system are: raster scan spatial resolution of 0.3 mum, an average sampling speed of one sample per 0.7 seconds, magnetic active area spacial resolution for the smallest active area Hall sensor (nominally one mum) of 1.6+/-0.1 mum, magnetic sensitivity of the 5, 10 mum Hall probes were 0.47+/-0.006, and 0.420+/-009 VT-1A-1 , respectively, although the current revisions of Hall sensors resistances are too high preventing their integration in the system.

  19. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  20. A nano-scale mirror-like surface of Ti–6Al–4V attained by chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti–6Al–4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti–6Al–4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  1. A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti-6Al-4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti-6Al-4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  2. Finite element analysis of a meniscus mirror

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.

    1989-10-01

    Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.

  3. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  4. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  5. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  6. Chiral mirrors

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  7. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  8. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  9. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  10. The design and simulation of single detector MIR spectrometer based on MEMS scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-wei; Wen, Zhi-yu; Zeng, Tian-ling; Wei, Kang-lin

    2011-08-01

    Infrared (IR) spectrometers are very important optical equipments that can be used in industry, science, medicine, agriculture, biology and food safety etc., and the market is growing. However, most traditional IR spectrometers, such as Fourier transform spectrometer (FTS) that based on Michelson interferometer principle and scanning monochromator that based on grating scanning, are expensive, relative large volume, and stationary, which can't meet the requirements of specific application such as rapidity, special environment and some special samples. To overcome these drawbacks, innovatory technology-micro electro mechanical systems (MEMS) technology was used in micro IR spectrometers in the past few years. And several prototypes and products that based on several operational principles have been emerged. In this paper, a novel IR micro spectrometer which based on MEMS technology and used single element detector was presented over a wide spectral range (from 2500nm to 5000nm) in the mid infrared (MIR) wavelength regime, and the optical system of it was designed on the basis of traditional scanning monochromator principle. In the optical system, there is a highlighted characteristic that dual spherical focus mirror was used to focus the diffraction light of the diffraction grating, which improved the spectral resolution of the optical system. Finally, using Zemax optical software, three torsion angle locations were selected to simulate the optical system of the spectrometer with the slit's size 0.1mm×1mm. The simulation result indicated that in the whole wavelength range the spectral resolution of the optical system was less than 30nm, and a high accuracy MIR spectrometer with compact volume will be realized in future hopefully.

  11. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  12. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  13. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  14. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  15. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  16. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  17. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  18. Membrane mirror light modulator technology

    NASA Astrophysics Data System (ADS)

    Warde, Cardinal; McCann, James T.; Shrauger, Vern; Ieong, H.-H.; Ersen, Ali; Wang, X. Y.; Hubbard, J.

    2000-03-01

    We have incorporated membrane mirror technology over a discrete array of pixel wells to create both high-efficiency optical shutters and spatial light modulators (SLM). A continuous metalized-membrane mirror with greater than 98% reflectivity minimizes optical insertion loss. This mirror is electrostatically deformed into the wells with either a common electrode (shutter) or pixilated electrodes (SLM). By using a spatial filter, analog intensity optical modulation is realized. Both 1-D (linear) and 2-D grating pixel patterns have been investigated. With the appropriate pixel dimensions, both coherent monochromatic and broadband incoherent light within the 0.25 to 10.6 micron range can be modulated with contrast ratios up to 1000:1. Small well sizes (approximately 10-micron diameter) allow for modulation speeds up to 1 MHz. The theoretical foundations for the well layout, the membrane mirror deformation and its diffraction properties, and the design trade-offs are detailed. We have applied our membrane mirror technology to CMOS VLSI circuits creating a high-speed, high-efficiency spatial light modulator capable of 80 X 64 resolution and scalable to HDTV standards. The membrane mirror SLM provides either amplitude or phase modulation. In the phase modulation mode, at least two waves of stroke per discrete well are possible.

  19. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  20. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  1. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  2. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  3. Primary mirror back surface shape research of GEO laser communication system

    NASA Astrophysics Data System (ADS)

    Liu, Weida; Zhang, Li-zhong; Meng, Li-xin

    2015-11-01

    The research of laser communication system primary mirror deformation caused by back surface shape variation was done in this paper. The usual mirror back surface shapes were sphere, double arch, flat and biconcave shape and so on. Based on the four shape mirror, with the center hole rim support pattern, the four shape mirror temperature distribution equation was inferred by thermal elastic theory, deformation are compared in 1-5℃ radius direction temperature difference, in the case of minor weight gap and equal maximum thickness. As a result, the deformation of sphere back surface shape mirror is minimal. So sphere back surface shape is fit for the primary mirror.

  4. Focus tunable mirrors made by ionic polymer-metal composite

    NASA Astrophysics Data System (ADS)

    Li, Chung-Min; Su, Guo-Dung

    2014-09-01

    In order to meet modern requirement, electronic products are made smaller and thinner. We used deformable mirrors (DMs) in optical systems that can make camera modules thinner and lighter in electronic products. An Ionic-Polymer Metal Composite (IPMC) plays the critical role in our design of deformable mirrors. It has good bending feature and can be driven by low voltage (usually less than 5 volts). Other technologies such as liquid lenses, MEMS deformable mirrors, and liquid crystal lens, all need higher voltage to reach similar optical power of IPMC. After fabrication of IPMC deformable mirrors, we used PDMS on one surface to improve the surface roughness before reflective metal is deposited. Key characteristics of IPMC deformable mirror are demonstrated in the paper. By coating a silver layer on the smoothed IPMC surface, the reflection is up to 90%. From simulation results, the zoom ratio of this module can be expected 1.8 times. Experimentally, the deformable mirror can be changed from flat to 65 diopters (m-1) by only 3 volts. In this paper, we demonstrated a reflective optical zoom module with three mirrors and two deformable mirrors.

  5. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  6. Micro-electro-mechanical-system (MEMS)-based fiber optic grating sensor for improving weapon stabilization and fire control

    NASA Astrophysics Data System (ADS)

    Zhang, Sean Z.; Xu, Guoda; Qui, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-06-01

    A MEMS-based fiber optic grating sensor (FOGS) for improving weapon stabilization and fire control has been investigated and developed. The technique overwrites two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS-FOGS was derived, and simulation results concerning load, angle, strain, and temperature were obtained. The fabricated MEMS diaphragm and the overlaid FBGs are packaged together and mounted on a specially designed cantilever beam system. User-friendly software for sensing system design and data analysis has been developed and can be used to control other sensing systems. The combined multifunctional sensitive. The fully developed sensing system is expected to find applications in fire control, weapon stabilization, and other areas where accurately sensing strain and temperature is critical.

  7. Detection of sub-ppm traces of aqueous heavy-metal ions using micro-electro-mechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Rahafrooz, Amir; Pourkamali, Siavash

    2009-11-01

    Capacitive silicon micro-mechanical resonators have been utilized in this work as ultra-sensitive mass sensors for the detection of trace amounts of copper ions in water samples. The approach is based on the reduction of aqueous metal ions by the silicon in a resonant structure and consequently deposition of a very thin metal layer on the resonator surface changing its resonant frequency. Measurements demonstrate successful detection of sub-ppm concentrations of copper(II) ions in water. Relatively large frequency shifts (hundreds of ppm) have been measured for resonators exposed to copper concentrations as low as 4 µM (0.26 ppm). An analytical model for the resonant frequency of the resulting complex beams has been derived and used to calculate the thickness of the deposited copper layer based on the measured frequency shifts. The model shows that the measured frequency shifts correspond to only a few atomic layers of copper (as thin as ~7 Å) deposited on the resonator surfaces. This corresponds to a mass sensitivity of more than 4000 Hz µg-1 cm-2 which is much larger than the highest mass sensitivities measured for quartz crystal microbalances.

  8. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

  9. Applicability of time-averaged holography for micro-electro-mechanical system performing non-linear oscillations.

    PubMed

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-21

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  10. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    PubMed Central

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  11. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Brooks, D.; Strangwood, M.

    2008-07-01

    We present our recent developments towards the construction of a large, thin, single-piece mirror for adaptive optics (AO). Our current research program aims to have completed fabrication and testing of a 1m diameter, nickel coated carbon-fibre reinforced cyanate ester resin mirror by the last quarter of 2009. This composite mirror material is being developed to provide a lightweight and robust alternative to thin glass shell mirrors, with the challenge of future large deformable mirrors such as the 2.5m M4 on the E-ELT in mind. A detailed analysis of the material properties of test mirror samples is being performed at the University of Birmingham (UK), the first results of which are discussed and presented here. We discuss the project progress achieved so far, including fabrication of the 1m flat moulds for the replication process, manufacturing and testing methods for 20 cm diameter sample mirrors and system simulations.

  12. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  13. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  14. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  15. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  16. Multilayer Active Shell Mirrors

    NASA Astrophysics Data System (ADS)

    Steeves, John

    This thesis presents a novel active mirror technology based on carbon fiber composites and replication manufacturing processes. Multiple additional layers are implemented into the structure in order to provide the reflective layer, actuation capabilities and electrode routing. The mirror is thin, lightweight, and has large actuation capabilities. These features, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Structural redundancy in the form of added material or support structures is replaced by thin, unsupported lightweight substrates with large actuation capabilities. Several studies motivated by the desire to improve as-manufactured figure quality are performed. Firstly, imperfections in thin CFRP laminates and their effect on post-cure shape errors are studied. Numerical models are developed and compared to experimental measurements on flat laminates. Techniques to mitigate figure errors for thicker laminates are also identified. A method of properly integrating the reflective facesheet onto the front surface of the CFRP substrate is also presented. Finally, the effect of bonding multiple initially flat active plates to the backside of a curved CFRP substrate is studied. Figure deformations along with local surface defects are predicted and characterized experimentally. By understanding the mechanics behind these processes, significant improvements to the overall figure quality have been made. Studies related to the actuation response of the mirror are also performed. The active properties of two materials are characterized and compared. Optimal active layer thicknesses for thin surface-parallel schemes are determined. Finite element simulations are used to make predictions on shape correction capabilities, demonstrating high correctabiliity and stroke over low-order modes. The effect of actuator saturation is studied and shown to significantly degrade shape correction performance. The

  17. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  18. GMT primary mirror support

    NASA Astrophysics Data System (ADS)

    Hull, Charlie

    2014-07-01

    The GMT primary mirror support draws on the heritage developed for the 3.5 m, 6.5 m, and 8.4 m mirrors from the Steward Observatory Mirror Lab. While similar in design philosophy and concept, each successive generation has incorporated refinements based on the experience gained from previous mirrors.

  19. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  20. Thermal deformation of concentrators in an axisymmetric temperature field

    NASA Technical Reports Server (NTRS)

    Bairamov, R.; Machuev, Y. I.; Nazarov, A.; Sokolov, Y. V.; Solodovnikova, L. A.; Fokin, V. G.

    1985-01-01

    Axisymmetric thermal deformations of paraboloid mirrors, due to heating, are examined for a mirror with a optical axis oriented toward the Sun. A governing differential equation is derived using Mushtari-Donnel-Vlasov simplifications, and a solution is presented which makes it possible to determine the principal deformation characteristics.

  1. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  2. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  3. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  4. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  5. Research on axial support technology of large aperture primary mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hui

    2010-05-01

    In ground-based optical detection system, when large aperture primary mirror in a different pitch angle detection, the surface shape error of primary mirror is affected by its weight deformation, and the surface shape error of primary mirror is one of the key factors affecting imaging quality. The primary mirror support system, including axial support and radial support, and the axial support is main factor affecting the surface shape error of primary mirror, the position and number of axial support is very important for surface shape error of primary mirror. The support technology of Φ1.2m primary mirror was studied detailedly in this paper, the parameterized model of primary mirror was built based on ANSYS, the relationship between the surface shape error of primary mirror and the ratio of its diameter to thickness was analyzed, the axial support was optimized, and the support-ring number, support-ring radius and support point position of axial support were optimum designed. The result of analysis showed that the Root-Mean-Square (RMS) value of the surface shape error of primary mirror was 1.8 nm, when the primary mirror pointed to zenith, met to the design need of the optical system, and the axial support system was verified.

  6. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  7. Mirror Technology Roadmap for NASA's Exoplanet Exploration Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Shaklan, Stuart B.; Balasubramanian, K.

    2011-01-01

    There are several possible approaches to designing exoplanet missions: (1) Coronagraphs (2) Interferometers (3) Starshades Wavefront sensing and control is the central concern, not mirror size (1) Starlight suppression with deformable mirrors (2) Thermal and structural stability (3) Metrology for sensing and control Diffraction-limited optical primary mirrors 4-m or larger are needed to detect Earthlike planets (1) Surface figure similar to HST required (2) Smaller primary mirrors can be used with aggressive coronagraph designs, but the stability tolerances become the driving concern (3) Stability tolerances of coronagraphs are greatly reduced when larger primaries are used in conjunction with 8th-order masks Long term vision for large telescope development includes space-based segmented-mirror telescopes using actively-controlled glass segments or silicon carbide hybrid-mirror designs

  8. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  9. The 8.2 metre primary mirrors of the VLT

    NASA Astrophysics Data System (ADS)

    Dierickx, P.; Enard, D.; Merkle, F.; Noethe, L.; Wilson, R. N.

    1990-08-01

    The Very Large Telescope (VLT) presently being developed at ESO is described in terms of technological advances which make its use both technically effective and feasible. The VLT capitalizes on advances in materials, polishing techniques, and mirror support systems. The VLT consists of four 8-m alt-az telescopes and a 2-m auxiliary telescope in a single-dish configuration with Zerodur meniscus mirrors passively supported on a lateral system. A discussion of the tradeoffs between glass and metal mirrors is presented, and computerized polishing is described in relation to optical specifications. The mirror is supported with 150 axial and 60 lateral supports with electromechanical actuators to modulate applied force. The active optics concept is employed via the flexibility of the primary mirror, which generates elastomechanical deformations and the position and orientation of the secondary mirror.

  10. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  11. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Richard, Ralph M.; Vukobratovich, Daniel

    1989-11-01

    A parametric design study of light weight mirror shapes with various support conditions was performed utilizing the finite element program NASTRAN. Improvements in the mirror performance were made based on the following design criteria: (1) minimization of the optical surface wavefront variations, (2) minimization of the self-weight directly related to cost of manufacturing, and (3) optimal location of support points. A preprocessor to automatically generate a finite element model for each mirror geometry was developed in order to obtain the structural deformations systematically. Additionally, a postprocessor, which prepares an input data file for FRINGE (an optical computer code) was developed for generating the optical deflections that lead to the surface wavefront variations. Procedures and modeling techniques to achieve the optimum (the lightest and stiffest mirror shape due to self-weight) are addressed.

  12. The production of metal mirrors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Brooks, David

    This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors. However the thermal efficiency and potential improved mirror seeing benefits are documented. Space telescopes and optical telecommunications could also benefit with the application of metal mirrors. Presented here are the processes and results that culminated in the rebirth of the Birr Telescope. The main section concerns the material selection and processes in the construction of a 1.83 meter diameter 1.4 tonne aluminium primary mirror. The aluminium mirror technology developed was also applied to the construction of an aspheric thin meniscus deformable mirror. Methods employed in its production are described. Documented are the advanced computer controlled polishing methods employed in producing a one third scale model of the hyperbolic secondary mirror for the Gemini Telescopes. These were developed using an active polishing lap.

  13. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  14. Self in the mirror.

    PubMed

    Prinz, Wolfgang

    2013-09-01

    What are mirror systems good for? Several suggestions have been made in response to this question, addressing the putative functions of mirror systems in minds and brains. This paper examines possible contributions of mirror systems to the emergence of subjectivity. At the heart of the discussion is the notion of social mirroring, which has a long tradition in social philosophy and social anthropology. Taking the existence of mirror devices in minds and brains for granted, I argue that social mirroring is a prerequisite for the constitution of mental selves, and, hence, the emergence of subjectivity. However, the fact that self and subjectivity are socially created should not be taken to indicate that they are illusory. They are as real as natural facts are. PMID:23410785

  15. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  16. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  17. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  18. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  19. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  20. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  1. Variable-curvature mirrors for the VLTI

    NASA Astrophysics Data System (ADS)

    Ferrari, Marc; Derie, Frederic

    1998-07-01

    A variable curvature mirror is a powerful device that can increase the field of view of optical interferometers. Such a mirror has being developed for the coherent combined focus of the European Southern Observatory Very Large Telescope Interferometer. The variable focal length permits positioning of the pupil image of an individual telescope at a precise location after the delay-line. This property is necessary to exactly remap homothetically the output pupil configuration at the image beam combiner. Given the large zoom range that is needed in the delay line, when the mirror is not stressed the optical surface is a plane while it is convex with f/2.5 at maximum stress. The mirror itself is a very small stainless steel meniscus, with a 300 micrometers thickness, because only the high elasticity of such material allows to achieve the full domain of curvature. The thickness distribution of the meniscus is calculated using elasticity theory in the case of a large deformation. The realization of this micro-optic active device requires advanced techniques in optical fabrication and in particular high precision manufacturing with numerical command lathe. This article also presents the testing of this highly variable curvature mirror and the surface quality obtained within the full curvature range.

  2. Primary mirror assemblies for large space telescopes

    NASA Astrophysics Data System (ADS)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  3. Finite element analysis of carbon fiber composite adaptive mirrors

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter

    2004-10-01

    With the advent of the new generation of ground-based telescopes with primary sizes of 30-100 m, adaptive optics (AO) technology is in rapid development. One important area of research is that of integration of AO into the telescope's operation. A possible solution for this is the use of an adaptive secondary mirror. However, for a secondary of several meters in size, this presents many problems in choice of material, as well as design for the adaptive control. An active mirror prototype made out of a carbon fibre composite material (CFC) is under development at University College London in collaboration with QinetiQ and Cobham Composites. We present here results from finite element analysis of this mirror, as well as modelling results of an adaptive secondary mirror section as might be developed for the new class of telescopes. These results indicate that CFC could indeed present a viable alternative to more traditional deformable mirror materials.

  4. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  5. The mirror box

    NASA Astrophysics Data System (ADS)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  6. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  7. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  8. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  9. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  10. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  11. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  12. COMPONENTS OF LASER SYSTEMS: Single-channel adaptive mirrors for laser optics

    NASA Astrophysics Data System (ADS)

    Safronov, A. G.

    1995-11-01

    Single-channel deformable mirrors for use in low-correction-order laser adaptive systems were developed and investigated. The structure of the mirrors is described and the results are given of experimental determinations of the initial shape of the optical surface, of the response functions, of the sensitivity, and of the electromechanical hysteresis. Calculations are reported of the thermal deformation of the mirrors subjected to the effects of heat under various conditions, and also of the frequency characteristics of these mirrors. It is shown that such adaptive mirrors are effective in compensation for large-scale axisymmetric distortions of the wavefront in laser optics operating at powers up to 1 kW. The operational range of these mirrors is approximately ±20 μm in respect of the amplitude of the optical surface displacements and up to 1 kHz in respect of the frequency.

  13. Optimization design for the supporting system of 2m telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Zhao, Fu; Wang, Ping; Gong, Yanjue; Zhang, Li; Lin, Jianlong

    2008-12-01

    This paper describes the optimization solution improving the total quality of the primary mirror supporting type. With the methods of Finite element analysis(FEA), Orthogonal experiment and BP Neural Network, the relationship between the structure parameters in primary mirror supporting type and the deformation of the primary mirror is built. With this relationship and Genetic Algorithm(GA) optimization design, a group of reasonable technology parameters is found that can improve the static stiffness of the primary mirror supporting type so as to reduce the gravity deformation of the primary mirror. The modal analysis and random vibration analysis are also discussed in detail, and the results indicate that the dynamic stiffness of the primary mirror supporting type is also improved.

  14. Design, fabrication and testing of active carbon shell mirrors for space telescope applications

    NASA Astrophysics Data System (ADS)

    Steeves, John; Laslandes, Marie; Pellegrino, Sergio; Redding, David; Bradford, Samuel Case; Wallace, James Kent; Barbee, Troy

    2014-07-01

    A novel active mirror concept based on carbon fiber reinforced polymer (CFRP) materials is presented. A nanolaminate facesheet, active piezoelectric layer and printed electronics are implemented in order to provide the reflective surface, actuation capabilities and electrical wiring for the mirror. Mirrors of this design are extremely thin (500-850 µm), lightweight (~ 2 kg/m2) and have large actuation capabilities (~ 100 µm peak- to-valley deformation per channel). Replication techniques along with simple bonding/transferring processes are implemented eliminating the need for grinding and polishing steps. An outline of the overall design, component materials and fabrication processes is presented. A method to size the active layer for a given mirror design, along with simulation predictions on the correction capabilities of the mirror are also outlined. A custom metrology system used to capture the highly deformable nature of the mirrors is demonstrated along with preliminary prototype measurements.

  15. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  16. Lighted, Folding Inspection Mirror

    NASA Technical Reports Server (NTRS)

    Roepe, Brian E.

    1991-01-01

    Compact, inexpensive tool used in place of expensive borescopes. Shortens inspection/photographing process. Includes two small metal or glass mirrors hinged together. Two 3-V light bulbs attached along edges of one mirror and connected to battery of two cells. Inserted into narrow opening of clevis or tand, and surface viewed and photographed in opposite mirror. Useful in assembly of segments of solid rocket motors as well as in postflight assessment, engineering evaluation, and refurbishment. Also applied in general to inspection and photographing of inner sealing surfaces to which access difficult.

  17. [Mirror behaviors in dementia: the many mirror signs].

    PubMed

    Ghika, Joseph; Diéguez, Sebastian; Assal, Frédéric; Demonet, Jean-François

    2013-11-13

    Mirror behaviors in advanced dementia are: the mirror sign of Abely and Delmas, where the patient stares at his face (environment-driven behavior of Lhermitte); non recognition of the self in the mirror (autoprosopagnosia and/or delirious auto-Capgras); mirror agnosia of Ramachandran and Binkofski where the patient do not understand the concept of mirror and its use; the psychovisual reflex, or reflex pursuit of the eyes when passively moving a minrror in front of a patient (intact vision); mirror writing (procedural learning). We describe four demented patients with mirror behaviors assessing brain mechanisms of self recognition, social brain and mental and visuo-spatial manipulation of images and objects.

  18. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  19. Development of GMT fast steering secondary mirror assembly

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Kern, Jonathan; Kim, Young-Soo

    2014-07-01

    The Giant Magellan Telescope (GMT) is one of Extremely large telescopes, which is 25m in diameter featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The guiding philosophy in the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter, thus optimizing the seeing limited performance of the telescope. The final design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The optical surface deformations, image qualities, and structure functions for the gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy (EE80) in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of tip-tilt operation.

  20. Calculation of the optimal polarisation anisotropy of interference mirrors of a ring laser resonator

    SciTech Connect

    Vol'pyan, O D; Kuryatov, V N; Sokolov, A L

    2009-10-31

    The influence of the amplitude-phase polarisation anisotropy of the interference mirrors on the polarisation characteristics of a ring laser (ellipticity, frequency shifts, and losses) is analysed. The combination of the mirror parameters, at which the maximum sensitivity of the polarisation characteristics of radiation to the nonplanar deformation of the axial contour is observed, is determined. It is shown that there exists a range of optimal phase anisotropies of the mirrors. (resonators)

  1. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  2. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  3. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  4. Mirror image proteins.

    PubMed

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  5. Mirror Attachment For Borescope

    NASA Technical Reports Server (NTRS)

    Gearhart, John F.; Peloquin, James E.

    1994-01-01

    Attachment for articulated borescope provides views into small, normally inaccessible spaces. Simple small round mirror on extension arm welded to borescope head. Tilted at angle to axis of borescope head, mirror provides views sideways to borescope head. Disassembly of turbopump blades not necessary to enable fluorescent-penetrant-dye inspection. Attachment used to inspect difficult-to-reach internal parts of other assemblies. Also used for inspection with ordinary white light.

  6. Notes on moving mirrors

    SciTech Connect

    Obadia, N.; Parentani, R.

    2001-08-15

    The Davies-Fulling (DF) model describes the scattering of a massless field by a noninertial mirror in two dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In the second part, we introduce an alternative model which is based on self-interactions described by an action principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where they are singular when using the DF model. Two examples are considered. The first concerns the flux induced by the disappearance of the reflection condition, a situation which bears some analogies with the end of the evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.

  7. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  8. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer.

    PubMed

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  9. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer

    PubMed Central

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  10. Cold welded laser mirror assembly

    SciTech Connect

    Chaffee, E.G.

    1989-02-07

    A gas laser apparatus is described comprising: (a) a gas laser tube having a bore extending between cathode and anode ends; (b) the laser tube terminating at each end with a bellows assembly operative to extend the length of the tube bore; (c) each bellows assembly comprising: (i) an adjustably positionable metal bellows secured to a selected end of the tube; (ii) a tubular pedestal secured at one end to the bellows to form an extension thereof and at the opposite end providing a mirror mount surface; (iii) a mirror secured to the surface; (iv) a cold weld material located between the mirror and mirror mount surface; and (v) retaining means secured to the pedestal encasing the outer portion of the mirror and operative to apply pressure to the cold weld material to establish a cold weld seal between the mirror and mirror mount surface to retain the mirror on and prevent shifting of the mirror with respect to the mirror mount surface.

  11. Freeform mirror based optical systems for FAME

    NASA Astrophysics Data System (ADS)

    Agócs, Tibor; Kroes, Gabby; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Jaskó, Attila

    2014-07-01

    In this paper we present the design of freeform mirror based optical systems that have the potential to be used in future astronomical instrumentation in the era of extremely large ground based telescopes. Firstly we describe the optical requirements followed by a summary of the optimization methodology used to design the freeform surface. The intention is to create optical architectures, which not only have the numerous advantages of freeform based systems (increased optical performance and/or reduction of mass and volume), but also can be manufactured and tested with today's manufacturing techniques and technologies. The team plans to build a demonstrator based on one of the optical design examples presented in this paper. The demonstrator will be built and tested as part of the OPTICON FP7 Freeform Active Mirror Experiment (FAME) project. A hydroforming technique developed as part of the previous OPTICON FP7 project will be used to produce an accurate, compact and stable freeform mirror. The manufacturing issues normally experienced in the production of freeform mirrors are solved through the hydroforming of thin polished substrates, which then will be supported with an active array structure. The active array will be used to compensate for residual manufacturing errors, thermo-elastic deformation and gravity-induced errors.

  12. Optimization of the ATST primary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Price, Ronald S.; Moon, Il K.

    2006-06-01

    The Advanced Technology Solar Telescope (ATST) primary mirror is a 4.24-m diameter, 75-mm thick, off-axis parabola solid meniscus mirror made out of a glass or glass ceramic material. Its baseline support system consists of 120 axial supports mounted at the mirror back surface and 24 lateral supports along the outer edge with an active optics capability. This primary mirror support system was optimized for the telescope at a near horizon position to achieve the best gravity and thermal effects. To fulfill the optical and mechanical performance requirements, extensive finite element analyses using I-DEAS and optical analyses with PCFRINGE have been conducted for the support optimization. Analyses include static deformation (gravity and thermal), frequency calculations, and support system sensitivity evaluations. An influence matrix was established to compensate potential errors using an active optics system. Performances of the primary mirror support system were evaluated from mechanical deformation calculations and the optical analyses before and after active optics corrections. The performance of the mirror cell structure was also discussed.

  13. Research on primary mirror lateral support structure of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    2010-05-01

    The primary mirror of large-aperture telescope is an important component of telescope system. The surface figure error of the primary mirror is a critical factor affecting the imaging quality of telescope system. With the augment of primary mirror aperture, the surface figure error of the primary mirror is affected by many factors, such as gravity, thermal deformation and so on. The factors that influence the surface figure error of the primary mirror are considered and analyzed roundly according to technical requirements of optical system. So the feasible project is researched on the lateral support structure of large-aperture telescope primary mirror. The primary mirror support system of large-aperture telescope is composed of axial support and lateral support. In traditional telescope, the contribution of lateral support to surface distortion is less than axial support. With increase of diameter to thickness ratio, lateral support is becoming more complicated and important than before. Lateral support is a key technology the same as axial support for the large-aperture telescope primary mirror. With the foundation of analysis, comparison and conclusion of related literature and monograph, according to primary mirror supporting principle of the large-aperture telescope. Lateral support methods, the influence of the primary mirror surface figure error due to primary mirror lateral support and lateral support structure of primary mirror are analyzed.

  14. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    first-order rotation between the uppermost and lowermost planes is zero. The need to have zero net rotation between these planes under all loading conditions in a typical practical structure is what prompts the use of the mirror configuration. Force and moment loadings other than simple axial compression produce only second-order deformations through strains in the struts and cables.

  15. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  16. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Stahl, P.; McKay, A.; Chaney, D.; Gallagher, B.

    2010-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The 0.67m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. The flight mirrors are all close to readiness for this final step or have started cryo-testing at the X-Ray Calibration Facility. Each mirror will then be coated with a protected Au coating prior to attachment to the flight structure. We here review the process and status of the mirror fabrication program and discuss the predicted performance of the telescope based on initial results from cryogenic mirror measurements.

  17. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  18. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  19. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  20. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  1. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  2. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  3. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  4. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  5. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary

  6. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  7. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  8. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  9. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  10. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  11. Some Considerations for Precision Metrology of Thin X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.; Saha, T.; Zhang, W. W.; Rohrbach, S.; Chan, K.-W.; Hadjimichael, T.; Hong, M.; Davis, W.

    2008-01-01

    Determination of the shape of very thin x-ray mirrors employed in spaced-based telescopes continues to be challenging. The mirrors shapes are not readily deduced to the required accuracy because the mount induced distortions are often larger than the uncertainty tolerable for the mission metrology. In addition to static deformations, dynamic and thermal considerations are exacerbated for this class of mirrors. We report on the performance of one temporary mounting scheme for the thin glass mirrors for the Constellation-X mission and prospects for deducing their undistorted shapes.

  12. Mirror neurons and mirror systems in monkeys and humans.

    PubMed

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  13. Paranal Receives New Mirror

    NASA Astrophysics Data System (ADS)

    2008-04-01

    A 4.1-metre diameter primary mirror, a vital part of the world's newest and fastest survey telescope, VISTA (the Visible and Infrared Survey Telescope for Astronomy) has been delivered to its new mountaintop home at Cerro Paranal, Chile. The mirror will now be coupled with a small camera for initial testing prior to installing the main camera in June. Full scientific operations are due to start early next year. VISTA will form part of ESO's Very Large Telescope facility. ESO PR Photo 10d/08 ESO PR Photo 10d/08 The VISTA Mirror The mirror arrived over the Easter weekend at the Paranal Observatory where the telescope is being assembled at an altitude of 2518m, in Chile's Atacama Desert. VISTA Project Manager Alistair McPherson from STFC's UK Astronomy Technology Centre (UK ATC) accompanied the mirror on its journey to Chile: "This is a major milestone for the VISTA project. The precious mirror was loaded on to a plane in a special cradle that used tennis balls to cushion it from impact for its arduous journey across three continents. " "The mirror had a difficult four-day journey, by air and by road. It arrived in perfect condition and now that it has been coated, we will install the mirror in the telescope with a small test camera for about four weeks testing. We plan to install the main camera in June," said the Project Scientist on VISTA, Will Sutherland of Queen Mary, University of London, UK. The VISTA 4.1-metre diameter primary mirror is the most strongly curved large mirror ever polished to such a precise and exacting surface accuracy - deviations from a perfect surface of less than 1/3000th of the thickness of a human hair. On arrival at Cerro Paranal it was safely craned into the telescope dome where it was washed and coated with a thin layer of protected silver in the facility's coating plant. Silver is the best metal for the purpose since it reflects over 98% of near-infrared light, better than the more commonly used aluminium. To date, the reflectivity

  14. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  15. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  16. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

  17. Rearview Mirror Dimming Function

    ERIC Educational Resources Information Center

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  18. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  19. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  20. Rearview Mirror Dimming Function

    NASA Astrophysics Data System (ADS)

    Layton, William

    2011-12-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge.2 An alternate explanation is given below:

  1. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  2. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  3. NIF small mirror mounts

    NASA Astrophysics Data System (ADS)

    McCarville, Tom J.

    1999-11-01

    The most prominent physical characteristics of the 192-beam NIF laser are the 123 m length of the main laser and 400 mm aperture of each beam line. The main laser is illustrated in Figure 1, which shows half the total beam lines. Less visible are the many small optics (less than 100-mm diameter) used to align and diagnose each beam line. Commercial mounts can be used for most of the small aperture turning mirrors. This paper reviews the NIF projects effort to identify suitable commercial mirror mounts. The small mirror mounts have stability, wave front, space, and cleanliness requirements similar to the large aperture optics. While cost favors use of commercial mounts, there is little other than user experience to guide the mount qualification process. At present, there is no recognizable qualification standard with which to compare various products. In a large project like NIF, different user experience leads to different product selection. In some cases the differences are justified by application needs, but more often the selection process is somewhat random due to a lack of design standards. The result is redundant design and testing by project staff and suppliers. Identification of suitable mirror mounts for large projects like NIF would be streamlined if standards for physical and performance criteria were available, reducing cost for both the project and suppliers. Such standards could distinguish mounts for performance critical applications like NIF from laboratory applications, where ease of use and flexibility is important.

  4. Optomechanical analysis and testing of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Corredor, Andrew; Park, Won Hyun; Cho, Myung; Kim, Young-Soo

    2013-09-01

    The Giant Magellan Telescope (GMT) will be one of the next class of extremely large segmented mirror telescopes. The GMT will utilize two Gregorian secondary mirrors, and Adaptive Secondary Mirror (ASM) and a Fast-steering Secondary Mirror (FSM). The FSM consists of six off-axis mirrors surrounding a central on-axis circular segment. The segments are 1.1 m in diameter and conjugated 1:1 to the seven 8.4 m segments of the primary. A prototype of the FSM mirror (FSMP) has been developed, analyzed and tested in order to demonstrate the mechanical and optical responses of the mirror assembly when subjected to structural and thermal loadings. In this paper, the mechanical and thermal performances of the FSMP were evaluated by performing finite element analyses (FEA) in NX Nastran. The deformation of the mirror's lateral flexure was measured when the FSMP was axially loaded and the temperature response of the mirror assembly was measured when exposed to a sample thermal environment. In order to validate the mirror/lateral flexure design concept, the mechanical, optical and thermal measurements obtained from the tests conducted on mirrors having two different lateral flexures were compared to the responses calculated by FEA.

  5. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  6. Robust control of a bimorph mirror for adaptive optics systems.

    PubMed

    Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis

    2008-07-10

    We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.

  7. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  8. Reconstruction of Mirror Foot with Dysplastic Tibia

    PubMed Central

    Deshmukh, Ranjit; Shyam, Ashok K

    2015-01-01

    Introduction: The Mirror foot is a rare congenital anomaly associated with duplication of the structures of the foot. Verghese et al have classified these feet into three types. Type three is associated with a Dysplastic tibia of which only 5 have been reported. Surgical management has been reported in only two of these five cases which are in the form of amputation. Case Report: We would like to present the reconstruction of a Mirror foot associated with a dysplastic tibia. Our case which is only the sixth reported case attempts to present a surgical reconstruction to a plantigrade foot. Reconstruction was attempted in this case since the child showed a good quadriceps function at the knee. Reconstruction consisted of excision of the preaxial polydactyly to achieve a more cosmetic appearance to the foot as well as improve the ability to wear foot wear. The dysplastic tibia was osteotomized to correct the varus deformity and achieve a plantigtade foot. This helped the child to ambulate more easily with a shoe raise and a brace to maintain the correction achieved. At a five year follow up the child was walking and running with a shoe raise for a 9 cm limb length discrepancy. There was however recurrence of the deformity due to fibular overgrowth. The child’s parents refused further reconstruction and were satisfied with the present function and appearance of the child. Conclusion: Reconstruction can therefore be attempted in these limbs associated with good quadriceps function. PMID:27299070

  9. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  10. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    PubMed

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  11. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  12. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  13. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  14. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  15. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  16. Progress in the Fabrication and Testing of Telescope Mirrors for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Bowers, Charles

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl > or = 0.8) at .=2 m. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror (approx.0.74m) is similarly positioned in six degrees of rigid body motion. The approx..70x.51m, fixed tertiary and approx. 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial light-weighting (21 kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision (approx.10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  17. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  18. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  19. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  20. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  1. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  2. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  3. Two-mirror optical system with a small fold mirror

    NASA Astrophysics Data System (ADS)

    Liu, Xinping; Li, Yingcai; Yang, Jianfeng

    1998-09-01

    A new configuration of two-mirror optical system with a small fold mirror is presented in this paper. Consisting of a concave (positive power) primary mirror followed by a small flat mirror, a concave (positive power) secondary mirror, four lenses and a beam splitter, it gives the excellent image quality. A 1.5-m EFL, F/10 system of the upper configuration is designed over the 4 degree(s) field angle and 0.50 approximately 0.70 micrometers wavelength range. The aberrations have been highly corrected and the distortion is less than 0.3% over the field. The obscuration could be minimized by reducing primary radius of curvature and avoiding the spider that holds the small fold mirror.

  4. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  5. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy. PMID:22489812

  6. Relating the "mirrorness" of mirror neurons to their origins.

    PubMed

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  7. Active support system for 1-m SONG primary mirror

    NASA Astrophysics Data System (ADS)

    Niu, Dongsheng; Wang, Guomin; Gu, Bozhong

    2012-05-01

    Chinese-node telescope of Stellar Observations Network Group (SONG) has a primary mirror 1m in diameter with flat back, which will be supported actively. The performance evaluation of the telescope's active optics system is conducted. Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and two optimizations are carried out by using ANSYS: (1) the locations and forces of axial supports are optimized with the telescope pointing to zenith; (2) the lateral support forces are calculated with the telescope pointing to horizon. Axial support force sensitivities are calculated in a case that a single axial support has a force error of 0.5N. The correction ability of the active support system is analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB procedure, and active optics corrections are applied to these modes. Thermal deformation of the mirror is also corrected using active support system.

  8. Push-pull membrane mirrors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Poletto, Luca

    2006-12-01

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  9. Push-pull membrane mirrors for adaptive optics.

    PubMed

    Bonora, Stefano; Poletto, Luca

    2006-12-11

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  10. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  11. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  12. Modularity, quaternion-Kähler spaces, and mirror symmetry

    SciTech Connect

    Alexandrov, Sergei; Banerjee, Sibasish

    2013-10-15

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  13. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  14. Development of high-order segmented MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Helmbrecht, Michael A.; He, Min; Kempf, Carl J.

    2012-03-01

    The areas of biological microscopy, ophthalmic research, and atmospheric turbulence correction require high-order DMs to obtain diffraction-limited images. Iris AO has been developing high-order MEMS DMs to address these requirements. Recent development has resulted in fully functional 489-actuator DMs capable of 9.5 µm stroke. For laser applications, the DMs were modified to make them compatible with high-reflectance dielectric coatings. Experimental results for the 489-actuator DMs with dielectric coatings shows they can be made with superb optical quality λ/93.3 rms (11.4 nm rms) and λ/75.9 rms (20.3 nm rms) for 1064 nm and 1540 nm coatings. Laser testing has demonstrated 300 W/cm2 power handling with off-the-shelf packaging. Power handling of 2800 W/cm2 is projected when incorporating packaging optimized for heat transfer.

  15. Application of research for metal primary mirror of large-aperture infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Zhang, Haiying; Li, Xinnan

    2010-05-01

    Metal is an early telescope mirror material, it was later replaced by glass which has lower thermal expansion coefficient. However, for observing the sun, these glass materials in the primary mirror are affected by the sun's intense radiation, its temperature rises rapidly, but which conducts heat slowly. The temperature difference between mirror and ambient air is so large that causing the air turbulence which has affected the observation precision. While the metal material has better thermal conductivity characteristics, it can greatly improve the problems caused by air turbulence. This paper analyzes the characteristics of the various mirror materials, and then makes a rust-proof aluminum alloy 5A05 as the mirror substrate material. For the major deficiencies of the soft aluminum surface which is not suitable for polishing, this paper presents a method of electroless nickel plating to improve its surface properties. After the mirror go through a thermal shock, the upper and lower levels of metal CTE don't match with each other, which leads to mirror deformation and warping. The bimetallic effect has been illustrated by the theory of beam element and give a result of elementary approximated. The analysis shows that the displacement deformation of the upper and lower layers of metal which is caused by thermal shock is smaller when the CTE is closer. In the experiments, a spherical aluminum mirrors with the substrate of 5A05 aluminum alloy, diameter of 110mm, the radius of curvature of 258.672mm is manufactured in classical technique. And it ultimately achieves optical mirror-polished precision. Besides, the long-term thermal stability experimental study of the aluminum mirrors proved that Al-infrared solar telescope primary mirror meets the needs of the long-term observation during use.

  16. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  17. Single Crystal Silicon Instrument Mirrors

    NASA Technical Reports Server (NTRS)

    Bly, Vince

    2007-01-01

    The goals for the fabrication of single crystal silicon instrument mirrors include the following: 1) Develop a process for fabricating lightweight mirrors from single crystal silicon (SCS); 2) Modest lightweighting: 3X to 4X less than equivalent solid mirror; 3) High surface quality, better than lambda/40 RMS @ 633nm; 4) Significantly less expensive than current technology; and 5) Negligible distortion when cooled to cryogenic temperatures.

  18. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  19. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  20. SXI Prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  1. Optimal glass-ceramic structures: Components of giant mirror telescopes

    NASA Technical Reports Server (NTRS)

    Eschenauer, Hans A.

    1990-01-01

    Detailed investigations are carried out on optimal glass-ceramic mirror structures of terrestrial space technology (optical telescopes). In order to find an optimum design, a nonlinear multi-criteria optimization problem is formulated. 'Minimum deformation' at 'minimum weight' are selected as contradictory objectives, and a set of further constraints (quilting effect, optical faults etc.) is defined and included. A special result of the investigations is described.

  2. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  3. Deformation of rectangular thin glass plate coated with magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  4. Mirror development for CTA

    NASA Astrophysics Data System (ADS)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  5. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    New, very large telescopes with apertures of 30, 50, and 100 meters are being proposed by the astronomical community. Superpolished or ultrapolished mirrors with low scattered light levels and the use of adaptive optics for near-diffraction-limited performance would make such large telescopes a turning point in astronomy. The secondary mirror for the Euro50 will be a four meter adaptive optic made of a low expansion graphite-filled cyanate ester resin composite produced using a replica transfer technique. We have made three 1/3rd meter diameter prototype composite adaptive optic mirrors of this cyanate ester composite material. Because of the embedded graphite fibers, the composite material has a measured expansion coefficient in the 10-8 range, as has Zerodur or ULE glass. It is very much lighter, more rugged and more economical than Zerodur or ULE, and can be fabricated in weeks, not months. The Zerodur mandrels upon which these replica transfer mirrors are made are superpolished using centrifugal elutriation, so the replica surface has an rms roughness of 0.6 to 0.8 nm. It thus scatters about an order of magnitude less light than typical conventionally polished astronomical mirrors. In adaptive optic mirrors with sub-mm thick faceplates the number of plies used is insufficient to produce an isotropic surface. For mirrors 2 mm thick, with more plies, the surfaces are isotropic, and the slight astigmatism sometimes resulting from the mesh in the ply can be corrected by actuators to make them attractive mirrors. They must be supported to maintain a good optical figure over a meter diameter mirror. The support requirement may be met by using a new type of mechanical/piezoelectric actuator adjustable to a fraction of a wavelength. The mechanical actuators have a coarse adjust of over an mm and a fine adjust of less than a wavelength of light. They can be used in series with a novel type of piezoelectric actuator for final static adjustment. The low voltage, up to 2

  6. EST Telescope: primary mirror, support, and cooling system

    NASA Astrophysics Data System (ADS)

    Volkmer, R.; Manni, F.; Giannuzzi, M.; Scotto, A.; Cavaller, L.; Scheiffelen, T.; Bettonvil, F.; Berrilli, F.

    2010-07-01

    The solar telescope EST is currently in the conceptual design phase. It is planned to be build on the Canary Islands until end of the decade. It is specialized on polarimetric observations and will provide high spatial and spectral observations of the different solar atmospheric layers. The diameter of the primary mirror blank is 4.2m. Different types of mirror shapes were investigated with respect to thermal and mechanical characteristics. To remove the absorbed heat an air cooling system from the back side will be applied. Additional an air flushing system will remove remaining warm air from the front side. A major problem of a large open telescope will be the wind load. Results of the investigations will be shown. To achieve optimal optical performance an active support system is planned. The primary mirror cell needs to be stiff enough to support the primary mirror without deformation at strong wind in case of the open telescope option, but sufficient room for the active support system and cooling system below the backside of the mirror is also required. Preliminary designs and analysis results will be presented.

  7. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  8. Extracting Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, Alfonso; Chang, Zensheu

    2011-01-01

    The technical innovation involves refinement of the classic optical technique of averaging surface measurements made in different orientations with respect to gravity, so the effects of gravity cancel in the averaged image. Particularly for large, thin mirrors subject to substantial deformation, the further requirement is that mount forces must also cancel when averaged over measurement orientations. The zerogravity surface figure of a mirror in a hexapod mount is obtained by analyzing the summation of mount forces in the frame of the optic as surface metrology is averaged over multiple clockings. This is illustrated with measurements taken from the Space Interferometry Mission (SIM) PT-Ml mirror for both twofold and threefold clocking. The positive results of these measurements and analyses indicate that, from this perspective, a lighter mirror could be used; that is, one might place less reliance on the damping effects of the elliptic partial differential equations that describe the propagation of forces through glass. The advantage over prior art is relaxing the need for an otherwise substantial thickness of glass that might be needed to ensure accurate metrology in the absence of a detailed understanding and analysis of the mount forces. The general insights developed here are new, and provide the basic design principles on which mirror mount geometry may be chosen.

  9. Active thermal figure control for the TOPS II primary mirror

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  10. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  11. Research of autocollimating angular deformation measurement system for large-size objects control

    NASA Astrophysics Data System (ADS)

    Turgalieva, Tatiana V.; Konyakhin, Igor A.

    2013-04-01

    Characteristics of the system were studied in laboratory conditions. The research confirmed effectiveness of the considered angular deformation measurement system for large-size objects such as the primary mirror of a radio telescope.

  12. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  13. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed.

  14. Forming Mirrors on Composite Materials

    NASA Technical Reports Server (NTRS)

    Gauldin, R. E.; Ramohalli, K.

    1983-01-01

    Smooth coatings deposited on hard-to-polish substrates. Lightweight mirror, leaning against conventional glass mirror, consists of metallic relective layer on substrate coated with polyester resin. Smooth surface of polyester resin made by covering freshly applied resin with piece of smooth glass coated with release agent.

  15. Polishing technique for beryllium mirror

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1976-01-01

    Performance tests, accomplished by inserting entire X ray telescope and polished mirror into vacuum line 67 m long and taking photographs of an X ray resolution source, indicate that polishing increases mirror efficiency from 0.06 percent for X rays at 0.8 nm and increases resolution from 15 to 3.75 arc-seconds.

  16. Gemini primary mirror support system

    NASA Astrophysics Data System (ADS)

    Stepp, Larry M.; Huang, Eugene W.; Cho, Myung K.

    1994-06-01

    The primary mirror selected for the Gemini 8-m Telescopes is a thin meniscus made of Corning ULE(superscript TM) glass. The conceptual design of the Gemini support system has evolved in response to the properties of the meniscus mirror and the functional requirements of the Gemini Telescopes. This paper describes the design requirements, the design features, and predicted performance of this system.

  17. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism.

    PubMed

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-10

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  18. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

    NASA Astrophysics Data System (ADS)

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-01

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  19. Thermomechanical design of the grazing incidence metal mirror of the prometheus-L IFE reactor

    SciTech Connect

    Ghoniem, N.M.; El-Azab, A.

    1994-12-31

    In Laser IFE reactors the reflectivity and absorptivity of the grazing metal mirror depend on the neutron dose received by the mirror surface. In addition to these irradiation effects, the surface deformation due to neutron irradiation-induced swelling and due to thermal loads change the focusing quality of the mirror. In the present work, a thorough review of the irradiation effects on the changes in mirror surface quality is presented. A mirror design methodology, which considers the deformation due to the loads associated with laser beam and the deformation due to neutron-irradiation induced swelling is discussed. The basic philosophy considered in the design is to separate the functions and choose the best possible materials to perform these specific functions. An aluminum thin layer, for the purpose of reflection of the laser beam, is deposited on a SiC substrate. The SiC substrate provides a rigid bulk, through which coolant is provided to remove the heat absorbed during laser pulses, and avoids the need for a thicker aluminum layer that undergoes more swelling than SiC. A concrete frame is designed to provide the ultimate resistance against thermally-induced deformation. Other features of the design will also be presented.

  20. Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James

    2004-01-01

    SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.

  1. SU-8 focus control mirrors released by XeF2 dry etch

    NASA Astrophysics Data System (ADS)

    Lukes, Sarah J.; Dickensheets, David L.

    2011-03-01

    SU8-2002 deformable membrane mirrors for primary focus control and compensation of focus-induced spherical aberration have been fabricated using a surface micromachining process with dry etching of silicon in XeF2. This process has a higher yield and realizes larger mirrors with a twofold improvement in stroke, relative to a wet release etch process previously described. The use of 3 mm x 4.24 mm elliptical mirrors for 45° incidence focus control in microscopy is described.

  2. Design problems of large space mirror radiotelescopes

    NASA Astrophysics Data System (ADS)

    Gvamichava, A. S.; Buiakas, V. I.; Kardashev, N. S.; Melnikov, N. P.; Sokolov, A. S.; Tsarevskii, G. S.; Usiukin, V. I.

    1981-04-01

    It is noted that large space antennas can solve problems of theoretical and practical importance. Large-diameter (tens or hundreds of meters) mirror antennas have been designed to use an automatically deployed truss frame as a base onto which the radio-reflecting surface is pulled (long-wave version) or on which controllable panels are mounted (short-wave version). The reasons why antennas of mm range can be promptly developed are discussed. Consideration is given to the factors that influence the precision of the reflecting surface of the space antenna, that is technological errors during the process of frame manufacture, technological errors during the manufacture of the reflecting surface, and deformation arising from thermal or force effects. The need to design antennas with automatic control of the reflecting surface in order to operate in the mm wavelength range is stressed.

  3. National mirror fusion program plan

    NASA Astrophysics Data System (ADS)

    Borchers, R. R.; Vanatta, C. M.

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore. Recently this idea was greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta 2 facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation.

  4. More questions for mirror neurons.

    PubMed

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons.

  5. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  6. A method on lightweight for the primary mirror of large space-based telescope based on neural network

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Shuqing; Tan, Fanjiao; Zhi, Xiyang; Chu, Yongqiang; Lv, Hongdi; Zhen, Rongkai

    2014-11-01

    With the aperture of telescope becoming larger, the mass of primary mirror and other relevant structures will become heavier as well. Therefore, lighting weight for large space-based telescope is necessary. This paper purposed a method based on Neural Network aims to build a math model for primary mirror of large space-based telescope, which can reduce weight of the telescope and smaller mirror deformation caused by gravity release effectively. In the meantime, it can also improve stiffness of structure and reduce thermal strain caused by on orbit temperature variation effectively. The model describes the relationship between the structure of primary mirror of large space-based telescope and corresponding deformation, and describes the optical performance of mirror by using Zernike Polynomial. To optimize the structure of primary mirror lightweight, we take the deformation of mirror and its optical performance into consideration. To apply the structures parameters and its corresponding deformations to Neural Network training, we use the combination samples of different mirror lightweight structure parameters and corresponding deformation which caused by gravity release and thermal condition. Finally, by taking advantage of the Neural Network model to optimize the primary mirror lightweight of 1-meter rectangle space-based telescope, which can make the RMS 0.024λ (λ=632.8nm)and areal density under 15kg/m2. This method combines existing results and numerical simulation to establish numerical model based on Neural Network method. Research results can be applied to same processes of designing, analyzing, and processing of large space-based telescope directly.

  7. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  8. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  9. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  10. Mirror man: a case of skilled deliberate mirror writing.

    PubMed

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  11. Status on NGST Mirror Technology

    NASA Technical Reports Server (NTRS)

    Jacobson, David

    2000-01-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1 - 3 m depending on the details of the architecture. The secondary mirror will likely be a monolith similar in size to one of the primary mirror segments. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at less than 15 kg/sq m, operational at approx. 40 K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2 - 2.0 m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2 - 2.0 m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting, the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding; the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the

  12. Observational physics of mirror world

    NASA Technical Reports Server (NTRS)

    Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.

    1989-01-01

    The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.

  13. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  14. Upgrade of surface profiler for x-ray mirror at SPring-8

    NASA Astrophysics Data System (ADS)

    Senba, Y.; Kishimoto, H.; Miura, T.; Ohashi, H.

    2014-09-01

    In beamlines at third-generation synchrotron radiation and X-ray free-electron-laser (XFEL) facilities, various mirrors are used as deflection, focusing, and collimating optics. The required specifications for the mirrors depend on their purpose. In recent years, high-precision aspheric mirrors and flat mirrors, with a figure error less than 10 nm are used as diffraction-limited focusing optics and deflection optics, respectively. The origins of the figure error are fabrication error, gravitational deformation, and clamping deformation. In the case of the bend mirror, figure error is also induced by the bender mechanism. The fabrication error is measured by a long trace profiler (LTP) [1] or by relative-angle determinable stitching interferometry (RADSI) [2] with special high frequency of 0.1-1/mm. Deformation caused by gravity, clamping, and bending should be measured under actual operating conditions because these deformations depend on the direction of the mirror surface and the direction of clamping and bending, respectively. In recent years, in-situ and atwavelength metrology techniques such as the Hartmann sensor, pencil beam, grating base and the speckle-effect-based technique, have been reported [3-6]. These methods are able to investigate the profile of the mirror under real conditions, including the effects of thermal bump; however, these techniques require X-rays and a long optical length to the detector. We attempted to upgrade the LTP at SPring-8 using autocollimators for the precise measurement of height profiles under conditions of both upward and horizontal reflection geometries. A portable Fizeau interferometer was installed for onsite measurement.

  15. JWST NIRCam flight mirror assemblies

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Huff, Lynn; Jacoby, Mike S.; Lopez, Frank

    2011-10-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which includes numerous fold mirror assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K. The optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the mirror assemblies for the NIRCam instrument. This paper covers the design, analysis, assembly, and test of two of the instruments key fold mirrors.

  16. Structural materials for space mirrors

    NASA Astrophysics Data System (ADS)

    Capitanio, C.

    1990-06-01

    Work leading to the development of XMM telescope mirrors is described. Although a carbon/epoxy composite structure was specified, a hot type of material was proposed. The further use of such technology in the development of substrates for space mirrors is discussed. The specifications for the plane plates used for the XMM telescope are presented. The advantages and disadvantages of various other materials in producing substrates for space mirrors are discussed. The potential uses of glass matrix ceramics reinforced with carbon or silicon carbide fibers is given particular attention.

  17. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  18. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  19. Infrared/millimeter wave mirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Sun, Gang; Li, Fan; Yan, Hui; Zhang, Li; Li, Zhuo

    2014-06-20

    The design method of an infrared/millimeter wave mirror array type of beam combiner was investigated. The beam combiner was composed of a support plate, air gap, and mirror array. It had two advantages: one was that the size of the beam combiner could be extended by splicing more mirrors; the other was that the millimeter wave passband could be tuned by adjusting the thickness of the air gap. The millimeter wave and infrared structure was designed by using transmission line theory and optimized by a simplex Nelder-Mead method. In order to analyze the influence of deformation on performance, the mechanical characteristics of the mirrors and support plate were analyzed by the finite element method. The relationship between the millimeter wave transmission characteristics and the air gap was also analyzed by transmission line theory. The scattered field caused by pillars was computed by the multilevel fast multipole method. In addition, the effect of edge diffraction on the near field uniformity was analyzed by the aperture field integration method. In order to validate the mirror array splicing principle and the infrared imaging performance, a prototype of the mirror array was fabricated and tested. Finally, the infrared images reflected by the mirror array were obtained and analyzed. The simulation and experiment results validated the feasibility of the mirror array beam combiner.

  20. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  1. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  2. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-09-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  3. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  4. Congenital mirror movements

    PubMed Central

    Méneret, Aurélie; Depienne, Christel; Riant, Florence; Trouillard, Oriane; Bouteiller, Delphine; Cincotta, Massimo; Bitoun, Pierre; Wickert, Julia; Lagroua, Isabelle; Westenberger, Ana; Borgheresi, Alessandra; Doummar, Diane; Romano, Marcello; Rossi, Simone; Defebvre, Luc; De Meirleir, Linda; Espay, Alberto J.; Fiori, Simona; Klebe, Stephan; Quélin, Chloé; Rudnik-Schöneborn, Sabine; Plessis, Ghislaine; Dale, Russell C.; Sklower Brooks, Susan; Dziezyc, Karolina; Pollak, Pierre; Golmard, Jean-Louis; Vidailhet, Marie; Brice, Alexis

    2014-01-01

    Objective: We screened a large series of individuals with congenital mirror movements (CMM) for mutations in the 2 identified causative genes, DCC and RAD51. Methods: We studied 6 familial and 20 simplex CMM cases. Each patient had a standardized neurologic assessment. Analysis of DCC and RAD51 coding regions included Sanger sequencing and a quantitative method allowing detection of micro rearrangements. We then compared the frequency of rare variants predicted to be pathogenic by either the PolyPhen-2 or the SIFT algorithm in our population and in the 4,300 controls of European origin on the Exome Variant Server. Results: We found 3 novel truncating mutations of DCC that segregate with CMM in 4 of the 6 families. Among the 20 simplex cases, we found one exonic deletion of DCC, one DCC mutation leading to a frameshift, 5 missense variants in DCC, and 2 missense variants in RAD51. All 7 missense variants were predicted to be pathogenic by one or both algorithms. Statistical analysis showed that the frequency of variants predicted to be deleterious was significantly different between patients and controls (p < 0.001 for both RAD51 and DCC). Conclusion: Mutations and variants in DCC and RAD51 are strongly associated with CMM, but additional genes causing CMM remain to be discovered. PMID:24808016

  5. Tinbergen on mirror neurons

    PubMed Central

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology—the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible ‘best explanation’ for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of ‘survival value’, should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding—or another social cognitive function—by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  6. Honeycomb mirrors of borosilicate glass

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The fabrication of different types of honeycomb mirrors with various kinds of borosilicate glass is discussed. Borosilicate glass is much less expensive to make than zero expansion glass, and can be used for ground-based applications. A mirror 60 cm in diameter made with a slotted strut or egg-crate honeycomb of 6 mm polished Pyrex plate is shown. The faceplates are 12 mm thick, laminated from the same 6 mm sheet. The result of an interferometric test is shown, with residual errors of about wavelength/8 RMS. An alternative fabrication technique for very large mirrors which require high quality bonds between separate sheets of thick Pyrex is described. The result of a recent test casting of a 60 cm honeycomb structure made in a mold with towers 14 cm square and 6 mm gaps between is shown, and methods to cast an entire mirror in one operation are discussed.

  7. The magic of relay mirrors

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Washburn, Donald C.

    2004-09-01

    Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.

  8. JWST Secondary Mirror Deploy Timelapse

    NASA Video Gallery

    Setting up NASA's James Webb Space Telescope's secondary mirror in space will require special arms that resemble a tripod that was recently demonstrated in a NASA cleanroom. TRT: 1:25 / Credit: NAS...

  9. JWST Primary Mirror Installation Complete

    NASA Video Gallery

    Completing the assembly of the primary mirror, which took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a significant milestone and the culmination of over a decade of desi...

  10. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  11. Evolution of the mirror machine

    SciTech Connect

    Damm, C. C.

    1983-08-18

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor.

  12. Directly polished lightweight aluminum mirror

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2008-07-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. The collaboration between optical- and mechanical designers at Astron led to new design philosophies and strategies. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness (~1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions.

  13. Alignment Mirror Mechanisms for Space Use

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  14. Performance comparison between two axial active support schemes for 1-m thin meniscus primary mirror

    NASA Astrophysics Data System (ADS)

    Niu, D. S.; Wang, G. M.; Gu, B. Z.; Ye, Y.

    2013-03-01

    Active support scheme may decide the deformation of the optical surface figure of the primary mirror. Two main active axial support schemes are often adopted to the thin meniscus primary mirror, one scheme is that the axial supports normal to the mirror bottom surface, and the other is that the active forces parallel to the optical axis. In order to compare the performance of the two support schemes, 1-m thin meniscus primary mirror is conducted. Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and optimizations are carried out by using ANSYS for each support scheme to obtain the locations and active forces. The axial support force sensitivities are calculated for the two support schemes in a case that a single axial support has a force error of 0.5 N. The correction ability of the active support system for both of the support schemes are analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB procedure, and active optics corrections are applied to these modes for the two active supports. The extra mirror surface error due to thermal deformation is also corrected with the two support schemes.

  15. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  16. AdS5×S(5) mirror model as a string sigma model.

    PubMed

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally. PMID:25615306

  17. AdS5×S(5) mirror model as a string sigma model.

    PubMed

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.

  18. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  19. Cryogenic Testing Chamber for Optical Mirrors with Shearing Interferometer

    NASA Astrophysics Data System (ADS)

    Belyaeva, Alla I.; Galuza, Alexey A.

    Low temperature test units are complex and expensive instruments, often with a limited range of applications, for example, monitoring large optical system and details. Almost every project aimed at building a cooled satellite telescope requires a new test units. The original cryogenic testing chamber for measuring the shape of spherical mirrors with a diameter of up to 0.4 m and a curvature radius of up to 0.7 m in vacuum at temperature of 10 - 300 K is proposed. The optical mirrors are tested at low temperature by interferometry. The shearing interferometer is placed outside the testing chamber. The tolerances with respect to the wavefront distortions are less than wave-length/40. Main difference of our chamber from the previously reported is that all the optical components and most of the cooling system are attached to a flange, mounted on a base and to a frame with a stabilized temperature. The rigid frame is a "squirrel wheel" welded from thick-walled pipes, and coolant can circulate inside. This design excludes unintentional thermal deformations of the frame and the related mirror displacement after cooling. A two-stage cooling system includes a nitrogen vessel (the first stage) with detachable heat shields and a movable shield. A continuous-flow coolers -cocurrent exchanger (the second stage) sets the temperature of the test mirror in the range 10-300K. The test mirror is fixed on three alignment units attached to the frame via rigid thermally insulating rods. The screw alignment units are driven by modified low-power stepper motors fixed to the alignment units. The circuit which controls the motors can translate the mirror parallel or tilt it in any direction. This design allows the interference pattern to be corrected at any stage of the test. The drives can also compensate for the flexibility of the mirror mounting (without rigid rims and cold conductors), which is needed to reduce the mechanical strain. The proposed design and structure of the chamber

  20. Multiconjugate adaptive optics for large telescopes: analytical control of the mirror shapes.

    PubMed

    Owner-Petersen, Mette; Goncharov, Alexander

    2002-03-01

    We present an analytical algorithm for deriving the shapes of the deformable mirrors to be used for multiconjugate adaptive correction on a large telescope. The algorithm is optimal in the limit where the overlap of the wave-front contributions from relevant atmospheric layers probed by the guide stars is close to the size of the pupil. The fundamental principle for correction is based on a minimization of the sum of the residual power spectra of the phase fluctuations seen by the guide stars after correction. On the basis of the expressions for the mirror shapes, so-called layer transfer functions describing the distribution of the correction of a single atmospheric layer among the deformable mirrors and the resulting correction of that layer have been derived. It is shown that for five guide stars distributed in a regular cross, two- and three-mirror correction will be possible only up to a maximum frequency defined by the largest separation of the conjugate altitudes of the mirrors and by the angular separation of the guide stars. The performance of the algorithm is investigated in the K band by using a standard seven-layer atmosphere. We present results obtained for two guide-star configurations: a continuous distribution within a given angular radius and a five-star cross pattern with a given angular arm length. The wave-front fluctuations are subjected to correction using one, two, and three deformable mirrors. The needed mirror dynamic range is derived as required root-mean-square stroke and actuator pitch. Finally the performance is estimated in terms of the Strehl ratio obtained by the correction as a function of field angle. No noise has been included in the present analysis, and the guide stars are assumed to be at infinity.

  1. Variable Curvature Mirrors for ELT Laser Guide Star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Madec, Fabrice; Le Mignant, David; Cuby, Jean-Gabriel

    2011-09-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, LGS defocusing is one of the system issues that can be tackled using active refocusing mirrors such as Variable Curvature Mirrors (VCM). Indeed, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope, and induces a large defocusing at the LGS wave-front sensor focal plane. To compensate for that, we propose an original concept including a VCM specifically designed to keep a focused spot on the wave-front sensor: the mirror is made of a thin meniscus bend using a pressure applied on its back face. Due to the large defocusing, the LGS-VCM must be able to change its shape from F/12.5 to F/5, leading to more than 1 mm sag. The VCM benefits of a specific shape with a variable radial thickness distribution, allowing keeping an optical quality better than λ/5 over this very large range of deformation. The work presented here details the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Two prototypes have been manufactured to compare the real behaviour of the mirror and the simulations data. Results obtained on the prototypes show that the deformation of the VCM is very close to the simulation, and leads to a realistic concept.

  2. Development of a variable curvature mirror for the delay lines of the VLT interferometer

    NASA Astrophysics Data System (ADS)

    Ferrari, M.

    1998-02-01

    This paper presents the variable curvature mirror (vcm) serving for beam management purposes in the interferometric mode of the Very Large Telescope (VLT). This special device located in the delay line system provides for a precise positioning of the pupil image of an individual telescope in the recombination laboratory. The particularity of this active mirror is its continuous variable curvature from (2800 mm)(-1) to (84 mm)(-1) which has to be achieved with a reasonable optical quality. This large curvature variation needed in the system, lead us to extend the classical theory of elasticity to the range of large deformations (i.e. the achieved flexions are larger than the mirror's thickness). This new approach, in the domain of active optics, gave us a theoretical support to determine the physical parameters of the mirror (thickness distribution, loading configuration). Today the vcm system has been thoroughly tested and its performances evaluated. The experimental results have shown good agreements with the theory.

  3. Analysis and Verification of HET 1 m Mirror Deflections Due to Edge Sensor Loading

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ninety-one 1 m mirror segments which comprise the McDonald Observatory Hobby Eberly Telescope (HET) primary mirror have been observed to drift out of alignment in an unpredictable manner in response to time variant temperature deviations. A Segment Alignment Maintenance System (SAMS) is being developed to detect and correct this segment-to-segment drift using sensors mounted at the edges of the mirror segments. However, the segments were not originally designed to carry the weight of edge sensors. Thus, analyses and tests were conducted as part of the SAMS design to estimate the magnitude and shape of the edge sensor induced deformations as well as the resultant optical performance. Interferometric testing of a 26 m radius of curvature HET mirror segment was performed at the Marshall Space Flight Center using several load conditions to verify the finite element analyses.

  4. Non-linear mirror instability

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Schekochihin, A. A.; Cowley, S. C.

    2015-02-01

    Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early non-linear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to non-linear secular growth of magnetic perturbations, δB/B ∝ t2/3. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear mirror dynamics with trapping, valid up to δB/B = O(1).

  5. Large mirror ratio tandem mirror magnetic design studies

    SciTech Connect

    Francis, G.L.; Myra, J.R.; D'lppolito, D.A.; Catto, P.J.; Aamodt, R.E.

    1986-04-01

    A systematic study of magnetic designs has been carried out for three-cell quadrupole-stabilized tandem mirror reactors comparable in size to the (octupole) mini-MARS design. In these designs, a single mirror cell at each end of the device serves as end plug, thermal barrier and MHD anchor. The multiple functions of the end plugs make it difficult to simultaneously optimize the physics properties of the plasma (stability, radial confinement, and good particle drift orbits). Two different design approaches have been studied using recently developed magnetic optimization techniques. Typical physics figures of merit are given and critical issues discussed for each design.

  6. Compact neutron imaging system using axisymmetric mirrors

    DOEpatents

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  7. Quantum deformations of the flat space superstring

    NASA Astrophysics Data System (ADS)

    Pachoł, Anna; van Tongeren, Stijn J.

    2016-01-01

    We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.

  8. Optimizing X-ray mirror thermal performance using matched profile cooling

    SciTech Connect

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S.; Srinivasan, Venkat; Stefan, Peter M.

    2015-08-07

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  9. Optimizing X-ray mirror thermal performance using matched profile cooling.

    PubMed

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S; Srinivasan, Venkat; Stefan, Peter M

    2015-09-01

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  10. Electronic speckle pattern interferometric testing of JWST primary mirror segment assembly

    NASA Astrophysics Data System (ADS)

    Smith, Koby Z.; Chaney, David M.; Saif, Babak N.

    2011-09-01

    The James Webb Space Telescope (JWST) Primary Mirror Segment Assembly (PMSA) was required to meet NASA Technology Readiness Level (TRL) 06 requirements in the summer of 2006. These TRL06 requirements included verifying all mirror technology systems level readiness in simulated end-to-end operating conditions. In order to support the aggressive development and technology readiness schedule for the JWST Primary Mirror Segment Assembly (PMSA), a novel approach was implemented to verify the nanometer surface figure distortion effects on an in-process non-polished beryllium mirror surface. At the time that the TRL06 requirements needed to be met, a polished mirror segment had not yet been produced that could have utilized the baselined interferometric optical test station. The only JWST mirror segment available was a finished machined segment with an acid-etched optical surface. Therefore an Electronic Speckle Pattern Interferometer (ESPI) was used in coordination with additional metrology techniques to perform interferometric level optical testing on a non-optical surface. An accelerated, rigorous certification program was quickly developed for the ESPI to be used with the unfinished optical surface of the primary mirror segment. The ESPI was quickly implemented into the PMSA test program and optical testing was very successful in quantifying the nanometer level surface figure deformation changes in the PMSA due to assembly, thermal cycling, vibration, and acoustic testing. As a result of the successful testing, the PMSA passed all NASA TRL06 readiness requirements.

  11. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  12. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  13. Parasitic driven heliostat mirror declinator

    SciTech Connect

    Rhodes, W.A.

    1983-09-06

    An automatic parasitically driven declinator is disclosed for changing the tilt angle of the mirror of a heliostat to provide solar declination tracking by the heliostat. The declinator includes an axial gear drive train coupled to the polar axial shaft of the heliostat, which shaft is rotated. A pendulum arrangement coupled via an input shaft to the axial gear drive train is substantially held in plumb position by gravity wherein the gear drive train is driven as it is rotated about the polar axis by the polar axial shaft. An output shaft coupled to the gear train is rotated to drive a skew bar linkage assembly that is connected to the mirror mounting assembly of the heliostat. The gear ratio of the gear drive train assembly is made 365:1 so that the mirror angle is annually nutated a predetermined number of degrees corresponding to the cyclic variations of solar declination.

  14. Alpha Channeling in Mirror Machines

    SciTech Connect

    Fisch N.J.

    2005-10-19

    Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  15. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  16. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  17. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  18. Manufacturing and testing of a convex aspherical mirror for ASSIST

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Stuik, Remko

    2012-09-01

    ASSIST is the testbed for the ESO Adaptive Optics Facility. The main objective of ASSIST is the characterization of the 1.2 meter deformable mirror which will replace the existing secondary of one of the 8 meter VLT telescopes. A large concave 1.65 meter diameter aspherical primary mirror combined with a 140 mm diameter convex aspherical secondary forms the main optical system of ASSIST. Two additional optical units provide the light sources and the wave front analyzing optics. Without having the possibility for checking the entire optical system as a whole, each individual mirror had to be manufactured and tested using reliable techniques. The secondary mirror for ASSIST (AM2) is made of an optically transparent material (BK7) with a specific and accurate backside radius in order to achieve a null test in transmission. Furthermore, not only the overall RMS surface error of AM2 is important, but due to the fact that it will be used in a setup that measures specific spatial frequencies, also the spatial frequencies of the surface error of AM2 is important. The aspherical surface is tested in double pass using an optical flat and an interferometer with a transmission sphere. Manufacturing of this asphere is mainly done by hand at the optical lab of NOVA-ASTRON. The final accuracy of the reflecting surface is within the required 50 nm RMS with a surface roughness of less than 2 nm RMS. This paper reports in more detail on manufacturing and testing of the a-spherical convex mirror.

  19. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  20. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.